Чем отличается эхолокация у летучих мышей и дельфинов? Эхолокация у дельфинов


Эхолокация дельфинов

афалина

Звуковое преследование. Дельфины кормятся в основном ночью, когда видимость очень слабая, и для поиска пищи - рыбы или кальмаров - пользуются эхолокацией, как эта афалина длиной 3,7 м.

Животным, охотящимся под водой, острое зрение не нужно, но необходим очень хороший слух.

Видимость под водой часто плохая, особенно когда в ней много растительности или рыхлое дно. Поэтому водные животные полагаются не на зрение, а на другие чувства. Млекопитающие - киты, морские свиньи и дельфины - воспринимают окружающую обстановку с помощью звуков.

 

Дельфины для общения между собой пользуются высокочастотными свистками, а для ориентации - эхолокацией: они издают своеобразные щелчки, которые, отражаясь от предметов, дают информацию о них. Звук, отраженный от цели и возвращающийся в виде эха, передается не только через наружный слуховой проход и слуховые косточки, но и через нижнюю челюсть. Среднее и внутреннее ухо изолированы от костей черепа жироподобной пеной; благодаря этому звуковые колебания слева и справа воспринимаются независимо.

Щелчки производятся в сложной системе, расположенной под дыхалом в верхней части головы. Звуковые волны посылаются направленно. Жировая подушка на выпуклом лбу и вогнутая передняя поверхность черепа действуют как линза и рефлектор, собирая звук в пучок с углом расхождения около 9°. Такой ультразвуковой прожектор позволяет обнаруживать и идентифицировать мелкие объекты на больших расстояниях. Афалина может определить местоположение мячика размером с мандарин с расстояния 113 м.

Высокоскоростной анализ

Скорость звуковой пульсации у дельфинов - до 700 импульсов в секунду - очень велика по сравнению с аналитическими возможностями уха и мозга человека. При скорости 20-30 импульсов в секунду человеческое ухо не различает отдельные щелчки и звук воспринимается как слитный, напоминая скрип двери. Дельфины же различают каждую составляющую звука. Отражение звука дает информацию об объекте, в частности позволяет установить, живой он или неживой. Дельфины, живущие в неволе, отличают медную пластинку от окрашенной в тот же цвет алюминиевой, полую трубку от сплошного цилиндра того же диаметра.

Основная часть большого и сложного мозга дельфина занимается анализом отраженных эхолокационных сигналов, извлекая подробную информацию об окружающей среде, передвижениях и особенностях жертвы, о местоположении и деятельности сородичей.

Еще интересные статьи по теме:

www.zoofirma.ru

Эхолокация и чувства дельфинов

ЗНАЧЕНИЕ ЭХОЛОКАЦИИ В ЖИЗНИ ДЕЛЬФИНА

Некоторые животные (китообразные и большинство летучих мышей) обладают удивительной для человека способностью – “видеть” в полной темноте объекты, направляя на них высокочастотные звуковые волны и “слушая” эхо. Эта способность называется эхолокацией. Для них эхолокация – важнейший способ ориентации в пространстве и главный путь получения информации об окружающем мире. В природе дельфины очень часто используют свой эхолокационный аппарат. Эхо дает им точные сведения не только о положении предметов, но и об их величине, форме, материале. В режиме эхолокации дельфины используют короткие широкополосные импульсы, намного отличающиеся по длительности от сигналов наземных лоцирующих животных. В качестве локационных щелчков дельфин использует импульсы длительностью 7-100 мкс. Эти импульсы проходят через лобный выступ головы дельфина – так называемый “мелон”. Он состоит из соединительной ткани и жира. Мелон работает как акустическая линза для фокусировки звука, такое значение эхолокации в жизни дельфина. Звуковые волны распространяются в воде со скоростью около 1,5 км/с (в 4,5 раза быстрее, чем в воздухе). Они отражаются от объекта и возвращаются в форме эха к животному.

ЗНАЧЕНИЕ ЭХОЛОКАЦИИ В ЖИЗНИ ДЕЛЬФИНА:

Время между произведенным щелчком-сигналом и возвратом его эха указывает животным расстояние до любого объекта на их пути. Эхолокация наиболее эффективна в диапазоне от 5 до 200 м для объектов размером от 5 до 15 см в диаметре. Животное может определить размер и форму объекта. Это помогает дельфинам распознать предпочитаемые ими виды добычи. Однако исследования показали, что лишенный зрения дельфин тратит больше времени на эхолокацию. Для переработки поступаюших эхосигналов требуется высокоразвитый мозг. Не случайно отделы мозга дельфина, заведующие слуховыми функциями, в десятки раз больше, чем у человека. Очень многие детали остаются неизвестными, исследования продолжаются.

ЗРЕНИЕ

Можно сказать, что дельфины видят окружающий мир преимущественно одним глазом. Только в узком секторе поля зрения, примерно 12°, вперед и книзу от головы афалина может видеть двумя глазами, бинокулярно. Дельфины хорошо видят и под водой, и на воздухе. Сетчатка китообразных имеет две области наилучшего видения (человеческий глаз имеет только одну). На одной из них оптика глаза обеспечивает хорошее изображение в воде, на другой – преимущественно в воздухе. Необычно устроен и зрачок у дельфина: сужаясь, он образует дугообразную щель, которая при дальнейшем сужении смыкается посередине, оставляя два небольших отверстия на концах. Эти два узких отверстия работают как диафрагмы фотообъектива, увеличивая глубину резкости и, тем самым, подправляя недостатки преломляющей системы глаза. Сетчатка дельфина содержит два вида клеток, воспринимающих свет: палочки и колбочки. Это говорит о том, что дельфины могут видеть и в темноте, и при ярком свете (палочковидные клетки отвечают за меньший уровень освещенности, чем колбочки). Глаза у дельфинов имеют хорошо выраженный слой клеток, который отражает свет через сетчатку второй раз. Это улучшает зрение при слабом освещении.

ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ

Анатомические исследования и поведенческие наблюдения показывают, что бутылконосые дельфины имеют хорошо выраженную тактильную чувствительность. Кожа дельфина чувствительна в широком диапазоне. Иннервация кожи афалины значительно богаче по сравнению с кожей человека.

ВКУС

О чувстве вкуса у дельфинов известно мало. Особенности мозга и черепных нервов у дельфинов позволяют предполагать, что они могут иметь некоторый вид вкусовых ощущений. Однако у дельфинов сильно выражено предпочтение определенных видов рыбы. Это позволяет не сомневаться в существовании у них вкусовых ощущений. Было доказано наличие у дельфинов вкусовых луковиц на языке. Наши ученые экспериментально подтвердили возможность восприятия малых концентраций некоторых веществ в воде, тем самым доказав существование у зубатых китов хеморецепции.

ОБОНЯНИЕ

Обонятельные доли мозга и обонятельные нервы отсутствуют у всех зубатых китов, что заставляет предполагать отсутствие у них обоняния.

Адаптация к водной среде

ДЫХАНИЕ

Для жизни в воде и дыхания воздухом предку современного дельфина пришлось изменить всю дыхательную систему. Дыхательная система зубатых китов полностью изолирована от пищеварительной системы. Наружное дыхательное отверстие – непарная ноздря (дыхало) – находится на самой высокой точке головы. Дыхало закрывается кожно-мышечной складкой. В отличие от наземных млекопитающих дельфины начинают дыхательный цикл с выдоха. Они открывают дыхало и начинают выдыхать, когда голова показывается над поверхностью воды. Сигналом служит смена среды вода – воздух (рефлекторная регуляция дыхания). Затем животные быстро вдыхают и расслабляют мышцы дыхала, для того чтобы снова закрыть его. Мышцы дыхала расслаблены в закрытом положении. Выдох и вдох вместе длятся менее 1 с. Возможность быстрой смены воздуха в легких – это тоже адаптация дельфинов к жизни в водной среде. Средняя частота дыхания составляет 2-3 дыхательных акта (выдох-вдох) в минуту. Когда дельфин выдыхает, морская вода вокруг дыхала удаляется потоком воздуха. Но даже если вода и попадет в дыхательные пути, она неизбежно выбрасывается наружу в виде фонтанчиков, состоящих из брызг воды и конденсированного пара. Верхние дыхательные пути у зубатых китов имеют два барьера, изолирующих воздухоносные пути от внешней среды. Первый – клапан в виде кожно-мышечных склaдoк – располагается в области надчерепного дыхательного хода, в который открывается дыхало. Выступы одной складки клапана заходят во впадины другой. Второй барьер – носоглоточный сфинктер – расположен в области входа в гортань. Трахеи и бронхи короткие. Это ускоряет акт дыхания. Число альвеол относительно больше, а размеры их намного крупнее, чем у наземных млекопитающих. Во время дыхательного акта дельфин обменивает около 80 % воздуха в легких. Это значительно более эффективно по сравнению с людьми, которые обменивают только 17 % воздуха в легких во время каждого вдоха.

НЫРЯНИЕ

Дельфины охотятся и в толще воды, и в придонной области. В зависимости от мест обитания дельфины регулярно ныряют на глубину от 3 до 45 м. Но они в состоянии нырнуть и на гораздо большую глубину. В экспериментальных условиях дельфин достигал 547-метровой глубины. Согласно наблюдениям, афалины могут оставаться под водой 6-7 мин. Многовековой эволюцией физиология дельфина приспособлена к нырянию. На глубине животные не могут пополнить запас кислорода. Для создания этого запаса у дельфинов есть целый ряд приспособлений: • Значительный объем легких. Масса легких у афалин по отношению к массе тела составляет 2,2-2,9 % (у человека – 0,7 %). Коэффициент использования кислорода в легких в 2,5 раза выше, чем у человека. • Большой объем крови. Высокая концентрация гемоглобина* в крови (по данным S.Ridgway, кислородная емкость крови на 1/4 – 1/3 выше, чем у человека). Концентрация миоглобина** в тканях в 4-9 раз выше, чем у наземных животных. При дыхании гемоглобин в крови и миоглобин в тканях насыщаются кислородом. Во время ныряния дельфинов запасенный ими кислород расходуется очень экономно. У животного, находящегося под водой, замедляется сердечный ритм, уменьшается приток крови к тканям, устойчивым к низкому содержанию кислорода, и увеличивается кровоснабжение сердца, легких и головного мозга, где кислород жизненно необходим. Снижается интенсивность метаболизма. • Большой объем жировой ткани, которая имеет свойство растворять больше кислорода, чем тканевые жидкости. Природой также предусмотрены приспособления для защиты от баротравм. У дельфинов подвижная грудная клетка, способная сжиматься под давлением воды, очень упругие легкие, ткань легких приспособлена к быстрому сжатию и расширению.

* гемоглобин – белок крови, присоединяющий и транспортирующий кислород и углекислый газ. **миоглобин – кислородсвязывающий белок тканей, запасающий кислород и помогающий предотвратить дефицит кислорода в мышцах.

ПЛАВАНИЕ

Дельфины – одни из самых быстрых обитателей океана. И это понятно – они должны превосходить в скорости рыб, которыми питаются. Обычная скорость плавания дельфина – около 5-11 км/ч. Однако в погоне за добычей они развивают намного большую скорость. Эргометрические исследования показали, что максимальная (бросковая) скорость у афалин – от 29 до 35 км/ч. Но скоростное плавание длится считанные секунды.

ТЕРМОРЕГУЛЯЦИЯ

Вода обладает почти в 25 раз большей теплопроводностью, чем воздух. Высокая теплопроводность воды способствовала формированию в ходе эволюции многих признаков, обеспечивающих эффективную регуляцию тепла. Под кожей у дельфинов находится толстый слой жира. Этот слой служит изолятором и энергетическим резервом. Жир составляет обычно 18-20 % массы тела. Определенное значение в консервации внутреннего тепла имеют особенности дыхания китообразных. Редкое дыхание на поверхности, задержка дыхания при нырянии снижают отдачу тепла с выдыхаемым воздухом. Веретенообразная форма тела и небольшой размер конечностей уменьшают площадь поверхности, контактирующей с внешней средой. У животных, живущих в глубоких, холодных водах, обычно крупнее тела и меньше конечности, чем у дельфинов, живущих в прибрежных, теплых водах. Внутренняя температура тела дельфина – около 36-37 С. Кровеносная система дельфина приспособлена для того, чтобы сохранять или рассеивать тепло тела, регулируя его температуру. У афалины основными органами терморегуляции служат спинной, грудные и хвостовые плавники. Они обильно снабжены кровеносными сосудами. Артерии в ластах, хвосте и спинном плавнике окружены венами, образуя комплексные сосуды. Комплексный сосуд состоит из толстостенной мышечной артерии и венозной оплетки – тонкостенных вен, которые окружают артерию. Эту сосудистую сеть называют противоточной системой теплообмена. Благодаря ей большая часть тепла, приносимая к плавникам артериями, отдается не в окружающую среду, а в венозную кровь, с которой оно уносится, к внутренним органам. Такая система обеспечивает минимальную теплоизлучающую поверхность и способствует консервации тепла. В тех случаях, когда животное перегревается, охлаждение достигается усилением кровотока через поверхностно расположенные вены. Когда необходимо сохранить тепло, артериальный поток крови в плавники сокращается. У афалин скорость метаболизма выше, чем у наземных млекопитающих такого же размера. Это ведет к генерации большего количества тепла.

СОН

При изучении сна у афалин исследователи обнаружили, что эти дельфины проводят во сне приблизительно ЗЗ % времени суток. В отличие от наземных млекопитающих, сон афалин и других дельфинов не сопровождается полной неподвижностью, дельфины могут спать во время спокойного плавания. Отечественные исследования показали, что глубокий медленноволновой сон может наблюдаться в данный момент времени только в одном из полушарий головного мозга, поочередно то в правом, то в левом. Подобного, однополушарного сна нет ни у одного наземного млекопитающего.



biofile.ru

эхолокация в жизни дельфинов

Дельфин

Дельфины очень полезные и интересные звери. Однако биология их еще слабо изучена. Почему, например, дельфины и киты «чувствуют» приближение шторма, заранее отходят от берегов в открытое море и чаще, чем обычно, выпрыгивают из воды? Еще 60 лет назад академик В. В. Шулейкин открыл явление, названное им «голосом моря». Во время сильного ветра и движения воздуха над гребнями волн возникают инфразвуки, исходящие от поверхности моря. Инфразвуковые волны с огромной быстротой распространяются во все стороны. Некоторые морские животные, по-видимому, обладают способностью воспринимать такие инфразвуковые штормовые предупреждения, посылаемые самим морем. Теперь мы уже твердо знаем, что не только дельфины, но даже медузы — животные, стоящие на очень низком уровне развития, — воспринимают «голос моря» и задолго перед штормом опускаются на глубину.

Можно предположить, что инфразвуки, воспринимаемые дельфинами, действуют на них как раздражители, заставляя уходить в открытое море подальше от берегов. Во время шторма зверям опасно находиться на мелководье. Сильной волной они могут быть выброшены на берег или поранены об камни. Возможно, что инфразвуки им неприятны, поэтому они чаще выпрыгивают из воды. Но это только одно из предположений. Может быть, прыжки дельфинов вызываются другими причинами, например «игровым рефлексом».

Дельфин

Некоторые ученые считают, что игровой рефлекс свойствен только молодым животным, но у дельфинов он развит и у взрослых. Дельфины очень восприимчивы к внешним раздражителям. Именно поэтому они быстро привыкают к неволе, хорошо поддаются дрессировке.

Во Флоридском океанарии, в США, дельфинов приучили играть в баскетбол: подбрасывать с воды мяч и попадать им в корзину — нормальное баскетбольное кольцо с сеткой, укрепленное над водой. Дельфины виртуозно выполняют команды дрессировщика. За исполнение каждого трюка они получают вознаграждение — небольшую рыбку. Если почему-либо дрессировщик не дает ее, обиженный дельфин плавает вдоль края бассейна и издает звуки, похожие на ворчание, показывая тем самым свое неудовольствие и требуя вознаграждения.

Дельфин

Дельфины во Флоридском океанарии прыгают сквозь обручи, затянутые бумагой, поднимают флаг над океанарием, дергая за веревку, звонят в колокол, «поют» дуэтом и хором перед микрофоном. Конечно, нельзя понимать это абсолютно. Дельфины не поют в нашем обычном представлении, но все же они издают звуки, которые можно, пожалуй, назвать вокальными. Понятно также, что никакой мелодии в «песнях» дельфинов нет. Но издаваемые ими звуки по приказу дрессировщика отличаются от множества других, которые они обычно употребляют при общении друг с другом.

Занимаясь исследованием морских животных, изучая их голоса и звуковые сигналы, ученые установили, что многие обитатели морей и океанов имеют, если можно так выразиться, свой «разговорный» язык. При помощи звуковых сигналов эти животные общаются между собой, «разговаривают». Причем каждый вид дельфинов или рыб имеет свой собственный язык, непонятный для других. Например сельдь (ее щебетанье похоже на чириканье воробья) не может «разговаривать» с треской, а дельфин-белобочка с афалиной (бутылконосым дельфином): они говорят на разных языках.

Оказалось даже, что самые обычные серые вороны, живущие в Англии, не понимают ворон, обитающих во Франции. Недавно один американский ученый-зоолог установил, что у разных пород собак имеется 170 «диалектов» своего «собачьего» языка. Собаки разных пород «говорят» и понимают только свой язык. Конечно, есть отдельные звуковые сигналы, понятные многим видам, но это главным образом сигналы тревоги. Дельфины в основном издают ультразвуки, не слышимые человеком, ибо частота их колебаний доходит до 200 тысяч в секунду (то есть 200 тысяч герц), а человек может слышать лишь те звуки, частота колебаний которых варьирует от 18 герц до 20 тысяч герц.

Дельфин

Дельфины не отличаются остротой зрения. Зрение у них слабое. А вот слух у животных уникальный. Исследования показали, что дельфины воспринимают звуковые волны не только слуховым аппаратом, а всем телом и особенно поверхностью головы. Из хаоса подводных звуков они умеют отбирать именно те, которые им нужны. Поэтому у дельфинов очень развита способность ориентироваться даже в совершенно мутной воде. Эксперименты показали, что дельфины издалека обнаруживают стоящую на их пути мелкоячейную сеть. В мутной воде и даже ночью, в полной темноте, эти живые эхолокаторы «ощупывают» предметы звуком, определяют не только их местонахождение, но различают даже и вид рыбы, опущенной в воду экспериментатором. Если это их любимая пища, они моментально находят ее на достаточно большом расстоянии. Если же рыба не представляет для них интереса или это какой-то посторонний предмет, то, «ощупав» его звуком издалека, они даже не подходят к нему. У рыб такая эхолокация отсутствует. Надо вообще сказать, что сложность поведения и «разговора» дельфинов намного выше уровня поведения и звуковых сигналов рыб, да и других животных.

Все звуки, издаваемые дельфинами — свист, кряканье, щебет, скрежет, поющие звуки, — имеют самое разное значение. Пока ученые только подходят к расшифровке значения этих звуков. Правда, некоторые уже переведены на человеческий язык. Это сигналы опасности, призывы о помощи или звуки, которыми животные обмениваются, когда находят пищу. В течение последних лет американский ученый доктор медицины Джон Лилли занимался изучением психической деятельности дельфинов. Он установил много интереснейших и ранее не известных подробностей их поведения.

Джон Лилли утверждает, что, в конце концов, человек сможет разговаривать с дельфинами на их языке. Он считает, что можно расшифровать звуковые сигналы, издаваемые дельфинами, а затем воспроизвести их в нужном сочетании при помощи специальных аппаратов. «Наступит такой момент, — говорит Джон Лилли, — когда человек сможет задавать вопросы и получать на них ответы от дельфинов, то есть «разговаривать» с животными, стоящими по сравнению с человеком на значительно более низкой ступени психического развития» (хотя как сказать, может дельфины смогут многому научить нас, людей. Примечание редактора).

Дельфин

На первый взгляд это кажется фантастическим заявлением. Но к таким выводам Джона Лилли привели не только наблюдения, но и анатомическое строение центральной нервной системы дельфинов. Мозг дельфинов оказался близким по весу к мозгу человека. У дельфинов он весит 1750 граммов, а у человека — 1450 граммов. Правда, если взять относительный вес мозга на единицу длины, то получатся несколько иные цифры: на каждые 15 сантиметров длины тела человека падает 197 граммов веса мозга, а у дельфина — только 165 граммов. Но все это наиболее близкие, наиболее совпадающие цифры по сравнению с любыми другими животными. Дельфин по развитию психических способностей с полным правом может считаться самым близким к человеку млекопитающим. Собаки и человекообразные обезьяны занимают следующие ступеньки.

У дельфинов очень сильно развита подражательная способность. И хотя у них голосовые связки отсутствуют, а аппарат для воспроизведения звуков очень своеобразен, несовершенен и, кстати сказать, еще слабо изучен, дельфины, как уверяет Лилли, подражают не только голосу и интонации человека, но быстро заучивают и повторяют отдельные слова и даже целые фразы. Джон Лилли и его сотрудники слышали неоднократно, как животные повторяли сказанные Лилли фразы. Правда, четкость произношения дельфинами отдельных слов оставляла желать много лучшего…

Продолжение следует.

Автор: С. Клумов.

P. S. О чем еще говорят британские ученые: о том, что оказывается даже само изображения дельфинов, может оказывать на человека благоприятное влияние. Так что пожалуй картины с изображениями дельфинов даже можно вешать когда проектируется дизайн интерьера Киев, и человек находящийся в таком интерьере всегда будет чувствовать спокойствие и умиротворение.

www.poznavayka.org

Чем отличается эхолокация у летучих мышей и дельфинов? — журнал "Рутвет"

  1. Эхолокация летучих мышей
  2. Эхолокация дельфинов и китов
  3. Особенности эхолокации у дельфинов
  4. Особенности эхолокации кита

Принцип эхолокации у животных - это подача ультразвука голосом и прием его слухом, когда он возвращается эхом. Время поступления сигнала и степень громкости зависят от расположения объекта, порождающего их. Уровень громкости и продолжительность времени определяют для животного размер объекта и расстояние до него, а также особенности этого объекта. Так, например, эхолокация у летучих мышей тише, чем у дельфинов.

Эхолокация летучих мышей

У летучей мыши эхолокация служит для ориентирования и охоты в непроглядной тьме. Обитатели темных пещер, дуплистых деревьев, чердаков, они выходят на охоту с наступлением ночи. Их добыча - насекомые. Жизнь насекомых ночью особенно оживлена, и летучие мыши, наделенные способностью к эхолокации, находятся в очень выгодном положении: меньше претендентов на такой вид добычи, и сами охотники находятся в относительной безопасности.

Ультразвук производится летучими мышами посредством гортани, исходит этот звук из открытого рта, реже - из носа. В этом аппарате эхолокации звук, излучаемый летучими мышами, от 14 000 Гц достигает 100 000 Гц, что человеческое ухо воспринять не в состоянии. Отраженный от объекта эхо-сигнал, в свою очередь, отражает особый лоскуток кожи, находящийся во внешнем ухе зверька. Таким образом, летучая мышь получает представление о своей цели и может отслеживать её перемещение.

Некоторые виды рукокрылых применяют эхолокацию с использованием определенных звуковых частот, соответствующих их среде обитания и особенностям добычи. Эти нюансы в эхолокации рукокрылых используются учеными для распознавания вида летучих мышей, обитающих в том или ином районе. Исследователи применяют ультразвуковые регистраторы для фиксации сигналов, издаваемых рукокрылыми. Таким образом, в нескольких странах созданы коллекции ультразвуков летучих мышей из разных местностей.

Эхолокация дельфинов и китов

В мутной воде для восприятия окружающей среды зрение играет второстепенную роль. Первостепенное значение для ориентации в воде имеет эхолокация, так как акустические характеристики подводной среды очень благоприятны. Дельфины при посредстве эхолокации способны различить довольно тонкую проволоку, которая протянута через бассейн. Для дельфинов не составляет труда обнаружить в воде очень мелкие шарики (три миллиметра в диаметре) и отличить их материал.

Человек основную долю информации об окружающем мире получает зрительно. Это обусловило связь множества нервных путей с той областью мозга, где обрабатывается зрительная информация. Дельфинам большую часть информации несет звук, и область мозга, отвечающая за эхолокацию, тесно связана с их вегетативной системой.

Смотрите видео о летучих мышах и других эхолокаторах в природе.

Исследователям удалось записать некие странные звуки, которые производят отдельные виды китов. Есть предположение, что это песни. Специалисты, учитывая объем мозга китов, допускают такие проявления интеллекта данных млекопитающих. Возможно, связи мозга китов используются ими не во всей полноте, так как у них нет проблем с питанием. Помимо этого, у них почти нет врагов в окружающей их среде, поэтому они медленно реагируют на опасность со стороны человека.

Особенности эхолокации у дельфинов

Эхолокационный аппарат используется дельфинами постоянно. Эхо-сигнал информирует их о месте нахождения предметов, их размерах и других особенностях. Аппарат эхолокации дельфинов включает применение коротких импульсов (локационных щелчков). Их продолжительность составляет 7-100 мкс. Анализ импульсной частоты в эхолокации дельфинов выявил, что она может доходить до 170 кГц. Передаче этих импульсов служит лобный выступ дельфиньей головы - мелон.

Составляющие мелона:

  • жир;
  • соединительная ткань.

Этот лоб в эхолокации дельфина фокусирует звуки. Скорость распространения звуковых волн в воде в четыре с половиной раза превышает скорость по воздуху - примерно полтора километра в секунду. Отраженный от объекта звук возвращается эхо-сигналом.

Его передаче служат:

  1. Слуховой проход снаружи.
  2. Косточки для слуха.
  3. Нижняя челюсть.

Жироподобная пена отделяет от костей ухо внутреннее и среднее, поэтому звуки слева и справа слышатся обособленно.

Читайте о том, какие животные самые редкие в мире.А также о том, существует ли чупакабра.

Каково расстояние до цели, животное определяет по времени от произведения щелчка-сигнала до возврата его эха. Лучше всего эхолокация действует на дальности от пяти до двухсот метров при размерах объекта 5 - 15 см. Дельфин способен "увидеть" все отличия предмета, что служит ему для различения предпочитаемой пищи. Несмотря на то, что слух в подводной жизни дельфинов имеет определяющее значение, для зрения отводится сопутствующая роль. Замечено, что у дельфинов с зашоренными глазами эхолокация занимает больше времени.

Особенности эхолокации кита

"Пение" синих китов происходит на очень низкой частоте. Человек такие звуки не слышит. Причиной "пения" интересовался биофизик К. Кларк. Проанализировав записи гидрофонов, он обнаружил, что песня кита длится около 25 минут, на короткое время кит замолкает, а потом продолжает пение. Это длится восемь суток с перерывами, которые пунктуально выдерживаются по 2 минуты и 8 секунд. Пение синего кита монотонно и скучно, основано на пяти нотах в разных вариантах. Киты-горбачи поют намного веселее, но горбачи поют сезонно, в брачный период, и пение среди горбачей характерно только для самцов. Синие киты отличаются тем, что у них пением занимается и самка, причём в течение всего года.

Кларк считает, что пение синего кита служит его ориентации в пространстве. Под водой звук голоса кита распространяется очень далеко, затем слух кита, очень развитый, воспринимает эхо своего голоса. Ритмичность эха подает в мозг кита картину окружающей его среды. После этого ничто не мешает двигаться к заветной цели. По мнению биологов, открытие Кларка можно применить для учета китов и отслеживания их миграций в океане.

Эхолокация людей встречается среди слепых. При развитии таких навыков ориентации человек может пользоваться ими, как и животные. Методика освоения эхолокации уже есть, она предназначена для слепых людей.

А каких животных, без проблем определяющих свое местоположение знаете вы? Оставьте свое сообщение в комментариях! А также смотрите видео об эхолокации у животных.

www.rutvet.ru

Как это работает. Эхолокация дельфинов.

Дельфин обладает недостижимой для созданных человеком приборов эффективностью гидроакустической локацией. Он лоцирует дробинку, упавшую в воду на расстоянии 15м; различает размеры предметов одинаковой формы, отличающиеся на единицы процентов, их материал; различает подобно томографу детали внутреннего строения объектов, находящихся в воде или в слое ила, их форму и другие параметры, обнаруживает съедобную рыбу на расстоянии три километра и отличает от той, которая не идет в пищу.

Это достигается совершенством системы гидролокатор-мозг. На рисунке приведена сугубо схематическая структура функционирования гидролокатора дельфина. По эхолокационным сигналам дельфинов ученые смогли выяснить, как эти морские млекопитающие «видят» находящегося в воде человека. Сонарные сигналы, записанные подводным микрофоном, были преобразованы в картинки. Об этом сообщает Daily Mail.

И вот как это выглядит …

Исследование проведено в дельфинарии города Пуэрто-Авентурас (штат Кинтана-Роо, Мексика). Дайвер Джим МакДоноу (Jim McDonough) надел грузовой пояс и активно выдыхал воздух. Было принято решение не использовать акваланг, так как пузырьки от него повлияли бы на исход эксперимента. Сигналы (записанное на микрофон эхо от сигналов дельфина, направленных в сторону МакДоноу) были переданы британскому ученому Джону Стюарту Риду (John Stuart Reid) — специалисту по акустической физике, создателю аппарата визуализации звука CymaScope.

Основной принцип работы аппарата — преобразование звуковых вибраций в колебания воды. Сначала ученые загрузили последовательность ультразвуковых эхолокационных сигналов дельфина в CymaScope, поставив камеру в режим воспроизводства видео. На поверхности воды они увидели некую странную форму. Затем они проиграли видео назад, кадр за кадром, и через некоторое время увидели смутный силуэт человека. Компьютерная обработка изображения принесла новые детали (в частности, исследователи смогли разглядеть грузовой пояс МакДоноу).

Ранее (в 2012 году) с помощью той же методики биологи выяснили, как животные воспринимают неодушевленные объекты.

Таким образом, эхолокация позволяет дельфинам «увидеть» не только тени объектов, но и очертания их поверхности. «Мы думаем, что дельфины могут пользоваться звуко-визуальным языком — языком картинок, которыми они делятся друг с другом (кодируя картинки эхолокационными сигналами — прим. «Ленты.ру»)», — заявил автор исследования Джек Кассевиц (Jack Kassewitz).

А теперь давайте все же подробнее изучим как это работает.

Носовой канал (1), идущий от дыхала к легким соединяет три пары воздушных мешков(2), представляющие собой полости, окруженные системой радиальных мышц.

Мембраны, находящиеся в месте соединения мешков с носовым каналом, при продувании воздуха из левого мешка в правый или наоборот генерируют ультразвуковые колебания, которые фокусируются с помощью рефлектора (3), представляющего собой параболическое углубление в передней части черепа и акустической линзы (4), представляющей собой жировое образование, окруженное системой мышц, изменяющих при необходимости его форму и, следовательно, фокусное расстояние.

В результате образуется ультразвуковой луч (5), частота и диаграмма направленности которого могут меняться. Лоцируемый объект 6 рассеивает падающее на него излучение и воспринимается антенной системой в виде трех областей (7), расположенных на коже раструма и нижней челюсти дельфина.Эти области образуются акустическими рецепторами кожи с плотностью распределения около 600 единиц на 1 кв.см. и представляют собой, по сути, пространственную голографическую приемную систему.

Приведенная схема сугубо условна. Действительная форма ее элементов значительно сложнее. Однако отображение этих анатомических деталей только усложнило бы понимание принципа действия системы.

Сделаем маленькое отступление. Скорость движения дельфина в воде может достигать величины50-60 км/час, что намного превышает его мускульные энергетические возможности. Впервые на этот факт обратил внимание Джон Грэй.

Он показал, что удобообтекаемое твердое тело одинаковых с дельфином размеров и формой должно было бы затрачивать для преодоления сопротивления воды мощность, примерно в семь раз большую, чем та, которой он располагает.

Этот факт, получивший впоследствии название «парадокс Грэя», объясняется тем, что коэффициент сопротивления при ламинарном обтекании значительно ниже, чем при турбулентном.

Объясняют парадокс Грэя особенности структуры и функционирования кожного покрова с гидрофобными и демпфирующими свойствами, а также двигательный механизм, как кожного покрова, так и всего тела дельфина.

Прежде всего, поверхность кожи совершенно гладкая и обладает гидрофоб-ным свойством (когда дельфин выныривает, на его коже нет капель воды). Гладкость же поверхности обеспечивается ее постоянным обновлением, слущиванием отмирающих частей, что защищает от биологического обрастания, столь характерного для морских плавсредств и многих обитателей морей. Это первая ступень защиты, обеспечивающая минимальный коэффициент трения.

Вторая ступень защиты обеспечивает гашение мелкомасштабных пульсаций давления водной среды предвещающих образование турбулентности.

Для этой цели эпидермис содержит два слоя: тонкий наружный и лежащий под ним ростковый или шиповидный. В ростковый слой входят шиповидные упругие сосочки дермы, которые обеспечивают надежное сцепление с амортизатором – слоем жира, пронизанным густыми сплетениями коллагеновых и эластиновых волокон.

Первая и вторая ступени – пассивные.Под жировым слоем находится слой развитой системы подкожной мускулатуры и кровеносных сосудов. Это третья ступень защиты.

Работает третья ступень защиты следующим образом. Важнейшим условием сохранения ламинарности (безвихревого обтекания) является наличие продольного, отрицательного градиента давления, который препятствует образованию вихрей. Как только в каком либо мес-те кожи возникает тенденция к образованию положительного градиента, мускулатурный, насыщенный кровью слой тут же меняет форму поверхности тела дельфина в соответствующем месте таким образом, что ликвидирует эту тенденцию. Это уже активная мышечно-гидравлическая защита.

Информацию о поле давления выдают соответствующие рецепторы, покрывающие все тело дельфина. Одним из рецепторов осязания у животных и человека являются волосы. Дельфин, утратив волосы при своей эволюции, превратил то, что от них осталось в эти рецепторы. Поле дав-лений обтекающей воды анализируется соответствующим разделом мозга и выдает нужные команды вегетативной нервной системе, управляющей системой мускулатуры и крови.

Ту же роль в сохранении ламинарности обтекания тела дельфина играет его хвостовая часть, движения которой создают отрицательный градиент давления. Это четвертая степень защиты.

Когда дельфину нужно достичь максимально возможной скорости, например, перед высоким прыжком, он включает «форсаж», превращая кожу в дополнительный двигатель. На скоростной киносъемке хорошо видно, как по телу дельфина в направлении хвоста бежит поперечный «гофр» из выступов кожи, который является дополнительным гребным механизмом.

Таким образом, дельфин весь является двигателем высшей степени совершенства, способным двигаться с большой скоростью, находясь при этом в полностью ламинарном обтекании.

А это значит, кроме всего прочего, что у него нет и шумов обтекания, которыми так богаты технические морские средства.

А теперь, закончим сделанное отступление и вернемся к гидроакустике, зная, что дельфин движется, не создавая гидродинамических шумов.

Все тело человека покрыто густой сетью рецепторов осязания. Рецепторов прикосновения и давления (механорецепторов) в коже человека свыше 600 тысяч. Это тельца Пачини и Мейснера, а также диски Меркеля.

Механорецепторы воспринимают, в том числе вибрации и звук. Последнее не является основным их назначением – для этого существуют уши. Однако известны случаи, когда с детства глухие люди, положив ладони на стол или поставив ступни на пол, могут слушать музыку.

У дельфина механорецепторов, по-видимому, значительно больше, чем у человека. В процессе эволюции они превратились в многие тысячи гидрофонов, покрывающих все тело дельфина. В результате поверхность тела дельфина представляет собой чрезвычайно развитое многофункциональное антенное устройство, работающее в диапазоне частот от нескольких герц до 200 кГц при очень низком уровне собственных шумов и имеющее на выходе уникальное анализирующее устройство – мозг.

Иными словами все тело дельфина – это совершенный акустический глаз, который может работать как в активном, так и в пассивном режиме с круговым обзором и возможностью концентрировать максимальную разрешающую способность в нужном направлении.

Различие между оптическим глазом и акустическим заключается только в том, что в первом случае анализ информации осуществляется на основе законов геометрической оптики, а во втором – на основе законов акустической голографии.

В линзовой системе единственная информация, которую можно получить от одного рецептора, это амплитуда акустического давления. В голографической же системе построения изображения используется как амплитуда, так и фаза. Поскольку голографическая антенна несет большую информацию от каждого рецептора, то получаемые изображения обладают большей информативностью. К тому же, поскольку рецепторы покрывают все тело дельфина, т.е. антенна имеет максимальные размеры, то и разрешение ее имеет максимально достижимую величину.

На основе вышесказанного рассмотрим общую схему гидроакустической системы дельфина.

 Дельфин как приемно-излучающая гидроакустическаясистема.

Первая подсистема – уши (1), дополняемые третьим приемным устройством – нижней челюстью. Она обеспечивает, в основном, прием коммуникационных сигналов, а также обеспечивает часть функций освещения подводной обстановки.

Вторая подсистема – изучающая все типы звуков в диапазоне 10 Гц – 196 кГц. Зона ее излучения (2).

Третья подсистема – система ближней гидролокации работает в зоне (3) и использует наиболее высокочастотные сигналы.Те же гидроакустические рецепторы, что с большой плотностью распределены на лицевой стороне, с меньшей плотностью расположены по поверхности всего тела дельфина и образуют многоэлементную широкополосную гидроакустическую приемную антенну с круговой диаграммой направленности (4).Эта подсистема голографического приема обеспечивает освещение подводной обстановки, работая как в активном, так и в пассивном режимах, а также дополняет работу первой подсистемы.

Дельфин может воспринимать звуки такой частоты, которые сам не в состоянии воспроизвести, в отличие от наземных млекопитающих и человека, которые слышат звуки, только такой частоты, которые издают сами.

Дельфин обладает несколькими гидроакустическими информационными системами, частично перекрывающими друг друга и работающих параллельно.Разделение поступающей информации, и совместная ее обработка осуществляется с по-мощью мозга, в реальном масштабе времени.

Таким образом, обеспечивается существенное улучшение отношения сигнал/шум и соединение направленного приема, обеспечивающего высокое пространственное разрешение, с круговым обзором, который ведется как в активном, так и в пассивном режиме, что недоступно для технических средств.

Полученная информация кодируется мозгом, по-видимому, в виде четырехмерных образов (три пространственных и один частотный).Для дельфина гидроакустический канал получения информации означает гораздо больше, чем зрение для человека. Остальные органы чувств играют вспомогательную роль.

Что видит дельфин с помощью своей гидроакустической системы? Он видит поверхность, видит дно со всеми деталями его строения, в том числе с деталями слоев подстилающих пород; видит предметы, лежащие на дне, в том числе и лежащие глубоко в иле; видит особенности каждого предмета, его размеры, форму, особенности материала, внутреннего устройства.

Он ничего не может «сказать», о каком либо конкретном предмете, если раньше его не видел. Но если рядом находятся два подобных друг другу предмета, он при некоторой тренировке, может отличить один от другого по любому параметру: по размеру, по форме, по материалу, по на-личию пустот внутри, размерам и форме этих пустот и т.д.

Он видит все плавающие вокруг него объекты (в общих чертах, так сказать «боковым зрением») и если что-то его заинтересовало, концентрирует на нем остроту своего акустического зрения. Кстати, когда дельфин плывет или хочет рассмотреть что-либо, он делает движения головой, очень похожие на движения зрачков человека в подобных ситуациях.

Несколько простейших примеров. Дельфин различает: два совершенно одинаковых по форме и размерам предмета, но сделанных, один — из стали, другой – из латуни; два одинаково обработанных сплошных стальных шара, различающихся по диаметру на 2-3%; два одинаковых герметичных толстостенных полых цилиндра, полость которых частично заполнена водой, если разность уровней воды в них со-ставляет 3-4 мм и т д.

Более сложный пример. Если в воде плывет несколько человек, среди которых один знаком дельфину, дельфин подплывет именно к нему, если знакомство имеет положительный оттенок. Если плывет одновременно, пусть на большом расстоянии, несколько хорошо знакомых людей, тренированный дельфин подплывет в случае получения команды именно к тому, на кого ему будет указано.

Как это происходит? Каждый подводный объект является трансформатором гидроакустических полей в окружающем его пространстве. На каких-то частотах преобладает отражение падающих на объект волн, на каких-то – поглощение. Происходит сдвиг фаз и меняется интерференционная структура поля, поглощенная объектом акустическая энергия переизлучается им на собственных резонансных частотах и т.д.

Каждый излученный дельфином гидроакустический локационный импульс, отражаясь от объекта, несет информацию о его положении, размерах и форме (по углу и времени прихода эхо-волн). Энергия же импульса, имеющего форму дельта-функции, возбуждает весь спектр собственных резонансных частот объекта, что создает его неповторимый акустический образ.

Основную информацию дельфину дают активные гидролокаторы: передний (высокого разрешения) и круговой (грубого разрешения), а также пассивная слуховая стереосистема приема окружающих акустических полей.

Но возможно, определенный вклад вносит и голографическая система, работающая в пассивном режиме (без собственной подсветки), основанная на искажении объектами интерференционных полей на различных частотах, образуемых внешними источниками как когерентного, так и широкополосного фонового излучения.

Рекомендуется к просмотру: 

www.stena.ee

дельфины и эхолокация / Хабр

Дельфины — морские млекопитающие. Их организм устроен специфически из-за образа жизни этих животных. Большинство органов чувств дельфинов работают не так, как у наземных млекопитающих. Их мозг не менее сложен, чем мозг человека, а развивались дельфины дольше людей (около 25 млн лет). Ученые многие десятки лет изучают дельфинов, но до сих пор существуют вопросы относительно их образа жизни, на которые нет ответа. В числе прочих вопросов — система коммуникаций этих животных. Специалисты считают, что у них есть свой язык, но расшифровать его человек пока не в состоянии.

Для того, чтобы сделать это, ученые стараются изучить слуховую систему дельфинов, а также их «эхолот» — систему передачи звуковых сигналов. Видимость под водой практически всегда сильно ограничена, поэтому дельфины полагаются не на зрение (оно у них развито неплохо, но идеальным его назвать нельзя), а на слух. Для общения между собой дельфины используют звуки высокой частоты. Для ориентации в пространстве эти животные издают щелчки определенной частоты и продолжительности. Эти звуковые сигналы, отражаясь от предметов, дают дельфину информацию об окружающих его объектах. Многие наземные млекопитающие обладают очень острым обонянием. Дельфины, выбрав водную среду для жизни, почти утратили обоняние. Вместо него они научились в совершенстве использовать чувство вкуса. Вкусовые рецепторы дают дельфинам представление о наличии в воде определенных веществ, которые могут свидетельствовать о близости еды, опасности или сородичей. Ученые считают, что дельфины могут определить даже очень небольшую разницу в солености воды. По этой причине те дельфины, которые обитают в Средиземном море, почти не заходят в воды Черного моря, где соленость воды составляет около 17‰, что в вдвое ниже солености воды Средиземного моря.

Лучше всего у дельфинов развит слух, они имеет первостепенное значение в их жизни, заменяя в большинстве случаев зрение. В поисках пищи эти млекопитающие погружаются на большую глубину, где видимость практически отсутствует. Даже, если бы зрение дельфина было бы хорошо развито, что-то разглядеть здесь все равно сложно. А вот эхолокация позволяет обнаруживать пищу и отлично ориентироваться в окружающем пространстве. При этом еще в начале прошлого века специалисты утверждали, что слух у дельфинов развит очень слабо.

Голосовой аппарат

Как и у всех прочих млекопитающих, у предков дельфинов голосовой аппарат, скорее всего, был связан с дыхательной системой. Но у дельфинов и их родственников голосовая система не связана с легкими. Рот у них служит лишь для захвата предметов, включая пищу. Дыхательная система дельфинов сложная, точка вдоха и выдоха — это дыхало, которое находится в верхней точке головы. С дыхательным проходом дельфинов соединены сразу три пары воздушных мешков. Ученые считают, что эти мешки играют важную роль в генерации звуков дельфинами. Общаются они, закрыв пасть и дыхало, под водой, а не на поверхности.

В сентябре этого года исследователи из Карадагского природного заповедника опубликовали работу, где показана система общения этих животных. Изменяя громкость и частоту щелчков, дельфины-афалины составляют слова, а из них — предложения. По словам специалистов, во многом эти разговоры похожи на речь человека. Принимая участие в беседе, дельфины внимательно слушают друг друга. Когда «говорит» один дельфин, второй ему внимает, и наоборот. «Каждый звук, генерируемый одним из животных, отличается от другого звука, генерируемого собеседником. Отличие — в спектре и частоте пульсаций. При этом ряд сочетаний звуков не повторяется. Мы можем предположить, что каждая пульсация представляет собой отдельную фонему или слово из языка дельфинов», — говорит руководитель исследования Вячеслав Рябов. Скорость звуковой пульсации у дельфинов составляет около 700 импульсов в секунду.

Сами щелчки генерируются в специфической системе, которая расположена под дыхалом в верхней части головы. Звуковые волны посылаются животными направленно, эту возможность обеспечивает жировая прослойка на лбу животного, а также вогнутая передняя поверхность черепа. В итоге дельфин умеет собирать звук в направленный «луч» с углом расхождения в 9°. Это дает животным широкие возможности. Афалины, например, умеют обнаруживать мелкие объекты размером с мандарин на расстоянии свыше 100 метров.

Слуховой аппарат

Орган слуха у дельфинов не менее сложен, чем звуковой аппарат. Понятно, что ушных раковин у них нет, хотя у предков дельфинов они были. Если бы этот орган остался бы у дельфинов, он вызывал бы очаги турбулентности при движении, что стало бы причиной генерации сильного шума, заглушающего для животного все остальные звуки.

Поэтому звуки воспринимаются дельфинами по-другому. Сначала звуковые сигналы проходят через наружное ушное отверстие (оно все же есть). Затем по такому же узкому слуховому проходу акустическая волна добирается до среднего уха. Причем среднее и внутреннее ухо размещаются у этих животных не в черепной кости, а отдельно, соединяясь с черепом при помощи особого сухожильного крепления. Звуковой нерв передает полученные сигналы в мозг. Интересно, что приемники звука для левого и правого уха не зависят друг от друга. Это позволяет животному определять местоположение источника звука. К примеру, та же афалина может в бассейне точно локализовать место падения небольшой рыбки, и сразу приплыть к месту падения. Кроме ушных каналов, дельфины получают звук и при помощи нижней челюсти, где расположена костная пластина толщиной в 0,3 мм. Она играет роль мембраны.

Благодаря строению своей слуховой системы дельфины могут воспринимать широкий диапазон звуков — от 1 герца до 320 килогерц. Это гораздо более широкий звуковой диапазон, чем тот, который способен воспринимать человек.

Генерируя звуки и улавливая их отражение от окружающих объектов, дельфины изучают окружающее пространство. Причем эхолокационный «прибор» дельфина очень надежен. Друг друга дельфины находят на расстоянии свыше 150 метров в полной темноте. В этом случае они генерируют ультразвуковые сигналы с частотой 60-90 килогерц. При помощи своего «локатора» дельфин получает данные не только о расстоянии до препятствий и объектов, но и об их природе (размер, форма и свойства материала).

habr.com

Как выглядит человек в эхолокационных сигналах дельфинов: masterok

Дельфин обладает недостижимой для созданных человеком приборов эффективностью гидроакустической локацией. Он лоцирует дробинку, упавшую в воду на расстоянии 15м; различает размеры предметов одинаковой формы, отличающиеся на единицы процентов, их материал; различает подобно томографу детали внутреннего строения объектов, находящихся в воде или в слое ила, их форму и другие параметры, обнаруживает съедобную рыбу на расстоянии три километра и отличает от той, которая не идет в пищу.

Это достигается совершенством системы гидролокатор-мозг. На рисунке приведена сугубо схематическая структура функционирования гидролокатора дельфина.

По эхолокационным сигналам дельфинов ученые смогли выяснить, как эти морские млекопитающие «видят» находящегося в воде человека. Сонарные сигналы, записанные подводным микрофоном, были преобразованы в картинки. Об этом сообщает Daily Mail.

И вот как это выглядит …

 

Исследование проведено в дельфинарии города Пуэрто-Авентурас (штат Кинтана-Роо, Мексика). Дайвер Джим МакДоноу (Jim McDonough) надел грузовой пояс и активно выдыхал воздух. Было принято решение не использовать акваланг, так как пузырьки от него повлияли бы на исход эксперимента. Сигналы (записанное на микрофон эхо от сигналов дельфина, направленных в сторону МакДоноу) были переданы британскому ученому Джону Стюарту Риду (John Stuart Reid) — специалисту по акустической физике, создателю аппарата визуализации звука CymaScope.

Основной принцип работы аппарата — преобразование звуковых вибраций в колебания воды. Сначала ученые загрузили последовательность ультразвуковых эхолокационных сигналов дельфина в CymaScope, поставив камеру в режим воспроизводства видео. На поверхности воды они увидели некую странную форму. Затем они проиграли видео назад, кадр за кадром, и через некоторое время увидели смутный силуэт человека. Компьютерная обработка изображения принесла новые детали (в частности, исследователи смогли разглядеть грузовой пояс МакДоноу).

Ранее (в 2012 году) с помощью той же методики биологи выяснили, как животные воспринимают неодушевленные объекты.

Таким образом, эхолокация позволяет дельфинам «увидеть» не только тени объектов, но и очертания их поверхности. «Мы думаем, что дельфины могут пользоваться звуко-визуальным языком — языком картинок, которыми они делятся друг с другом (кодируя картинки эхолокационными сигналами — прим. «Ленты.ру»)», — заявил автор исследования Джек Кассевиц (Jack Kassewitz).

 

 

А теперь давайте все же подробнее изучим как это работает.

 

Носовой канал (1), идущий от дыхала к легким соединяет три пары воздушных мешков (2), представляющие собой полости, окруженные системой радиальных мышц.

Мембраны, находящиеся в месте соединения мешков с носовым каналом, при продувании воздуха из левого мешка в правый или наоборот генерируют ультразвуковые колебания, которые фокусируются с помощью рефлектора (3), представляющего собой параболическое углубление в передней части черепа и акустической линзы (4), представляющей собой жировое образование, окруженное системой мышц, изменяющих при необходимости его форму и, следовательно, фокусное расстояние.

В результате образуется ультразвуковой луч (5), частота и диаграмма направленности которого могут меняться. Лоцируемый объект 6 рассеивает падающее на него излучение и воспринимается антенной системой в виде трех областей (7), расположенных на коже раструма и нижней челюсти дельфина.Эти области образуются акустическими рецепторами кожи с плотностью распределения около 600 единиц на 1 кв.см. и представляют собой, по сути, пространственную голографическую приемную систему.

Приведенная схема сугубо условна. Действительная форма ее элементов значительно сложнее. Однако отображение этих анатомических деталей только усложнило бы понимание принципа действия системы.

Сделаем маленькое отступление. Скорость движения дельфина в воде может достигать величины50-60 км/час, что намного превышает его мускульные энергетические возможности. Впервые на этот факт обратил внимание Джон Грэй.

Он показал, что удобообтекаемое твердое тело одинаковых с дельфином размеров и формой должно было бы затрачивать для преодоления сопротивления воды мощность, примерно в семь раз большую, чем та, которой он располагает.

Этот факт, получивший впоследствии название «парадокс Грэя», объясняется тем, что коэффициент сопротивления при ламинарном обтекании значительно ниже, чем при турбулентном.

Объясняют парадокс Грэя особенности структуры и функционирования кожного покрова с гидрофобными и демпфирующими свойствами, а также двигательный механизм, как кожного покрова, так и всего тела дельфина.

Прежде всего, поверхность кожи совершенно гладкая и обладает гидрофоб-ным свойством (когда дельфин выныривает, на его коже нет капель воды). Гладкость же поверхности обеспечивается ее постоянным обновлением, слущиванием отмирающих частей, что защищает от биологического обрастания, столь характерного для морских плавсредств и многих обитателей морей. Это первая ступень защиты, обеспечивающая минимальный коэффициент трения.

Вторая ступень защиты обеспечивает гашение мелкомасштабных пульсаций давления водной среды предвещающих образование турбулентности.

Для этой цели эпидермис содержит два слоя: тонкий наружный и лежащий под ним ростковый или шиповидный. В ростковый слой входят шиповидные упругие сосочки дермы, которые обеспечивают надежное сцепление с амортизатором – слоем жира, пронизанным густыми сплетениями коллагеновых и эластиновых волокон.

Первая и вторая ступени – пассивные.Под жировым слоем находится слой развитой системы подкожной мускулатуры и кровеносных сосудов. Это третья ступень защиты.

Работает третья ступень защиты следующим образом. Важнейшим условием сохранения ламинарности (безвихревого обтекания) является наличие продольного, отрицательного градиента давления, который препятствует образованию вихрей. Как только в каком либо мес-те кожи возникает тенденция к образованию положительного градиента, мускулатурный, насыщенный кровью слой тут же меняет форму поверхности тела дельфина в соответствующем месте таким образом, что ликвидирует эту тенденцию. Это уже активная мышечно-гидравлическая защита.

Информацию о поле давления выдают соответствующие рецепторы, покрывающие все тело дельфина. Одним из рецепторов осязания у животных и человека являются волосы. Дельфин, утратив волосы при своей эволюции, превратил то, что от них осталось в эти рецепторы. Поле дав-лений обтекающей воды анализируется соответствующим разделом мозга и выдает нужные команды вегетативной нервной системе, управляющей системой мускулатуры и крови.

Ту же роль в сохранении ламинарности обтекания тела дельфина играет его хвостовая часть, движения которой создают отрицательный градиент давления. Это четвертая степень защиты.

Когда дельфину нужно достичь максимально возможной скорости, например, перед высоким прыжком, он включает «форсаж», превращая кожу в дополнительный двигатель. На скоростной киносъемке хорошо видно, как по телу дельфина в направлении хвоста бежит поперечный «гофр» из выступов кожи, который является дополнительным гребным механизмом.

Таким образом, дельфин весь является двигателем высшей степени совершенства, способным двигаться с большой скоростью, находясь при этом в полностью ламинарном обтекании.

А это значит, кроме всего прочего, что у него нет и шумов обтекания, которыми так богаты технические морские средства.

А теперь, закончим сделанное отступление и вернемся к гидроакустике, зная, что дельфин движется, не создавая гидродинамических шумов.

Все тело человека покрыто густой сетью рецепторов осязания. Рецепторов прикосновения и давления (механорецепторов) в коже человека свыше 600 тысяч. Это тельца Пачини и Мейснера, а также диски Меркеля.

Механорецепторы воспринимают, в том числе вибрации и звук. Последнее не является основным их назначением – для этого существуют уши. Однако известны случаи, когда с детства глухие люди, положив ладони на стол или поставив ступни на пол, могут слушать музыку.

У дельфина механорецепторов, по-видимому, значительно больше, чем у человека. В процессе эволюции они превратились в многие тысячи гидрофонов, покрывающих все тело дельфина. В результате поверхность тела дельфина представляет собой чрезвычайно развитое многофункциональное антенное устройство, работающее в диапазоне частот от нескольких герц до 200 кГц при очень низком уровне собственных шумов и имеющее на выходе уникальное анализирующее устройство – мозг.

Иными словами все тело дельфина – это совершенный акустический глаз, который может работать как в активном, так и в пассивном режиме с круговым обзором и возможностью концентрировать максимальную разрешающую способность в нужном направлении.

Различие между оптическим глазом и акустическим заключается только в том, что в первом случае анализ информации осуществляется на основе законов геометрической оптики, а во втором – на основе законов акустической голографии.

В линзовой системе единственная информация, которую можно получить от одного рецептора, это амплитуда акустического давления. В голографической же системе построения изображения используется как амплитуда, так и фаза. Поскольку голографическая антенна несет большую информацию от каждого рецептора, то получаемые изображения обладают большей информативностью. К тому же, поскольку рецепторы покрывают все тело дельфина, т.е. антенна имеет максимальные размеры, то и разрешение ее имеет максимально достижимую величину.

На основе вышесказанного рассмотрим общую схему гидроакустической системы дельфина.

 

 Дельфин как приемно-излучающая гидроакустическаясистема.

Первая подсистема – уши (1), дополняемые третьим приемным устройством – нижней челюстью. Она обеспечивает, в основном, прием коммуникационных сигналов, а также обеспечивает часть функций освещения подводной обстановки.

Вторая подсистема – изучающая все типы звуков в диапазоне 10 Гц – 196 кГц. Зона ее излучения (2).

Третья подсистема – система ближней гидролокации работает в зоне (3) и использует наиболее высокочастотные сигналы.Те же гидроакустические рецепторы, что с большой плотностью распределены на лицевой стороне, с меньшей плотностью расположены по поверхности всего тела дельфина и образуют многоэлементную широкополосную гидроакустическую приемную антенну с круговой диаграммой направленности (4).Эта подсистема голографического приема обеспечивает освещение подводной обстановки, работая как в активном, так и в пассивном режимах, а также дополняет работу первой подсистемы.

Дельфин может воспринимать звуки такой частоты, которые сам не в состоянии воспроизвести, в отличие от наземных млекопитающих и человека, которые слышат звуки, только такой частоты, которые издают сами.

Дельфин обладает несколькими гидроакустическими информационными системами, частично перекрывающими друг друга и работающих параллельно.Разделение поступающей информации, и совместная ее обработка осуществляется с по-мощью мозга, в реальном масштабе времени.

Таким образом, обеспечивается существенное улучшение отношения сигнал/шум и соединение направленного приема, обеспечивающего высокое пространственное разрешение, с круговым обзором, который ведется как в активном, так и в пассивном режиме, что недоступно для технических средств.

Полученная информация кодируется мозгом, по-видимому, в виде четырехмерных образов (три пространственных и один частотный).Для дельфина гидроакустический канал получения информации означает гораздо больше, чем зрение для человека. Остальные органы чувств играют вспомогательную роль.

Что видит дельфин с помощью своей гидроакустической системы? Он видит поверхность, видит дно со всеми деталями его строения, в том числе с деталями слоев подстилающих пород; видит предметы, лежащие на дне, в том числе и лежащие глубоко в иле; видит особенности каждого предмета, его размеры, форму, особенности материала, внутреннего устройства.

Он ничего не может «сказать», о каком либо конкретном предмете, если раньше его не видел. Но если рядом находятся два подобных друг другу предмета, он при некоторой тренировке, может отличить один от другого по любому параметру: по размеру, по форме, по материалу, по на-личию пустот внутри, размерам и форме этих пустот и т.д.

Он видит все плавающие вокруг него объекты (в общих чертах, так сказать «боковым зрением») и если что-то его заинтересовало, концентрирует на нем остроту своего акустического зрения. Кстати, когда дельфин плывет или хочет рассмотреть что-либо, он делает движения головой, очень похожие на движения зрачков человека в подобных ситуациях.

Несколько простейших примеров. Дельфин различает: два совершенно одинаковых по форме и размерам предмета, но сделанных, один — из стали, другой – из латуни; два одинаково обработанных сплошных стальных шара, различающихся по диаметру на 2-3%; два одинаковых герметичных толстостенных полых цилиндра, полость которых частично заполнена водой, если разность уровней воды в них со-ставляет 3-4 мм и т д.

Более сложный пример. Если в воде плывет несколько человек, среди которых один знаком дельфину, дельфин подплывет именно к нему, если знакомство имеет положительный оттенок. Если плывет одновременно, пусть на большом расстоянии, несколько хорошо знакомых людей, тренированный дельфин подплывет в случае получения команды именно к тому, на кого ему будет указано.

Как это происходит? Каждый подводный объект является трансформатором гидроакустических полей в окружающем его пространстве. На каких-то частотах преобладает отражение падающих на объект волн, на каких-то – поглощение. Происходит сдвиг фаз и меняется интерференционная структура поля, поглощенная объектом акустическая энергия переизлучается им на собственных резонансных частотах и т.д.

Каждый излученный дельфином гидроакустический локационный импульс, отражаясь от объекта, несет информацию о его положении, размерах и форме (по углу и времени прихода эхо-волн). Энергия же импульса, имеющего форму дельта-функции, возбуждает весь спектр собственных резонансных частот объекта, что создает его неповторимый акустический образ.

Основную информацию дельфину дают активные гидролокаторы: передний (высокого разрешения) и круговой (грубого разрешения), а также пассивная слуховая стереосистема приема окружающих акустических полей.

Но возможно, определенный вклад вносит и голографическая система, работающая в пассивном режиме (без собственной подсветки), основанная на искажении объектами интерференционных полей на различных частотах, образуемых внешними источниками как когерентного, так и широкополосного фонового излучения.

[источники]источники

http://www.delphinidae.ru/publ/5-1-0-66

http://lenta.ru/news/2015/12/07/sonar/

http://www.v-ratio.ru/more/049-izluchatel.html

И еще интересное про дельфинов: вот Боевые дельфины, а вот Девочка и дельфин, а вот еще один редкий и священный дельфин и Кровавые традиции с черными дельфинами. Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - http://infoglaz.ru/?p=84995

masterok.livejournal.com


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики