Что такое скорость света и как её измеряют? Какая скорость у света


Чему равна скорость света

Хотя в обыденной жизни редко кому приходится непосредственно рассчитывать, чему равна скорость света, интерес к данному вопросу проявляется еще в детстве. Удивительно, но все мы ежедневно сталкиваемся с признаком константы скорости распространения электромагнитных волн. Скорость света – это фундаментальная величина, благодаря которой вся Вселенная существует именно в том виде, какой мы ее знаем.

Наверняка, каждый, наблюдая в детстве за вспышкой молнии и последующим за ней раскатом грома, пытался понять, чем вызвана задержка между первым и вторым явлением. Несложные мысленные рассуждения быстро приводили к закономерному выводу: скорость света и звука различна. Это первое знакомство с двумя важными физическими величинами. Впоследствии кто-то получал необходимые знания и мог легко объяснить происходящее. Что же является причиной странного поведения грома? Ответ заключается в том, что скорость света, составляющая около 300 тыс. км/с, почти в миллион раз превышает скорость распространения звуковых колебаний в воздухе (330 м/с). Поэтому человек сначала видит вспышку света от электрической дуги молнии и лишь через время слышит грохот грома. Например, если от эпицентра до наблюдателя 1 км, то свет преодолеет это расстояние за 3 микросекунды, а вот звуку понадобится целых 3 с. Зная скорость света и время задержки между вспышкой и громом, можно вычислить расстояние.

Попытки измерить ее предпринимались давно. Сейчас довольно забавно читать о проводимых экспериментах, однако, в те далекие времена, до появления точных приборов, все было более чем серьезно. При попытках узнать, какова скорость света, был проведен один интересный опыт. С одного конца вагона быстро перемещающегося поезда находился человек с точным хронометром, а с противоположной стороны его помощник по команде открывал заслонку лампы. Согласно задумке, хронометр должен был позволить определить скорость распространения фотонов света. Причем благодаря смене позиций лампы и хронометра (при сохраняющемся направлении движения поезда), удалось бы узнать, постоянна ли скорость света, или ее можно увеличить/уменьшить (в зависимости от направления луча, теоретически, быстрота движения поезда могла бы влиять на измеряемую в эксперименте скорость). Конечно, опыт не удался, так как скорость света и регистрация хронометром несопоставима.

Впервые максимально точное измерение было выполнено в 1676 году благодаря наблюдениям за спутником Юпитера. Олаф Ремер обратил внимание, что реальное появление Ио и расчетные данные различались на 22 минуты. Когда планеты сближались, задержка уменьшалась. Зная расстояние, удалось вычислить скорость света. Она составила около 215 тыс. км/с. Затем, в 1926 году, Д. Бредли, изучая изменение видимых положений звезд (аберрацию), обратил внимание на закономерность. Точка размещения звезды менялась в зависимости от времени года. Следовательно, влияние оказывало положение планеты относительно Солнца. Можно привести аналогию – капли дождя. Без ветра они летят вертикально вниз, но стоит побежать – и их видимая траектория изменяется. Зная скорость вращения планеты вокруг Солнца, удалось вычислить скорость света. Она составила 301 тыс. км/с.

В 1849 году А. Физо провел следующий опыт: между источником света и зеркалом, удаленным на 8 км, находилось вращающееся зубчатое колесо. Скорость его вращения увеличивали до тех пор, пока в следующем зазоре поток отраженного света не превращался в постоянный (немерцающий). Расчеты дали 315 тыс. км/с. Через три года Л. Фуко заменил колесо вращающимся зеркалом и получил 298 тыс. км/с.

Последующие опыты становились все точнее, учитывая преломление в воздухе и пр. В настоящее время актуальными считаются данные, полученные с помощью цезиевых часов и лазерного луча. Согласно им, скорость света в вакууме равна 299 тыс. км/с.

fb.ru

Что такое скорость света и как её измеряют?

Несмотря на то что в обычной жизни рассчитывать скорость света нам не приходится, многих эта величина интересует с детского возраста.Наблюдая за молнией во время грозы, наверняка каждый ребенок пытался понять, с чем связана задержка между ее вспышкой и громовыми раскатами. Очевидно, что свет и звук имеют разную скорость. Почему так происходит? Что такое скорость света и каким образом ее можно измерить?

Что такое скорость света?Что такое скорость света своими словами?Чему равна скорость света?Чему равна скорость света в вакууме?Что быстрее скорости света?

Что такое скорость света?

В науке скоростью света называют быстроту перемещения лучей в воздушном пространстве или вакууме. Свет – это электромагнитное излучение, которое воспринимает глаз человека. Он способен передвигаться в любой среде, что оказывает прямое влияние на его скорость.

Попытки измерить эту величину предпринимались с давних времен. Ученые античной эпохи полагали, что скорость света является бесконечной. Такое же мнение высказывали и физики XVI–XVII веков, хотя уже тогда некоторые исследователи, такие как Роберт Гук и Галилео Галлилей, допускали конечность солнечных лучей.

Серьезный прорыв в изучении скорости света произошел благодаря датскому астроному Олафу Ремеру, который первым обратил внимание на запаздывание затмения спутника Юпитера Ио по сравнению с первичными расчетами.

Тогда ученый определил примерное значение скорости, равное 220 тысячам метров в секунду. Более точно эту величину сумел вычислить британский астроном Джеймс Бредли, хотя и он слегка ошибся в расчетах.В дальнейшем попытки рассчитать реальную скорость света предпринимали ученые из разных стран. Однако только в начале 1970-х годов с появлением лазеров и мазеров, имевших стабильную частоту излучения, исследователям удалось сделать точный расчет, а в 1983 году за основу было принято современное значение с корреляцией на относительную погрешность.

Что такое скорость света своими словами?

Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

Чему равна скорость света?

Скорость света во многом зависит от вещества, в котором распространяются лучи. В вакууме она имеет постоянное значение, а вот в прозрачной среде может иметь различные показатели.

В воздухе или воде ее величина всегда меньше, чем в вакууме. К примеру, в реках и океанах скорость света составляет порядка ¾ от скорости в космосе, а в воздухе при давлении в 1 атмосферу – на 2 % меньше, чем в вакууме.Подобное явление объясняется поглощением лучей в прозрачном пространстве и их повторным излучением заряженными частицами. Эффект называют рефракцией и активно используют при изготовлении телескопов, биноклей и другой оптической техники.

Если рассматривать конкретные вещества, то в дистиллированной воде скорость света составляет 226 тысяч километров в секунду, в оптическом стекле – около 196 тысяч километров в секунду.

Чему равна скорость света в вакууме?

В вакууме скорость света в секунду имеет постоянное значение в 299 792 458 метров, то есть немногим больше 299 тысяч километров. В современном представлении она является предельной. Иными словами, никакая частица, никакое небесное тело не способны достичь той скорости, какую развивает свет в космическом пространстве.

Даже если предположить, что появится Супермен, который будет лететь с огромной скоростью, луч все равно будет убегать от него с большей быстротой.

Что быстрее скорости света?

Хотя скорость света является максимально достижимой в вакуумном пространстве, считается, что существуют объекты, которые движутся быстрее.

На такое способны, к примеру, солнечные зайчики, тень или фазы колебания в волнах, но с одной оговоркой – даже если они разовьют сверхскорость, энергия и информация будут передаваться в направлении, которое не совпадает направлением их движения.Что касается прозрачной среды, то на Земле существуют объекты, которые вполне способны двигаться быстрее света. К примеру, если луч, проходящий через стекло, замедляет свою скорость, то электроны не ограничены в быстроте передвижения, поэтому при прохождении через стеклянные поверхности могут перемещаться быстрее света.

Такое явление называется эффект Вавилова – Черенкова и чаще всего наблюдается в ядерных реакторах или в глубинах океанов.

www.vseznaika.org

Что такое скорость света?

Художественное представление космического корабля, совершающего прыжок к "скорости света". Предоставлено: NASA/Glenn Research Center.

С древних времен философы и ученые стремились понять свет. Кроме того, пытаясь определить его основные свойства (т.е. из чего он состоит - частица или волна и т.д.), они также стремились проделать конечные измерения того, как быстро он движется. С конца 17 века ученые делают именно это, и с возрастающей точностью.

Поступая таким образом, они получили лучшее понимание механики света, и какую важную роль он играет в физике, астрономии и космологии. Проще говоря, свет движется с невероятной скоростью, и это самый быстро движущийся объект во Вселенной. Его скорость является постоянной и неприступным барьером и используется в качестве измерения расстояния. Но насколько же быстро он движется?

Скорость света (с):

Свет движется с постоянной скоростью 1 079 252 848,8 км/ч (1,07 млрд). Что получается 299 792 458 м/с. Расставим все по своим местам. Если вы могли бы двигаться со скоростью света, вы смогли бы обогнуть земной шар примерно семь с половиной раз в секунду. Между тем, у человека, летящего со средней скоростью 800 км/ч, заняло бы более 50 часов, чтобы обогнуть планету.

Иллюстрация, показывающая расстояние, которое свет проходит между Землей и Солнцем. Предоставлено: LucasVB/Public Domain.

Рассмотрим это с астрономической точки зрения, среднее расстояние от Земли до Луны 384 398,25 км. Поэтому свет проходит это расстояние примерно за секунду. Между тем, среднее расстояние от Солнца до Земли 149 597 886 км, что означает, что свету требуется всего около 8 минут, чтобы совершить это путешествие.Неудивительно тогда, почему скорость света - это показатель, используемый для определения астрономических расстояний. Когда мы говорим, что звезда, такая как Проксима Центавра, находится в 4,25 световых годах, мы подразумеваем, что для того, чтобы добраться туда, потребуется, путешествуя с постоянной скоростью 1,07 млрд км/ч, около 4 лет и 3 месяцев. Но как же мы пришли к этому весьма конкретному значению скорости света?

История изучения:

До 17 века ученые были уверены в том, что свет путешествовал с конечной скоростью, или мгновенно. Со времен древних греков до средневековых исламских богословов и ученых нового времени шли дебаты. Но до тех пор, пока ни появилась работа датского астронома Оле Рёмера (1644-1710), в которой были проведены первые количественные измерения.

В 1676 году Рёмер наблюдал, что периоды самой внутренней луны Юпитера Ио казались короче, когда Земля приближалась к Юпитеру, чем когда она удалялась. Из этого он заключил, что свет движется с конечной скоростью, и по оценкам, ему требуется около 22 минут, чтобы пересечь диаметр орбиты Земли.

Профессор Альберт Эйнштейн на 11-й лекции Джозайи Уилларда Гиббса в Технологическом Институте Карнеги 28 декабря 1934 года, где он разъясняет свою теорию о том, что материя и энергия - это одно и то же в разных формах. Предоставлено: AP Photo.

Христиан Гюйгенс использовал эту оценку и объединил её с оценкой диаметра орбиты Земли, чтобы получить оценку в 220000 км/с. Исаак Ньютон также рассказывал о расчетах Рёмера в своей основополагающей работе "Оптика" 1706 года. Внося поправки для расстояния между Землей и Солнцем, он подсчитал, что свету потребуется семь или восемь минут, чтобы добраться от одного к другому. В обоих случаях была сравнительно небольшая погрешность.

Более поздние измерения, проведенные французскими физиками Ипполитом Физо (1819-1896) и Леоном Фуко (1819-1868), уточнили эти показатели, приведя к значению 315000 км/с. И ко второй половине 19 века ученым стало известно о связи между светом и электромагнетизмом.

Это было достигнуто физиками за счет измерения электромагнитных и электростатических зарядов. Затем они обнаружили, что числовое значение было очень близко к скорости света (как измерил Физо). Исходя из его собственной работы, которая показала, что электромагнитные волны распространяются в пустом пространстве, немецкий физик Вильгельм Эдуард Вебер предположил, что свет был электромагнитной волной.

Следующий большой прорыв произошёл в начале 20-го века. В своей статье под названием "К электродинамике движущихся тел" Альберт Эйнштейн утверждает, что скорость света в вакууме, измеренная наблюдателем, имеющим постоянную скорость, одинакова во всех инерциальных системах отсчета и не зависит от движения источника или наблюдателя.

Лазерный луч, светящий через стакан с водой, показывает, скольким изменениям он подвергается, когда проходит из воздуха в стекло, в воду и обратно в воздух. Предоставлено: Bob King.

Взяв это утверждение и принцип относительности Галилео за основу, Эйнштейн вывел специальную теорию относительности, в которой скорость света в вакууме (с) является фундаментальной константой. До этого соглашение среди ученых гласило, что космос был заполнен "светоносным эфиром", который отвечает за его распространение - т.е. свет, движущийся через движущуюся среду будет плестись в хвосте среды.

Это в свою очередь означает, что измеренная скорость света была бы простой суммой его скорости через среду плюс скорость той среды. Тем не менее, теория Эйнштейна сделала концепцию неподвижного эфира бесполезной и изменила представление о пространстве и времени.

Она (теория) не только продвинула идею о том, что скорость света одинакова во всех инерциальных системах, но также была высказана мысль о том, что происходят серьезные изменения, когда вещи движутся близко к скорости света. К ним относятся пространственно-временные рамки движущегося тела, кажущегося замедляющимся, и направление движения, когда измерение происходит с точки зрения наблюдателя (т.е. релятивистские замедление времени, где время замедляется при приближении к скорости света).

Его наблюдения также согласуются с уравнениями Максвелла для электричества и магнетизма с законами механики, упрощают математические расчеты, уходя от несвязанных аргументов других ученых, и согласовываются с непосредственным наблюдением скорости света.

Насколько похожи материя и энергия?

Во второй половине 20-го века всё более точные измерения с помощью метода лазерных интерферометров и резонансных полостей далее уточняли оценки скорости света. К 1972 году группа в Национальном бюро стандартов США в Боулдере, Колорадо, использовала метод лазерной интерферометрии, чтобы получить принятое в настоящее время значение 299 792 458 м/с.

Роль в современной астрофизике:

Теория Эйнштейна о том, что скорость света в вакууме не зависит от движения источника и инерциальный системы отсчета наблюдателя, с тех пор неизменно подтверждается множеством экспериментов. Она также устанавливает верхний предел скорости, с которой все безмассовые частицы и волны (включая свет) могут распространяться в вакууме.

Один из результатов этого в том, что космологии теперь рассматривают пространство и время как единую структуру, известную как пространство-время, в которой скорость света может быть использована для определения значения обоих (т.е. световые года, световые минуты и световые секунды). Измерение скорости света также может стать важным фактором при определении ускорения расширения Вселенной.

В начале 1920-х с наблюдениями Леметра и Хаббла ученым и астрономам стало известно, что Вселенная расширяется из точки происхождения. Хаббл также заметил, чем дальше галактика, тем быстрее она движется. То, что сейчас называют постоянной Хаббла - это скорость, с которой расширяется Вселенная, она равна 68 км/с на мегапарсек.

Как быстро расширяется Вселенная?

Это явление, представленное в виде теории, означает, что некоторые галактики на самом деле могут двигаться быстрее скорости света, что может наложить ограничение на то, что мы наблюдаем в нашей Вселенной. По сути, галактики, движущиеся быстрее скорости света, пересекли бы "космологический горизонт событий", где они больше не видны для нас.

Кроме того, к 1990-м измерения красного смещения далёких галактик показали, что расширение Вселенной ускоряется за последние несколько миллиардов лет. Это привело к теории "Темной Энергии", где невидимая сила движет расширением самого пространства, а не объектов, движущихся через него (при этом не поставив ограничение на скорость света или нарушение относительности).

Наряду со специальной и общей теорией относительности современное значение скорости света в вакууме сформировалось из космологии, квантовой механики и Стандартной модели физики элементарных частиц. Она остается постоянной, когда речь идет о верхнем пределе, с которым могут двигаться безмассовые частицы и остается недостижимым барьером для частиц, имеющих массу.

Вероятно, когда-нибудь мы найдем способ превысить скорость света. Пока у нас нет практических идей о том, как это может происходить, похоже "умные деньги" на технологиях позволят нам обойти законы пространства-времени, либо путем создания варп-пузырей (ака. варп-двигатель Алькубьерре) либо туннелирование через него (ака. червоточины).

Что такое червоточины?

До этого времени мы просто будем вынуждены довольствоваться Вселенной, которую мы видим, и придерживаться исследования той части, до которой можно добраться с помощью обычных методов.

Название прочитанной вами статьи "Что такое скорость света?".

Похожие статьи:

universetoday-rus.com

Все о скорости света - Интересные статьи

Скорость света

Ограничение скорости на большинстве автострад от 90 до 110 километров. Хотя в вакууме космического пространства нет дорожных указателей, но и там есть ограничение скорости — это 1080000000 километров в час.

Самая большая скорость в природе

Это самая большая скорость света в природе. Ученые обычно приводят скорость света в километрах в секунду — 300 000 километров в секунду. Свет состоит из фотонов. Именно они могут летать с такой сумасшедшей скоростью.

Своеобразные частицы – фотоны

Ученые называют фотоны частицами. Но это очень своеобразные частицы. У них нет массы покоя, то есть, в обычном смысле у них нет веса. Трудно себе представить что – то такое реальное, что было бы чистой энергией и не содержало бы ни крупицы вещества. Фотоны и есть такая реальность. Интересно сравнить предельную скорость фотонов с теми скоростями, которые мы привыкли считать большими.

Космический корабль, летящий со скоростью света, для стороннего наблюдателя не имел бы линейных размеров. Возьмем, например, ракету «Пионер», построенную для полетов за пределами Солнечной системы. Так вот, покидая пределы Солнечной системы, «Пионер» имел скорость 60 километров в секунду. Неплохо! Расстояние от Нью-Йорка до Сан-Франциско он мог бы покрыть за полторы минуты. Но в сравнении со скоростью фотона в 300 000 километров в секунду, скорость «Пионера» выглядит просто черепашьей. Или посмотрим, с какой скоростью перемещается в пространстве Солнце.

Зато время, что вы читаете это предложение, Солнце, Земля и прочие восемь планет нашей Солнечной системы несутся вокруг Млечного Пути, как карусельные лошадки, со скоростью 230 километров в секунду (при этом сами-то мы совершенно не замечаем, что летим с такой невероятной скоростью). Но и эта огромная скорость очень мала по сравнению со скоростью света и составляет около одного ее процента.

Скорость света и предметы

Если разогнать обычный предмет до около световой скорости, с ним начнут происходить необыкновенные приключения. При достижении телом таких скоростей наблюдатель отметит изменение линейных размеров и массы предмета. Даже время начнет меняться. Космический корабль, летящий со скоростью 90 процентов скорости света, уменьшится в размерах приблизительно наполовину. При увеличении скорости он будет уменьшаться все сильнее и сильнее, пока при достижении скорости света он совершенно не потеряет свои линейные размеры.

Астронавты на борту корабля будут воспринимать себя совершенно не изменившимися, корабль для них останется – таким же, каким он был до старта. Однако взглянув в иллюминатор, они увидят расплющенное пространство. При скорости, равной 90 процентам скорости света, сам космический корабль и все, что находится на его борту, увеличится в массе в три раза. Опять – таки на борту никто из пассажиров этого не заметит.

С увеличением скорости будет расти и масса, пока при скорости света масса не станет бесконечно большой. Ученые знают, что это реально, потому что при разгоне частиц в ускорителях до около световых скоростей их масса стремительно увеличивается.

Скорость света и время

Не менее странные явления происходят при этом и со временем. Если бы наблюдатели со стороны могли посмотреть на бортовые часы, они с удивлением обнаружили бы, что время замедлилось. Для пассажиров корабля никаких изменений в течение времени не произойдет. При достижении скорости света часы корабля для постороннего наблюдателя просто остановятся.

Интересные статьи:

Рейтинг: 4.9/5. Из 48 голосов.

Please wait...

www.voprosy-kak-i-pochemu.ru

Чему равна скорость света в вакууме, воздухе и воде: формулы

Свет – одно из ключевых понятий оптической физики. Свет представляет собой электромагнитное излучение, доступное человеческому глазу.

Долгие десятилетия лучшие умы бились над проблемой определения, с какой скоростью движется свет и чему она равна, а также всех сопутствующих ему расчетов. В 1676 в кругу физиков произошла революция. Датский астроном, по имени Оле Ремер, опроверг утверждение, что свет распространяется по вселенной с неограниченной скоростью.

В 1676 году Оле Ремер определил, что скорость света в вакууме составляет 299792458 м/с.

Для удобства эту цифру принялись округлять. Номиналом, равным 300000 м/c, пользуются до сих пор.

скорость света в вакууме

Данное правило в обычных для нас условиях касается всех объектов без исключения, в том числе рентгеновских лучей, световых и гравитационных волн осязаемого для наших глаз спектра.

Современные физики, изучающие оптику, доказали, что значение скорости света имеет несколько характеристик:

  • постоянство;
  • недостижимость;
  • конечность.

расчет скорости света Оле Ремер

Скорость света в разных средах

Следует помнить, что физическая константа напрямую зависит от окружающей её среды, в особенности от показателя преломления. В связи с этим точная величина способна меняться, ведь она обусловлена частотами.

Формула вычисления скорости света записывается как с = 3 * 10^8 м/с.

Скорость света в воде разнится с тем же показателем в вакууме. Чтобы узнать её величину, необходимо число 299 792 458 поделить на 1.33. В итоге получится цифра 225407 км/с — это и есть скорость распространения света в воде.

Скорость распространения света в воздухе в км составляет 1 079 252 848,8 (или 299700 км/сек). Для её нахождения необходимо скорость света в вакууме поделить на коэффициент преломления воздуха. Ответ может быть выведен как в км в час, так и метрах в секунду.

скорость в разных средах

Скорость света – максимально возможная величина?

Многие школьники и студенты задаются вопросом: какая скорость больше скорости света? Есть ли такая вообще? Ответ однозначен: нет!

Скорость распространения света в вакууме считается недосягаемой величиной. Ученые не пришли к единому мнению, что же может происходить с атомами, достигающими этого предела.

Помимо прочего, исследователи выявили, что частица, обладающая массой, может приблизиться к скорости светового луча. Но она не может догнать ее и тем более превысить. Максимальная скорость света пока остается неизменна.

Самый приближенный числовой показатель был достигнут при исследовании космических лучей. Их разгоняли в специально оборудованных ускорителях частиц, беря в расчет длину волны.

Почему же эта цифра так важна? Дело в том, что вакуум обволакивает все космическое пространство. Зная, как свет ведет себя в вакууме, мы можем представить, какова предельная скорость передвижения в нашей Вселенной.

По какой причине невозможно двигаться быстрее света?

Так из-за чего же константа СРС не может быть преодолена в обычных условиях? Исходя из теории, можно смело утверждать, что в ситуации превышения будет нарушен фундаментальный закон построения мира, если говорить конкретно — закон причинности. Согласно этому закону, следствие не в силах опередить свою причину.

Рассмотрим этот парадокс на конкретном примере: не может случиться так, что олень сначала упадет замертво, а уже после произойдёт выстрел охотника, застреливший его. Так вот и при повышении СРС разворачиваемые действия должны начинаться в обратной последовательности. В итоге время должно пойти вспять, а это противоречит всем устоявшимся законам физики.

Эйнштейн и вакуум: конечные результаты расчета

В настоящее время большинство людей на планете знают, что максимально допустимой величиной передвижения материальных объектов и различных сигналов является скорость света в вакууме. А кто же первым додумался до этого?

Мысль о невозможности превысить значение скорости света выразил великий физик Альберт Эйнштейн. Он оформил свои наблюдения и назвал их теорией относительности.

Величайшая теория Эйнштейна до сих пор незыблема. Она останется таковой до момента, пока не будут предъявлены реальные доказательства того, что передать сигнал возможно на скорости, превышающей СРС в вакууме. Этот момент может никогда не наступить.

Однако уже было проведено несколько исследований, предвещающих разлад с некоторыми пунктами самой известной теории Эйнштейна. Измерение сверхсветовых скоростей уже возможно при заданных условиях. Примечательно то, что теория относительности не нарушается полностью.

vsesravnenie.ru

Сколько составляет скорость света и звука? | Справка | Вопрос-Ответ

Cамой высокой скоростью считается скорость света в вакууме, т. е. пространстве, свободном от вещества. Учёным сообществом было принято её значение 299 792 458 м/с (или 1 079 252 848,8 км/ч). При этом самое точное измерение скорости света на основе эталонного метра, проведённое в 1975 году, показало, что она составляет 299 792 458 ± 1,2 м/с . Со скоростью света распространяется как сам видимый свет, так и другие виды электромагнитного излучения, например, радиоволны, рентгеновские лучи, гамма-кванты.

Скорость света в вакууме является фундаментальной физической постоянной, т. е. её значение не зависит от каких-либо внешних параметров и не меняется со временем. Эта скорость не зависит ни от движения источника волн, ни от системы отсчёта наблюдателя.

Чему равна скорость звука?

Скорость звука отличается в зависимости от среды, в которой распространяются упругие волны. Вычислить скорость звука в вакууме невозможно, т. к. звук в таких условиях не может распространяться: в вакууме отсутствует упругая среда, и упругие механические колебания возникнуть не могут. Как правило, медленнее звук распространяется в газе, немного быстрее — в жидкости, наиболее быстро — в твёрдых телах.

Так, согласно Физической энциклопедии под редакцией Прохорова, скорость звука в некоторых газах при 0 °С и нормальном давлении (101325 Па) составляет (м/c):

Азот

334

Кислород

316

Воздух

331

Гелий

965

Водород

1284

Метан

430

Аммиак

415

Углекислый газ

259

Скорость звука в некоторых жидкостях при 20 °С равняется (м/c):

Вода

1490

 

Ацетон

1190

Бензол

1324

Спирт этиловый

1180

Ртуть

1453

Глицерин

1923

В твёрдой среде распространяются продольные и поперечные упругие волны, причём скорость продольных всегда больше, чем поперечных. Скорость звука в некоторых твёрдых телах составляет (м/c):

              

Продольная волна

Поперечная волна

Бетон

4200-5300

3762

Железо

5835-5950

3180-3240

Золото

3200-3240

1200

Свинец

1960-2400

700-790

Цинк

4170-4210

2440

Серебро

3650-3700

1600-1690

Алюминиевый сплав

6320

3190

www.aif.ru

Скорость света - это... Что такое Скорость света?

Точные значения Метров в секунду Планковских единиц Приблизительные значения километров в секунду километров в час миль в секунду миль в час астрономических единиц в день Приблизительное время путешествия светового сигнала Расстояние один фут один метр один километр одна статутная миля от геостационарной орбиты до Земли длина экватора Земли от Луны до Земли от Солнца до Земли (1 а. е.) от Вояджера-1 до Земли Один световой год один парсек от Проксимы Центавра до Земли от Альфы Центавра до Земли от ближайшей галактики (Карликовой галактики в Большом Псе) до Земли через Млечный Путь от Галактики Андромеды до Земли от самой удалённой известной галактики до Земли
Солнечному свету требуется около 8 минут 19 секунд, чтобы достигнуть Земли

299 792 458

1

300 000

1,08 млрд

186 000

671 млн

173

Время

1,0 нс

3,3 нс

3,3 мкс

5,4 мкс

119 мс

134 мс

1,255 с

8,3 мин.

16,6 часов (на март 2012)[1].

1 год

3,26 лет

4,24 лет

4,37 лет

25 000 лет

100 000 лет

2,5 млн лет

13 млрд лет

Ско́рость све́та в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме[2]. В физике традиционно обозначается латинской буквой «c» (произносится как [це]). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

В вакууме (пустоте)

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с.

Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году. На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или 1 079 252 848,8 км/ч. Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[3]. Для решения школьных задач и разного рода оценок, не требующих большой точности, обычно используют значение 300 000 000 м/с (3×108 м/с).

В природе со скоростью света распространяются (в вакууме):

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света, но всё же не достигающую её точно. Например, околосветовую скорость имеют массивные частицы, полученные на ускорителе или входящие в состав космических лучей.

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом).

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например — солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой)[4]. (Подробнее см. Сверхсветовое движение, также соответствующий раздел данной статьи ниже).

В прозрачной среде

Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде (λ = c/ν). Эта скорость обычно (но не обязательно) меньше c. Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды. Групповая скорость света в равновесной среде всегда меньше c. Однако в неравновесных средах она может превышать c. При этом, однако, передний фронт импульса все равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча также способно влиять на скорость распространения света в этой среде.

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной[5]. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220 000 км/с — неточное, но близкое к истинному. Спустя полвека открытие аберрации позволило подтвердить конечность скорости света и уточнить её оценку.

Сверхсветовое движение

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) невозможно, так как это нарушило бы фундаментальный принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами, движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, никакое физическое взаимодействие не может распространяться быстрее скорости света. Из этого следует, что тахионы не нарушают принцип причинности — с обычными частицами они никак не взаимодействуют, а разность их скоростей также не достигает скорости света.

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.

В планковской системе единиц скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

C 2006 года появляются сообщения о том, что в так называемом эффекте квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, якобы показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана — сверхсветовая скорость при туннельном эффекте. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества[6].

В результате обработки данных эксперимента OPERA[7], набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино[8]. Сообщение об этом сопровождалось публикацией в архиве препринтов[9]. Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино[10]. В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили[11][12]. В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля)[13].

В культуре

В фантастическом рассказе «Светопреставление» Александр Беляев описывает ситуацию, когда скорость света снижается до нескольких метров в секунду.

См. также

Примечания

  1. ↑ Where Are the Voyagers - NASA Voyager. Voyager - The Interstellar Mission. Jet Propulsion Laboratory, California Istitute of Technology. Архивировано из первоисточника 3 февраля 2012. Проверено 12 июля 2011.
  2. ↑ Скорость распространения светового импульса в среде отличается от скорости его распространения в вакууме (меньше, чем в вакууме), и может быть различной для разных сред. Когда говорят просто о скорости света, обычно подразумевается именно скорость света в вакууме; если же говорят о скорости света в среде, это, как правило, оговаривается явно.
  3. ↑ ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин.
  4. ↑ Болотовский Б. М., Гинзбург В. Л. Эффект Вавилова — Черенкова и эффект Допплера при движении источников со скоростью больше скорости света в вакууме // УФН. — 1972. — Т. 106. — № 4. — С. 577-592.
  5. ↑ Гиндикин С. Г. Рассказы о физиках и математиках. — издание третье, расширенное. — М.: МЦНМО, 2001. — С. 105-108. — ISBN 5-900916-83-9
  6. ↑ И. Иванов. Проведены новые эксперименты по проверке механизма квантовой запутанности. Элементы.ру.
  7. ↑ Oscillation Project with Emulsion-tRacking Apparatus
  8. ↑ OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso
  9. ↑ OPERA Collaboration (Adam T. et al.) (2011), "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam", arΧiv:1109.4897  .
  10. ↑ И.Иванов. Эксперимент OPERA сообщает о наблюдении сверхсветовой скорости нейтрино. Элементы.ру, 23 сентября 2011 года.
  11. ↑ Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam.
  12. ↑ Эйнштейн оказался прав.
  13. ↑ Эксперимент OPERA окончательно «закрыл» сверхсветовые нейтрино.

Литература

Ссылки

dic.academic.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики