Наука в 19 — начале 20 века (химия, биология, медицина, география). Биологи ученые 20 века


Известные ученые-биологи и их открытия

Биология – это наука об общих свойствах всего живого. Свое функционирование в качестве самостоятельной дисциплины она начала сравнительно недавно, в конце 19 века. Своим появлением наука обязана той проблематике, которая существовала между определением понятий живых и неживых природных тел. Несмотря на столь позднее возникновение биологии, данный вопрос волновал человека уже давно. Поднимался он в античные времена, в Средние века, а также в эпоху Возрождения.

ученые биологиВ связи с тем, что слово "биология" стало использоваться только в конце 19 века, таких ученых, как биологи, до этого не существовало. Тек, кто изучал и развивал дисциплину о природе, при жизни называли натуралистами, врачами или знатоками естествознания.

Кем же были на сегодняшний день столь широко известные ученые-биологи?

Например:

- Грегор Мендель – монахом.- Карл Линней – врачом.- Чарльз Дарвин – состоятельным джентльменом.- Луи Пастер – химиком.

Античность

Основы знаний о растениях и животных первоначально заложил в своих трудах Аристотель. Большую роль в развитии биологии сыграл и его ученик Теофаст.

Немаловажное значение для получения знаний о живых организмах имели сочинения Диоскорида. Этот античный мыслитель составил описание разнообразных лекарственных веществ, практически шестьсот из которых были растениями. В этот же период творил и Плиний, собиравший сведения о природных телах.

Несмотря на то что заслуги всех мыслителей прошлого сыграли весомую роль в развитии биологии, наиболее внушительный след в истории этой дисциплины оставил Аристотель. Его перу принадлежит огромное количество сочинений, которые были посвящены животным. В своих трудах Аристотель рассматривал вопросы познания особей, представлявших земную фауну. Мыслитель разработал собственные принципы классификации групп животных. Она производилась на основе сущностных свойств видов. Также Аристотелем были рассмотрены вопросы развития и размножения животных.

Средние века

Врачи, жившие в этом историческом периоде, включали в свою практику большое количество достижений античности. Однако Римская империя, захваченая арабами, пришла в упадок. И завоеватели перевели труды Аристотеля и иных античных мыслителей на свой язык. Но эти знания не были утеряны.

Арабская медицина Средних веков внесла свой вклад в развитие дисциплины о жизни. Все это происходило в 8-13 веках в период так называемого золотого исламского века. К примеру, Аль-Джахизом, жившим в 781-869 годах, высказывались мысли о пищевых цепях и существовании эволюции. Но арабским основателем ботаники все же считают курдского автора Аль-Динавари (828-896 гг.). Им было описано более чем 637 видов различных растений, а также произведены обсуждения их фазы развития и роста.

Настольной книгой всех европейских медиков вплоть до 17 века являлся труд прославленного врача Авиценны, где впервые были введены понятия фармакологии и клинических исследований. Также заслуживают внимания исследования испанского араба Ибн Зухра. Путем вскрытия он доказал, что чесотка вызывается присутствием подкожного паразита. Также он ввел экспериментальную хирургию и провел первые медицинские исследования на животных.

В Средние века приобрели известность и некоторые европейские ученые. В их число вошли Альберт Великий, Хильдегарда Бингенская, а также Фридрих II, которыми был составлен канон естественной истории. Этот труд широко использовался для изучения в самых первых европейских университетах, где медицина стояла на втором месте после богословия и философии.

Возрождение

Только при переходе Европы к эпохе расцвета стало возможным возрождение интереса к физиологии и естественной истории. Ученые-биологи того времени широко изучали растительный мир. Так, Фуксом, Брунфельсом и некоторыми другими авторами были выпущены многочисленные издания, посвященные этой теме. В этих трудах положено начало полномасштабного описания растительной жизни.

Эпоха Возрождения стала началом развития современной анатомии - дисциплины, основу которой составляет вскрытие человеческих тел. Толчок этому направлению дала книга Везалия.

отечественные ученые биологиСвой вклад в развитие биологии внесли и такие известные художники, как Леонардо да Винчи и Альбрехт Дюрер. Они нередко творили вместе с натуралистами и интересовались точным строением тела животных и человека, отображая их детальное анатомическое строение.

Свой вклад в исследования природы вносили и алхимики. Так, Парацельс проводил опыты с биологическими и фармакологическими источниками производства лекарственных препаратов.

Семнадцатый век

Наиболее важным периодом данного столетия является становление естественной истории, ставшей основой:

- классификации растений и животных;- дальнейшего развития анатомии;- открытия второго круга кровообращения;- начала микроскопических исследований;- открытия микроорганизмов;- первого описания эритроцитов и сперматозоидов животных, а также клеток растений.

В этот же период английским врачом Уильямом Гарвеем во время проводимых опытов вскрытия животных и наблюдения за кровообращением был сделан целый ряд важных открытий. Исследователь достиг следующего:

- обнаружил наличие венозного клапана, не позволяющего крови течь в обратном направлении;- открыл, что кровообращение осуществляется кроме большого еще и по малому кругу;- показал наличие изоляции левого и правого желудочков.

В 17 веке начала формироваться и совершенно новая область исследований. Связана она была с появлением микроскопа.

известные ученые биологи

Изобретатель этого прибора, ремесленник из Голландии Антони ван Левенгук, проводил самостоятельные наблюдения, а их результаты отсылал в Лондонское королевское общество. Левенгук описал и зарисовал большое количество микроскопических существ (бактерий, инфузорий и т. д.), а также сперматозоиды и красные кровяные тельца человека.

Восемнадцатый век

В этом столетии продолжали развиваться физиология, анатомия и естественная история. Все это создавало предпосылки для возникновения биологии. Значимыми событиями для дисциплины о природе живых тел послужили исследования Каспара Фридриха Фольфа и Альбрехта фон Галлера. Результаты этих трудов в значительной мере расширили познания в области развития растений и эмбриологии животных.

Зарождение биологии

Данный термин и до 19 века можно было встретить в трудах некоторых естествоиспытателей. Однако в то время его смысл был совершенно иным. И только на рубеже 18 и 19 веков три автора независимо друг от друга начали пользоваться термином «биология» в том смысле, в котором он знаком нам сейчас. Ученые Ламарк, Тревинарус и Бурдах обозначили этим словом науку, описывающую общие особенности живых тел.

Девятнадцатый век

Самыми значимыми событиями для биологии в этот период явились:- становление палеонтологии;- возникновение биологической основы стратиграфии;- появление клеточной теории:- формирование сравнительной эмбриологии и анатомии.

Ученые-биологи 19 века начали борьбу с инфекционными заболеваниями. Так, английским врачом Дженнером была изобретена вакцина, а результатом исследований Роберта Коха стало открытие возбудителя туберкулеза и создание многих видов лекарств.

Революционное открытие

Центральным событием в биологии, произошедшим во второй половине 19 века, стала публикация книги Чарльза Дарвина «О происхождении видов». Этот вопрос ученый разрабатывал в течение двадцати одного года, и только после того как убедился в правильности полученных выводов, решился опубликовать свой труд. Книга имела колоссальный успех. Но в то же время она взбудоражила умы людей, так как полностью противоречила тем представлениям о жизни на Земле, которые излагались в Библии. Так, ученый биолог Дарвин утверждал о том, что эволюция видов продолжалась на нашей планете много миллионов лет. А по утверждениям Библии для создания мира хватило шести дней.

советские ученые биологиЕще одно открытие Чарльза Дарвина в области биологии заключалось в утверждении того, что все живые организмы ведут борьбу друг с другом за среду обитания и пищу. Ученый отметил, что даже внутри одного вида находятся отдельные особи, имеющие особые признаки. Эти отличительные свойства дают животным повышенные шансы для выживания. Далее особые признаки передаются потомству и постепенно становятся общими для всего вида. Более слабые и неприспособленные животные при этом вымирают. Подобный процесс Дарвин назвал естественным отбором.

Величайшая заслуга этого ученого состоит в том, что он решил самую главную проблему биологии, связанную с вопросом происхождения и развития органического мира. Сегодня вся история этой дисциплины условно делится на два периода. Первый из них был до Дарвина. Он характеризовался бессознательным стремлением к определению эволюционного принципа. Второй этап в развитии биологии начался после опубликования Дарвином своего величайшего труда. С этого момента ученые продолжили разработку эволюционного принципа уже осознанно.

Деятельность русских исследователей

Много важных открытий в области дисциплины о живых организмах сделали отечественные ученые-биологи. Так, в 1820 году П. Вишневским впервые было высказано предположение о наличии особого вещества в противоцинготных продуктах. Именно оно, по мнению ученого, способствует правильной жизнедеятельности организма.

Еще один русский ученый – Н. Лунин – открыл в 1880 году витамины. Он доказал, что в составе пищи находятся некие элементы, жизненно важные для здоровья всего организма. Сам термин «витамин» появился при соединении двух латинских корней. Первый из них – «вита» – означает «жизнь», а второй – «амин» – переводится как «соединение азота».

Значительно вырос интерес к естествознанию среди российских ученых в 50-60 годах 19 века. Он был вызван пропагандой своего мировоззрения революционно настроенными демократами. Немаловажным фактором явилось и мировое развитие естественных наук. В это время начинали свою работу такие отечественные ученые-биологи, как К. Тимирязев и П. Сеченов, И. Мечников и С. Боткин, И. Павлов и многие другие врачи и естествоиспытатели.

Великий физиолог

Широкую известность Павлов - ученый-биолог - получил после проведения исследований центральной нервной системы. Эти труды великого физиолога стали отправной точкой для дальнейшего изучения различных психических явлений.

имена ученых биологовОсновной заслугой Павлова явилась разработка новейших для того времени принципов, изучающих деятельность организма в неразрывной связи с внешней средой. Подобный подход явился основанием для развития не только биологии, но и медицины, психологии и педагогики. Труды великого физиолога явились истоком нейрофизиологии – учения о высшей нервной деятельности.

Двадцатый век

В начале 20 столетия ученые-биологи продолжали вносить неоценимый вклад в историю развития дисциплины о живых организмах. Так, в 1903 году впервые появился такой термин, как гормоны. В биологию он был введен Эрнестом Старлингом и Уильямом Бэйлиссом. В 1935 году появилось понятие "экосистемы". Его ввел в дисциплину Артур Дж. Тенсли. Данный термин обозначал сложный экологический блок. Также ученые-биологи продолжали работать над определениями всех этапов состояния живой клетки.

Немало исследователей трудилось и в нашей стране. Ученые-биологи России внесли большой вклад в развитие дисциплины о живых телах. Среди них следующие:

- М. С. Цвет, первым установивший существование двух модификаций хлорофилла;- Н. В. Тимофеев-Ресовский, являющийся одним из основоположников радиобиологии, который установил зависимость дозы излучения на интенсивность мутационных процессов;- В. Ф. Купревич, открывший внеклеточные ферменты, выделяемые на окончаниях корневой системы высших растений;- Н. К. Кольцов – основоположник экспериментальной биологии в России.

ученые биологи россииВ историю дисциплины о живых телах внесены также многие имена ученых-биологов стран Западной Европы. Так, начало века ознаменовалось открытием хромосом как клеточных структур, несущих генетический потенциал. К такому выводу пришли независимо друг от друга многие исследователи.

В 1910-1915 годах известные ученые-биологи во главе с Томасом Хантом Морганом разработали хромосомную теорию наследственности. В 20-х – 30-х годах двадцатого века зародилась популяционная генетика. Во второй половине столетия открытия ученых привели к созданию социобиологии и эволюционной психологии. Немалую лепту в это дело внесли и советские ученые-биологи.

Великий путешественник и естествоиспытатель

Огромную роль в развитии дисциплины о живых телах сыграл ученый-биолог Вавилов. Его считают растениеводом и генетиком, селекционером и прикладным ботаником, географом и путешественником. Однако главным направлением его жизненного пути явилось изучение и развитие биологии.

ученый биолог дарвин

Вавилов был путешественником, который открыл вовсе не новые страны. Он познакомил мир с ранее неизвестными растениями, которые поразили современников разнообразием своих форм. Многие ученые-биологи России отмечали, что это был настоящим провидцем в своем деле. Помимо этого, Вавилов являлся замечательным организатором, государственным и общественным деятелем. Этот ученый открыл столь же фундаментальный закон в области биологии, каковым для химии является менделеевская периодическая система.

В чем основная заслуга Вавилова? В открытом им законе рядов подобия и в утверждении существования закономерности в огромном мире фауны, что позволило предсказывать возникновение новых видов.

Владимир Иванович Вернадский

Из школьной программы нам хорошо известны такие фамилии, как Ньютон и Галилей, Эйнштейн и Дарвин. Все они были гениальными провидцами, открывавшими людям новые горизонты в познании общества и природы. Немало таких гениев было и в 20 веке. Среди них – ученый-биолог Вернадский. Его смело можно отнести к числу тех исследователей, которые не только увидели, но и осознали новые, неизвестные ранее явления.

павлов ученый биологРаботы Вернадского охватывают довольно широкий круг вопросов естествознания. Это и сфера общей геохимии, и определение возраста горной породы, и роль живых тел в процессах геохимического характера. Вернадский выдвинул теорию так называемой генетической минералогии, а также развил вопрос об изоморфизме. Также ученого считают основоположником биогеохимии. Согласно его представлениям, совокупность всех живых организмов в биосфере постоянно вовлекает материю неорганического происхождения в непрерывный круговорот. Этому процессу содействует трансформация солнечного излучения.

Вернадский исследовал химический состав, а также распространенность растительных и животных организмов. Подобные работы велись для изучения миграционных процессов химических элементов в толще земной коры. Среди открытий Вернадского находится и указание на существование организмов, являющихся концентраторами кальция, кремния, железа и т. д.

fb.ru

Открытия в биологии в 20 веке

Биологией называется совокупность наук о живой природе. За последние десятилетия в биологии применяются понятия и методы физики и химии. Поэтому, наряду с такими «чистыми» биологическими науками, как ботаника — наука о растениях, зоология — наука о животных, микробиология — наука о микроорганизмах, генетика — наука о законах наследственности и изменчивости организмов, в систему наук, в целом составляющих биологию, вошли биофизика, биохимия, молекулярная биология.

Поскольку объектом изучения биологии является живая природа, естественно возникает вопрос: что следует понимать под словом «жизнь»? Общим ответом на этот вопрос является: жизнь есть одна из форм существования материи. Но появляется второй вопрос: в чем особенности этой формы существования материи? На этот вопрос, по-видимому, нельзя дать столь же короткий ответ, как на предыдущий, — жизнь характеризуется рядом важнейших признаков. Живой организм должен быть способен к обмену веществ (метаболизму), т. е. быть в состоянии усваивать извне определенные вещества (например, пищу, кислород), подвергать их химической переработке, выделять вовне ненужные ему продукты. Он должен быть также способен к воспроизводству себе подобных, причем так, чтобы в данном воспроизводстве сохранялся биологический вид. Живой организм также должен быть в состоянии регулировать свои функции, приспосабливая их к изменениям среды, различным видам движения и к другим условиям.

Но не всегда легко определить применительно к некоторым объектам, можно ли их отнести к живым организмам или нет. Речь идет, например, о вирусах — мельчайших неклеточных частицах, состоящих из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки, способных вызывать болезни у растений, животных и человека (например, оспу, корь, грипп, полиомиелит, чуму рогатого скота, птиц, бешенство и др.).

Говоря о живых организмах, необходимо отметить, что все они состоят из клеток. Известные сегодня клетки очень разнообразны. Например, их размеры, как правило, колеблются от 1 мкм до 1 м. Существуют одноклеточные организмы, например, бактерии. И наоборот, многие состоят из очень большого числа клеток. Например, организм человека состоит приблизительно из 500 000 миллиардов (5х1014) клеток. Клетки имеют очень тонкую клеточную мембрану, так называемую цитоплазму и ядро. Клеточная (плазматическая) мембрана участвует в регуляции обмена веществ между клеткой и средой, цитоплазма — внеядерная часть белка клетки, ядро — часть клетки, управляющая синтезом белка.

Как по своему строению и размерам, так и по исполняемым функциям клетки также очень разнообразны. Их разделяют, в частности, на клетки, составляющие тело (соматические), и клетки, служащие для размножения. В организме человека среди огромного числа клеток существуют клетки мышц, стенок кровеносных сосудов, соединительных тканей, нервов (некоторые из них имеют длину около 1 м; например, клетка, соединяющая концы пальцев ног со спинным мозгом), кожи. Красные тельца крови — эритроциты также являются клетками; их в организме человека имеется около 25 млрд.

Открытия в биологии раньше происходили с помощью подручных средствФото: The Kingsway School

В состав организма человека входят также кости, образованные костеобразующими клетками и состоящие из фосфата кальция, а также из белка коллагена. В теле человека имеется жидкость: кровь (около 5 л), лимфа, обеспечивающая обмен веществ между кровью и тканями организма, и др.

Белки являются основной частью организма всех растений и животных, в том числе и человека. В состав белков входят аминокислоты. Растения и большинство микроорганизмов сами синтезируют их в своем организме. Что касается животных и человека, то они не могут синтезировать 20 аминокислот примерно из 150. Поэтому эти 20 аминокислот называются незаменимыми, и животные должны получать их с пищей.

Для жизнедеятельности человека особенно важными являются 9 незаменимых аминокислот. Все остальные необходимые организму человека аминокислоты могут вырабатываться самим организмом. Очень важным ингредиентом пищи является белок казеин — основной белок молока. Из казеина (из молока) организм человека может получать все необходимые ему незаменимые аминокислоты.

Большое значение для деятельности живого организма имеют ферменты — катализаторы химических реакций, протекающих в организме. В 1857 году основоположник современной микробиологии и иммунологии, известный французский ученый Луи Пастер (1822-1925) отверг теорию «самозарождения» микроорганизмов, изучил процесс брожения, играющий огромную роль в круговороте веществ в природе и в жизнедеятельности микробов. Пастер занимался инфекционными заболеваниями и достиг большого успеха в их лечении и профилактике. Было установлено, что ферменты (их называют также энзимами), присутствующие во всех живых клетках, представляют собой белки (очень большие молекулы), могущие существовать в кристаллической форме, чаще всего образуются в результате жизнедеятельности микроорганизмов.

Для нормальной жизнедеятельности живых организмов требуется в небольших количествах еще один вид органических соединений — витамины, участвующие в обмене веществ. Большинство витаминов человек получает с пищей, некоторые образуются в организме.

Современная биология основывается на тех достижениях, которые были сделаны в этой науке во второй половине века: создание Ч. Дарвином эволюционного учения, основополагающие работы К. Бернара в области физиологии, основополагающие исследования Л. Пастера, Р. Коха и И.И. Мечникова в области микробиологии и иммунологии, работы И.М. Сеченова и И.И. Павлова в области высшей нервной деятельности и, наконец, блестящие работы Г. Менделя, хотя и не получившие известности до начала

века, но уже выполненные их выдающимся автором. XX век является продолжением не менее интенсивного прогресса в биологии. В 1900 году голландским ученым-биологом, одним из основателей учения об изменчивости и эволюции, X. де Фризом (1848-1935), немецким ученым-ботаником К.Э. Корренсом (1864-1933) и австрийским ученым Э. Чермак-Зейзенеггом (1871-1962) независимо друг от друга и почти одновременно вторично были открыты и стали всеобщим достоянием законы наследственности, установленные Менделем.

Развитие генетики после этого происходило быстро. Был принят принцип дискретности в явлениях наследственности, открытый еще Менделем; опыты по изучению закономерностей наследования потомками свойств и признаков родителей были значительно расширены. Было принято понятие «ген», введенное, как уже говорилось, известным датским биологом Вильгельмом Людвигом Иогансоном (1857-1927) в 1909 году и означающее единицу наследственного материала, ответственного за передачу по наследству определенного признака.

Утвердилось понятие хромосомы как структурного ядра клетки, содержащего дезоксирибонуклеиновую кислоту (ДНК) — высокомолекулярное соединение, носитель наследственных признаков.

Дальнейшие исследования показали, что ген является определенной частью ДНК и действительно носителем только определенных наследуемых свойств, в то время как ДНК - носитель всей наследственной информации организма.

Развитию генетики способствовали в большой мере исследования известного американского биолога, одно из основоположников этой науки, Томаса Ханта Моргана (1866-1945), и его учеников, которым удалось определить расположение генов в хромосомах плодовой мушки дрозофилы (Drosophila), на которой они проводили опыты.

Важно отметить, что все клетки данного организма (в том числе, разумеется, и половые) имеют один и тот же набор генов, что сохраняет устойчивость организмов при размножении, а при делении клеток происходит также удвоение молекул ДНК.

Уже упоминавшийся выдающийся американский ученый Морган сформулировал хромосомную теорию наследственности. Большинство растительных и животных организмов являются диплоидными, т. е. их клетки (за исключением половых) имеют наборы парных хромосом, однотипных хромосом от женского и мужского организмов. Хромосомная теория наследственности сделала более понятными явления расщепления в наследовании признаков.

Важным событием в развитии генетики стало открытие мутаций — возникающих внезапно изменений в наследственной системе организмов и потому могущих привести к устойчивому изменению свойств гибридов, передаваемых и далее по наследству. Своим возникновением мутации обязаны либо случайным в развитии организма событиям (их обычно называют естественными или спонтанными мутациями), либо искусственно вызываемым воздействиям (такие мутации часто именуют индуцированными). Все виды живых организмов (как растительных, так и животных) способны мутировать, т. е. давать мутации. Это явление — внезапное возникновение новых, передающихся по наследству свойств — известно в биологии давно. Однако систематическое изучение мутаций было начато уже известным читателю голландским ученым Хуго де Фризом, установившим и сам термин «мутации». Было обнаружено, что индуцированные мутации могут возникать в результате радиоактивного облучения организмов, а также могут быть вызваны воздействием некоторых химических веществ.

Следует отметить первооткрывателей всего того, что связано с мутациями. Советский ученый-микробиолог Георгий Адамович Надсон (1867-1940) вместе со своими коллегами и учениками установил в 1925 году воздействие радиоизлучения на наследственную изменчивость у грибов. Известный американский генетик, Герман Джозеф Меллер (1890-1967), работавший в течение 1933-1937 годов в СССР, обнаружил в 1927 году в опытах с дрозофилами сильное мутагенное действие рентгеновских лучей. В дальнейшем было установлено, что не только рентгеновское, но и любое ионизированное облучение вызывает мутации.

Советские ученые-генетики Максим Николаевич Мейсель (р. 1901), Владимир Владимирович Сахаров (1902-1969), Михаил Ефимович Лобашев (1907-1971) обнаружили в период 1928-1934 годов мутагенное воздействие на организмы некоторых химических веществ. Эти работы были успешно продолжены советским ученым-генетиком Иосифом Абрамовичем Рапопортом (р. 1912) и другими советскими и иностранными учеными.

Достижения генетики (и биологии в целом) за прошедшее после выхода в свет книги Дарвина «Происхождение видов» время так значительны, что было бы удивительно, если бы все это никак не повлияло на дарвиновскую теорию эволюции. Два фактора: изменчивость и наследственность, которым Дарвин придавал большое значение, получили более глубокое толкование.

Изменчивость растительного или животного организма может быть достигнута двумя путями: либо непосредственным воздействием внешней среды, в результате которого наследственный аппарат организма не изменяется, либо посредством мутаций, характерных тем, что они вызывают изменения наследственного аппарата (генов, хромосом), и поэтому происходящие в этом случае изменения организма являются наследственными.

Итак, дальнейшее развитие биологии и входящей в нее составной частью генетики, во-первых, еще более укрепило дарвиновскую теорию эволюции живого мира и, во-вторых, дало более глубокое толкование (соответствующее достигнутым успехам в биологии) понятиям изменчивости и наследственности, а следовательно, всему процессу эволюции живого мира. Более того, можно сказать, что успехи биологии выдвинули эту науку в ряды лидеров естествознания, причем наиболее поразительные ее достижения связаны с изучением процессов, происходящих на молекулярном уровне.

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря, как уже говорилось, технике физических методов анализа, скорость его резко возросла. На основе полученных данных о структуре вещества удалось воссоздать строение ряда белков и полипептидных гормонов, а также синтезировать некоторые менее сложные вещества. Химия белков, которая несколько лет назад казалась мало обещающей областью, сегодня выдвинулась на передний край науки, а раскрытие структуры дезоксирибонуклеиновой кислоты (ДНК) послужило началом интенсивных исследований в химии и биологии. Являясь носителем и передатчиком наследственных качеств и играя основную роль в синтезе клеточных белков, нуклеиновые кислоты образуют группы веществ, важность которых трудно переоценить.

Уже к началу 40-х годов в распоряжении ученых имелись надежные методы выделения и фракционирования биополимеров.

У. Астбери ввел в науку термин «молекулярная биология» и провел основополагающие исследования белков и ДНК. Хотя в 40-е годы почти повсеместно господствовало мнение, что гены представляют собой особый тип белковых молекул, в 1944 году О. Эвери, К. Маклеод и М. Маккарти показали, что генетические функции в клетке выполняет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для дальнейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеиновой кислоте).

40-е годы ознаменовались коренным изменением взгляда на структуру нуклеиновых кислот; до этого предполагалось, что все кислоты построены из одинаковых тетра-нуклеотидных блоков и поэтому лишены специфичности. Отказ от этого представления произошел в результате детального исследования структуры нуклеиновых кислот, в которых первые крупные достижения принадлежали Д. Гуланду (Англия) и Э. Чаргаффу (США). Чаргаффу в 1949-1951 годах удалось показать, что нуклеиновые кислоты обладают специфичностью, т. е. что кислоты, полученные из разных биологических источников, различаются по своему составу.

Результаты, полученные Чаргаффом, создали предпосылку расшифровки молекулы ДНК, которую произвели в 1953 году Ф. Крик (Англия) и Д. Уотсон (США).

Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль. Если эту спираль развернут на плоскость, то полученная структура будет напоминать лестницу. Таким образом, оказалось, что строение одной ветви молекулы ДНК целиком определяет строение другой ветви, поскольку последовательность оснований, примыкающих к одной из направляющих, однозначно определяет последовательность оснований, примыкающих к другой направляющей. Это важное свойство молекулы ДНК, названное комплиментарностью (дополнительностью), определяет генетическую функцию молекулы.

Для дальнейшего процесса становления молекулярной биологии большое значение имела работа по расшифровке механизмов репликации ДНК и транскрипции. Уотсон и Крик предположили, что репликация (воспроизведение) молекулы происходит следующим образом: двойная спираль раскручивается, и составляющие ее нити расходятся, разделяясь в местах соединения оснований. Затем на каждой из нитей в соответствии с правилами комплиментарности образуется новая молекула. В 1957 году американский биохимик А. Кронберг провел биосинтез ДНК с помощью репликации, подтвердив тем самым гипотезу Крика и Уотсона. Для того чтобы осуществить этот процесс, Кронбергу понадобилось выделить фермент, катализирующий его. За открытие этого фермента — полимеразы — и синтез ДНК Кронберг в 1959 году получил Нобелевскую премию по медицине (он разделил ее с С. Очоа, который провел биосинтез РНК).

Генетическая информация кодируется в ДНК с помощью четырех символов (оснований), располагающихся в определенной последовательности. Однако, поскольку существует 20 основных белковых аминокислот, следующей задачей было выяснить, каким образом запись на четырехбуквенном алфавите в ДНК переводится в запись на двадцатибуквенном алфавите в белках.

Решающий вклад в решение этой проблемы был сделан Г.А. Гамовым в 1954 году. Он предположил, что каждая аминокислота кодируется сочетанием из трех нуклеотидов (нуклеотид представляет собой элементарный мономер ДНК, состоящий из сахара, фосфата и основания). Доказательство этого предположения было получено лишь в 1961 году в результате работ Ф. Крика, Л. Барнета, С. Бреннера и Р. Ваттс-Тобина (Великобритания), а также работ М. Нирнберга и Дж. Маттеи (США).

К началу 60-х годов уже сложилось четкое понимание основных процессов передачи информации в клетке при синтезе белка. К понятию репликации прибавились понятия транскрипции и трансляции. При раздвоении молекулы ДНК последовательность ее оснований переводится в комплиментарную последовательность оснований информационной РНК (РНК, как и ДНК, построена с помощью четырех оснований, лишь вместо тимина в ней используется урацил — вещество, близкое ему по свойствам). Этот процесс передачи информации от гена матричной РНК называется транскрипцией. Затем РНК перемещается из ядра в цитоплазму, где она соединяется с рибосомой — субмикроскопической структурой, в которой происходит белковый синтез. В рибосоме происходит считывание генетической информации, т. е. последовательность оснований, содержащихся в РНК, приводится в последовательность аминокислот. Этот процесс называется трансляцией. Аминокислоты захватываются небольшими участками транспортной РНК и переносятся в нужное место к информационной РНК, находящейся в рибосоме. Для каждой аминокислоты есть своя транспортная РНК, состоящая приблизительно из 80 нуклеотидов. Так как насчитывается 20 аминокислот, то существует 20 транспортных РНК, каждая из которых соответствует кодону — тройке нуклеотидов в кодовой последовательности информационной (матричной) РНК. Когда все кодовые элементы информационной РНК соответствуют своим дополнительным элементам, аминокислоты располагаются в требуемом порядке, соединяясь через пептидные связи в цепь. Образовавшийся белок сходит с матрицы и процесс повторяется.

Наряду с изучением нуклеиновых кислот и процессом синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков.

Параллельно с расшифровкой аминокислотного состава белков проводились исследования их пространственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разработанную в 1951 году Э. Полингом и Р. Кори. Согласно этой теории, полипептидная цепь белка не является плоской, а свернута в спираль, характеристики которой были также определены. Крупным достижением 50-х годов было определение пространственной структуры миоглобина (Дж. Кендрью) и гемоглобина (М. Перутц).

После проблемы специфичности белкового синтеза на первом месте в молекулярной биологии оказалась проблема регуляции синтеза белков, или, что то же самое, регуляции активности генов.

В 1961 году французские биохимики Ф. Жакоб и Ж. Моно предложили схему регуляции активности генов, которая сыграла исключительную роль в понимании регуляторных механизмов вообще. Согласно схеме Жакоба и Моно, в ДНК кроме структурных (информационных) генов имеются еще гены-регуляторы и гены-операторы. Эти виды генов особым образом влияют на работу структурного гена.

Несмотря на молодость молекулярной биологии, успехи, достигнутые ею в этой области, ошеломляющи. За сравнительно короткий срок были установлены природа гена и основные принципы его организации, воспроизведения и функционирования. Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полностью определена первичная структура многих транспортных РНК — специфических молекул-адаптеров, осуществляющих перевод языка нуклеиновых матриц на язык аминокислотной последовательности синтезирующегося белка. Установлены основные принципы организации разных субклеточных частиц, многих вирусов, и разгаданы пути их биогенеза в клетке.



biofile.ru

Основные биологические открытия 20 века

Открытия в биологии в 20 веке

Основные биологические открытия 20 века

Биологией называется совокупность наук о живой природе. За последние десятилетия в биологии применяются понятия и методы физики и химии.

Поэтому, наряду с такими «чистыми» биологическими науками, как ботаника — наука о растениях, зоология — наука о животных, микробиология — наука о микроорганизмах, генетика — наука о законах наследственности и изменчивости организмов, в систему наук, в целом составляющих биологию, вошли биофизика, биохимия, молекулярная биология.

Поскольку объектом изучения биологии является живая природа, естественно возникает вопрос: что следует понимать под словом «жизнь»? Общим ответом на этот вопрос является: жизнь есть одна из форм существования материи.

Но появляется второй вопрос: в чем особенности этой формы существования материи? На этот вопрос, по-видимому, нельзя дать столь же короткий ответ, как на предыдущий, — жизнь характеризуется рядом важнейших признаков. Живой организм должен быть способен к обмену веществ (метаболизму), т. е.

быть в состоянии усваивать извне определенные вещества (например, пищу, кислород), подвергать их химической переработке, выделять вовне ненужные ему продукты. Он должен быть также способен к воспроизводству себе подобных, причем так, чтобы в данном воспроизводстве сохранялся биологический вид.

Живой организм также должен быть в состоянии регулировать свои функции, приспосабливая их к изменениям среды, различным видам движения и к другим условиям.

Но не всегда легко определить применительно к некоторым объектам, можно ли их отнести к живым организмам или нет.

Речь идет, например, о вирусах — мельчайших неклеточных частицах, состоящих из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки, способных вызывать болезни у растений, животных и человека (например, оспу, корь, грипп, полиомиелит, чуму рогатого скота, птиц, бешенство и др.).

Говоря о живых организмах, необходимо отметить, что все они состоят из клеток. Известные сегодня клетки очень разнообразны. Например, их размеры, как правило, колеблются от 1 мкм до 1 м. Существуют одноклеточные организмы, например, бактерии. И наоборот, многие состоят из очень большого числа клеток.

Например, организм человека состоит приблизительно из 500 000 миллиардов (5х1014) клеток. Клетки имеют очень тонкую клеточную мембрану, так называемую цитоплазму и ядро.

Клеточная (плазматическая) мембрана участвует в регуляции обмена веществ между клеткой и средой, цитоплазма — внеядерная часть белка клетки, ядро — часть клетки, управляющая синтезом белка.

Как по своему строению и размерам, так и по исполняемым функциям клетки также очень разнообразны. Их разделяют, в частности, на клетки, составляющие тело (соматические), и клетки, служащие для размножения.

В организме человека среди огромного числа клеток существуют клетки мышц, стенок кровеносных сосудов, соединительных тканей, нервов (некоторые из них имеют длину около 1 м; например, клетка, соединяющая концы пальцев ног со спинным мозгом), кожи.

Красные тельца крови — эритроциты также являются клетками; их в организме человека имеется около 25 млрд.

Источник: http://biofile.ru/his/5633.html

Научные открытия 20-го века

Научные открытия 20-го века

Ещё в начале 20 столетия люди не могли себе даже представить, что такое автомобиль, телевизор или компьютер. Научные открытия в 20 веке оказали существенное влияние на всё человечество.

В 20 веке было сделано больше научных открытий, чем за все предыдущие столетия.

Знания человечества стремительно растут, поэтому можно с уверенностью сказать, что если такая тенденция сохранится, то в 21 веке будет совершено ещё больше научных открытий, что может в корне изменить жизнь человека.  

В 20 столетии произошёл существенный прорыв в основном в двух сферах: физике и биологии.

Научные открытия в области физики  

В этой области революция началась в самом начале 20-го столетия, когда Макс Планк вывел формулу распределения энергии в спектре абсолютно чёрного тела, из которой следовало, что энергия излучается не равномерно, как предполагали раньше, а частями — квантами. На этой основе Альберт Эйнштейн в 1905 году развил квантовую теорию фотоэффекта. Дальше Нильс Бор предложил модель строения атома, где электроны вращаются по орбитам вокруг ядра атома, словно планеты вокруг солнца.

Но на этом революция не закончилась. Альберт Эйнштейн в 1916 году разработал общую теорию относительности, что практически перевернуло представления всех учёных того времени.

В соответствии с этой теорией, гравитация — это не процесс взаимодействия полей и тел в пространстве, а результат искривления пространства-времени.

Эта теория объяснила появление так называемых чёрных дыр, а также искривление световых лучей от звёзд при их прохождении рядом с Солнцем.  

В 1932 г. Джеймс Чэдвик доказал существование нейтрона. Это научное открытие привело к бомбардировке Хиросимы и Нагасаки, к развитию гонки вооружения и к холодной войне.

Но в то же время это открытие послужило толчком к развитию атомной энергетики, а также к использованию радиоизотопов в различных научных сферах. За открытие нейтрона Джеймс Чэдвик в 1935 г.

получил Нобелевскую премию в области физики.

16-го декабря 1947 г. Уолтер Браттейн, Джон Бардин и Уильям Шокли открыли свойства полупроводника — управление большими токами при помощи малых. Так появился транзистор — прибор, который состоял из пары p-n переходов.

Принцип работы транзистора послужил основой для развития многих сфер научной деятельности и не только.

Его изобретение привело к появлению микросхем и микропроцессоров — основы для современных компьютеров и радиоэлектронной аппаратуры и т.д.

Научные открытия в области биологии

Революция в этой области связана с открытием двойной спирали ДНК. Еще в 1869 ДНК открыл швейцарский биолог Фридрих Мишер. Но тогда он не предполагал, что это носитель генетической информации, который объединяет все живые существа, начиная от человека до земляного червя.

В 20-м веке английский учёный Розалин Франклин, проводя рентгеновский дифракционный анализ молекул ДНК, пришла к выводу, что ДНК имеет форму двойной спирали, которая напоминает винтовую лестницу. Розалин рассказала о результатах своего анализа исследователям Кембриджского Университета Фрэнсису Крику и Джеймсу Уотсону, которые также изучали структуру ДНК. И в 1953 г.

они предложили трёхмерную структуру молекулы ДНК, за что и получили Нобелевскую премию. Но, несмотря на это, Розалин и дальше продолжала изучать свойства ДНК, открывая всё новые её качества.

Научные работы Розалин впоследствии подтолкнули учёных к разработке новых медицинских препаратов, появлению генной инженерии, клонированию животных, органов человека и даже к попытке клонирования самого человека.

Важную роль в развитии биологии сыграл известный ученый Сидни Бреннер, который сделал открытие в области генетической регуляции развития органов. Он изучал вопрос об ограниченной продолжительности жизни клетки. Впоследствии было высказано предположение о запрограммированной смерти клетки — апоптозе. 

Бреннер совместно с Джоном Салстоном занимался расшифровкой генома человека. Выполняя исследовательскую работу на земляном черве — нематоде, Сталстон определил первый ген самоубийства клетки.

Роберт Горвиц в 70-е годы, продолжая работу в этом направлении, открыл два гена клеточного самоубийства. Позднее он открыл ген, который удерживает клетку от самоуничтожения. Он нашел соответствующие гены у других животных и человека.

Эти научные открытия позволяют продолжить работы в сфере управления процессами старения организмов и предположить возможность контроля развития многих смертельных заболеваний. В 2002 г.

 Горвиц и Салстон получили Нобелевскую премию в сфере физиологии и медицины.

Человек — царь природы?

Научные открытия 20 века стали непосредственной производительной силой, которая обусловила качественные перемены в жизни человека.

Бесспорно, эти открытия существенно изменили не только материальную сферу человека, но в то же время повлияли на духовное развитие человека и даже привели к общему упадку уровня нравственности.

Это проявляется в неудержимом стремлении человека к материальным благам в ущерб моральным принципам.

Такое бурное и бесконтрольное развитие науки и техники в 20-м веке кроет в себе и большую опасность. Экологический кризис и создание оружия массового уничтожения, техногенные катастрофы и природные катаклизмы… причиной которых стал научно-технический прогресс.

Что мы наблюдаем в настоящее время? Взрыв контейнера с радиоактивными отходами в 1957 г. под Челябинском, авария на химическом заводе в Бхопале (Индия) в 1984 г., авария на Чернобыльской АЭС в 1986 г., огромный разлив нефти из танкера Вальде у побережья Аляски в 1989 г., поджог 732 нефтяных скважин в Кувейте в 1991г.

, распространение вирусов СПИДа, атипичной пневмонии, свинного гриппа, — и это далеко не полный перечень.

Эта ситуация требует разумного контроля развития достижений науки.

Но формальное сдерживание правовыми, юридическими методами сейчас не сможет предупредить многие негативные явления, способные причинить неприятности человечеству в ближайшем будущем.

Человек вынужден сделать шаг навстречу природе, стать на один уровень с ней, изменить своё сознание. Homo sapiens должен осознать, что он не царь природы, а лишь её часть.

Источник: https://www.epochtimes.com.ua/ru/science/technology-and-discoveries/nauchn-e-otkr-tyja-20-go-veka-94452.html

Великие научные открытия XX века, топ 25

Великие научные открытия XX века, топ 25

Практически каждый, кто интересуется историей развития науки, техники и технологий — хоть раз в своей жизни задумывался над тем, каким путем могло бы пойти развитие человечества без знания математики или, например, не будь у нас такого необходимого предмета как колесо, ставшего чуть ли не основой развития человечества. Однако зачастую рассматриваются и удостаиваются внимания лишь ключевые открытия, в то время как открытия менее известные и распространенные порой попросту не упоминаются, что, впрочем, не делает их незначительными, ведь каждое новое знание дает человечеству возможность забраться на ступеньку выше в своем развитии.

XX век и его научные открытия превратился в настоящий Рубикон, перейдя который, прогресс ускорил свой шаг в несколько раз, отождествляя себя со спортивным болидом за которым невозможно угнаться.

Для того, что бы сейчас удержаться на гребне научной и технологической волны, необходимы не дюжие навыки.

Конечно, можно читать научные журналы, различного рода статьи и работы ученых, которые бьются над решением той или иной задачи, однако даже в этом случае угнаться за прогрессом не получится, а стало быть остается наверстывать упущенное и наблюдать.

Как известно, для того, что бы смотреть в будущее, необходимо знать прошлое. Поэтому сегодня речь пойдет именно о XX веке, веке открытий, который изменил образ жизни и окружающий нас мир. Стоит сразу отметить, что это не будет список лучших открытий века или какой-либо иной топ, это будет краткий осмотр части тех открытий, которые изменяли, а возможно и изменяют мир.

Для того, что бы говорить об открытиях, следует охарактеризовать само понятие. За основу возьмем следующее определение:

Открытие — новое достижение, совершаемое в процессе научного познания природы и общества; установление неизвестных ранее, объективно существующих закономерностей, свойств и явлений материального мира.

Топ 25 великих научных открытий XX века

  1. Квантовая теория Планка. Он вывел формулу, определяющую форму спектральной кривой излучения и универсальную постоянную. Открыл мельчайшие частицы – кванты и фотоны, с помощью которых Эйнштейн объяснил природу света. В 20-х годах Квантовая теория переросла в квантовую механику.
  2. Открытие рентгеновского излучения – электромагнитное излучение с широким диапазоном длин волн. Открытие Х-лучей Вильгельмом Рёнтгеном сильно повлияло на жизнь человека и сегодня без них невозможно представить современную медицину.
  3. Теория относительности Эйнштейна.

    В 1915 году Эйнштейн ввел понятие относительности и вывел важную формулу, связавшую энергию и массу. Теория относительности объяснила суть гравитации – она возникает вследствие искривления четырехмерного пространства, а не результате взаимодействия тел в пространстве.

  4. Открытие пенициллина.

    Плесневый гриб Penicillium notatum, попадая к культуре бактерий, вызывает полную их гибель – это было доказано Александром Флеммингом. В 40-х годах был разработана производственная технология пенициллина, который в дальнейшем стал выпускаться в промышленном масштабе.

  5. Волны де Бройля.

    В 1924 году было выяснено, что корпускулярно-волновой дуализм присущ всем частицам, а не только фотонам. Бройль представил их волновые свойства в математическом виде. Теория позволила развить концепцию квантовой механики, объяснила дифракцию электронов и нейтронов.

  6. Открытие структуры новой спирали ДНК.

    1953 году была получена новая модель строения молекулы, путем объединения сведений рентгеноструктурного анализа ДНК Розалин Франклин и Мориса Уилкинса и теоретических разработок Чаргаффа. Ее вывели Френсис Крик и Джеймс Уотсон.

  7. Планетарная модель атома Резерфорда. Он вывел гипотезу о строении атома и извлек энергию из атомных ядер.

    Модель объясняет основы закономерности заряженных частиц.

  8. Катализаторы Циглера-Ната. В 1953 году они осуществили поляризацию этилена и пропилена.
  9. Открытие транзисторов. Прибор, состоящий из 2-х p-n переходов, которые направлены навстречу друг другу. Благодаря его изобретению Юлием Лилиенфельдом, техника начала уменьшаться в размерах.

    Первый действующий биполярный транзистор в 1947 представили Джон Бардин, Уильям Шокли и Уолтер Браттейн.

  10. Создание радиотелеграфа. Изобретение Александра Попова с помощью азбуки Морзе и радиосигналов впервые спасло корабль на рубеже 19 и 20 веков. Но первым запатентовал аналогичное изобретение Гулиельмо Марконе.
  11. Открытие нейтронов.

    Эти незаряженные частицы с массой, немного большей, чем у протонов позволили без препятствий проникать в ядро и дестабилизировать его. Позже было доказано, что под воздействием этих частиц ядра делятся, но возникает еще больше нейтронов. Так была открыта искусственная радиоактивность.

  12. Методика экстракорпорального оплодотворения (ЭКО).

    Эдварс и Стептоу придумали, как извлечь из женщины неповрежденную яйцеклетку, создали в пробирке оптимальные для ее жизни и роста условия, придумали, как ее оплодотворить и в какое время вернуть обратно в тело матери.

  13. Первый полет человека в космос. В 1961 году именно Юрий Гагарин первым осуществил этот знаменательный полет, ставший реальным воплощением мечты о звездах.

    Человечество узнало, что пространство между планетами преодолимо, и в космосе могут спокойно находиться бактерии, животные и даже человек.

  14. Открытие фуллерена. В 1985 году учеными была открыта новая разновидность углерода – фуллерен. Сейчас из-за своих уникальных свойств он используется во многих приборах.

    На основе этой методики, были созданы нанотрубки из углерода – скрученные и сшитые слои графита. Они показывают самые разнообразные свойства: от металлических до полупроводниковых.

  15. Клонирование. В 1996 ученым удалось получить первый клон овцы, названной Долли. Яйцеклетку выпотрошили, вставили в нее ядро взрослой овцы и подсадили в матку.

    Долли стала первым животным, которому удалось выжить, остальные эмбрионы разных животных погибли.

  16. Открытие черных дыр. В 1915 году Карлом Шварцшильдом была выдвинута гипотеза о существовании области во времени и пространстве, гравитация которой настолько велика, что ее не могут покинуть даже объекты, движущиеся со скоростью света — черных дыр.
  17. Теория Большого взрыва. Это космологическая общепринятая модель, в которой описано ранее развитие Вселенной, находившейся в сингулярном состоянии, характеризующемся бесконечной температурой и плотностью вещества. Начало модели было положено Эйнштейном в 1916 году.
  18. Открытие реликтового излучения.

    Это космическое микроволновое фоновое излучение, сохранившееся с начала образования Вселенной и равномерно ее заполняющее. В 1965 году его существование было экспериментально подтверждено, и оно служит одним из основных подтверждений теории Большого взрыва.

  19. Приближение к созданию искусственного интеллекта.

    Это технология создания интеллектуальных машин, впервые получившая определение в 1956 году Джоном Маккарти. Согласно ему, исследователи для решения конкретных задач могут использовать методы понимания человека, которые биологически могут не наблюдаются у людей.

  20. Изобретение голография.

    Этот особый фотографический метод предложен в 1947 году Дэннисом Габором, в котором при помощи лазера регистрируются и восстанавливаются трехмерные изображения объектов, близкие к реальным.

  21. Открытие инсулина. В 1922 году Фредериком Бантингом был получен гормон поджелудочной железы, и сахарный диабет перестал быть фатальным заболеванием.
  22. Группы крови.

    Это открытие в 1900-1901 разделило кровь на 4 группы: О, А, В и АВ. Стало возможным правильное переливание крови человеку, которое не заканчивалось бы трагически.

  23. Математическая теория информации. Теория Клода Шеннона дала возможность определения емкости коммуникационного канала.
  24. Изобретение Нейлона. Химик Уоллес Карозерс в 1935 году открыл способ получения этого полимерного материала. Он открыл некоторые его разновидности с высокой вязкостью даже при больших температурах.
  25. Открытие стволовых клеток. Они являются прародительницами всех имеющихся клеток в организме человека и имеют способность самообновляться. Их возможности велики и еще только начинают исследоваться наукой.

Несомненно, что все эти открытия — лишь малая часть того, что XX век показал обществу и нельзя сказать, что лишь эти открытия были значимыми, а все остальные стали лишь фоном, это совсем не так.

https://www.youtube.com/watch?v=nDtCcLO8KiM

Именно прошлый век показал нам новые границы Вселенной, увидела свет Теория относительности Эйнштейна, были открыты квазары (сверхмощные источники излучения в нашей Галактике), открыты и созданы первые углеродные нанотрубки, обладающие уникальной сверхпроводимостью и прочностью.

Все эти открытия, так или иначе — лишь вершина айсберга, который включает в себя более чем сотню значимых открытий за прошедшее столетие. Естественно, что все они стали катализатором изменений в мире, в котором мы с вами сейчас живем и несомненным остается тот факт, что на этом изменения не заканчиваются.

20й век можно смело назвать если не «золотым», то уж точно «серебряным» веком открытий, однако оглядываясь назад и сравнивая новые достижения с прошлыми, думается, что в будущем нас ждет еще не мало интереснейших великих открытий, собственно, преемник прошлого века, нынешний XXI лишь подтверждает эти взгляды.

(146 votes, average: 5,79

Источник: http://www.sciencedebate2008.com/the-scientific-discoveries-of-the-xx-century/

Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии

Современная биология основывается на тех достижени­ях, которые были сделаны в этой науке во второй половине

XIX века: создание Ч. Дарвином эволюционного учения, основополагающие работы К. Бернара в области физиоло­ гии, важнейшие исследования Л. Пастера, Р. Коха и И.И. Мечникова в области микробиологии и иммунологии, работы И.М. Сеченова и И.И. Павлова в области выс­ шей нервной деятельности и, наконец, блестящие работы

Г. Менделя, хотя и не получившие известности до начала

XX века, но уже выполненные их выдающимся автором.XX век явился продолжением не менее интенсивного

прогресса в биологии. В 1900 году голландским ученым-биологом X. де Фризом (1848-1935), немецким ученым-ботаником К.Э. Корренсом (1864-1933) и австрийским ученым Э. Чермак-Зейзенеггом (1871-1962) независимо друг от друга и почти одновременно вторично были откры­ты и стали всеобщим достоянием законы наследственнос­ти, установленные Менделем.

Развитие генетики после этого происходило быстро. Был принят принцип дискретности в явлениях наслед-

ственности, открытый еще Менделем; опыты по изучению закономерностей наследования потомками свойств и при­знаков родителей были значительно расширены. Было при­нято понятие «ген», введенное известным датским биоло­гом Вильгельмом Иогансоном (1857-1927) в 1909 году и означающее единицу наследственного материала, ответ­ственного за передачу по наследству определенного при­знака.

Утвердилось понятие хромосомы как структурного ядра клетки, содержащего дезоксирибонуклеиновую кислоту (ДНК) — высокомолекулярное соединение, носитель наслед­ственных признаков.

Дальнейшие исследования показали, что ген является определенной частью ДНК и действительно носителем только определенных наследуемых свойств, в то время как ДНК — носитель всей наследственной информации орга­низма.

Развитию генетики способствовали в большой мере ис­следования известного американского биолога, одного из основоположников этой науки, Томаса Ханта Моргана (1866-1945). Он сформулировал хромосомную теорию на­следственности.

Большинство растительных и животных организмов являются диплоидными, т.е. их клетки (за ис­ключением половых) имеют наборы парных хромосом, од­нотипных хромосом от женского и мужского организмов.

Хромосомная теория наследственности сделала более по­нятными явления расщепления в наследовании признаков.

Важным событием в развитии генетики стало откры­тие мутаций — возникающих внезапно изменений в на­следственной системе организмов и потому могущих при­вести к устойчивому изменению свойств гибридов, переда­ваемых и далее по наследству.

Своим возникновением мутации обязаны либо случайным в развитии организма событиям (их обычно называют естественными или спон­танными мутациями), либо искусственно вызываемым воз­действиям (такие мутации часто именуют индуцированны­ми). Все виды живых организмов (как растительных, так и животных) способны мутировать, т. е. давать мутации.

Это явление — внезапное возникновение новых, передаю­щихся по наследству свойств — известно в биологии дав­но. Однако систематическое изучение мутаций было начато голландским ученым Хуго де Фризом, установившим и

сам термин «мутации». Было обнаружено, что индуциро­ванные мутации могут возникать в результате радиоактив­ного облучения организмов, а также могут быть вызваны воздействием некоторых химических веществ.

Следует отметить первооткрывателей всего того, что связано с мутациями. Советский ученый-микробиолог Георгий Адамович Надсон (1867-1940) вместе со своими коллегами и учениками установил в 1925 году воздействие радиоизлучения на наследственную изменчивость у грибов.

Известный американский генетик Герман Джозеф Меллер (1890-1967), работавший в течение 1933-1937 годов в СССР, обнаружил в 1927 году в опытах с дрозофилами сильное мутагенное действие рентгеновских лучей.

В даль­нейшем было установлено, что не только рентгеновское, но и любое ионизированное облучение вызывает мутации.

Достижения генетики (и биологии в целом) за прошед­шее после выхода в свет книги Дарвина «Происхождение видов» время так значительны, что было бы удивительно, если бы все это никак не повлияло на дарвиновскую тео­рию эволюции. Два фактора: изменчивость и наследствен­ность, которым Дарвин придавал большое значение, полу­чили более глубокое толкование.

Итак, дальнейшее развитие биологии и входящей в нее составной частью генетики, во-первых, еще более укрепи­ло дарвиновскую теорию эволюции живого мира и, во-вто­рых, дало более глубокое толкование (соответствующее до­стигнутым успехам в биологии) понятиям изменчивости и наследственности, а следовательно, всему процессу эволю­ции живого мира. Более того, можно сказать, что успехи биологии выдвинули эту науку в ряды лидеров естество­знания, причем наиболее поразительные ее достижения связаны с изучением процессов, происходящих на молеку­лярном уровне.

Молекулярная биология

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря технике физических методов анализа, скорость его резко возросла.

У. Астбери ввел в науку термин «молекулярная биоло­гия» и провел основополагающие исследования белков и ДНК. Хотя в 40-е годы почти повсеместно господствова-

ло мнение, что гены представляют собой особый тип белко­вых молекул, в 1944 году О. Звери, К. Маклеод и М. Мак-карти показали, что генетические функции в клетке выпол­няет не белок, а ДНК.

Установление генетической роли нуклеиновых кислот имело решающее значение для даль­нейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеиновой кислоте).

Расшифровку молекулы ДНК произвели в 1953 году Ф.Крик (Англия) и Д.Уотсон (США). Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль.

Наряду с изучением нуклеиновых кислот и процессом синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков.

Параллельно с расшифровкой аминокис­лотного состава белков проводились исследования их про­странственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разра­ботанную в 1951 году Э. Полингом и Р. Кори.

Согласно этой теории, полипептидная цепь белка не является плос­кой, а свернута в спираль, характеристики которой были также определены.

Несмотря на молодость молекулярной биологии, успе­хи, достигнутые ею в этой области, ошеломляющи. За срав­нительно короткий срок были установлены природа гена и основные принципы его организации, воспроизведения и функционирования.

Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полностью определена пер­вичная структура многих транспортных РНК.

Установле­ны основные принципы организации разных субклеточных частиц, многих вирусов, и разгаданы пути их биогенеза в клетке.

Другое направление молекулярной генетики — иссле­дование мутации генов. Современный уровень знаний по­зволяет не только понять эти тонкие процессы, но и ис­пользовать их в своих целях. Разрабатываются методы генной инженерии, позволяющие внедрить в клетку желае­мую генетическую информацию. В 70-е годы появились методы выделения в чистом виде фрагментов ДНК с помо­щью электрофореза.

В 1981 году процесс выделения генов и получения из них различных цепей был автоматизирован. Генная инже­нерия в сочетании с микроэлектроникой предвещают воз­можности управлять живой материей почти так же, как неживой.

В последнее время в средствах массовой информации активно обсуждаются опыты по клонированию и связан­ные с этим нравственные, правовые и религиозные пробле­мы. Еще в 1943 году журнал «Сайенс» сообщил об успеш­ном оплодотворении яйцеклетки в «пробирке». Далее со­бытия развивались следующим образом.

1973 год — профессор Л. Шетлз из Колумбийского университета в Нью-Йорке заявил, что он готов произвес­ти на свет первого «бэби из пробирки», после чего после­довали категорические запреты Ватикана и пресвитериан­ской церкви США.

1978 год — рождение в Англии Луизы Браун, первого ребенка «из пробирки».

1997 год — 27 февраля «Нейчур» поместил на своей обложке — на фоне микрофотографии яйцеклетки — зна­менитую овечку Долли, родившуюся в институте Рослин в Эдинбурге.

1997 год — в самом конце декабря журнал «Сайенс» сообщил о рождении шести овец, полученных по рослин- скому методу. Три из них, в том числе и овечка Долли, несли человеческий ген «фактора IX», или кровоостанав­ ливающего белка, который необходим людям, страдающим

гемофилией, то есть несвертываемостью крови.

1998 год — чикагский физик Сиди объявляет о созда­ нии лаборатории по клонированию людей: он утверждает,

что отбоя от клиентов у него не будет.

1998 год, начало марта — французские ученые объяви­ли о рождении клонированной телочки.

Все это открывает уникальные перспективы для чело­вечества.

Клонирование органов и тканей — это задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. При пересадке клониро­ванного органа не надо думать о подавлении реакции от­торжения и возможных последствиях в виде рака, развив­шегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные

аварии или какие-нибудь иные катастрофы, или для лю­дей, которым нужна радикальная помощь из-за заболева­ний пожилого возраста (изношенное сердце, больная пе­чень и т. д.).

Самый наглядный эффект клонирования — дать воз­можность бездетным людям иметь своих собственных де­тей. Миллионы семейных пар во всем мире страдают, бу­дучи обреченными оставаться без потомков.

Источник: http://megaobuchalka.ru/1/20407.html

__________________________________________

novpedkolledg2.ru

Новые открытия в биологии XX-XXI века | We are students

Конец XXвека и начало XXI, повлекли за собой вереницу открытий. Новые открытия в биологии выстраивают перед собой кучу вопросов, которые заставляют задумать ученых о том, что все не так просто в этом мире. Поиск истины – вот главная цель исследователей.

новые открытия в биологии

Открытия в биологии XX века

В 1951 году исследователь Эрвин Чаргаффу пришел к одному выводу, который в корне изменил взгляд на структуру нуклеиновых кислот. Ранее считалось, что все нуклеиновые кислоты созданы из тетра-блоков, поэтому лишены специфичности. В течение трех лет ученый занимался исследованием и, наконец, смог доказать, что нуклеиновые кислоты, полученные из разных источников, отличаются своим составом друг от друга – они специфичны. Ученый выстроил модель ДНК, которая своим видом была похожа на двойную спираль, при помещении на плоскость она была похожа на лестницу. Было выявлено, что строение одной отдельно взятой ветки ДНК определяет строение другой ее ветки – это связано с тем, что основание примыкающих определяет последовательность других направляющих. Таким образом, было определено новое свойство ДНК – комплиментарность.

Далее были необходимы исследования в области молекулярной биологии, которые бы провели расшифровку механизма репликации и транскрипции ДНК. Ученые предположили, что нить раскручивается, ее нити расходятся, а далее, в соответствии с правилом комплиментарности, из каждой нити образовывается молекула. Чуть позже опыты подтвердили данную гипотезу.

В 1954 году Георгий Антонович Гамов, на основании исследования Эрвина Чаргаффа, предположил, что аминокислоты закодированы из сочетания трех нуклеотидов.

В 1961 году французские ученые Жак Моно и Франсуа Жакоб воссоздали схему, регулирующую активные гены. Ученые говорили о том, что ДНК имеет не только информационные гены, но и гены-операторы и гены-регуляторы.

Новые открытия в биологии XXI века

В 2007 году объединение ученых университета Висконсис-Мэдисон и Киотского университета провели один эксперимент, благодаря которому клетки кожи взрослого человека стали вести себя как стволовые клетки эмбриона. Клетка смогла трансформироваться практически в любой вид. Финансовые рамки можно отбросить, ведь таким образом, клетки из ДНК человека могут стать органом для пересадки. Выращенный таким способ орган, не будет отторгаться организмом пациента.

Исследование «Геном человека», завершилось в 2006 году. Данный проект был назван самым важным исследованием в области биологии. Главная цель работы – определить последовательность нуклеотидов, а также изучить около 20 000 тыс. генов человека. Под руководством ученого Джеймса Уотсона, в 2000г. была представлена часть структуры генома, а в 2003г. исследование структуры были завершены. Невзирая на то, что официально «Геном человека» был закончен в 2006 году, анализ некоторых участков продолжается и сегодня. Данное исследование открывает новые теории эволюции. Знания, полученные в ходе работы, уже активно используются в медицине.

В XX веке биология как наука шла вперед большими шагами, а начало XXI века уже примечательно открытиями. Можно предположить, что новые открытия в биологии откроют много тайн и загадок, которые, возможно, смогут перевернуть все былые знания и утвержденные теории.

Десятка значимых открытий первого десятилетия XXI века – видео

westud.ru

познание молекулярного уровня жизни. Предпосылки современной биологии — Мегаобучалка

Современная биология основывается на тех достижени­ях, которые были сделаны в этой науке во второй половине

XIX века: создание Ч. Дарвином эволюционного учения,основополагающие работы К. Бернара в области физиоло­гии, важнейшие исследования Л. Пастера, Р. Коха иИ.И. Мечникова в области микробиологии и иммунологии,работы И.М. Сеченова и И.И. Павлова в области выс­шей нервной деятельности и, наконец, блестящие работыГ. Менделя, хотя и не получившие известности до начала

XX века, но уже выполненные их выдающимся автором.XX век явился продолжением не менее интенсивного

прогресса в биологии. В 1900 году голландским ученым-биологом X. де Фризом (1848-1935), немецким ученым-ботаником К.Э. Корренсом (1864-1933) и австрийским ученым Э. Чермак-Зейзенеггом (1871-1962) независимо друг от друга и почти одновременно вторично были откры­ты и стали всеобщим достоянием законы наследственнос­ти, установленные Менделем.

Развитие генетики после этого происходило быстро. Был принят принцип дискретности в явлениях наслед-

ственности, открытый еще Менделем; опыты по изучению закономерностей наследования потомками свойств и при­знаков родителей были значительно расширены. Было при­нято понятие «ген», введенное известным датским биоло­гом Вильгельмом Иогансоном (1857-1927) в 1909 году и означающее единицу наследственного материала, ответ­ственного за передачу по наследству определенного при­знака.

Утвердилось понятие хромосомы как структурного ядра клетки, содержащего дезоксирибонуклеиновую кислоту (ДНК) — высокомолекулярное соединение, носитель наслед­ственных признаков.

Дальнейшие исследования показали, что ген является определенной частью ДНК и действительно носителем только определенных наследуемых свойств, в то время как ДНК - носитель всей наследственной информации орга­низма.

Развитию генетики способствовали в большой мере ис­следования известного американского биолога, одного из основоположников этой науки, Томаса Ханта Моргана (1866-1945). Он сформулировал хромосомную теорию на­следственности. Большинство растительных и животных организмов являются диплоидными, т.е. их клетки (за ис­ключением половых) имеют наборы парных хромосом, од­нотипных хромосом от женского и мужского организмов. Хромосомная теория наследственности сделала более по­нятными явления расщепления в наследовании признаков.

Важным событием в развитии генетики стало откры­тие мутаций — возникающих внезапно изменений в на­следственной системе организмов и потому могущих при­вести к устойчивому изменению свойств гибридов, переда­ваемых и далее по наследству. Своим возникновением мутации обязаны либо случайным в развитии организма событиям (их обычно называют естественными или спон­танными мутациями), либо искусственно вызываемым воз­действиям (такие мутации часто именуют индуцированны­ми). Все виды живых организмов (как растительных, так и животных) способны мутировать, т. е. давать мутации. Это явление — внезапное возникновение новых, передаю­щихся по наследству свойств — известно в биологии дав­но. Однако систематическое изучение мутаций было начато голландским ученым Хуго де Фризом, установившим и

сам термин «мутации». Было обнаружено, что индуциро­ванные мутации могут возникать в результате радиоактив­ного облучения организмов, а также могут быть вызваны воздействием некоторых химических веществ.

Следует отметить первооткрывателей всего того, что связано с мутациями. Советский ученый-микробиолог Георгий Адамович Надсон (1867-1940) вместе со своими коллегами и учениками установил в 1925 году воздействие радиоизлучения на наследственную изменчивость у грибов. Известный американский генетик Герман Джозеф Меллер (1890-1967), работавший в течение 1933-1937 годов в СССР, обнаружил в 1927 году в опытах с дрозофилами сильное мутагенное действие рентгеновских лучей. В даль­нейшем было установлено, что не только рентгеновское, но и любое ионизированное облучение вызывает мутации.

Достижения генетики (и биологии в целом) за прошед­шее после выхода в свет книги Дарвина «Происхождение видов» время так значительны, что было бы удивительно, если бы все это никак не повлияло на дарвиновскую тео­рию эволюции. Два фактора: изменчивость и наследствен­ность, которым Дарвин придавал большое значение, полу­чили более глубокое толкование.

Итак, дальнейшее развитие биологии и входящей в нее составной частью генетики, во-первых, еще более укрепи­ло дарвиновскую теорию эволюции живого мира и, во-вто­рых, дало более глубокое толкование (соответствующее до­стигнутым успехам в биологии) понятиям изменчивости и наследственности, а следовательно, всему процессу эволю­ции живого мира. Более того, можно сказать, что успехи биологии выдвинули эту науку в ряды лидеров естество­знания, причем наиболее поразительные ее достижения связаны с изучением процессов, происходящих на молеку­лярном уровне.

Молекулярная биология

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря технике физических методов анализа, скорость его резко возросла.

У. Астбери ввел в науку термин «молекулярная биоло­гия» и провел основополагающие исследования белков и ДНК. Хотя в 40-е годы почти повсеместно господствова-

ло мнение, что гены представляют собой особый тип белко­вых молекул, в 1944 году О. Звери, К. Маклеод и М. Мак-карти показали, что генетические функции в клетке выпол­няет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для даль­нейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеиновой кислоте).

Расшифровку молекулы ДНК произвели в 1953 году Ф.Крик (Англия) и Д.Уотсон (США). Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль.

Наряду с изучением нуклеиновых кислот и процессом синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков. Параллельно с расшифровкой аминокис­лотного состава белков проводились исследования их про­странственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разра­ботанную в 1951 году Э. Полингом и Р. Кори. Согласно этой теории, полипептидная цепь белка не является плос­кой, а свернута в спираль, характеристики которой были также определены.

Несмотря на молодость молекулярной биологии, успе­хи, достигнутые ею в этой области, ошеломляющи. За срав­нительно короткий срок были установлены природа гена и основные принципы его организации, воспроизведения и функционирования. Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полностью определена пер­вичная структура многих транспортных РНК. Установле­ны основные принципы организации разных субклеточных частиц, многих вирусов, и разгаданы пути их биогенеза в клетке.

Другое направление молекулярной генетики — иссле­дование мутации генов. Современный уровень знаний по­зволяет не только понять эти тонкие процессы, но и ис­пользовать их в своих целях. Разрабатываются методы генной инженерии, позволяющие внедрить в клетку желае­мую генетическую информацию. В 70-е годы появились методы выделения в чистом виде фрагментов ДНК с помо­щью электрофореза.

В 1981 году процесс выделения генов и получения из них различных цепей был автоматизирован. Генная инже­нерия в сочетании с микроэлектроникой предвещают воз­можности управлять живой материей почти так же, как неживой.

В последнее время в средствах массовой информации активно обсуждаются опыты по клонированию и связан­ные с этим нравственные, правовые и религиозные пробле­мы. Еще в 1943 году журнал «Сайенс» сообщил об успеш­ном оплодотворении яйцеклетки в «пробирке». Далее со­бытия развивались следующим образом.

1973 год — профессор Л. Шетлз из Колумбийского университета в Нью-Йорке заявил, что он готов произвес­ти на свет первого «бэби из пробирки», после чего после­довали категорические запреты Ватикана и пресвитериан­ской церкви США.

1978 год — рождение в Англии Луизы Браун, первого ребенка «из пробирки».

1997 год — 27 февраля «Нейчур» поместил на своей обложке — на фоне микрофотографии яйцеклетки — зна­менитую овечку Долли, родившуюся в институте Рослин в Эдинбурге.

1997 год — в самом конце декабря журнал «Сайенс»сообщил о рождении шести овец, полученных по рослин-скому методу. Три из них, в том числе и овечка Долли,несли человеческий ген «фактора IX», или кровоостанав­ливающего белка, который необходим людям, страдающимгемофилией, то есть несвертываемостью крови.

1998 год — чикагский физик Сиди объявляет о созда­нии лаборатории по клонированию людей: он утверждает,что отбоя от клиентов у него не будет.

1998 год, начало марта — французские ученые объяви­ли о рождении клонированной телочки.

Все это открывает уникальные перспективы для чело­вечества.

Клонирование органов и тканей — это задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. При пересадке клониро­ванного органа не надо думать о подавлении реакции от­торжения и возможных последствиях в виде рака, развив­шегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные

аварии или какие-нибудь иные катастрофы, или для лю­дей, которым нужна радикальная помощь из-за заболева­ний пожилого возраста (изношенное сердце, больная пе­чень и т. д.).

Самый наглядный эффект клонирования — дать воз­можность бездетным людям иметь своих собственных де­тей. Миллионы семейных пар во всем мире страдают, бу­дучи обреченными оставаться без потомков.

megaobuchalka.ru

великие ученые 20 века биологи - Дневники

22 окт 2013 . Несмотря на то, что ученые всего мира строили грандиозные планы . Только вот вот был 20 век, а мы уже о двадцать первом так легко . Страницы в категории «Биологи XX века». Показано 200 страниц из 221, находящейся в данной категории. . Иванов, Михаил Владимирович (учёный) Добавил(а) m@s. Бактериолог, лауреат Нобелевской премии по физиологам и медицине за 1945 год. ПЛЕСЕНЬ УДАЧИ. Флемингу всегда везло. Он считал началом . 22 окт 2013 . Несмотря на то, что ученые всего мира строили грандиозные планы . Только вот вот был 20 век, а мы уже о двадцать первом так легко . Великие достижения, сделанные учеными генетиками за последние 100 лет. За прошедшее . Timbioz вторник 16 апреля 2013 - 20:35 7262 0 . Генетическая наука волнует умы ученых генетиков уже на протяжении целого века. Страницы в категории «Биологи XX века». Показано 200 страниц из 223, находящихся в данной категории. (предыдущие 200) (следующие 200) . На эти вопросы ученые биологи смогли ответить благодаря трудам великого ученого Г. Менделя? . В 20 веке – было сделано больше научных открытий, чем за.

Открытия в биологии в 20 веке. . В 1900 году голландским ученым-биологом, одним из основателей учения об изменчивости и эволюции, X. 22 окт 2013 . Несмотря на то, что ученые всего мира строили грандиозные планы . Только вот вот был 20 век, а мы уже о двадцать первом так легко . Страницы в категории «Биологи XX века». Показано 200 страниц из 223, находящихся в данной категории. (предыдущие 200) (следующие 200) . Добавил(а) m@s. 13 ноя 2013 . Ученые, наконец, стали понимать, как одна клетка может превратиться в . В конце 19 века биологи знали, что во время формирования . В начале 20 столетия британский биолог Генри Дейл проводил серию . В 1895 году А. Нобель в своём завещании учредил Нобелевские премии, ставшие самой авторитетной наградой 20 века за. открытий великих ученых-биологов в. Добавил(а) m@s. Конрад Лоренц, один из корифеев науки XX века, относится к тем не столь многочисленным ученым, чьи труды не только внесли значительный вклад в . 8 мар 2013 . Великие женщины-ученые и их открытия .. кафедре математики Кэмбриджского университета — как сэр Исаак Ньютон за полтора века до него. .. В 20-м веке именем Ипатии был назван один из кратеров Луны. 12 ноя 2013 . 1 150 views; Великие открытия в биологии 387 views; В геометрии . Ведь в начале 20 века ученые вновь вернулись к работе Менделя о .. Биологи Альфред Хеши и Марта Чейз изучали бактериальный вирус.

games.datacom.ru

Наука в 19 — начале 20 века (химия, биология, медицина, география)

По мере развёртывания научных исследований в XIX — начале XX века создавалась система спе­циальных институтов, учреждений и обществ, в том числе международных. Например, в 1875 г. было основано международное Бюро мер и весов, в 1912 г. — Бюро времени. Обычной практикой стало проведение общена­циональных и международных научных конференций, съездов, симпозиу­мов; учёные разных стран постоянно обменивались опытом. На протяжении XIX в. сложилась система учебных заведений по подготовке разного рода специалистов, появились профессии техника, инженера и многие другие. 

Физика

см. Физика в 19 — начале 20 века 

Химия

Крупнейшим открытием в области химии стал периоди­ческий закон химических элементов Д. И. Менделеева (1869), который не только приводил в систему все извест­ные к тому моменту элементы, но и позволял открывать но­вые, с заранее предсказанными свойствами. Труд Менделе­ева «Основы химии» был переведён на основные европей­ские языки.

Развитие химии во многом определялось потребностями промышленности и сельского хозяйства. Например, герман­ский учёный Ю. Либих (1803-1873) в своём труде «Химия и её применение к земледелию и физиологии» (1840) зало­жил основы агрохимии. Вместе с тем он стал основополож­ником биохимии, то есть науки о взаимосвязи живой и не­живой природы. На стыке химии с другими науками возни­кали новые научные дисциплины — физическая химия, химическая физика, электрохимия и др. Химическая наука научилась создавать новые вещества с заранее заданными свойствами — всевозможные сплавы, пластмассы и пр.

Биология

В биологии важнейшее значение имели открытия английского учёного Чарльза Дарвина (1809-1882). Наибольшую славу ему принёс труд «Происхождение видов путём естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь» (1859). В этой книге было изложено учение о естественном отборе, которое под названием дарвинизм получило всемирное распространение. Теория Дарвина быстро завоевала признание благодаря тому, что концепция исторического развития живой природы намного лучше, чем представление о неизменности биологи­ческих видов, объясняла уже известные науке факты. Учение об эволюции заинтересовало широкую публи­ку, но ему придали гораздо более универсальный характер, чем пред­полагал сам Дарвин, в его доктрине искали ключ к полному понима­нию всего живого мира. Учение Дарвина пытались даже распро­странить на человеческое общество, в связи с чем появилась теория социал-дарвинизма.

Д. И. Менделеев
Ч. Дарвин

Богемский монах Г.-И. Мендель (1822—1884) открыл для естествознания путь к пониманию одной из сложнейших тайн природы — наследственно­сти. Свои открытия Мендель совершал на основе практических опытов с се­менами растений. На его работы обратили внимание только после смерти исследователя, в XX в., рассматривая «менделизм» как начало генетики. Сами понятия «ген» и «генотип» появились в 1909 г.

Медицина

Успехи химии и биологии имели ог­ромное значение для медицины. В 1846 г. английский зубной врач впервые приме­нил эфир для анестезии. Использование обезболивающих средств произвело пере­ворот в хирургической практике, по­зволяя производить операции, которые раньше не рисковали делать. Самый бле­стящий триумф медицины связан с дея­тельностью французского естествоис­пытателя Луи Пастера (1822-1895), которому было суждено обновить меди­цинские учения и преобразовать хирурги­ческую практику. В 1877 г. он совершил своё бессмертное открытие, доказав возможность изготовлять вак­цины, делающие организм невосприимчивым к заразным болез­ням. В 1888 г. на собранные во многих странах деньги был основан Пастеровский институт в Париже для получения вакцин и органи­зации профилактических (предохранительных) прививок. Пастер считается также основоположником микробиологии, его имя но­сит метод пастеризации как способ предохранения пищевых про­дуктов от порчи. Германский микробиолог Р. Кох (1843-1910) стал одним из основоположников современной бактериологии и эпиде­миологии. В 1882 г. он открыл бациллу — возбудитель туберкулеза. Материал с сайта http://doklad-referat.ru

Л. Пастер демонстрирует научный эксперимент. Фото конца XIX в.

География

На протяжении всего XIX в. производились обширные географи­ческие открытия. В начале века был открыт последний материк — Антарктида, в последующие десятилетия исследовались просторы Тихого океана, внутренние районы Африки, Австралии, Южной Америки, Центральной Азии. К концу столетия на планете не оста­лось неизвестных стран и народов. Геологические исследования ве­ли к открытию новых месторождений полезных ископаемых и спо­собствовали развитию горной промышленности. В качестве само­стоятельных областей научного поиска появились океанография, метеорология и многие другие научные дисциплины.

На этой странице материал по темам:
  • Почему наука на рубеже веков оказалась тесно связана с техникой

  • Развития науки в 19-начале 20 века

Вопросы по этому материалу:
  • Как вы понимаете термин «научная исто­рия»? С какими изменениями в научном знании оно связано?

  • Чем было вызвано бурное развитие такой исторической дисциплины, как археология?

  • Почему наука на рубеже веков оказалась тесно связана с техникой, изоб­ретательством?

  • Назовите основные достижения в различных областях науки XIX — начала XX в.

doklad-referat.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики