Квантовая память впервые защитила квантовую связь. Квантовая память


Квантовая память впервые защитила квантовую связь — Naked Science

Несмотря на высокую уязвимость, классические протоколы передачи данных могут обеспечивать стойкую защиту канала связи. Например, исключить возможность взлома позволяют блокнотные шифры. Метод предполагает обмен сообщениями, к каждому биту которых добавляется случайный, но известный обоим агентам, набор единиц и нулей. Если каждый бит из этого блокнота используется только однажды, расшифровать сообщение без знания последовательности невозможно. При этом блокноты передаются до создания канала связи — обезопасить этот этап помогает квантовое распределение ключей. Эта техника заключается в доставке информации путем произвольного принципа записи в фотон со случайным состоянием.

 

В соответствии с законами квантовой механики, попытка измерить такой фотон приведет к его необратимому изменению, что станет известно получателю. В качестве альтернативы квантовому распределению ключей выступает протокол прямой защищенной квантовой связи (quantum secure direct communication, QSDC). В его основе лежит феномен квантовой запутанности: в сочетании с некоторым объемом классических данных реализация QSDC предусматривает передачу частиц, которые способны мгновенно и конгруэнтно менять свои физические свойства, например поляризацию, без физического взаимодействия. Однако этот метод требует обмен также классическими данными со скоростью света.

 

В новой работе специалисты из Научно-технического университета Китая и Нанкинского университета почты и телекоммуникаций впервые экспериментально осуществили QSDC. На первом этапе адресант (Алиса) генерирует пары запутанных частиц и отправляет по одной из каждой адресату (Бобу). После проверки канала связи на защищенность Алиса проводит измерения оставшихся частиц и передает Бобу полученную информацию. Поскольку непосредственно отправлению сообщения предшествует проверка канала связи, авторы включили в алгоритм модуль памяти, в качестве которого выступили охлажденные атомы рубидия. В них данные хранились во время проверки на протяжении сотен наносекунд.

 

Для охлаждения атомы рубидия захватывались в магнито-оптические ловушки, которыми обладали и Алиса, и Боб. Квантовая запутанность между ними создавалась следующим образом. Сперва фотон запутывался с атомами ловушки адресанта, а после передачи эффект распространялся на оба устройства. По словам ученых, представленный алгоритм не полностью отвечает требованиям QSDC о запутанных фотонах. Однако экспериментально выполнить протокол с дешифровкой запутанных частиц оказалось значительно сложнее. В то же время авторы воспроизвели основные этапы QSDC: генерирование запутанных пар, хранение частиц, шифрование и дешифрование. Точность системы составила 90 процентов.

 

Подробности исследования представлены в журнале Physical Review Letters.

 

Первую «городскую» линию квантовой связи в России запустили в 2016 году. В январе этого года Китай ввел в эксплуатацию первый в мире квантовый спутник.

naked-science.ru

Квантовая память - Квантовая информатика

Квантовая память — средство хранения информации при квантовых вычислениях. Квантовая память — это разрабатываемое устройство для храненияквантовой информации. Одним из вариантов реализации квантовой памяти является копирование состояний фотонов на квантовые спиновые состояния атомов. Другие варианты хранения квантовой информации — в виде отдельных фотонов, не связаны с её сохранением в спиновых системах.

Одной из базовых проблем квантовой информатики является проблема Квантовой памяти, решение которой предполагает возможность записи квантового состояния носителя квантовой информации с последующим надежным воспроизведением. В последнее время была предложена оптическая техника, позволяющая принципиально решать данную проблему, путем использования возможностей эффекта электромагнитно-индуцированной прозрачности (ЭИП). Вместе с тем остаются еще много проблем, в том числе в практической реализации ЭИП-техники для однофотонных световых полей, которые наиболее всего пригодны в качестве носителей квантовой информации.

Рассмотрим идею реализации Квантовой памяти, основанная на использовании модифицированного варианта светового эха. В качестве носителя информации предлагается макроскопическая система атомов в газе с неоднородно уширенными резонансными оптическими переходами. При этом записываемые квантовые импульса света отделяются от дополнительных лазерных импульсов света, которые играют роль дозаписывающих и восстанавливающих полей. Существенным преимуществом предлагаемой техники на стадии процесса восстановления квантового состояния записанных полей, является существенное разделение во времени «восстановленного» света от лазерных импульсов, что делает ее перспективной при переходе к однофотонным полям. Предложенная идея была теоретически изучена на примере квантового состояния однофотонного волнового пакета. Было найдено аналитическое решение для восстановленной волновой функции фотона и показано, что вероятность восстановления может быть близка к единице. Полученное решение показало, что восстановленное состояние фотона может приобретать новые интересные свойства, что делает возможным использование предложенной техники светового эха для решения других задач квантовой информатики. Предложенная техника светового эха открывает принципиально новые возможности перспективы, как в решении проблемы Квантовой памяти, так и в развитии новых методов когерентной квантовой оптической спектроскопии.

Удержать свет в пространстве достаточно сложно, для этого необходимо создать специальные контейнеры, наполненные холодным газом. Две команды ученых независимо друг от друга справились с этой задачей.

Ученые создали оптический резонатор на основе охлажденных атомов рубидия – устройство, которое является световой ловушкой, заставляющей луч бегать между двумя зеркалами. Комбинация зеркал является простейшим квантовым элементом памяти.

Теоретически единицу информации квантовых компьютеров (кубит) можно сохранить с помощью фотонов, которые изменяют энергетические уровни атомов. Состояние «0» и «1» обеспечивается низкими и высокими уровнями энергии. Однако считывать подобную информацию достаточно сложно – атомы могут просто разойтись или переизлучить фотон, содержащий кубит в случайном направлении.

Подобного рода проблемы могут быть решены с использованием не одного, а серии атомов в состоянии конденсата Бозэ-Эйнштейна (Bose-Einstein condensate). Якоб Рейчел (Jakob Reichel) и его коллеги поместили конденсат между двумя зеркалами, представляющими оптический резонатор для света определенной длины волны. Охладить большое количество атомов намного легче, чем одиночные. А в этом состоянии у них отсутствует тепловое движение, а, следовательно, и дрейф. Таким образом, обеспечивается долгое хранение информации.

Однако конструирование резонатора, который предполагается разместить в одном чипе не такая простая задача. Учеными была разработана уникальная конструкция, состоящая из 2-х оптоволокон, размещенных торцами друг к другу на расстоянии 0,04 мм. С помощью лазера материал испаряется, делая поверхность зеркал идеально гладкими.

Данные эксперименты положили начало созданию квантовых компьютеров, основным из элементов которых будет квантовая память.

intellect.ml

Учёные создали первую микросхему квантовой памяти

  1. Hi-News.ru
  2. Темы
  3. Технологии
  4. Учёные создали первую микросхему квантовой памяти

Учёные возлагают большие надежды на квантовые компьютеры, использующие явления квантовой суперпозиции и квантовой запутанности для обработки и передачи данных. Но до сих пор никому не удавалось создать квантовые чипы памяти. Сотрудникам Калифорнийского технологического института первыми удалось создать микропроцессор, способный хранить квантовую информацию в виде света в кубитах. Специалисты считают это очень важным шагом, ведь подобные чипы позволят технологии квантовых вычислений шагнуть далеко вперёд.

Микросхема содержит в себе массив модулей памяти размером 15 на 0,7 микрометра. Каждый модуль включает в себя оптический элемент, улавливающий и удерживающий фотон внутри. Перед началом работы микросхема охлаждается до температуры -272,7 градуса Цельсия, после чего исследователи активировали лазер для доставки фотонов в модули памяти. Модули способны удерживать фотоны на протяжении 75 наносекунд, после чего свет уходил дальше. На выходе информация, содержащаяся в фотонах, проверялась на совпадение с первоначальной. Процент ошибок по результатам эксперимента составил всего 3%.

В традиционной компьютерной памяти единица информации «бит» хранится либо в виде единицы, либо в виде нуля. Квантовые же компьютеры работают с информацией, представленной в виде кубитов – «квантовых битов». В отличие от битов кубиты могут быть не только нулём или единицей, но и тем и другим одновременно. А это, в свою очередь, позволяет хранить и обрабатывать информацию более эффективно. Команда исследователей из Калифорнийского технологического института опубликовала результаты своих исследований в журнале Science.

Учёные создали первую микросхему квантовой памяти Сергей Грэй

Высший разум рекомендует:

hi-news.ru

Квантовая память

Одной из базовых проблем квантовой информатики является проблема Квантовой памяти, решение которой предполагает возможность записи квантового состояния носителя квантовой информации с последующим надежным воспроизведением. В последнее время была предложена оптическая техника, позволяющая принципиально решать данную проблему, путем использования возможностей эффекта электромагнитно-индуцированной прозрачности (ЭИП). Вместе с тем остаются еще много проблем, в том числе в практической реализации ЭИП-техники для однофотонных световых полей, которые наиболее всего пригодны в качестве носителей квантовой информации.

Рассмотрим идею реализации Квантовой памяти, основанная на использовании модифицированного варианта светового эха. В качестве носителя информации предлагается макроскопическая система атомов в газе с неоднородно уширенными резонансными оптическими переходами. При этом записываемые квантовые импульса света отделяются от дополнительных лазерных импульсов света, которые играют роль дозаписывающих и восстанавливающих полей. Существенным преимуществом предлагаемой техники на стадии процесса восстановления квантового состояния записанных полей, является существенное разделение во времени «восстановленного» света от лазерных импульсов, что делает ее перспективной при переходе к однофотонным полям. Предложенная идея была теоретически изучена на примере квантового состояния однофотонного волнового пакета. Было найдено аналитическое решение для восстановленной волновой функции фотона и показано, что вероятность восстановления может быть близка к единице. Полученное решение показало, что восстановленное состояние фотона может приобретать новые интересные свойства, что делает возможным использование предложенной техники светового эха для решения других задач квантовой информатики. Предложенная техника светового эха открывает принципиально новые возможности перспективы, как в решении проблемы Квантовой памяти, так и в развитии новых методов когерентной квантовой оптической спектроскопии.

Удержать свет в пространстве достаточно сложно, для этого необходимо создать специальные контейнеры, наполненные холодным газом. Две команды ученых независимо друг от друга справились с этой задачей.

Ученые создали оптический резонатор на основе охлажденных атомов рубидия – устройство, которое является световой ловушкой, заставляющей луч бегать между двумя зеркалами. Комбинация зеркал является простейшим квантовым элементом памяти.

Теоретически единицу информации квантовых компьютеров (кубит) можно сохранить с помощью фотонов, которые изменяют энергетические уровни атомов. Состояние «0» и «1» обеспечивается низкими и высокими уровнями энергии. Однако считывать подобную информацию достаточно сложно – атомы могут просто разойтись или переизлучить фотон, содержащий кубит в случайном направлении.

Подобного рода проблемы могут быть решены с использованием не одного, а серии атомов в состоянии конденсата Бозэ-Эйнштейна (Bose-Einstein condensate). Якоб Рейчел (Jakob Reichel) и его коллеги поместили конденсат между двумя зеркалами, представляющими оптический резонатор для света определенной длины волны. Охладить большое количество атомов намного легче, чем одиночные. А в этом состоянии у них отсутствует тепловое движение, а, следовательно, и дрейф. Таким образом, обеспечивается долгое хранение информации.

Однако конструирование резонатора, который предполагается разместить в одном чипе не такая простая задача. Учеными была разработана уникальная конструкция, состоящая из 2-х оптоволокон, размещенных торцами друг к другу на расстоянии 0,04 мм. С помощью лазера материал испаряется, делая поверхность зеркал идеально гладкими.

Данные эксперименты положили начало созданию квантовых компьютеров, основным из элементов которых будет квантовая память.

Интересная статья? Поделись ей с другими:

Комментировать материалы сайта могут только зарегистрированные пользователи. Зарегистрируйтесь пожалуйста для полноценной роботы с сайтом.Спасибо!

quantum-tech.ru

Квантовая механика позволит создать одноразовую память

Существующие сейчас системы безопасности не всегда могут дать необходимый уровень защиты. Однако ученый из американского Национального института стандартов и технологий И-Кай Лиу (Yi-Kai Liu) продемонстрировал, что принцип квантовой механики позволит реализовать память, данные из которой можно будет считать только один-единственный раз.

Однократная память может найти применение в различных областях компьютерной безопасности, например, для крупных финансовых операций или передачи конфиденциальной информации. В данном случае в память можно записать два вида информации, например, два кода авторизации – получателя и отправителя денег. Поскольку память позволяет единожды прочитать данные, то извлечь из нее можно только один код, сообщает tgdaily.com.

Как сообщает Лиу, когда злоумышленник овладевает физическим носителем информации, обычных методов становится недостаточно. Любые коды и шифры можно взломать, а стертая информация с использованием специальных методов может быть восстановлена, даже при нескольких перезаписях ячеек памяти.

«Для построения устойчивых систем защиты информации требуется использовать такие носители, которые не допустят многократного считывания информации», — говорит Лиу.

Информация в одноразовой памяти будет храниться в форме магнитного спина в запутанных квантовых битах (кубитах). При использовании технологии квантовой сопряженности кодирования в одну область квантовой памяти можно записать два раздельных набора данных, но так как считать можно только один раз, то из памяти можно будет восстановить только один набор данных.

Тем не менее риск данной системы заключается в использовании явления квантовой запутанности. Если злоумышленник сможет запутать с кубитами носителя информации другие квантовые частицы, то он сможет прочитать информацию множество раз, что приведет к краху системы безопасности.

Однако в настоящее время не существует технологии, которая позволяет к двум уже запутанным частицам добавить третью, не нарушая при этом квантового состояния системы. Кроме того, такая технология вряд ли появится в ближайшем будущем.

Таким образом, в настоящее время система безопасности, основанная на квантовой механике, может оказаться надежным средством защиты информации от злоумышленников и использоваться в повседневной жизни.

hi-news.ru

Появился новый претендент на звание квантовой памяти будущего — Naked Science

  • Главная
  • Журнал
  • Колонка
  • Выбор редакции
  • Live
  • Рубрики
  • Фото дня
  • Психология
  • Наука
  • Оружие и техника
  • Concept
  • Фотогалерея
  • С точки зрения науки
  • Интервью
  • Sci-Fi
  • Видео
  • Топ
  • History
  • Блог
  • Архив
  • Правила
  • О проекте
  • Контакты
  • Письмо в редакцию
  • Реклама

Naked Science

№38, июль-август 2018 Появился новый претендент на звание квантовой памяти будущего
  • Войти
  • Регистрация

naked-science.ru

Алмазная квантовая память - loricsin

Память на алмазахСоздано устройство квантовой памяти, способное хранить информацию рекордно долго

— 20.06.12 12:08 — ТЕКСТ: ДМИТРИЙ МАЛЯНОВ ФОТО: BLOGSPOT.COмСоздано устройство твердотельной квантовой памяти, способное хранить информацию до полутора суток при комнатной температуре. Это беспрецедентно большой показатель для квантовых вычислительных систем.Устройства памяти на основе квантовых битов, или кубитов, имеют огромное преимущество перед классическими на основе битов, которые используются в современных компьютерах.Компьютер с нервамиО том, что из себя представляет искусственный нейрон и как близко мы подошли к созданию нейрокомпьютера, имитирующего деятельность мозга, в лекции для «Газеты.Ru» рассказывает к. ф. н. Александр...Во-первых, с точки зрения количества информации, которую эти системы способны сохранять в одном регистре. Так, если классический бит может принимать только два возможных логических состояния – 0 и 1, кубит в силу эффекта квантовой суперпозиции, когда система может находиться в двух состояниях одновременно, может принимать не два, а теоретически бесконечное число состояний,оперируя которыми посредством специальных процедур и алгоритмов можно записывать и считывать с одного квантового регистра (набора кубитов) несравнимо больше данных, чем в случае классического бинарного.Во-вторых, считать данные с кубит-регистра можно лишь посредством физической процедуры, параметры которой уникальны и известны только тому, кто ее записал, в противном случае (при неправильном считывании) эта информация будет потеряна. Теоретически это делает квантовую память абсолютно неуязвимой для несанкционированного копирования, хотя практическая реализация квантовых устройств будет оставлять для взломщиков некоторые лазейки, но несопоставимо более сложные по сравнению с бинарной.Устройства памяти на основе кубитов могут успешно функционировать лишь при двух и, в известном смысле, тоже взаимоисключающих условиях.Квантовая суперпозиция – нестабильное состояние, крайне чувствительное к любым внешним воздействиям, поэтому кубит-регистры должны быть максимально изолированы от окружающей среды. Но одновременно они должны и обмениваться с этой средой сигналами, в противном случае устройство квантовой памяти теряет всякий смысл. Примирить два конфликтующих условия пока удается лишь в лабораториях, поэтому почти все сообщения об очередном «прорыве» при манипуляциях с квантовыми битами сопровождаются фотографиями громоздких криогенных установок, вакуумных камер, лазеров и микроволновых излучателей, что, естественно, ставит практическую составляющую «прорыва» – создание квантовых вычислительных устройств, доступных обычным людям – под большой вопрос.А вот о прорыве, достигнутом группой, объединившей исследователей из Института квантовой оптики Макс Планка, Гарвардского университета и Калифорнийского технологического института, чью статью публикует Science, можно писать уже без скобок.Их вариант кубит-регистра, реализованный на основе искусственного алмазного кристалла, сохраняет стабильность более секунды при комнатной температуре и с довольно скромным набором оборудования, включающим в себя зеленый лазер, микроволновой и радио-излучатель плюс сверхчувствительный датчик фотонов.Для сравнения, в предыдущих экспериментах время жизни квантового регистра на кубитах такого типа составляло всего одну тысячную секунды.Чудо-зеркальце для квантового интернетаФизическую реализацию устройства, которое может стать маршрутизатором квантового интернета будущего, продемонстрировали испанские и шведские физики. Функцию квантового роутера выполняет искусственный атом,...Роль кубита в «алмазной» памяти выполняет атом углерода, точнее атом изотопа углерода С13. Ядро изотопа обладает так называемым ядерным спином, генерирующим магнитный момент, благодаря которому оно ведет себя как магнитик, ориентированный параллельно (тогда значение кубита равно условной «единице») или перпендикулярно (тогда его значение равно условному «нулю») магнитному полю, приложенному извне. Благодаря эффекту квантовой суперпозиции ядро может находиться в двух состояниях одновременно – «параллельном» и «перпендикулярном», что и позволяет записать в набор таких кубитов больше информации, чем в классический бинарный регистр.Однако все операции по обмену информацией с такими кубитами происходят не напрямую, а посредством так называемого азот-вакантного центра, который, собственно, и является главным изобретением исследователей, позволившим удлинить время жизни кубита до одной секунды.А в перспективе, как пишут авторы статьи, это время может быть увеличено до 36 часов, то есть до полутора суток – беспрецедентный показатель для квантовых вычислительных систем!До квантового компьютера осталось 10 летО мгновенных квантовых коммуникаторах, взломе систем квантовой криптографии, датчиках, шпионящих за каждой клеткой человеческого организма, и интересе российского бизнеса к новейшим технологиям рассказал...Азот-вакантный центр представляет собой небольшой искусственно созданный дефект в алмазной кристаллической решетке, возникающий, если в процессе выращивания кристалла подмешивать к атомам углерода атомы азота. В этом случае в непосредственной близости от атома азота образуется «вакансия», не занятая углеродным атомом. Такой азот-вакантный центр тоже обладает спином и может формировать кубит, состоянием которого можно управлять с помощью микроволнового излучения и лазерных импульсов. Более того, меняя его спин, можно косвенно контролировать и квантовые состояния углеродного атома, так как азот-вакантный центр и атом углерода образуют вместе локальную систему из двух взаимодействующих магнитов.Главный же трюк состоит в том, что отзывчивость на внешнее воздействие у двух этих компонентов разная, и, подобрав правильную комбинацию световых и радиоимпульсов, можно использовать более «отзывчивый» азот-вакантный центр в качестве промежуточного и более быстрого слоя, считывающего и записывающего информацию в углеродный кубит.Смартфон со спутанными квантамиазная Физикам впервые удалось запутать квантовые состояния двух атомов с помощью микроволн, что в перспективе позволит радикально уменьшить размер квантовых вычислительных устройств, работающих на основе лазеров...Сейчас время между моментом записи и считывания информации в алмазный кубит составляет 1,4 секунды, но теоретически она может вырасти до суток и более, если удастся подавить паразитную интерференцию азот-вакантных центров и углеродных атомов. Расчеты, сделанные группой, говорят о том, что сделать это можно с помощью дополнительных контрольных импульсов и уменьшения концентраций С13 в искусственном кристалле, не прибегая к его охлаждению до сверхнизких температур.Конечно, 36 часов живучести для внедрения подобной технологии на широкий рынок – показатель слишком скромный. Но для сетевых криптозащищенных систем, генерирующих, например, временные ключи, время жизни которых исчерпывается даже не сутками, а секундами, это более чем достаточно.Тeги: квантовая память, квантовые эффекты, квантовый компьютер, квантовая суперпозиция, Sciencеhttp://www.gazeta.ru/science/2012/06/20_a_4633041.shtml

loricsin.livejournal.com


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики