Земное ядро и его свойства. Как выглядит ядро земли


Ядро Земли - это... Что такое Ядро Земли?

Модель Земли

Ядро́ Земли́ — центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3,5 тыс. км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро радиусом около 2200 км, между которыми иногда выделяется переходная зона. Температура в центре ядра Земли достигает 5000 С, плотность около 12,5 т/м³, давление до 361 ГПа (3,7 млн атм). Масса ядра — 1,932·1024 кг.

Известно о ядре очень мало — вся информация получена косвенными геофизическими или геохимическими методами. Образцы вещества ядра недоступны.

Обычное заблуждение

Иногда утверждается[кем?], что источником магнитного поля Земли является железо ядра. Это заблуждение основано на представлении обывателей о постоянном магните. На самом деле ферромагнитные свойства железа (да и любого металла вообще) пропадают выше точки Кюри. Источником магнитного поля Земли является движущийся проводник — жидкий металл или водород.

История изучения

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011.

Вероятно, одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность, характерная для пород, выходящих на земную поверхность.

Существование было доказано в 1897 году немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 году американским геофизиком Б. Гутенбергом.

Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.

Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Е. Орован и советский учёный А. П. Виноградов (1960-е—70-е годы).

В 1941 году Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядро состоит из металлического водорода. Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако позже эта гипотеза была адаптирована для объяснения строения планет-гигантов — Юпитера, Сатурна и других. Сейчас[когда?] предполагается, что магнитное поле таких планет возникает именно в металлическом водородном ядре.

Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе ядро-мантия при 1.36 Мбар мантийные силикаты переходят в жидкую металлическую фазу (металлизованное силикатное ядро).

Состав ядра

Состав ядра непосредственно неизвестен, и может быть предположительно оценён из нескольких источников. Во-первых, видимо, наиболее близкими веществу ядра образцами являются железные метеориты, которые, представляют собой фрагменты ядер астероидов и протопланет. Однако железные метеориты не могут быть полностью эквивалентны веществу земного ядра, так как они образовались в гораздо меньших телах, а значит при других физико-химических параметрах.

С другой стороны, из данных гравиметрии известна плотность ядра, и это накладывает на его состав дополнительные ограничения. Так как плотность ядра примерно на 10 % меньше, чем плотность сплавов железо-никель, то предполагается, что ядро Земли содержит больше легких элементов, чем железные метеориты.

Наконец, состав ядра можно оценить, исходя из геохимических соображений. Если каким-либо образом рассчитать первичный состав Земли и вычислить, какая доля элементов находится в других геосферах, то тем самым можно построить оценки состава ядра. Большую помощь в таких вычислениях оказывают высокотемпературные и высокобарические эксперименты по распределению элементов между расплавленным железом и силикатными фазами.

О.Г. Сорохтин предложил гипотезу о составе внешнего ядра из так называемого "ядерного вещества", не существующего при нормальных условиях. "Ядерное вещество" представляет собой оксид одновалентного железа Fe2O. При давлении 250-300 ГПа "ядерное вещество" разлагается на железо и кислород, поэтому внутреннее ядро, давление в котором превышает упомянутое значение, состоит из железа с примесью никеля. По мнению Сорохтина, со временем оксиды железа из мантии Земли под действием силы тяжести опускаются в ядро, превращаясь в "ядерное вещество". При этом выделяется кислород, причём по мере уменьшения количества оксидов железа в мантии его выделяется всё больше. Часть этого кислорода поступает в атмосферу. До начала фанерозоя кислорода образовывалось крайне мало, затем увеличение его концентрации в атмосфере вызвало резкий всплеск развития жизни на Земле ("кембрийский взрыв"). Но именно ещё большее увеличение парциального давления кислорода в атмосфере Земли через 500-600 миллионов лет (до значения порядка 0,5 МПа) вызовет глобальное потепление и вымирание всех живых организмов, а затем и полное выкипание океана задолго до превращения Солнца в красный гигант.

Химический состав ядра Источник Si, wt.% Fe, wt.% Ni, wt.% S, wt.% O, wt% Mn, ppm Cr, ppm Co,ppm P, ppm Allegre et al., 1995 Mc Donough, 2003
7.35
79.39 4.87 2.30 4.10 5820 7790 2530 3690
6.0 85.5 5.20 1.90 0 300 9000 2500 2000

Литература

  • Петрографический словарь, В. Рыка, А.Малишевская, М:"Недра", 1989
  • Allegre, C.J., Poirier, J.P., Humler, E. and Hofmann, A.W. (1995). The Chemical-Composition of the Earth. Earth and Planetary Science Letters 134(3-4): 515—526. doi: 10.1016/0012-821X(95)00123-T.
  • Treatise on Geochemistry, 2003, Volume 2 The Mantle and Core:
    • Partition Coefficients at High Pressure and Temperature K. Righter and M. J. Drake
    • Experimental Constraints on Core Composition J. Li
    • Compositional Model for the Earth’s Core W. F. Mc Donough.
  • Geochemical Evidence for Excess Iron in the Mantle Beneath Hawaii Munir Humayun, Liping Qin, Marc D. Norman

См. также

Ссылки

dic.academic.ru

Откуда мы знаем, что находится в ядре Земли? (8 фото)

Люди заполнили Землю. Мы завоевывали земли, летали по воздуху, ныряли в глубины океана. Мы даже побывали на Луне. Но мы никогда не были в ядре планеты. Мы даже и близко к нему не подобрались. Центральная точка Земли находится в 6000 километрах внизу, и даже самая дальняя часть ядра находится в 3000 километрах под нашими ногами. Самая глубокая дыра, которую мы сделали на поверхности — это Кольская сверхглубокая скважина в России, да и то она уходит вглубь земли на жалкие 12,3 километра.

Все известные события на Земле происходят близко к поверхности. Лава, которая извергается из вулканов, сначала плавится на глубине нескольких сотен километров. Даже бриллианты, которым необходимо чрезвычайное тепло и давление для образования, рождаются в породах на глубине не более 500 километров.

Все, что ниже, окутано тайной. Кажется недостижимым. И все же мы знаем довольно много интересного о нашем ядре. У нас даже есть некоторое представление о том, как оно сформировалось миллиарды лет назад — и все без единого физического образца. Как же нам удалось узнать так много о ядре Земли?

Для начала нужно хорошо подумать о массе Земли, говорит Саймон Редферн из Кембриджского университета в Великобритании. Мы можем оценить массу Земли, наблюдая за эффектом гравитации планеты, который она оказывает на объекты на поверхности. Выяснилось, что масса Земли составляет 5,9 секстиллиона тонн: это 59 с двадцатью нулями.

Но на поверхности нет признаков такой массы.

«Плотность материала на поверхности Земли намного ниже, чем средняя плотность всей Земли, что говорит нам о том, что есть что-то более плотное, — говорит Редферн. — Это первое».

По существу, большая часть земной массы должна быть расположена по направлению к центру планеты. Следующим шагом будет выяснить, из каких тяжелых материалов состоит ядро. И оно состоит почти полностью из железа. 80% ядра — это железо, однако точную цифру еще придется выяснить.

Главным доказательством этого является огромное количество железа во Вселенной вокруг нас. Это один из десяти самых распространенных элементов в нашей галактике, который также часто встречается в метеоритах. При всем этом на поверхности Земли намного меньше железа, чем можно было бы ожидать. Согласно теории, когда Земли образовалась 4,5 миллиарда лет назад, много железа утекло вниз к ядру.

Там сосредоточена большая часть массы, а значит, и железо должно там быть. Железо также относительно плотный элемент при нормальных условиях, а под сильным давлением в ядре Земли оно будет еще плотнее. Железное ядро могло бы объяснить всю недостающую массу.

Но погодите. Как железо вообще там оказалось? Железо должно было каким-то образом притянуться — в буквальном смысле — к центру Земли. Но сейчас этого не происходит.

Большая часть остальной Земли состоит из горных пород — силикатов — и расплавленное железо с трудом через них проходит. Подобно тому, как вода на жирной поверхности образует капли, железо собирается в небольших резервуарах, отказываясь растекаться и разливаться.

Возможное решение было обнаружено в 2013 году Венди Мао из Стэнфордского университета и ее коллегами. Они задались вопросом, что происходит, когда железо и силикат подвергаются сильному давлению глубоко в земле.

Плотно сжимая оба вещества при помощи алмазов, ученым удалось протолкнуть расплавленное железо через силикат. «Это давление существенно изменяет свойства взаимодействия железа с силикатами, — говорит Мао. — При высоком давлении образуется «сеть плавления».

Это может говорить о том, что железо постепенно проскальзывало через породы Земли в течение миллионов лет, пока не достигло ядра.

В этот момент вы можете спросить: откуда мы, собственно, знаем размер ядра? Почему ученые считают, что оно начинается в 3000 километрах? Ответ один: сейсмология.

Когда происходит землетрясение, оно посылает ударные волны по всей планете. Сейсмологи записывают эти колебания. Будто бы мы бьем по одной стороне планеты гигантским молотом и прислушиваемся к шуму на другой стороне.

«В 1960-х годах произошло землетрясение в Чили, которое дало нам огромное количество данных, — говорит Редферн. — Все сейсмические станции по всей Земле записывали толчки этого землетрясения».

В зависимости от маршрута этих колебаний, они проходят через разные участки Земли, и это влияет на то, какой «звук» они издают на другом конце.

В начале истории сейсмологии стало очевидно, что некоторые колебания пропали без вести. Эти «S-волны» ожидали увидеть на другом конце Земли после происхождения на одном, но не увидели. Причина этому простая. S-волны реверберируют через твердый материал и не могут проходить через жидкость.

Должно быть, они столкнулись с чем-то расплавленным в центре Земли. Составив карту путей S-волн, ученые пришли к выводу, что на глубине примерно 3000 километров породы становятся жидкими. Это также говорит о том, что все ядро расплавленное. Но у сейсмологов был и другой сюрприз в этой истории.

В 1930-х годах датский сейсмолог Инге Леман обнаружила, что другой тип волн, P-волны, неожиданно прошли через ядро и были обнаружены на другом конце планеты. Сразу последовало предположение, что ядро разделено на два слоя. «Внутреннее» ядро, которое начинается в 5000 километрах внизу, были твердым. Расплавлено только «внешнее» ядро.

Идея Леман была подтверждена в 1970 году, когда более чувствительные сейсмографы показали, что P-волны действительно проходят через ядро и, в некоторых случаях, отражаются от него под некоторыми углами. Неудивительно, что в конце концов они оказываются на другой стороне планеты.

Ударные волны через Землю отправляют не только землетрясения. На самом деле, сейсмологи многим обязаны развитию ядерного оружия.

Ядерный взрыв тоже создает волны на земле, поэтому государства обращаются за помощью к сейсмологам во время испытания ядерного оружия. Во время холодной войны это было чрезвычайно важно, поэтому сейсмологи вроде Леман получили большую поддержку.

Конкурирующие страны узнавали о ядерном потенциале друг друга и параллельно с этим мы узнавали все больше и больше о ядре Земли. Сейсмология до сих пор используется для обнаружения ядерных взрывов сегодня.

Теперь мы можем нарисовать примерную картину строения Земли. Есть расплавленное внешнее ядро, которое начинается примерно на полпути к центру планеты, а внутри него расположено твердое внутреннее ядро с диаметром примерно 1220 километров.

Вопросов от этого не становится меньше, особенно на тему внутреннего ядра. К примеру, насколько оно горячее? Выяснить это оказалось не так-то просто, и ученые долгое время ломали голову, говорит Лидунка Вокадло из Университетского колледжа Лондона в Великобритании. Мы не можем засунуть туда термометр, поэтому единственный возможный вариант — это создать нужное давление в лабораторных условиях.

При обычных условиях железо плавится при температуре 1538 градусов

В 2013 году группа французских ученых произвели лучшую оценку на сегодняшний день. Они подвергли чистое железо давлению в половину того, что имеется в ядре, и отталкивались уже от этого. Температура плавления чистого железа в ядре составляет примерно 6230 градусов. Присутствие других материалов может немного снизить точку плавления, до 6000 градусов. Но это все равно горячее, чем на поверхности Солнца.

Будучи своего рода поджаренной картошкой в мундире, ядро Земли остается горячим, благодаря теплу, оставшемуся от образования планеты. Оно также извлекает тепло из трения, возникающего по мере движения плотных материалов, а также распада радиоактивных элементов. Остывает оно примерно на 100 градусов по Цельсию каждый миллиард лет.

Знать эту температуру полезно, поскольку она влияет на скорость прохождения колебаний через ядро. И это удобно, потому что в этих вибрациях есть что-то странное. P-волны проходят неожиданно медленно через внутреннее ядро — медленнее, чем если бы оно состояло из чистого железа.

«Скорости волн, которые сейсмологи измерили в землетрясениях, значительно ниже, чем показывает эксперимент или компьютерный расчет, — говорит Вокадло. — Никто пока не знает, почему так».

Очевидно, к железу примешивается другой материал. Возможно, никель. Но ученые посчитали, как сейсмические волны должны проходить через железо-никелевый сплав, и не смогли подогнать расчеты под наблюдения.

Вокадло и ее коллеги в настоящее время рассматривают возможность присутствия в ядре других элементов, например, серы и кремния. Пока никто не смог придумать теорию состава внутреннего ядра, которая удовлетворила бы всех. Проблема Золушки: туфелька никому не подходит. Вокадло пытается экспериментировать с материалами внутреннего ядра на компьютере. Она надеется найти комбинацию материалов, температур и давления, которые будут замедлять сейсмические волны на правильную величину.

Она говорит, что секрет может скрываться в том факте, что внутреннее ядро находится почти в точке плавления. В результате этого точные свойства материала могут отличаться от тех, что принадлежали бы совершенно твердому веществу. Также это могло бы объяснить, почему сейсмические волны проходят медленнее, чем ожидалось.

«Если этот эффект реален, мы могли бы примирить результаты минеральной физики с результатами сейсмологии, — говорит Вокадло. — Люди пока не могут этого сделать».

Существует еще много загадок, связаных с ядром Земли, которые еще предстоит решить. Но не имея возможности погрузиться на эти невообразимые глубины, ученые совершают подвиг, выясняя, что находится в тысячах километров под нами. Скрытые процессы недр Земли чрезвычайно важно изучать. У Земли есть мощное магнитное поле, которое генерируется благодаря частично расплавленному ядру. Постоянное движение расплавленного ядра порождает электрический ток внутри планеты, и он, в свою очередь, генерирует магнитное поле, которое уходит далеко в космос.

Это магнитное поле защищает нас от вредного солнечного излучения. Не будь ядро Земли таким, каким оно является, не было бы магнитного поля, а мы бы серьезно от этого страдали. Вряд ли кто-нибудь из нас сможет увидеть ядро своими глазами, но хорошо просто знать, что оно там есть.

Другие статьи:

nlo-mir.ru

Ядро Земли Википедия

Ядро́ Земли́ — центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3500 км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро толщиной около 2200 км, между которыми иногда выделяется переходная зона[1]. Температура на поверхности твёрдого ядра Земли предположительно достигает 6230±500 K (5960±500 °C)[2][3], в центре ядра плотность может составлять около 12,5 т/м³, давление до 3,7 млн атм (375 ГПа). Масса ядра — 1,932·1024 кг.

Известно о ядре очень мало — вся информация получена косвенными геофизическими или геохимическими методами. Образцы вещества ядра пока недоступны.

История изучения[ | код]

Вероятно, одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность, характерная для пород, выходящих на земную поверхность[4].

Существование было доказано в 1897 году немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 году американским геофизиком Б. Гутенбергом.

Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.

Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Е. Орован и советский учёный А. П. Виноградов (1960-е — 1970-е).

В 1941 году Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчётах фазового перехода в водороде, предположили, что земное ядро состоит из металлического водорода.[5][6] Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако позже эта гипотеза была адаптирована для объяснения строения планет-гигантов — Юпитера, Сатурна и других. До недавнего времени предполагалось, что магнитное поле таких планет возникает именно в металлическом водородном ядре.

Но в 2016 году учёные из США и Великобритании, создав условия, близкие к ядру при мгновенном сжатии, создающего давление в 1,5 млн атмосфер и высоких температур в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода[7], при котором он имеет свойства и металла, и газа. В этом состоянии он не пропускает видимый свет, в отличие от ИК-излучения, поэтому его назвали «тёмный водород». Причём тёмный водород, в отличие от металлического, идеально вписывается в модель строения планет-гигантов[значимость факта?], в частности объясняет, почему верхние слои газовых гигантов значительно теплее, чем должн

ru-wiki.ru

Ядро Земли — WiKi

Ядро́ Земли́ — центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3500 км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро толщиной около 2200 км, между которыми иногда выделяется переходная зона[1]. Температура на поверхности твёрдого ядра Земли предположительно достигает 6230±500 K (5960±500 °C)[2][3], в центре ядра плотность может составлять около 12,5 т/м³, давление до 3,7 млн атм (375 ГПа). Масса ядра — 1,932·1024 кг.

Известно о ядре очень мало — вся информация получена косвенными геофизическими или геохимическими методами. Образцы вещества ядра недоступны.

Вероятно, одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность, характерная для пород, выходящих на земную поверхность.

Существование было доказано в 1897 году немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 году американским геофизиком Б. Гутенбергом.

Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.

Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Е. Орован и советский учёный А. П. Виноградов (1960-е — 1970-е).

В 1941 году Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчётах фазового перехода в водороде, предположили, что земное ядро состоит из металлического водорода.[4][5] Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако позже эта гипотеза была адаптирована для объяснения строения планет-гигантов — Юпитера, Сатурна и других. До недавнего времени предполагалось, что магнитное поле таких планет возникает именно в металлическом водородном ядре.

Но в 2016 году учёные из США и Великобритании, создав условия близкие к ядру при мгновенном сжатии, создающего давление в 1,5 млн атмосфер и высоких температур в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода[6], при котором он имеет свойства и металла, и газа. В этом состоянии он не пропускает видимый свет, в отличие от ИК-излучения поэтому его назвали «тёмный водород». Причём тёмный водород в отличие от металлического идеально вписывается в модель строения планет-гигантов[значимость факта?], в частности объясняет почему верхние слои газовых гигантов значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он также обладает электропроводностью, хотя и хуже, чем металлический водород, то он играет ту же роль, что и внешнее ядро на Земле.[7]

Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе ядро-мантия при 1,36 Мбар мантийные силикаты переходят в жидкую металлическую фазу (металлизированное силикатное ядро)[8].

В 2015 году стало известно, что в жидкой части ядра есть третий слой. Анализ сейсмических волн позволил группе геологов под руководством профессора Сяодуна Суна (Xiaodong Song) из университета Иллинойса (University of Illinois) сделать вывод, что ядро у Земли не двухслойное, а трёхслойное[9][10][11].

О составе ядра существуют лишь косвенные данные, полученные различными путями. По-видимому, из доступных материалов наиболее близки по составу к земному ядру железные метеориты, которые представляют собой фрагменты ядер астероидов и протопланет. Однако железные метеориты не могут дать точное представление о веществе земного ядра, так как они образовались в гораздо меньших телах, а значит при других физико-химических условиях.

С другой стороны, сейсмические исследования дают точный размер ядра[12], а из данных гравиметрии известна его плотность, и это накладывает на его состав дополнительные ограничения. Так как плотность ядра примерно на 5-10 % меньше, чем плотность сплавов железо-никель, то предполагается, что ядро Земли содержит больше легких элементов, чем железные метеориты[12]. Среди вероятных кандидатов: сера, кислород, кремний, углерод, фосфор, водород[12].

Наконец, состав ядра можно оценить, исходя из геохимических и космохимических соображений. Если каким-либо образом рассчитать первичный состав Земли и вычислить, какая доля элементов находится в других геосферах, то тем самым можно построить оценки состава ядра. Большую помощь в таких вычислениях оказывают высокотемпературные и высокобарические эксперименты по распределению элементов между расплавленным железом и силикатными фазами.

Химический состав ядра Источник Si, wt.% Fe, wt.% Ni, wt.% S, wt.% O, wt.% Mn, ppm Cr, ppm Co,ppm P, ppm Allegre et al., 1995, Table 2 p 522 Mc Donough, 2003, Table 4 p 556
7.35 79.39+-2 4.87+-0,3 2.30+-0,2 4.10+-0,5 5820 7790 2530 3690
6.0 85.5 5.20 1.90 ~0 300 9000 2500 2000

В апреле 2015 года ученые из Оксфордского университета предложили теорию, согласно которой содержание урана в ядре Земли на несколько миллиардных долей выше, чем предполагалось ранее[13]. Подобное заявление привело к распространению в СМИ громких заметок о якобы открытии у Земли уранового ядра[14].

ru-wiki.org

Ядро Земли — википедия фото

Ядро́ Земли́ — центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3500 км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро толщиной около 2200 км, между которыми иногда выделяется переходная зона[1]. Температура на поверхности твёрдого ядра Земли предположительно достигает 6230±500 K (5960±500 °C)[2][3], в центре ядра плотность может составлять около 12,5 т/м³, давление до 3,7 млн атм (375 ГПа). Масса ядра — 1,932·1024 кг.

Известно о ядре очень мало — вся информация получена косвенными геофизическими или геохимическими методами. Образцы вещества ядра недоступны.

Вероятно, одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность, характерная для пород, выходящих на земную поверхность.

Существование было доказано в 1897 году немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 году американским геофизиком Б. Гутенбергом.

Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.

Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Е. Орован и советский учёный А. П. Виноградов (1960-е — 1970-е).

В 1941 году Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчётах фазового перехода в водороде, предположили, что земное ядро состоит из металлического водорода.[4][5] Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако позже эта гипотеза была адаптирована для объяснения строения планет-гигантов — Юпитера, Сатурна и других. До недавнего времени предполагалось, что магнитное поле таких планет возникает именно в металлическом водородном ядре.

Но в 2016 году учёные из США и Великобритании, создав условия близкие к ядру при мгновенном сжатии, создающего давление в 1,5 млн атмосфер и высоких температур в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода[6], при котором он имеет свойства и металла, и газа. В этом состоянии он не пропускает видимый свет, в отличие от ИК-излучения поэтому его назвали «тёмный водород». Причём тёмный водород в отличие от металлического идеально вписывается в модель строения планет-гигантов[значимость факта?], в частности объясняет почему верхние слои газовых гигантов значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он также обладает электропроводностью, хотя и хуже, чем металлический водород, то он играет ту же роль, что и внешнее ядро на Земле.[7]

Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе ядро-мантия при 1,36 Мбар мантийные силикаты переходят в жидкую металлическую фазу (металлизированное силикатное ядро)[8].

В 2015 году стало известно, что в жидкой части ядра есть третий слой. Анализ сейсмических волн позволил группе геологов под руководством профессора Сяодуна Суна (Xiaodong Song) из университета Иллинойса (University of Illinois) сделать вывод, что ядро у Земли не двухслойное, а трёхслойное[9][10][11].

О составе ядра существуют лишь косвенные данные, полученные различными путями. По-видимому, из доступных материалов наиболее близки по составу к земному ядру железные метеориты, которые представляют собой фрагменты ядер астероидов и протопланет. Однако железные метеориты не могут дать точное представление о веществе земного ядра, так как они образовались в гораздо меньших телах, а значит при других физико-химических условиях.

С другой стороны, сейсмические исследования дают точный размер ядра[12], а из данных гравиметрии известна его плотность, и это накладывает на его состав дополнительные ограничения. Так как плотность ядра примерно на 5-10 % меньше, чем плотность сплавов железо-никель, то предполагается, что ядро Земли содержит больше легких элементов, чем железные метеориты[12]. Среди вероятных кандидатов: сера, кислород, кремний, углерод, фосфор, водород[12].

Наконец, состав ядра можно оценить, исходя из геохимических и космохимических соображений. Если каким-либо образом рассчитать первичный состав Земли и вычислить, какая доля элементов находится в других геосферах, то тем самым можно построить оценки состава ядра. Большую помощь в таких вычислениях оказывают высокотемпературные и высокобарические эксперименты по распределению элементов между расплавленным железом и силикатными фазами.

Химический состав ядра Источник Si, wt.% Fe, wt.% Ni, wt.% S, wt.% O, wt.% Mn, ppm Cr, ppm Co,ppm P, ppm Allegre et al., 1995, Table 2 p 522 Mc Donough, 2003, Table 4 p 556
7.35 79.39+-2 4.87+-0,3 2.30+-0,2 4.10+-0,5 5820 7790 2530 3690
6.0 85.5 5.20 1.90 ~0 300 9000 2500 2000

В апреле 2015 года ученые из Оксфордского университета предложили теорию, согласно которой содержание урана в ядре Земли на несколько миллиардных долей выше, чем предполагалось ранее[13]. Подобное заявление привело к распространению в СМИ громких заметок о якобы открытии у Земли уранового ядра[14].

org-wikipediya.ru

Ядро Земли и его свойства

Ядром Земли называют наиболее глубоко расположенную центральную часть планеты. А поскольку добраться до него не представляется возможным, то все исследования ядра проводятся косвенными методами. И тем не менее, с высокой долей вероятности можно утверждать, что центральная часть планеты изучена довольно не плохо. Хотя этого, конечно же, мало.

Свойства ядра Земли

Внешняя часть ядра находится на глубине 2900 км. Само же оно имеет радиус 3500 км. Предположительно, состоит ядро из сплава железа и никеля, с примесью различных элементов (серы, кислорода, кремния, хрома, фосфора и других). Всё это находится под огромной температурой, около 5-6 тысяч градусов, а потому представляет собой достаточно однородную массу. И поскольку ядро железное, по большей части, то весит оно довольно много. На него приходится 1/3 часть массы планеты.Само же ядро разделено на 2 части: внутреннюю и внешнюю.

Внутреннее ядро находится в твёрдом состоянии. Его радиус составляет 1300 км. Температура на внешней его части колеблется в районе 6000 градусов, а какова температура в центре - остаётся лишь догадываться, но вряд ли они сильно отличаются. Внутреннее ядро обладает высокой плотностью (около 12 тонн на кубический метр) и находится под огромным давлением.

Внешнее ядро находится в жидком состоянии. И большая часть земного ядра приходится именно на него. Внешнее ядро играет роль некой оболочки для внутреннего, обтекая его со всех сторон. И толщина этого слоя Земли составляет примерно 2200 км. Иногда между двумя такими различными частями ядра существует переходная зона, обладающая свойствами каждой из частей.

Значение ядра Земли

Невозможно с уверенностью утверждать, какое влияние оказывает ядро на планету. Ведь оно плохо изучено, а потому если мы и знаем что-то о нём, то это лишь крохи информации. Но всё же, одну очень важную его функцию мы знаем. Магнитное поле, защищающее нашу планету от солнечного и космического излучения, образовано именно ядром. Если быть точным, внешней его частью, жидкой. Образуется геомагнитное поле благодаря движению жидкости в ней. Получается, ядро как батарейка для планеты: перестанет вращаться - и планета лишится своей защиты.

naturae.ru

Ядро Земли | Newwikia вики

Модель Земли

Ядро́ Земли́ — центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3500 км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро толщиной около 2200 км, между которыми иногда выделяется переходная зона[1]. Температура на поверхности твердого ядра Земли предположительно достигает 6230±500 K (5960±500 °C)[2][3], в центре ядра плотность может составлять около 12,5 т/м³, давление до 361 ГПа (3,7 млн атм). Масса ядра — 1,93224 кг.

Известно о ядре очень мало — вся информация получена косвенными геофизическими или геохимическими методами. Образцы вещества ядра недоступны.

    История изучения Править

    Вероятно, одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность, характерная для пород, выходящих на земную поверхность.

    Существование было доказано в 1897 году немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 году американским геофизиком Б. Гутенбергом.

    Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.

    Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Е. Орован и советский учёный А. П. Виноградов (1960-е—70-е годы).

    В 1941 году Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядро состоит из металлического водорода.[4][5] Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако позже эта гипотеза была адаптирована для объяснения строения планет-гигантов — Юпитера, Сатурна и других. Сейчас предполагается, что магнитное поле таких планет возникает именно в металлическом водородном ядре.

    Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе ядро-мантия при 1.36 Мбар мантийные силикаты переходят в жидкую металлическую фазу (металлизированное силикатное ядро).

    В 2015 году стало известно, что в жидкой части ядра есть третий слой[6]. Анализ сейсмических волн позволил группе геологов под руководством профессора Сяодуна Суна (Professor Xianodong Song) из университета Иллинойса сделать вывод, что у Земли не два, а три ядра.[7]

    Состав ядра непосредственно неизвестен, и может быть предположительно оценён из нескольких источников. Во-первых, видимо, наиболее близкими веществу ядра образцами являются железные метеориты, которые представляют собой фрагменты ядер астероидов и протопланет. Однако железные метеориты не могут быть полностью эквивалентны веществу земного ядра, так как они образовались в гораздо меньших телах, а значит при других физико-химических параметрах.

    С другой стороны, сейсмические исследования дают точный размер ядра[8], а из данных гравиметрии известна плотность ядра, и это накладывает на его состав дополнительные ограничения. Так как плотность ядра примерно на 5-10 % меньше, чем плотность сплавов железо-никель, то предполагается, что ядро Земли содержит больше легких элементов, чем железные метеориты[8]. Среди вероятных кандидатов: сера, кислород, кремний, углерод, фосфор, водород[8].

    Наконец, состав ядра можно оценить, исходя из геохимических и космохимических соображений. Если каким-либо образом рассчитать первичный состав Земли и вычислить, какая доля элементов находится в других геосферах, то тем самым можно построить оценки состава ядра. Большую помощь в таких вычислениях оказывают высокотемпературные и высокобарические эксперименты по распределению элементов между расплавленным железом и силикатными фазами.

    Химический состав ядра Источник Si, wt.% Fe, wt.% Ni, wt.% S, wt.% O, wt.% Mn, ppm Cr, ppm Co,ppm P, ppm Allegre et al., 1995, Table 2 p 522 Mc Donough, 2003, Table 4 p 556
    7.35 79.39+-2 4.87+-0,3 2.30+-0,2 4.10+-0,5 5820 7790 2530 3690
    6.0 85.5 5.20 1.90 ~0 300 9000 2500 2000

    Магнитное поле Земли Править

    Магнитное поле Земли

    Магнитное поле Земли создается внутренними структурами планеты. Существует заблуждение, будто бы оно создается ферромагнитными материалами внутреннего ядра (наподобие постоянного магнита),[9] хотя ферромагнитные свойства железа пропадают при температурах выше точки Кюри. Общепринятая гипотеза, объясняющая образование магнитного поля Земли называется Геодинамо. Согласно ей, магнитное поле образуется за счет движения электропроводящей жидкости во внешнем ядре.[10][11]

    1. ↑ Д. Ю. Пущаровский, Ю. М. Пущаровский (МГУ), Состав и строение мантии Земли // Соросовский образовательный журнал № 11 1998
    2. ↑ Шаблон:Cite journal
    3. ↑ The Earth’s Centre is 1000 Degrees Hotter than Previously Thought // European Synchrotron Radiation Facility, 25-04-2013;краткий перевод — Физики уточнили температуру земного ядра // Lenta.ru, 26 апреля 2013: «Температура твердого железного ядра Земли, как установили ученые, составляет около 6 тысяч градусов по Цельсию. Это на тысячу градусов выше по сравнению с более ранними оценками.»
    4. ↑ Кусков О. Л., Хитаров Н. И. (1982) «Термодинамика и геохимия ядра и мантии Земли. М.: Наука, 1982» стр 127: «В середине XX в. появляются гипотезы о нежелезном составе ядра. У. Кун и А. Ритман [513], основываясь на гипотезе идентичности составов Солнца и Земли и на рассчетах фазового перехода в водороде [666], выдвинули предположение о ядре, состоящем из металлического водорода.»
    5. ↑ Kuhn W, Rittmann A. Über den Zustand des Erdinnern und seine Enstehung aus einem homogenen Urzustand — Geologische Rundschau, 1941, vol 32., issue 3, p. 215—256. doi:10.1007/BF01799758, ISSN 0016-7835
    6. ↑ Ученые: земное ядро асимметричное и имеет три слоя
    7. ↑ Шаблон:Cite web
    8. ↑ 8,08,18,2Formation of Earth’s Core, 2007
    9. ↑ http://www.earthlearningidea.com/PDF/147_Core.pdf page 2, «widely-held misconception that one piece of evidence for the core being made of nickel-iron is that they are magnetic materials which cause the Earth’s magnetic field.»
    10. ↑ Magnetic Field of the Earth
    11. ↑ The geodynamo // EPS 122: lecture 7
    • Петрографический словарь, В. Рыка, А.Малишевская, М:"Недра", 1989
    • Allegre, C.J., Poirier, J.P., Humler, E. and Hofmann, A.W. (1995). The Chemical-Composition of the Earth. Earth and Planetary Science Letters 134(3-4): 515—526. doi: 10.1016/0012-821X(95)00123-T.
    • Treatise on Geochemistry, 2003, Volume 2 The Mantle and Core:
    • Geochemical Evidence for Excess Iron in the Mantle Beneath Hawaii Munir Humayun, Liping Qin, Marc D. Norman

    ru.newwikia.wikia.com


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики