Турбореактивный двигатель, как тепловая машина. Принцип работы. Просто. Турбовентиляторный двигатель принцип работы


устройство, схема, принцип работы. Производство турбовинтовых двигателей в России

Двигатель турбовинтовой похож на поршневый: и тот, и другой имеют воздушный винт. Но во всем остальном они разные. Рассмотрим, что собой представляет этот агрегат, как работает, каковы его плюсы и минусы.

Общая характеристика

Двигатель турбовинтовой принадлежит к классу газотурбинных, которые разрабатывались как универсальные преобразователи энергии и стали широко использоваться в авиации. Они состоят из тепловой машины, где расширенные газы вращают турбину и образуют крутящий момент, а к ее валу прикрепляют другие агрегаты. Двигатель турбовинтовой снабжается воздушным винтом.

двигатель турбовинтовой

Он представляет собой нечто среднее между поршневыми и турбореактивными агрегатами. Сначала в самолеты устанавливали поршневые двигатели, состоящие из цилиндров в форме звезды с расположенным внутри валом. Но из-за того, что они имели слишком большие габариты и вес, а также низкую возможность скорости, их перестали использовать, отдав предпочтение появившимся турбореактивным установкам. Но и эти двигатели не были лишены недостатков. Они могли развивать сверхзвуковую скорость, но потребляли очень много топлива. Поэтому их эксплуатация обходилась слишком дорого для пассажирских перевозок.

Двигатель турбовинтовой должен был справиться с подобным недостатком. И эта задача была решена. Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого коэффициента полезного действия.

Двигатели были изобретены и сооружены еще в тридцатых годах прошлого века при Советском Союзе, а два десятилетия спустя начали их массовый выпуск. Мощность варьировалась от 1880 до 11000 кВт. Длительный период их применяли в военной и гражданской авиации. Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.

Устройство турбовинтового двигателя и принцип его работы

турбовинтовой двигатель принцип работы

Конструкция мотора очень проста. В него входят:

  • редуктор;
  • воздушный винт;
  • камера сгорания;
  • компрессор;
  • сопло.

Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее, а она, в свою очередь, вращает компрессор и винт. Нерастраченная энергия выходит через сопло, создавая реактивную тягу. Так как величина ее не является существенной (всего десять процентов), не считается турбореактивным турбовинтовой двигатель.

Принцип работы и конструкция, впрочем, схожи с ним, но энергия здесь не полностью выходит через сопло, создавая реактивную тягу, а лишь частично, так как полезная энергия еще и вращает винт.

Рабочий вал

Бывают двигатели с одним или двумя валами. В одновальном варианте на одном валу находятся и компрессор, и турбина, и винт. В двухвальном — на одном из них установлены турбина и компрессор, а на другом — винт через редуктор. Здесь же имеются две турбины, связанные друг с другом газодинамическим способом. Одна из них предназначена для винта, а другая — для компрессора. Такой вариант наиболее распространен, так как энергия может применяться без запуска винтов. А это особенно удобно, когда самолет находится на земле.

устройство турбовинтового двигателя

Компрессор

Эта деталь состоит из двух-шести ступеней, позволяющих воспринимать существенные перепады температуры и давления, а также снижать обороты. Благодаря такой конструкции получается понизить вес и габариты, что является очень важным для авиационных двигателей. В компрессор входят рабочие колеса и направляющий аппарат. На последнем может быть предусмотрена или не предусмотрена регуляция.

Воздушный винт

Благодаря этой детали образуется тяга, но скорость является ограниченной. Лучшим показателем считается уровень от 750 до 1500 оборотов в минуту, так как при увеличении коэффициент полезного действия начнет падать, и винт вместо разгона будет превращаться в тормоз. Явление называется «эффектом запирания». Оно вызвано лопастями винта, которые на высоких оборотах при вращении, превышающей скорость звука, начинают функционировать некорректно. Тот же самый эффект будет наблюдаться при увеличении их диаметра.

Турбина

схема турбовинтового двигателя

Турбина способна развить скорость до двадцати тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор, сокращающий скорость и увеличивающий крутящий момент. Редукторы могут быть разными, но главная их задача вне зависимости от вида — снижать скорость и повышать момент.

Именно эта характеристика ограничивает использование турбовинтового двигателя в военных самолетах. Однако разработки по созданию сверхзвукового двигателя не прекращаются, хоть пока и не являются успешными. Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.

производство турбовинтовых двигателей в россии

В качестве примера можно рассмотреть двигатель Д-27 (турбовинтовентиляторный), имеющий два винтовых вентилятора, прикрепленных на свободной турбине редуктором. Это единственная модель данной конструкции, используемая в гражданской авиации. Но его успешное применение считают большим скачком по улучшению эксплуатационных качеств рассматриваемого мотора.

Преимущества и недостатки

Выделим минусы и плюсы, которыми характеризуется работа турбовинтового двигателя. Преимуществами являются:

  • малый вес по сравнению с поршневыми агрегатами;
  • экономичность по сравнению с турбореактивными моторами (благодаря воздушному винту коэффициент полезного действия достигает восьмидесяти шести процентов).

Однако, несмотря на такие неоспоримые достоинства, реактивные двигатели в ряде случаев являются более предпочтительным вариантом. Скоростной предел турбовинтового мотора составляет семьсот пятьдесят километров в час. Однако для современной авиации этого очень мало. Кроме того, шум образуется очень высокий, превышающий допустимые значения Международной организации гражданской авиации.

работа турбовинтового двигателя

Поэтому производство турбовинтовых двигателей в России ограниченно. В основном их устанавливают в самолеты, которые летают на большие расстояния и с небольшой скоростью. Тогда применение оправданно.

Однако в военной авиации, где главными характеристиками, которыми должны обладать самолеты, являются высокая маневренность и бесшумная работа, а не экономичность, эти двигатели не отвечают необходимым требованиям и здесь используются турбореактивные агрегаты.

В то же время постоянно ведутся разработки по созданию сверхзвуковых винтов, чтобы преодолеть «эффект запирания» и выйти на новый уровень. Возможно, когда изобретение станет реальностью, от реактивных двигателей откажутся в пользу турбовинтовых и в военных самолетах. Но в настоящее время их можно назвать лишь «рабочими лошадками», не самыми мощными, зато стабильно функционирующими.

fb.ru

Турбовинтовой двигатель | Техника и человек

 

Турбовинтовые двигатели на первый взгляд внешне напоминают поршневые моторы по общей черте и тех и других — воздушному винту. Но на этом сходство прекращается, далее наступает путь конструктивно совершенно иной машины, с иным принципом работы, с иными характеристиками и режимами работы, с иными возможностями.

Турбовинтовые двигатели (ТВД) – это разновидность газотурбинных двигателей, которые нашли широкое применение в авиации. Сами по себе газотурбинные двигатели (ГТД) были разработаны в качестве универсального преобразователя энергии, которые в итоге стали использовать в авиастроении. Газотурбинный двигатель представляет собой тепловую машину, в которой при сгорании топлива расширенные газы вращают турбину, создавая крутящий момент, а к валу турбины можно подключать необходимые агрегаты. В случае с ТВД к валу подключается воздушный винт.

Турбовинтовые двигатели – это своеобразная «помесь» поршневых моторов с турбореактивными. Поршневые двигатели были первыми силовыми установками, которыми снабжались самолеты. Они представляли собой цилиндры, расположенные в виде звезды, в центре которой располагался вал, вращающий воздушный винт. Но из-за своего большого веса и ограничений по скорости от них со временем отказались, отдав предпочтение турбореактивным двигателям. Правда, ТРД тоже оказались далеко не идеальными. При возможности развивать сверхзвуковую скорость они довольно «прожорливые», что повышает затраты на топливо при их эксплуатации, а их использование на пассажирских и грузовых самолетах делает перелеты слишком дорогими. Именно этот недостаток реактивных двигателей и было возложено устранить их турбовинтовым сородичам, которые на сегодняшний день успешно используются в авиации. Взяв за основу строение и принцип работы ТРД и умело совместив его с работой воздушного винта от поршневых моторов, они смогли соединить в себе небольшие габариты и малый вес, экономный расход топлива и высокий КПД.

VintoTRD_aircraft

Hawker Beechcraft King Air 350

Впервые в Советском Союзе ТВД сконструировали и испытали еще в 30-х годах, а в 50-е началось их серийное производство. Диапазон их мощностей был в пределах 1880-11000 кВт. Турбовинтовые двигатели долгое время успешно использовались в гражданской и военной авиации, отличаясь надежностью и долговечностью. Примером может служить заслуженный «ветеран» отечественного авиастроения АИ-20, которым оснащались ИЛ-18, АН-8, АН-32, АН-12, БЕ-12, ИЛ-38. Но со временем стало понятно, что увеличивать их мощность можно только до определенного предела, а использовать их на сверхзвуковых скоростях не получится, так что сфера их использования резко сократилась. Сейчас ТВД в основном используются в гражданской авиации на самолетах с низкой скоростью, тогда как сверхзвуковые самолеты оснащены турбореактивными двигателями. ТВД устанавливаются на АН-24, АН-32, ИЛ-18, ТУ-114.

Устройство и принцип работы турбовинтового двигателя

Строение турбовинтового двигателя довольно простое. Он состоит из воздушного винта с редуктором, компрессора, камеры сгорания, турбины и выходного устройства – сопла. Компрессор нагнетает и сжимает воздух, направляя его в камеру сгорания, куда впрыскивается топливо. Горючая смесь, полученная при смешивании воздуха с топливом, воспламеняется, образуя газы с высокой потенциальной энергией, которые, расширяясь, поступают на лопасти турбины, вращая ее, а сама турбина вращает воздушный винт и компрессор. Энергия, не потраченная на вращение турбины, выходит в виде потока воздуха через сопло, образуя реактивную тягу, величина которой не более 10% от общей тяги мотора. Поскольку она незначительна по своей величине, ТВД не считается реактивным. Как видно, по своему строению и принципу работы турбовинтовой двигатель очень напоминает турбореактивный с той лишь разницей, что в первом случае выработанная полезная энергия идет на вращение винта, а во втором она полностью выходит в виде потока воздуха через сопло, образуя реактивную тягу.

VintoTRD

Строение турбовинтового двигателя

Рабочий вал

val'nost'Различают двухвальные и одновальные турбовинтовые двигатели. В одновальных ТВД турбина с компрессором и винт расположены на одном валу, тогда как в двухвальных между ними нет механической связи: турбина и компрессор закреплены на одном валу, а винт через редуктор – на другом. Во втором случае конструкция мотора включает в себя две турбины, связанные между собой не механически, а газодинамически: одна для компрессора, вторая для винта. Это более распространенный и эффективный вариант, который, несмотря на более сложную конструкцию, используется чаще. Такое решение позволяет использовать энергию двигателя без запуска винтов, что удобно в случаях, когда самолет находится на земле и нужно обеспечить выработку электроэнергии и подачу воздуха высокого давления.

Компрессор

kompressorКомпрессор ТВД имеет ступенчатую конструкцию с числом ступеней в пределах 2-6, что позволяет воспринимать значительные перепады давления и температур при работе, регулировать и снижать обороты. Многоступенчатая конструкция также дает возможность снизить массу и размеры мотора, что немаловажно для авиационных двигателей, где на счету каждый грамм веса. Компрессор состоит из рабочех колес с лопатками и направляющего аппарата. Направляющий аппарат может быть как регулируемым (с поворачивающимися лопатками вокруг своей оси), так и не регулируемым.

Воздушный винт

vintВоздушный винт создает необходимую тягу, но при этом скорость его вращения ограничена. Наиболее эффективно он работает на скорости 750-1500 об/мин, после чего КПД падает, а сам винт из движителя фактически превращается в тормоз. Это явление носит название «эффект запирания» и связано оно с тем, что отдельные части лопастей винта на высоких оборотах начинают двигаться со скоростью, превышающей скорость звука, что становится причиной его некорректной работы. Это же происходит, если увеличить диаметр лопастей, ведь чем они длиннее,  тем больше линейная скорость на их концах.

Турбина

turbine1Турбина же развивает скорость до 20 000 об/мин, но винт на таких оборотах просто не сможет работать, поэтому он оснащается понижающим редуктором, уменьшающим скорость вращения и повышающим момент. Редукторы по своему строению могут отличаться, но их задача – понижение скорости вращения и увеличение момента – остается неизменной. Ограничение скорости вращения винта во многом ограничивает использование ТВД особенно в военной авиации, где важна скорость, но ученые и конструкторы ведут активную работу по созданию сверхзвукового двигателя, правда, пока их старания не увенчались успехом. Для увеличения тяги на некоторых моделях устанавливаются по два винта, которые в процессе работы вращаются в противоположные стороны, приводимые в движение одним редуктором. Примером такого двигателя является Д-27, который называют турбовинтовентиляторным. Он оснащен двумя винто-вентиляторами, закрепленными через редуктор на оси свободной турбины. Пока это единственный двигатель такого рода, который используется в гражданской авиации на самолетах АН-70, но его появление и успешное использование смогут стать настоящим прорывом в сфере улучшения эксплуатационных показателей ТВД.

Преимущества и недостатки

Подведя итоги, можно выделить основные преимущества и недостатки ТВД. Преимуществами турбовинтовых двигателей являются:

— небольшой вес в сравнение с поршневыми моторами;

— экономичность и меньший расход топлива в сравнение с турбореактивными двигателями, что объясняется наличием воздушного винта, КПД которого порой достигает 86%.

Но при всех своих достоинствах ТВД не могут полностью заменить собой реактивные двигатели, ведь их конструкция не позволяет развивать большие скорости. Их скоростной предел составляет 750 км/час, тогда как современная авиация требует намного большего. Еще один минус – шум при работе винта, превышающий гранично допустимые значения, определенные Международной организацией гражданской авиации.

Таким образом, несмотря на высокий КПД и экономичность, использование турбовинтовых двигателей ограничено. В основном ими оснащаются самолеты, летающие с небольшой скоростью и на дальние расстояния, что позволяет значительно снизить стоимость пассажирских и грузовых перелетов. В этих случаях их использование полностью оправдано. Но в военной авиации ТВД практически не используются – здесь важны не экономия топлива, а скорость, маневренность и бесшумность, что вполне могут обеспечить турбореактивные двигатели. Вместе с тем в авиационной промышленности постоянно ведутся работы по созданию сверхзвуковых винтов, которые смогли бы преодолевать звуковой барьер без потерь КПД и «эффекта запирания». Возможно, со временем этим двигателям удастся вытеснить своих реактивных собратьев и занять их место в современном авиастроении. Пока же ТВД остаются пусть и не самыми мощными, но выносливыми и надежными «рабочими лошадками».

zewerok.ru

Как работает двигатель самолета

Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

как работает двигатель самолета

Устройство турбовентиляторного двигателя

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

  • вентилятор;
  • компрессор;
  • камера сгорания;
  • турбина;
  • сопло.

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

принцип работы двигателя самолета

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

устройство двигателя самолета

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

samoleting.ru

Турбореактивный двигатель, как тепловая машина. Принцип работы.

Здравствуйте!

Я думаю, что пришла пора прояснить принцип действия всем нам известного «сердца», того самого, о котором я писал в предыдущей статье.

турбореактивный двигатель

Паровая турбина элетростанции. Типичное устройство расширения.

Основным двигателем реактивной авиации мира является турбореактивный двигатель (ТРД) и именно его принцип работы мы сейчас без труда и лишних ненужных заморочек проясним.

Все мы прилежно учились в школе :-), и знаем, что в физике существует понятие «тепловая машина» (или «тепловой двигатель»). Человек долго подбирался к ее созданию.

Первые образцы приписывают даже Архимеду и потом Леонардо да Винчи. Но по настоящему она вошла в жизнь человека только в конце 60-х годов 18-го века, когда Д. Уатт построил свою паровую машину. Прогресс не остановить и современную жизнь уже невозможно представить без тепловых машин. Это не только тепловые электростанции и электроцентрали (в том числе, кстати и атомные станции), но и миллионы автомобилей различного назначения и, конечно же, мною очень любимые 🙂 авиационные двигатели.

Теорию работы тепловой машины описывает раздел физики термодинамика. Не углубляясь в ее законы (принцип этого сайта Вам известен, если Вы читали страницу «Сайт об авиации» 🙂 ), скажу, что тепловой двигатель – это машина для преобразования энергии в механическую работу. Работа — ее так сказать полезная «продукция». Этой энергией обладает используемое внутри машины так называемое рабочее тело, в качестве которого обычно выступает газ (или пар в паровой машине). Получает энергию рабочее тело при сжатии в машине, а полезную механическую работу мы потом будем иметь при последующем его расширении.

Но! Надо понимать, что в работоспособном тепловом двигателе работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. То есть вариант «на сколько сжали, на столько же и расширили» (все равно как в автомобильном амортизаторе) нам не подходит. Поэтому для сохранения нужной нам работоспособности газ перед расширением или во время него нужно еще и нагревать, а перед сжатием неплохо бы охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и сразу появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип. На его основе и работает турбореактивный двигатель.

Таким образом любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и неплохо бы холодильник. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера. Рабочее тело – воздух, который попадает в компрессор, там сжимается, далее идет в камеру сгорания, там нагревается, смешивается с продуктами сгорания ( керосина) и потом следует на турбину, вращая ее (а она, в свою очередь компрессор) и расширяясь, тем самым теряет часть энергии. И уже далее расходуется «полезная» энергия. Она превращается в кинетическую, когда газ сильно разгоняется в устройстве под названием реактивное сопло (которое обычно бывает сужающимся) и двигатель получает силу тяги за счет реакции струи. Все :-)… ТРД работает. Неплохо этот процесс показан в коротком ролике. Он без комментариев, но они здесь и не нужны :-). Скажу только, что показанное переднее колесо – это компрессор, далее кольцом вокруг вала – камера сгорания и за ней колесо турбины. Все схематично, но достаточно просто, чтобы понять как работает турбореактивный двигатель…

Более подробно об устройстве ТРД и его разновидностей мы поговорим в следующих статьях.До встречи…

Р.S. Ролик рекомендую смотреть в большом формате.

Фотография кликабельна.

No related posts.

avia-simply.ru

Турбовинтовой двигатель. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Привет!

Турбовинтовой двигатель

Транспортный самолет АН-8 с двигателями АИ-20.

Сегодня продолжаем более подробно говорить о типах авиационных двигателей. На повестке дня следующий тип – турбовинтовой двигатель (ТВД).Кто читал мои статью здесь, тот конечно, знает, что турбовинтовой двигатель – это разновидность газотурбинного.

Газотурбинный двигатель – это тепловая машина и, как в любой тепловой машине, в нем есть устройство расширения, которым является турбина. Ну, а турбина нужна в первую очередь, чтобы вращать компрессор, а во вторую, для привода различных дополнительных агрегатов, то есть полезной нагрузки. Это может быть, например, электрогенератор, винт в судовой установке, а применительно к авиации – винт воздушный или же вспомогательная силовая установка (ВСУ).

Получается, что турбину можно как бы условно разделить на две части – турбину компрессора и турбину полезной нагрузки. Последнюю еще называют свободной турбиной. Часто на практике их так и делают в виде двух агрегатов. Если свободную турбину убрать, то останется неиспользованная часть энергии газового потока ( так называемая свободная энергия), которая потом в реактивном сопле двигателя может быть преобразована в кинетическую энергию, и мы получим тягу двигателя за счет реакции струи. Вы уже наверное поняли :-), что в этом случае мы будем иметь турбореактивный двигатель.

Однако возможен и промежуточный вариант. То есть часть свободной энергии (большую) можно использовать для полезной нагрузки, а оставшуюся часть (меньшую) для работы в сопле, то есть для получения реактивной тяги. Вот именно по такому принципу и устроен турбовинтовой двигатель. Полезная нагрузка для него – это вышеупомянутый воздушный винт. Справедливости ради стоит сказать, что реактивная тяга играет для ТВД небольшую роль. Доля ее обычно не более 15% (на современных ТВД и того меньше).

Турбовинтовой двигатель

Принципиальное устройство турбовинтового двигателя.

Итак классический ТВД по конструкции очень похож на обычный турбореактивный двигатель. У него есть компрессор, камера сгорания, турбина и сопло. Но добавлен еще один важный агрегат. Дело в том, что частота вращения ротора любого газотурбинного двигателя очень высока (до 30000 об/мин), а воздушный винт при таких оборотах работать не может. Поэтому между ротором двигателя и винтом устанавливается редуктор, понижающий обороты. Редукторы бывают разных конструкций, но функции у них одинаковы.

Турбовинтовой двигатель

Анимация, показывающая принцип работы ТВД.

Как и все в этом мире 🙂 турбовинтовой двигатель имеет преимущества и недостатки. Это следствие того, что он соединил в себе качества поршневого и ТРД. Он, как газотурбинный двигатель ( родственник реактивного :-)) является представителем того самого семейства двигателей, которому в свое время сдал свои позиции поршневой движок (об этом здесь). Поэтому ТВД значительно легче поршневого при той же мощности. Это очень хорошо, ведь масса – важнейший показатель для авиации. Все тяжелое, как известно, летает без особой охоты :-).

Одновременно по сравнению с турбореактивным двигателем, турбовинтовой значительно экономичнее. Дело в том, что от поршневого ТВД взял себе воздушный винт. Этот агрегат, особенно в современных разработках имеет довольно высокий коэффициент полезного действия, до 86%, что и обуславливает экономичность всего двигателя.

Однако винту недоступны большие скорости. «Эффект запирания» не дает возможности винтовым самолетам летать со скоростями выше 750 км/ч (единственный самолет наш бомбардировщик ТУ-95 достигает скорости 920 км/ч). Кроме того современные воздушные винты достаточно шумны, что не одобряют нормы Международной организации гражданской авиации (ICAO).Вот и получается, что турбовинтовой двигатель применяется в основном там, где не нужны большие скорости или же важна экономичность. Чаще всего – это ближне- и среднемагистральная гражданская авиация, а также транспортная авиация. Но, честно говоря, и оттуда ТВД частенько вытесняется современными экономичными двухконтурными турбореактивными двигателями.

Турбовинтовой двигатель

Турбовинтовой двигатель АИ-20.

Турбовинтовой двигатель уже достаточно послужил людям и всегда отличался высокой экономичностью и большой надежностью. Хорошо известен, например, двигатель-ветеран АИ-20 (и его модификации, начало выпуска 1957 год)) . Он устанавливался на заслуженный пассажирский самолет ИЛ-18, а также на транспортные самолеты тип АН-8, АН-12, АН-32, на морские БЕ-12 и военно-морские ИЛ-38. Этот двигатель в некоторых местах эксплуатируется до сих пор и отличается очень высокой надежностью. Такого ресурса, как у АИ-20 (40 000 часов летной эксплуатации!) нет наверное ни у одного двигателя.

Турбовинтовой двигатель

Противолодочный самолет БЕ-12 с двигателями АИ-20.

Турбовинтовой двигатель

Пассажирский ветеран ИЛ-18 с двигателями АИ-20.

И, конечно, списывать со счетов турбовинтовой двигатель еще рано. Конструкторы, соблазненные его высокой экономичностью постоянно ведут работу по улучшению существующих образцов и созданию новых. Разрабатываются новые типы винтов, в частности сверхзвуковых ( с переменным, правда, успехом :-)).

Турбовинтовой двигатель

Турбовинтовентиляторный двигатель Д-27.

Примером служит сравнительно недавно появившийся двигатель Д-27, разработанный в Запорожском машиностроительном конструкторском бюро „Прогресс“ имени академика А. Г. Ивченко. В том самом, где создавался когда-то АИ-20. Д-27 внешне очень похож на турбовинтовой двигатель, но на самом деле это качественный скачок вперед. Он даже название имеет измененное: турбовинтовентиляторный двигатель. Предназначен для пассажирских  и транспортных самолетов, для которых скорость также важна, как и экономичность. Таких, например, как новый транспортник АН-70. На оси свободной турбины Д-27 (понятно через редуктор :-)) установлено два винто-вентилятора, вращающихся в разные стороны. Этот двигатель не имеет аналогов и на данный момент является единственным рабочим двигателем такого типа в мире.

Турбовинтовой двигатель

Транспортный самолет АН-70 с двигателями Д-27.

Прогресс не остановить :-), так что нам вполне вероятно еще предстоит увидеть новые типы самолетов с «нимбами» винтов и мягким гулом турбовинтовых двигателей.

В заключении предлагаю вам посмотреть два ролика. Первый хорошо показывает принцип работы ТВД. Пояснительные надписи на английском, но, я думаю, понять не сложно. Для тех, кто «совсем не англичанин» :-), поясню, что Gearbox — это редуктор, а Nozzle -это сопло, Inlet — это вход, Combustion Chamber — камера сгорания. Второй ролик — это анимация работы еще одного прогрессивного и очень интересного турбовинтового двигателя Pratt Whitney PT6A. Обратите внимание, что направление движения газов по тракту двигателя организовано «задом наперед» 🙂

Фотографии кликабельны.

No related posts.

avia-simply.ru

4. Принцип работы турбо реактивного двигателя

Турбореактивные двигатели (ТРД) — наиболее распространенный тип ГТД, широко применяемый для самолетов гражданской авиации.

Рассмотрим работу ТРД на схеме, приведенной на рис. 7. Во входное устройство 1 попадает атмосферный воздух, сжимается от действия скоростного напора и затем проходят к компрессору 2. Здесь воздух еще более сжимается. При этом повышаются его давление и плотность. Степень повышения давления в современных ТРД может достигать 15— 20 и более. Естественно, что при повышении давления возрастает температура воздуха в компрессоре до 600 — 700 К. Часть горячего воздуха из компрессора может быть взята на обогрев гермокабин, в антиобледенительную систему и т. п.

Рис.3. Схемы турбореактивного двигателя

Компрессор является одним из основных узлов ГТД и служит для повышения давления воздуха перед поступлением его в камеру сгорания. Для устойчивой и равномерной работы двигателя компрессор должен обеспечить стабильное состояние сжимаемого воздуха у входа в камеру сгорания. Заметим, что при движении вдоль канала компрессора воздух все более сжимается и соответственно растет плотность. Вот почему для сохранения осевой скорости движения потока поперечное сечение канала компрессора сужают. Это еще одна иллюстрация действия закона неразрывности движения. На рис. 7, а показана схема ТРД с осевым компрессором, в котором сжатие происходит в направлении оси двигателя. Эта схема наиболее широко применяется. На рис. 7, б дана схема ТРД с центробежным компрессором, где сжатие воздуха происходит за счет действия центробежных сил от вращающейся крыльчатки 2. Эта схема редко применяется, так как имеет большие габаритные размеры.

Из компрессора сжатый воздух поступает в камеру сгорания 3, куда через форсунку впрыскивают топливо. При этом образуется горючая смесь. В момент запуска смесь поджигают с помощью пусковой свечи, а затем горение поддерживается непрерывно в процессе всей работы двигателя.

Газообразные продукты сгорания с большой скоростью направляются в выходное устройство 5. На их пути помещается газовая турбина 4. Она служит для привода компрессора и других агрегатов двигателя. Вытекая с большой скоростью из выходного устройства (реактивного сопла), газообразная масса продуктов сгорания тем самым создает большое количество движения, обеспечивающее возникновение реактивной тяги Р.

Турбореактивные двух контурные двигатели (ТРДД) — широко применяемый тип ГГД. Основные преимущества ТРДД — лучшая экономичность, более низкий уровень шума (по сравнению с ТРД). Это и определило широкое распространение ТРДД в гражданской авиации.

Рассмотрим принцип работы ТРДД (рис. 8). Во входное устройство 1 поступает воздух. В отличие от ТРД в ТРДД имеются два компрессора. Первоначально воздух поступает к компрессору 2 низкого давления (КНД).

Рис.4. Схема турбореактивного двух контурного двигателя

Предварительно сжатый поток воздуха разделяется на два. Один поток проходит по наружному контуру и попадает в свое выходное устройство 6, увеличивая массу выходящих газов. Второй поток воздуха поступает в компрессор 3 высокого давления (КВД). Здесь все происходит так же, как и в ТРД: из камеры сгорания 4 газообразные продукты поступают к турбине 5, приводят ее во вращение и вытекают из выходного устройства 7. Турбина приводят во вращение оба компрессора. Причем КНД требует меньшей частоты вращения, меньшей мощности. Ему соответствует своя турбина. Для КВД приводом является другая турбина.

Таким образом, в создании реактивной тяги Р принимают участие два контура: наружный и внутренний. Наружный контур состоит из входного устройства, КНД, кольцевого канала 6 с выходным устройством. В некоторых конструкциях ТРДД предусмотрено смещение на выходе потоков обоих контуров. Внутренний контур работает по обычной схеме ТРД. Для ТРДД введена характеристика, именуемая степенью двухконтурности. Она определяется, как отношение расхода воздуха через наружный контур к расходу воздуха через внутренний контур. Это соотношение для современных ТРДД колеблется в довольно широких пределах: от 0,5 до 8 и выше.

Очевидно, что параметры воздушного потока наружного и внутреннего контуров и потока горячих газов внутреннего контура резко разнятся. Так, почти на всем пути температура в наружном контуре составляет около 400 К, давление поднимается только до 3 МПа. Во внутреннем контуре в жаровой трубе температура достигает 1400 К и более, а давление возрастает до 15 МПа и более. Эта особенность также является преимуществом ТРДД, поскольку относительно холодный наружный контур в эксплуатации всегда удобней, чем горячий.

Турбовинтовые двигатели (ТВД) — это такой ГТД, в котором турбина развивает мощность, достаточную для привода компрессора и вращения воздушного винта. ТВД на дозвуковых скоростях превосходят по экономичности другие типы двигателей. На взлете ТВД развивает в 2—2,5 раза большую тягу, чем ТРД. Следовательно, взлетная дистанция в этом случае будет короче. На самолетах с ТВД воздушный винт может быть использован в качестве тормоза при посадке, что снижает длину пробега. Кроме того, уровень шума ТВД ниже, чем у ТРД и ТРДД. Это обусловило широкое применение ТВД в гражданской авиации. В период дефицита углеводородного топлива ТВД с высокими экономическими показателями становятся все более популярными. Уже сейчас проектируется применение ТВД на самолетах новых поколений.

К недостаткам ТВД следует отнести тот факт, что воздушные винты могут эффективно применяться только до чисел М, равных 0,7—0,8. Так что ТВД для около- и сверхзвуковых полетов не применимы. В эксплуатации ТВД сложнее, чем ТРД, поскольку наличие редуктора и воздушного винта с регулирующими устройствами требует дополнительных затрат на их эксплуатацию.

Рассмотрим схему работы ТВД (рис. 9) . Воздух попадает во входное устройство двигателя, минуя воздушный винт 1. Затем он сжимается в компрессоре 3. Продукты сгорания вытекают из камеры сгорания 4, заставляют вращаться турбину 5 и выходят из реактивного сопла 6, создавая дополнительную тягу. В конструкциях некоторых ТВД компрессор приводится во вращение одной турбиной, а воздушный винт — другой. Такие независимые приводы дают возможность лучше регулировать работу двигателя. Непременным конструктивным элементом ТВД является редуктор. Дело в том, что турбина вращается с частотой около 20000 об/мин. Прямая передача этого вращения на воздушный винт невозможна, ибо при такой частоте вращения винт не может быть эффективным. Поэтому вращение воздушному винту передается через редуктор 2.

Рис. 5. Схема турбовинтового двигателя

Из сказанного следует, что тяга ТВД создается воздушным винтом (около 90 %) и реактивным действием газовой струи (около 10 %). Такое комплексное использование энергии сгорания топливно-воздушной смеси позволяет получить высокий коэффициент полезного действия и хорошие экономические показатели ТВД.

Приведенная выше классификация в известной мере условна. Все большее развитие получают комбинированные двигатели. Схематично один из комбинированных двигателей можно пред­ставить таким: обычный поршневой двигатель, отработавшие газы которого вращают газовую турбину; на одном валу с тур­биной установлен компрессор, который подает воздух под дав­лением в камеры сгорания двигателя

studfiles.net

Турбореактивный двигатель. Элементы конструкции. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Здравствуйте, друзья!

турбореактивный двигатель

Турбореактивный двигатель.

В этой  статье вернемся к моим любимым двигателям. Я уже ранее говорил о том, что турбореактивный двигатель в современной авиации – основной. И упоминать его в той или иной теме мы еще будем часто.  Поэтому пришла пора окончательно определиться с его конструкцией. Конечно же не углубляясь во всевозможные дебри и тонкости :-). Итак авиационный турбореактивный двигатель. Каковы основные части его конструкции, и как они взаимодействуют между собой.

1.Компрессор   2.Камера сгорания  3.Турбина  4. Выходное устройство или реактивное сопло.

Компрессор сжимает воздух до необходимых величин, после чего воздух поступает в камеру сгорания, где подогревается до необходимой температуры за счет сгорания топлива и далее уже получившийся газ поступает на турбину, где отдает часть энергии вращая ее (а она, в свою очередь компрессор), а другая часть при дальнейшем разгоне газа в реактивном сопле превращается в импульс тяги, которая и толкает самолет вперед. Этот процесс достаточно хорошо виден в ролике в статье о двигателе, как тепловой машине.

турбореактивный двигатель

Турбореактивный двигатель с осевым компрессором.

Компрессоры бывают трех видов. Центробежные, осевые и смешанные. Центробежные обычно представляют собой колесо, на  поверхности которого выполнены  каналы, закручивающиеся от центра к периферии, так называемая крыльчатка.При ее вращении воздух отбрасывется по каналам центробежной силой от центра к периферии, сжимаясь сильно разгоняется и далее попадая в расширяющиеся каналы (диффузор) тормозится и вся его энергия разгона тоже превращается в давление. Это немного похоже на старый аттракцион, который раньше в парках был, когда люди становятся по краю большого горизонтального  круга, опираясь спиной на специальные вертикальные спинки, этот круг вращается, наклоняясь в разные стороны и люди не падают, потому что их держит (прижимает) центробежная сила. В компрессоре принцип тот же.

Этот компрессор достаточно прост и надежен, но для создания достаточной степени сжатия нужен большой диаметр крыльчатки, что не могут себе позволить самолеты, особенно небольших размеров. Турбореактивный двигатель просто не влезет в фюзеляж. Поэтому применяется он мало. Но в свое время  он был применен  на двигателе ВК-1 (РД-45), который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

турбореактивный двигатель

Крылчатка центробежного компрессора на одном валу с турбиной.

турбореактивный двигатель

Крыльчатки центробежного компрессора.

турбореактивный двигатель

Двигатель ВК-1. В разрезе хорошо видна крыльчатка центробежного компрессора и далее две жаровые трубы камеры сгорания.

турбореактивный двигатель

Истребитель МИГ-15

В основном сейчас используется осевой компрессор. В нем на одной вращающейся оси (ротор) укреплены металлические диски (их называют рабочее колесо), по венцам которых размещены так называемые «рабочие лопатки». А между венцами вращающихся рабочих лопаток размещены венцы неподвижных лопаток ( они бычно крепятся на наружном корпусе), это так называемый направляющий аппарат (статор). Все эти лопатки имеют определенный  профиль и несколько закручены, работа их в определенном смысле похожа на работу все того же крыла или лопасти вертолета, но только в обратном направлении. Теперь уже не воздух действует на лопатку, а лопатка на него. То есть компрессор совершает механическую работу (над воздухом :-)). Или еще более нагляднее :-).  Все знают вентиляторы, которые так приятно обдувают в жару. Вот вам пожалуйста, вентилятор и есть рабочее колесо осевого компрессора, только лопастей конечно не три, как в вентиляторе, а побольше.

турбореактивный двигатель

Примерно так работает осевой компрессор.

Конечно очень упрощенно, но принципиально именно так. Рабочие лопатки «захватывают» наружный воздух, отбрасывают его внутрь двигателя, там лопатки направляющего аппарата определенным образом  направляют его на следующий ряд рабочих лопаток и так далее. Ряд рабочих лопаток вместе с рядом следующих за ними лопаток направляющего аппарата образуют ступень. На каждой ступени происходит сжатие на определенную величину. Осевые компрессоры бывают с разным количеством ступеней. Их может быть пять, а может быть и 14. Соответственно и степень сжатия может быть разная, от 3 до 30 единиц и даже больше.  Все зависит от типа и назначения двигателя (и самолета соответственно).

Осевой компрессор достаточно эффективен. Но и очень  сложен как теоретически, так и конструктивно.  И еще у него есть существенный недостаток:  его сравнительно          легко повредить. Все посторонние предметы с бетонки  и птиц вокруг аэродрома он       как говорится принимает на себя и не всегда это обходится без последствий.

Камера сгорания. Она опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб (они называются жаровые трубы). Для организации процесса горения в комплексе с воздушным охлаждением она вся «дырчатая». Отверстий много, они разного диаметра и формы. В жаровые трубы подается через специальные форсунки топливо (авиационный керосин), где и сгорает, попадая в область высоких температур.

турбореактивный двигатель

Турбореактивный двигатель (разрез). Хорошо видны 8-ми ступенчатый осевой компрессор, кольцевая камера сгорания, 2-ухступенчатая турбина и выходное устройство.

Далее горячий газ попадает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. ЕЕ раскручивает горячий газ по тому же принципу, как воздух детскую игрушку- пропеллер. Неподвижные лопатки в ней находятся не за вращающимися рабочими, а перед ними и называются сопловым аппаратом. Ступеней у турбины немного, обычно от одной до трех-четырех. Больше и не надо, ведь для привода компрессора хватит, а остальная энергия газа потратится в сопле на разгон и получение тяги. Условия работы турбины мягко говоря «ужасные». Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения (до 30000 об/мин). Представляете какая центробежная сила действует на лопатки и диски! Да плюс факел из камеры сгорания с температурой от 1100 до 1500 градусов Цельсия. Вобщем ад :-). Иначе не скажешь. Я был свидетелем, когда при взлете самолета Су-24МР оборвалась рабочая лопатка турбины одного из двигателей. История поучительная, обязательно о ней расскажу в дальнейшем. В современных турбинах применяются достаточно сложные системы охлаждения, а сами они (особенно рабочие лопатки) изготавливаются из особых жаропрочных и жаростойких сталей. Эти стали достаточно дороги, да и весь турбореактивный двигатель в плане материалов очень недешев. В 90-е годы, в эпоху всеобщего разрушения на этом нажились многие нечистые на руку люди, в том числе и военные. Об этом тоже как-нибудь позже…

турбореактивный двигатель

СУ-24МР

После турбины – реактивное сопло. В нем, собственно, и возникает тяга турбореактивного двигателя. Сопла бывают просто сужающиеся, а бывают сужающе-расширяющиеся. Кроме того бывают неуправляемые (такое сопло на рисунке), а бывают управляемые, когда их диаметр меняется в зависимости от режима работы. Более того сейчас уже есть сопла, которые меняют направление вектора тяги, то есть попросту поворачиваются в разные стороны.

Турбореактивный двигатель – очень сложная система. Летчик управляет им из кабины всего лишь одним рычагом – ручкой управления двигателем (РУД). Но на самом деле этим он лишь задает нужный ему режим. А все остальное берет на себя автоматика двигателя. Это тоже большой и сложный комплекс и еще скажу очень хитроумный. Когда еще будучи курсантом изучал автоматику, всегда удивлялся, как конструкторы и инженеры все это понапридумывали:-), а рабочие-мастера изготовили.  Сложно… Но зато интересно 🙂 …

Вот и все пока. Вкратце опять  не получилось :-). Но я все же надеюсь, что вам было интересно. До следующей встречи.

P.S. А вот вам напоследок атракцион, о котором я выше писал. Я на нем в детстве-то не катался, а сейчас их просто нет у нас. Так что знаю только в теории :-).

турбореактивный двигатель

Вот такой он был, может и сейчас где-то работает...

Фото кликабельны.

Related posts:

  1. Турбореактивный двигатель, как тепловая машина. Принцип работы. Просто.
  2. Элементы конструкции самолета.

avia-simply.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики