Общая теория относительности и квантовая механика. Квантовая теория и теория относительности


Пути фундаментальных исследований и перспективы философии

Теория относительности, квантовая механика и начало атомного века

В 20– 30-е годы нашего столетия часто говорили о более глубоком воздействии квантовых идей, о более радикальном характере выводов из принципа неопределенности и из квантовой механики в целом по сравнению с выводами из теории относительности. Наблюдая развитие релятивистских и квантовых идей во второй половине столетия, можно убедиться в неправильности самого противопоставления итогов развития двух важнейших направлений современной физической мысли. Их философские итоги – одни и те же, причем не в смысле совпадения, а в ином, более глубоком смысле. Уже отмечалось, что философское обобщение достижений неклассической науки совпадает по своему направлению с наиболее характерной тенденцией второй половины XX века – превращением релятивистских и квантовых идей в нечто единое, в единую теорию мегамира и микромира. Другими словами, объектом философского обобщения – и чем дальше, тем больше – становится неклассическая наука как нечто целое.

Поэтому для философии важен анализ теории относительности как концепции, характеризующей не только свой непосредственный объект – движение, сопоставимое по скорости со скоростью света, – но в определенной степени и развитие науки в целом. Попробуем проследить те идейно-методологические и экспериментальные резонансы теории относительности, которые преобразуют науку XX века.

Прежде всего отметим, что эта теория сообщила всей пауке XX века более высокий динамизм. Она явилась первой универсальной физической концепцией, которая с самого начала устами своего творца объявила о своем неокончательном характере. Она посягнула на такие фундаментальные принципы физики, которые не могли быть поколеблены без принципиального отказа от всяческих догматических абсолютов, в частности от представления об абсолютной законченности самой теории относительности.

Далее, теория относительности дала толчок пространственно-временному представлению, общему для всей неклассической науки. Такое представление в своем развитии связано с атомистической природой пространственно-временных соотношений и с распространением и модификацией их на иные области помимо макроскопического движения со скоростями, сопоставимыми со скоростью света.

Прежде чем перейти к такой модификации пространственно-временного представления, несколько слов о нем как о центральной идее теории относительности. В 1908 году в работах Г. Минковского теория относительности была изложена в форме псевдоевклидовых геометрических соотношений четырехмерного пространственно-временного мира. В такой форме специальная теория относительности получила дополнительные возможности развития, облегчавшие систематическое построение релятивистской механики и электродинамики и последующий переход к более общей теории, включающей и гравитационное поле.

Г. Минковский ввел понятия четырехмерной пространственно-временной «мировой точки», «мировой линии», «мира» и показал, что соотношения теории относительности могут быть представлены в виде геометрических соотношений, аналогичных евклидовым, если помимо пространственных координат (х, у, z) ввести четвертую координату – время, измеренное особыми единицами. При этом получается четырехмерная псевдоевклидова геометрия, отличающаяся от обычной евклидовой числом измерений и тем, что четвертая координата не является пространственной.

При всем значении этих понятий они не изменили физического смысла теории относительности. Физическая идея четырехмерной геометрии – представление о связи пространства и времени – содержалась, по существу, уже в первой статье А. Эйнштейна о теории относительности. Речь идет не о тривиальной констатации того, что реальный мир существует в пространстве и во времени. В теории относительности содержалось другое утверждение.

Если нет мирового эфира как универсального тела отсчета, значит, теряет смысл понятие абсолютной одновременности. Исчезнув из картины мира, эфир и отнесенное к эфиру движение унесли вместе с понятием абсолютной одновременности и представление о едином, охватывающем все пространство потоке времени, и представление об абсолютном пространстве.

В 1949 году Эйнштейн писал: «Весьма распространенной ошибкой является мнение, будто специальная теория относительности как бы открыла, или же вновь ввела, четырехмерность физического многообразия (континуума). Конечно, это не так. Четырехмерное многообразие пространства и времени лежит в основе также и классической механики. Только в четырехмерном континууме классической физики „сечения“, соответствующие постоянному значению времени, обладают абсолютной (т. е. не зависящей от выбора системы отсчета) реальностью. Тем самым четырехмерный континуум естественно распадается на трехмерный и на одномерный (время), так что четырехмерное рассмотрение не навязывается как необходимое. Специальная же теория относительности, наоборот, создает формальную зависимость между тем, как должны входить в законы природы пространственные координаты, с одной стороны, и временная координата, с другой»[7].

Четырехмерный, вернее, (3+1)-мерный континуум теории относительности открывает дорогу представлению о мире во всей его сложности как о многомерном пространстве с дополнительным измерением, дающим возможность описывать его растущую размерность. Изменение числа измерений выводит пространственно-временное представление за пределы теории относительности. Мы можем говорить о единстве мегамира и микромира как о многомерном (n-мерном) пространстве, которое становится все более сложным, причем эта растущая сложность изображается (n+1)-м измерением, так что пространственно-временное представление включает (n+1)-мерный континуум.

Теория относительности изменила представление о мегамире, о Вселенной. Сейчас Вселенная рассматривается как нечто целое, обладающее массой, радиусом и, более того, судьбой, прошлым и будущим. Правда, релятивистская космология – это такая ветвь теории относительности, на которой пока больше почек и цветов, чем листьев и плодов. Но она оказывает очень большое воздействие на все отрасли науки, на стиль научного мышления в целом, на философские обобщения. Как это ни парадоксально звучит, теория относительности и релятивистская космология способствуют переходу от собственно геометрических схем к физическим представлениям, основанным на экспериментальной проверке, включающим то, что А. Эйнштейн называл внешним оправданием. Теория относительности сообщает геометрическим соотношениям физический смысл. Она приводит к возможности локального, экспериментального решения проблемы геометрии мира. Позитивное решение данной проблемы всегда было функцией развития науки: локальное воздействие на мир, компоновка объективных сил природы с помощью эксперимента и в производстве – основа и философских выводов. Экспериментальное решение вопросов о бесконечности или конечности пространства, об евклидовых и неевклидовых его характеристиках имеет непосредственное отношение к вопросам об априорности или неаприорности понятия пространства, о происхождении геометрических понятий, о роли эмпирии и теоретических обобщений в познании.

Мы уже приводили замечание В. Нернста о том, что теория относительности Эйнштейна не столько физическая, сколько философская теория. Действительно, можно говорить о большой роли гносеологических критериев в теории относительности. Физика XX столетия гораздо теснее, чем в предшествующий период, связана с гносеологическими проблемами, и это стало особенно заметно в середине столетия. В 1944 году Эйнштейн писал: «В настоящее время физик вынужден заниматься философскими проблемами в гораздо большей степени, чем это приходилось делать физикам предыдущих поколений. К этому физиков вынуждают трудности их собственной науки»[8]. Но и в начале столетия это занятие стало для физики более существенным, чем раньше.

Подобно теории относительности, квантовая механика тоже служит исходным пунктом философских выводов, если ее рассматривать в движении и в особенности если иметь в виду принципиальное значение того, что произошло в науке во второй половине XX века. Для выяснения воздействия квантовой механики на философию весьма существенна эволюция от специфически микроскопического аспекта квантовой механики в первой половине столетия к включению квантовых понятий и представлении в теорию макропроцессов и даже в теорию мегамира. Сейчас приходится учитывать квантовую структуру полей при рассмотрении эволюции космоса, ее необратимости, сущности времени и геометрической структуры мирового пространства. Собственно гносеологические вопросы, волновавшие умы после появления квантовой механики, сейчас сочетаются с онтологическими философскими проблемами.

Для современного состояния квантовой механики очень важно возникновение ее релятивистской модификации, т. е. появление релятивистской квантовой теории поля и квантовой электродинамики, открытие позитрона и превращений фотонов в электронно-позитронные пары и этих пар в фотоны, иначе говоря, серия открытий, сделанных в 30-е годы. Одновременно было создано современное учение об атомном ядре на основе открытия нейтрона – нейтронно-протонная модель ядра. В 40-е годы произошло включение в картину микромира мезонов, что открыло дорогу новому этапу в развитии теории микромира. Однако наиболее важные для философского обобщения выводов квантовой механики события произошли во второй половине 40-х и в начале 50-х годов: применение очень мощных ускорителей; сочетание наблюдений над частицами, получавшими в этих ускорителях высокие энергии, с наблюдениями над известными уже в первой четверти века космическими лучами; невероятно быстрый поток вновь открытых элементарных частиц и столь же быстрый рост сомнений и противоречий, связанных с самим понятием элементарности. В те же годы в картину мира вошло новое представление о вакууме и о взаимодействии вакуума с частицами.

Изменились отправные пункты философского обобщения физики микромира, появились требующие нового философского осмысления понятия трансмутации частиц, более глубокой, таящейся в областях меньших, чем атомное ядро, формы причинности, виртуальных частиц и т. д. Но, быть может, еще важнее было то, что физика микромира вышла в мегамир. Первоначально, в особенности в 20-е годы, философское обобщение выводов квантовой механики ставило акцент на специфике микромира, на существовании таких форм причинности, которые свойственны именно микромиру. Констатация подобной специфичности сохраняется, но акцент теперь переходит на связь между тем, что можно назвать субъядерной причинностью, господствующей внутри областей порядка радиуса атомного ядра, и надгалактической причинностью, определяющей эволюцию Метагалактики. При всей значительности научных теорий, разработанных во второй половине столетия, они кажутся менее глубокими и радикальными поворотами фарватера науки, чем теория относительности и квантовая механика. Более того, в XIX веке наука за три четверти столетия изменилась радикальней, чем в XX веке. Достаточно сравнить идеи дофарадеевой и послемаксвелловой физики. Между ними существует гораздо большая дистанция, чем между статьей Эйнштейна о теории относительности, появившейся в 1905 году, и современными статьями.

И тем не менее впечатление замедления и обмеления научного прогресса – иллюзия. Меняется лишь показатель прогресса. В XVII-XIX веках таким показателем был отказ от старых концепций: от концепций статической гармонии концентрических сфер, окружающих центр мироздания – Землю, специфических флюидов и т. п. Сейчас этот показатель выражается в конкретизации, обобщении и дифференциации прежних теорий, в более глубоком, точном, обоснованном определении их применимости. С дальнейшим развитием науки растут логические связи новых теорий со старыми и доказательства – логические и экспериментальные – истинности каждой новой теории, т. е. сохраняется, несмотря на последующую модификацию, конкретизацию, ограничение, их позитивное содержание. Это значит, что все меньшее число прежних концепций может быть полностью отброшено, все в большем числе эти концепции входят в сумму относительных истин, бесконечно приближающуюся к абсолютной истине. Вернемся к уже мелькнувшему примеру – отказу от невесомых флюидов в XIX веке и сравним его с переходом от специальной теории относительности к общей. Здесь ясно видно, что при все меньшей роли простого отказа от старых теорий радикальность и глубина перемен в науке не уменьшаются, а растут.

Есть еще одна причина растущей достоверности сменяющих в наше время одна другую научных теорий. Они характеризуются все более непосредственным производственно-техническим применением, т. е. отвечают тому критерию практики, который является наиболее непререкаемым доказательством существования и познаваемости объекта науки.

В 40-50е годы нашего века началось широкое, ведущее к реконструкции производственной техники применение атомной и ядерной физики. Для развития философии существенны не только научные достижения как таковые, но и те широкие научно-технические сдвиги, которые соединяют физику атомного ядра с производством. Причем не только уже реализованные сдвиги, но и прогнозы воздействия атомной и ядерной физики на производство, охватывающие конец XX века и начало следующего столетия.

Научно-технические сдвиги сейчас, более чем когда-либо ранее, связаны с философской мыслью, с теоретическими обобщениями. Дело в том, что фундаментальная наука воздействует ныне на производство непосредственно и становится в некотором смысле прикладной, не переставая быть фундаментальной. Так, трудно провести границу между атомной энергетикой и атомной физикой: эволюция реакторов является непосредственным результатом эволюции представлений о ядерных процессах. По-видимому, в будущем, когда непосредственной основой практического применения достижений физической науки станет теория элементарных частиц, связь фундаментальных идей с практическим их применением, связь вопроса о том, как повысить эффективность машин и приборов, с вопросами: «Что такое пространство?», «Что такое время?», «Что такое поле?» и т. п. – станет еще более тесной. Но и сейчас она достаточно явная.

В наше время научные прогнозы приобрели комплексный характер. Таков был уже план ГОЭЛРО, во многом связанный с реализацией того, что обещали классические электродинамика, механика и электронная теория. Классическая электродинамика обеспечивает возможность производить электрическую энергию в одном месте, повышать напряжение, передавать энергию на большое расстояние и здесь превращать ее в механическую работу в электродвигателях. Классическая механика создала методы эффективного и быстрого расчета, позволяющие создавать разветвленную систему разнообразных машин, использующих преимущества электрического привода. Естественным завершением происшедших на этой основе технических и экономических сдвигов являлось прежде всего объединение энергетики, создание единой сети высоковольтных передач, соединяющих энергетические центры с центрами потребления. Завершение строительства такой единой сети, как предполагалось, совпадет с полным переходом к электрическому приводу и соответственно с высокой механизацией производства. С другой стороны, классическая электронная теория позволяла расширить применение электричества в технологии, развивать электроемкие отрасли производства, широко использовать новые материалы. Указанные сдвиги образуют новое производство, новое по исходным материалам, по характеру труда, по темпам роста производительности труда. Реализация такой программы была рассчитана на 20 лет, и действительно, за это время основные возможности, раскрытые классической наукой и учтенные в плане ГОЭЛРО, оказались реализованными.

Сейчас аналогичная ситуация сложилась в отношении современной науки. Речь идет о том, что обещает производству и культуре тот комплекс представлений о пространстве, времени, движении, энергии и веществе, который появился в прямой или косвенной связи с теорией относительности и квантовой механикой.

Исходный процесс производственного применения достижений современной науки – новая энергетика. Применение достижений классической науки было связано с использованием тех источников энергии, которые в конечном счете обязаны своим возникновением и воспроизводством солнечной радиации. Лучи Солнца поднимают вверх молекулы воды – отсюда энергия речных потоков; они же создают температурные перепады в атмосфере, различные уровни давления – отсюда энергия ветра; они же заставляют хлорофилл поглощать свет и накоплять энергию топлива. Современная наука приводит к применению и расходованию тех запасов энергии, которые накоплены при возникновении и распаде атомов, при возникновении и гибели звездных миров. Открытие атомной энергии привело к тому, что астрофизика становится прикладной наукой. Уже недалеко время, когда станет возможным воспроизведение в лабораториях тех процессов, которые поддерживают и компенсируют излучение звезд. Многие живущие сейчас люди, по всей вероятности, станут свидетелями превращения подобных термоядерных процессов в основу энергетики.

Такова энергетическая сторона того, что называют атомным веком. Его завершением будут: превращение атомных станций в преобладающий источник электроснабжения, реконструкция технологии на основе квантовой электроники, автоматизация на основе электронно-вычислительных машин, освобождение производства от угрозы истощения энергетических ресурсов. Конечно, электронная автоматика и новая структура энергетических ресурсов не являются непосредственными и исключительными результатами атомной энергетики, и поэтому указанные составляющие научно-технической революции можно было бы назвать резонансами атомной энергетики.

Из таких резонансов особое значение имеет квантовая электроника. Термин «резонанс» является для нее вполне законным, если иметь в виду не столько атомные реакторы, сколько общий подъем теоретических и экспериментальных исследований в современной физике. Атомная энергетика была и результатом такого подъема, и новым импульсом для его нарастания и связанного с этим преобразования научного мышления и эксперимента. Но есть и другая, собственно научная связь. Применение выводов науки – это целесообразная, основанная на обнаруженных Причинных связях компоновка объективных процессов и тел. Атомная энергетика – это целесообразное регулирование процессов деления тяжелых ядер или (в случае термоядерных процессов) синтеза легких ядер. В квантовой электронике индуцированное излучение в оптическом диапазоне (лазеры) и в радиодиапазоне (мазеры) представляет собой целесообразное регулирование континуальных процессов – излучений. Здесь имеется существенное отличие от регулирования макроскопических континуальных процессов в гидродинамике, в электрических сетях, в радиосигналах. В перечисленных случаях регулирование происходит при игнорировании их атомистической природы, так же как и регулирование движения дискретных тел (в том числе в классических электронных процессах) возможно при игнорировании их континуальной природы. А в квантовой электронике, особенно при анализе индуцированного излучения в оптическом диапазоне, континуальная картина становится невозможной без дискретной и наоборот. Здесь мы встречаемся с существенно неклассическими процессами.

Казалось бы, подобная чисто физическая, чисто теоретическая и весьма общая характеристика квантовой электроники не имеет прямого отношения к путям ее совершенствования и применения. Но это только на первый взгляд. В действительности же связь тут прямая, причем очень характерная для современного научного, технического и экономического прогресса. Научно-техническая революция во второй половине XX века состоит в том, что зоны сознательного, целесообразного вмешательства человека в процессы природы возникают там, где приходится учитывать релятивистские и квантовые аспекты бытия. Отсюда, повторяя уже известную нам формулу Лапласа, – необходимость для разума углубляться в себя самого при каждом продвижении вперед, необходимость развития и преобразования самых общих представлений для решения чисто технических задач. Но отсюда же и беспрецедентная скорость и, более того, столь частое, иногда непрерывное ускорение технического и экономического прогресса. В квантовой электронике становится особенно явной связь между неклассическим характером идеальных физических схем и их эволюцией, с одной стороны, и темпом дальнейшего прогресса и применения лазеров – с другой.

Такую же связь неклассического и фундаментального характера теории с дифференцированностью и широтой ее технического воплощения можно увидеть в кибернетике – этом важнейшем резонансе развития атомной физики, важнейшей компоненте атомного века. Поколения электронно-вычислительных машин различаются не только конструктивно, но и по теоретическим основам создаваемых конструкций; это – принципиально различные машины. И именно подобная эволюция позволяет переходить к универсальному применению электронно-вычислительных машин для автоматизации все более сложных процессов.

Атомная и ядерная физика создают условия для беспрецедентного расширения экспериментальных открытий, причем не только для количественного их расширения, но и для появления принципиально новых экспериментальных, наблюдательных средств. Достаточно напомнить о роли кибернетики для внеземной астрономии. Исследования в области атомной и ядерной физики неизбежно приводят и к проблемам, которые могут быть разрешены только в теории элементарных частиц.

Таким образом, атомный век включает подготовку нового периода. Чем обобщеннее и шире задачи, поставленные им перед специальными науками, чем они ближе к философии, тем явственней приближение этого нового периода. Он будет так же относиться к теории элементарных частиц, как атомный век – к атомной и квантовой физике, как XIX век – к классической термодинамике и классической электродинамике. Он будет связан с разработкой квантово-релятивистской теории элементарных частиц и мегамира, т. е. физики как единого учения о бытии, где бытие фигурирует и в своей пространственно-временной целостности, и в своей гетерогенности.

Поделитесь на страничке

Следующая глава >

fil.wikireading.ru

Общая теория относительности и квантовая механика — КиберПедия

Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все — даже гравитационное поле. Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях.

Рис. 5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении

 

Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, которую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена' — описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики — соотношение неопределенностей — вступает в прямое противоречие с центральным принципом обшей теории относительности — гладкой геометрической моделью пространства (и пространства-времени).

На практике этот конфликт проявляется в весьма конкретном виде. Расчеты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времен, бесконечность в ответе — это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо6). Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.

Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счету нашего маниакального заемщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых четко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем ее с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времен), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривленной геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуации при переходе к микроскопическим масштабам.

Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приведем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.

Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.

Так продолжалось до создания теории суперструн8).

 

cyberpedia.su

Квантовая механика и теория относительности - 14 Августа 2015 | Земля

Чаще всего вопросы, которые задают в течение дня, поставлены довольно конкретно. Вы обедали? Который час? Слышали новую песню Джастина Бибера? Но когда мы начинаем задумываться о куда более серьезных вопросах — например, могут ли быть объединены квантовая механика и общая теория относительность — наша самоуверенность падает.

Что делает квантмех с планетами? Только в ОТО энергия эквивалентна массе, умноженной на квадрат скорости света? Погодите, массе или движению? Или минуты. Это минуты, разве нет?

Не переживайте. Хотя на этот вопрос крайне сложно ответить, сам вопрос прост, как поиск смысла в попсовой песне. Прежде чем мы начнем решать неразрешимую вселенную, давайте разберем компоненты.

Для начала возьмем квантовую механику. С нее хорошо начать, потому что она изучает нечто крайне малое — вещество и излучение на атомных и субатомных уровнях. Когда ученые начали понимать атомы, стало понятно, что старая физика нуждается в поправках. Потому что когда ученые смотрели на атомы, они вели себя не так, как вселенная. К примеру, электроны не вращаются вокруг ядра подобно планете, вращающейся вокруг солнца — если бы это было так, они бы уже упали на ядро.

Стало очевидно, что классическая физика не работает на атомных масштабах. Квантовая механика возникла от необходимости понять, почему маленькие явления случаются не так, как большие в науке. В результате этого мы выяснили, что фотон может выступать в качестве частицы (которая несет массу и энергию) и волны (которая несет только энергию). Это стало прорывом. Фотон может быть в двух формах одновременно. А это значит, что самые маленькие части Вселенной ведут себя непредсказуемо.

Все относительноТеперь мы понимаем, что квантовая механика существенно подорвала наше понимание вселенной (особенно на мелких масштабах). Частицы, к примеру, могут быть волнами. Ко всеобщему удовольствию появился и принцип неопределенности квантовой механики, который подсказывает, что мы не можем знать одновременно положение частицы и скорость ее движения.

Эйнштейну это крайне не понравилось. Сама идея того, что мы не можем определить, где частица или что она делает, должна быть очень тревожной для физика, который пытается определить, как работает вселенная — что и делал Эйнштейн, работая над общей теорией относительности.

И опять: не переживайте. У общей теории относительности было две больших идеи: одна о пространстве и времени, другая о гравитации. Как мы видим, пространство и время находятся в фоновом режиме. Они фиксированы. Они существуют хронологически (и отчасти монолитны). В общей теории относительности пространство и время представляют собой одно целое, так называемое пространство-время. Но если пространство-время и может быть большим и единым, оно не находится в фоновом режиме. В теории общей относительности на пространство-время может влиять материя. Это означает, что вы и существующая материя меняете пространство и время.

Ну да, не совсем. На самом деле, только большие вещи создают пространство-временные искривления. Солнце, например. Что это означает? Меньшие планеты «падают» на Солнце. И это приводит нас к гравитации. В самом деле, общая теория относительности означает не только то, что Эйнштейн похлопал Ньютона по спине и сказал «да, сэр, гравитация это круто!». Напротив, Эйнштейн дал нам причину для гравитации — искривление пространства-времени, которое вызывает гравитацию и заставляет вселенную быть такой, какая она есть.

В чем же проблема? Эйнштейн показал нам умопомрачительную картину работы вселенной, квантовая механика показала нам, как работают частицы на атомном и субатомном уровне. К сожалению, одно не объясняет другое. Значит, должна быть большая теория, которая объединит их… или нет.

Состоит ли наш мир из струн?Мы не можем понять, как квантовая механика и общая теория относительности могут объединиться, если они еще не сделали этого до сих пор. Потому что если одна из сторон права, другая не будет работать как нужно.

Эйнштейн сказал, что пространство-время гладко и равномерно, и только большие вещи могут искажать его. Квантовая механика говорит, что мельчайшие частицы вселенной постоянно и непредсказуемо флуктуируют и меняются.

Если квантовая механика верна и все находится в постоянном движении, гравитация не будет работать так, как предсказывал Эйнштейн. Пространство-время будет находиться в постоянном противоречии со всем вокруг и будет вести себя соответствующим образом. Кроме того, квантовая механика говорит, что вы не сможете установить порядок с полной уверенностью. Вы будете предсказывать вероятности.

С другой стороны, если ОТО верна, материя не флуктуирует так дико и постоянно. В какой-то момент у вас будет возможность знать, где находится материя и куда движется. Но это противоречит квантовой механике.

Но не переживайте, ученые и физики все еще пытаются найти способ примирить два враждующих лагеря. Одним из фаворитов является теория струн, в которой говорится, что вместо частицы действует точка, на самом деле являющаяся струной. Это означает, что она может волноваться и двигаться, и скручиваться и многое другое. Также она может передавать гравитацию на квантовом уровне. Это дает возможность нащупать ходы для объединения квантмеха с ОТО. Но имейте в виду, что теория струн никогда не была подтверждена ни одним экспериментов — и много дебатов разворачивается на тему, может ли она в принципе подтвердиться.

Если такой монументальный эксперимент и будет, то, скорее всего, на ускорителе частиц. Там могут быть обнаружены суперпартнеры. Суперпартнеры — это часть теории струн, которая говорит о том, что у каждой частицы есть суперсимметричная частица-партнер, которая нестабильна и обладает другим спином (к примеру, электрон и селектрон или гравитон и гравитино). К счастью для нас, в 2010 году мы нашли подтверждения того, что существует бозон Хиггса, а он работает в пользу теории струн.

Спин также может помочь нам в экспериментах с квантовой запутанностью. В небольших масштабах она работает на ура, но ученые очень хотят отправить фотоны в космос и обратно, чтобы измерить, как это работает на большом расстоянии.

Мы также можем взять черные дыры и с их помощью создать «теорию всего». В черной дыре хранятся как крупные вещи (звезды), так и мелкие (частицы с квантово-механическим объяснением). Если мы сможем определить, что происходит, когда большое становится маленьким, мы просто примирим квантовую механику и общую теорию.

earth-chronicles.ru

Общая теория относительности и квантовая механика

 

Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все – даже гравитационное поле.

Рис. 5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении

Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, которую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена' – описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики – соотношение неопределенностей – вступает в прямое противоречие с центральным принципом обшей теории относительности – гладкой геометрической моделью пространства (и пространства-времени).

На практике этот конфликт проявляется в весьма конкретном виде. Расчеты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времен, бесконечность в ответе – это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо6). Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.

Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счету нашего маниакального заемщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых четко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем ее с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времен), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривленной геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуации при переходе к микроскопическим масштабам.

Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приведем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.

Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.

Так продолжалось до создания теории суперструн8).

 

 

stydopedia.ru

Общая теория относительности и квантовая механика

ТОП 10:

Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все — даже гравитационное поле. Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что

92 Часть II. Дилемма пространства, времени и квантов

Рис.5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении

оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, ко-

Глава 5. Необходимость новой теории: ОТО versus квантовая механика 93

торую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена' — описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики — соотношение неопределенностей — вступает в прямое противоречие с центральным принципом обшей теории относительности — гладкой геометрической моделью пространства (и пространства-времени).

На практике этот конфликт проявляется в весьма конкретном виде. Расчеты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времен, бесконечность в ответе — это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо6). Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.

Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счету нашего маниакального заемщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых четко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем ее с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времен), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривленной геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуации при переходе к микроскопическим масштабам.

Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приве-

94 Часть II. Дилемма пространства, времени и квантов

дем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.

Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.

Так продолжалось до создания теории суперструн8).



infopedia.su

Общая теория относительности и квантовая механика

Излучение черных дыр — первый пример предсказания, основанного на двух великих теориях прошлого века — общей теории относительности и квантовой механики. Поначалу

оно возбудило множество возражений, потому что противоречило существующей точке зрения: как черные дыры могут что-то излучать? Когда я впервые огласил результаты моих расчетов на конференции в лаборатории им. Резерфорда (вблизи Оксфорда), они были встречены всеобщим недоверием. После моего выступления председатель семинара, Джон Дж. Тейлор из лондонского Кингз-Колледж, назвал все изложенное ерундой. Он даже написал об этом статью.

Однако в конечном счете большинство (включая и Джона Тейлора) вынуждено было прийти к заключению, что черные дыры должны излучать, подобно нагретым телам, если справедливы наши взгляды на общую теорию относительности и квантовую механику. Таким образом, хотя мы пока не смогли отыскать ни одной первичной черной дыры, все согласны с тем, что если таковая обнаружится, то она должна будет обладать мощным гамма- и рентгеновским излучением. Если мы ее отыщем, я получу Нобелевскую премию.

Существование излучения черных дыр, похоже, предполагает, что гравитационный коллапс не столь необратимый и конечный процесс, как мы некогда считали. Если астронавт упадет в черную дыру, ее масса увеличится. Рано или поздно энергия, эквивалентная добавочной массе, вернется во Вселенную в форме излучения. Так что астронавт будет использован в некотором смысле как оборотное сырье. Это, однако, бессмертие не лучшего свойства, потому что личное представление астронавта о времени, конечно, оборвется, когда его существование прекратится в черной дыре. Даже частицы, испущенные впоследствии черной дырой, в общем и целом окажутся иного типа, чем те, что составляли астронавта. От него сохранится только масса или энергия.

Приближения, использованные мною при выводе уравнений излучения черной дыры, должны хорошо работать, когда масса черной дыры больше доли грамма. Однако они не

работают на последней стадии ее жизненного цикла, когда масса черной дыры становится очень маленькой. Наиболее вероятным исходом представляется исчезновение черной дыры, по крайней мере из нашей области Вселенной. Она прихватит с собой астронавта и все сингулярности, которые могут в ней заключаться. Это было первым указанием на то, что квантовая механика способна исключить сингулярности, предсказанные классической общей теорией относительности. При всем том методы, которые я и другие ученые использовали в 1974 г. для изучения квантовых эффектов гравитации, не давали ответа на все вопросы, в частности на такой: возникают ли сингулярности в квантовой теории гравитации?

Поэтому начиная с 1975 г. я занялся разработкой более эффективного подхода к квантовой гравитации, основанного на методе суммирования по траекториям, который был предложен Фейнманом. Ответы, предлагаемые этим подходом для происхождения и судьбы Вселенной, будут изложены в двух следующих лекциях. Вы увидите, что квантовая механика допускает иное начало Вселенной, нежели сингулярность. Это означает, что нет нужды в нарушении законов физики в момент рождения Вселенной. Состояние Вселенной и ее содержимое (включая нас) полностью определяются законами физики вплоть до предела, установленного принципом неопределенности. Для свободы воли этого более чем достаточно.

 

 

Пятая лекция. Происхождение и судьба Вселенной

 

На протяжении 1970-х гг. я занимался в основном черными дырами. Однако в 1981 г. во мне вновь проснулся интерес к происхождению Вселенной, разбуженный участием в конференции по космологии в Ватикане. Католическая церковь допустила большую ошибку с Галилеем, когда пыталась навести свои порядки в науке, провозгласив, что Солнце обращается вокруг Земли. И вот, столетия спустя, церковь почла за лучшее пригласить ряд специалистов, чтобы посоветоваться по вопросам космологии.

По завершении конференции ее участники были удостоены аудиенции у Папы Римского. Он сказал нам, что приветствует исследование истории Вселенной после Большого Взрыва, но считает, что мы не должны углубляться в изучение самого Большого Взрыва, поскольку это акт Творения, а значит, деяние Бога.

Я был рад, что Папа не знает темы доклада, только что сделанного мной на конференции. Я совсем не жаждал разделить судьбу Галилея; он мне очень симпатичен — отчасти потому, что я родился ровно три столетия спустя после его смерти.

 



stydopedya.ru

Общая теория относительности и квантовая механика

⇐ ПредыдущаяСтр 16 из 47Следующая ⇒

Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все — даже гравитационное поле. Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях.

Рис. 5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении

 

Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, которую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена' — описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики — соотношение неопределенностей — вступает в прямое противоречие с центральным принципом обшей теории относительности — гладкой геометрической моделью пространства (и пространства-времени).

На практике этот конфликт проявляется в весьма конкретном виде. Расчеты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времен, бесконечность в ответе — это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо6). Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.

Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счету нашего маниакального заемщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых четко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем ее с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времен), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривленной геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуации при переходе к микроскопическим масштабам.

Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приведем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.

Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.

Так продолжалось до создания теории суперструн8).

 

Читайте также:

lektsia.com


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики