Чем вызваны высота и наклонение орбиты МКС. Расстояние мкс до земли


Какая высота орбиты МКС от Земли? :: SYL.ru

МКС, или международная космическая станция, – это пилотируемый орбитальный корабль, который используется как многофункциональный исследовательский центр. Состоит станция из четырнадцати модулей, запущенных в разные годы. Каждый из них выполняет определенную функцию: спальни, лаборатории, складские помещения, спортзалы. Высота орбиты МКС постоянно изменяется, в среднем она составляет 380 км. Работу станции обеспечивают солнечные батареи, размещенные на обшивке.

Модули МКС строились на Земле. Затем каждый из них запускался в космос. Собирали станцию космонавты в условиях невесомости. В настоящее время вес МКС составляет более четырехсот тонн. Внутри модулей располагаются узкие коридоры, по которым космонавты перемещаются.

Элементы расчетов

Во время разработки особенно тщательно продумывалась высота орбиты МКС. Чтобы аппарат не упал на Землю и не улетел в открытый космос, ученым пришлось учитывать множество факторов для расчета траектории полета: вес самой станции, скорость движения, возможности стыковки кораблей с грузом.

Орбита станции

Международный космический корабль летает на низкой околоземной орбите. Здесь очень разряженная атмосфера, а плотность частиц необычайно мала. Правильно рассчитанная высота орбиты МКС – это главное условие для успешного полета станции. Этим предотвращается негативное влияние атмосферы Земли, особенно ее плотных слоев. Проведя различные эксперименты и сделав все необходимые аналитические расчеты, ученые пришли к выводу, что лучше всего аппарат запустить в зону термосферы. Она достаточно просторная, чтобы обеспечить безопасное существование МКС. Начинается термосфера примерно в 85 км от поверхности Земли и тянется на 800 км.

Особенности расчета орбиты

В этой работе были задействованы ученые различных профилей - математики, физики, астрономы. При расчетах высоты орбиты МКС учитывались следующие факторы:

  1. Радиация. Как известно, Солнце выбрасывает в пространство огромные количества радиоактивных частиц. До землян доходит лишь их ничтожно малая часть, так как у планеты есть защитный слой атмосферы. На высоте выше пятисот километров, радиоактивный уровень становится опасным для здоровья. Согласно нормативам, космонавт может получать не более одного зиверта за все время полета.
  2. Доставка груза. Корабли, которые доставляют груз на МКС, способны подниматься на высоту до 460 километров. К ним относятся российские аппараты «Союз» и «Прогресс». Американские космические аппараты «Шаттлы» не могут достичь даже высоты 390 километров, поэтому их прекратили использовать. Это позволило поднять высоту орбиты МКС, чтобы уменьшить влияние на нее земной атмосферы.
  3. Экономия. При расчетах учитываются экономические параметры. Так, чем выше орбита станции, тем больше топлива нужно, чтобы до нее долететь. Поскольку грузовые корабли не могут высоко подниматься с большим количеством груза, то пришлось бы перевозить меньшие объемы. Следовательно, увеличилась бы частота полетов на станцию, что очень затратно.
  4. Решение научных задач. Для проведения различных научных экспериментов высоты орбиты МКС над Землей вполне достаточно.
  5. Космический мусор. Серьезную опасность для станции несет космический мусор (обломки ненужных станций, которые решили уничтожить в космосе, отслужившие свой срок ступени и модули). Он легко может повредить обшивку. По этой причине выбрали такую высоту, на которой летает минимальное количество мусора.

Запуск и полет

Определяя, на какой высоте орбита МКС должна быть, учитывался ее наклон и точка запуска. Самым идеальным вариантом (с экономической точки зрения) является запуск корабля с экватора по часовой стрелке. Это связано с дополнительными показателями скорости вращения планеты.

Другой выгодный вариант – запуск под наклоном, равным широте. Этот тип полета требует минимум топлива для выполнения маневров.

Выбирая космодром для запуска станции, международное сообщество остановилось на Байконуре. Он располагается на широте 46 градусов, а угол наклона орбиты станции составляет 51,66 градуса. Если бы она летала на той же широте, на которой располагается Байконур, то ступени запускаемых ракет падали бы на Китай или на территорию Монголии. Из-за этого была выбрана другая широта, которая охватывает большую часть стран, участвующих в проекте.

Масса станции

При определении орбиты важной составляющей стал вес корабля. Высота орбиты МКС и скорость движения напрямую зависят от ее массы. Но этот показатель периодически меняется из-за обновлений, дополнения новыми модулями, посещений аппаратов грузовыми кораблями. Из-за этого ученые проектировали станцию и просчитывали ее орбиту с возможностью регулировки как высоты полета, так и направления. При этом учитывались возможности поворотов и выполнение разных маневров.

Коррекция орбиты

Несколько раз в год ученые проводят корректировку орбиты. Обычно это выполняется для создания баллистических условий при стыковке грузовых кораблей. В результате стыковок изменяется масса станции, а также меняется скорость из-за возникающего трения. В результате этого центр управления полетом вынужден корректировать не только орбиту, но и скорость движения, а также высоту полета. Изменения происходят при помощи основного двигателя базового модуля. В нужный момент они включаются, и станция наращивает высоту и скорость полета.

Маневренность

При расчете высоты орбиты МКС в км от Земли учитывались возможные встречи с комическим мусором. На космических скоростях даже небольшой осколок может привести к трагедии.

На станции имеются специальные щиты для защиты, но это не уменьшило необходимость расчета такой орбиты, на которой станция будет редко встречаться с мусором. Для этого был создан коридор. Он на два километра выше траектории движения самой станции и на два ниже. С Земли ведутся постоянные наблюдения за зоной: центр управления полетами смотрит, чтобы в коридор не попал космический мусор. Чистота зоны рассчитывается заранее. Американцы постоянно следят за перемещением мусора, смотрят, чтобы он не столкнулся со станцией. При возникновении даже самой малой вероятности инцидента об этом заранее сообщается в НАСА, в управление полетами МКС. Получив данные о возможном столкновении, американцы передают их Российскому центру управления полетами. Его баллистики готовят возможный план маневра, позволяющий избежать столкновения. В нем просчитываются очень точно все действия и координаты. После составления плана повторно проверяется траектория полета и оценивается возможность столкновения. Если все расчеты выполнены правильно, то корабль изменяет курс. Корректировки скорости и высоты проводят с Земли без участия космонавтов.

Если же космические обломки будут выявлены с опозданием (за 28 часов и менее), то времени для расчетов не остается. Тогда МКС уйдет от столкновения по заранее составленному стандартному маневру выхода на новую орбиту. Если этот вариант окажется невозможным, корабль выйдет на другую «опасную» траекторию. В таких случаях все работники станции размещаются в спасательном модуле и ждут столкновения. Если его не происходит, космонавты возвращаются к своим обязанностям. Если же произойдет столкновение, спасательный корабль «Союз» отстыкуется и вернет астронавтов домой, на Землю. За всю историю МКС было зафиксировано три случая, когда команда ждала возможного инцидента, но все они закончились благоприятно.

Скорость полета

Как известно, высота орбиты МКС в км составляет около 380-440 указанных единиц, а космическая скорость полета равна 27 тысячам километров в час. С этой скоростью Землю аппарат облетает всего за полтора часа, а за сутки он успевает сделать шестнадцать кругов.

Гравитация

Это сила, которую очень трудно преодолеть. На МКС гравитация тоже действует. Она гораздо меньше, чем на поверхности Земли, и составляет 90%. Чтобы избежать падения на планету, корабль движется по касательной с огромной скоростью - восемь километров в секунду. Если посмотреть на ночное небо, то можно увидеть пролетающую мимо МКС, а через 90 минут она снова появится на небе. За эти полтора часа корабль полностью облетает вокруг планеты.

Международная космическая станция – это очень дорогой проект, в котором принимают участие многие страны мира. Его стоимость составляет более ста пятидесяти миллиардов долларов. На космическом корабле живут и работают космонавты-ученые. Они проводят самые разные опыты и исследования. Каждый человек играет важную роль на самой станции и ценен для своего государства. Чтобы уберечь людей и станцию, центры управления постоянно следят за траекторией полета, производят все необходимые расчеты орбиты и скорости движения корабля, высчитывают возможные варианты для маневров. Такие расчеты помогают быстро реагировать на появление комического мусора и прочих непредвиденных ситуаций.

www.syl.ru

Чем вызваны высота и наклонение орбиты МКС / Хабр

Выбор некоторых параметров орбиты Международной космической станции не всегда очевиден. К примеру, станция может находиться на высоте от 280 до 460 километров, и из-за этого она постоянно испытывает затормаживающее воздействие верхних слоёв атмосферы нашей планеты. Каждые сутки МКС теряет примерно по 5 см/с скорости и 100 метров высоты. Поэтому периодически приходится поднимать станцию, сжигая топливо грузовиков ATV и «Прогресс». Почему же нельзя поднять станцию выше, чтобы избежать этих затрат? Заложенный при проектировании диапазон и текущее реальное положение диктуются сразу несколькими причинами. Каждый день астронавты и космонавты получают высокие дозы радиации, и за отметкой 500 км её уровень резко повышается. А предел за полугодовое пребывание установлен всего на ползиверта, на всю карьеру отведён всего лишь зиверт. Каждый зиверт увеличивает риск онкологических заболеваний на 5,5 процента.

На Земле от космических лучей мы защищены радиационным поясом магнитосферы нашей планеты и атмосферой, но они работают слабее в ближнем космосе. В некоторых частях орбиты (Южно-атлантическая аномалия является таким пятном повышенной радиации) и за её пределами иногда могут проявляться странные эффекты: в закрытых глазах появляются вспышки. Это космические частицы проходят через глазные яблоки, другие толкования утверждают, что частицы возбуждают ответственные за зрение части мозга. Подобное может не только мешать спать, но и в лишний раз неприятно напоминает о высоком уровне радиации на МКС.

Кроме того, «Союзы» и «Прогрессы», которые сейчас являются основными кораблями смены экипажа и снабжения, сертифицированы на работу на высоте до 460 км. Чем выше находится МКС, тем меньше груза можно будет доставить. Меньше смогут принести и ракеты, которые отправляют новые модули для станции. С другой стороны, чем ниже МКС, тем сильнее она тормозится, то есть больше доставляемого груза должно быть топливом для последующей коррекции орбиты.

Научные задачи могут быть выполнены на высоте в 400—460 километров. Наконец, на положение станции влияет космический мусор — вышедшие из строя спутники и их обломки, которые имеют огромную скорость относительно МКС, что делает столкновение с ними фатальным.

В Сети есть ресурсы, позволяющие следить за параметрами орбиты Международной космической станции. Можно получить относительно точные текущие данные, либо отследить их динамику. На момент написания этого текста МКС находилась на высоте примерно в 400 километров.

Разгонять МКС могут элементы, расположенные в задней части станции: это грузовики «Прогресс» (чаще всего) и ATV, при необходимости — служебный модуль «Звезда» (крайне редко). На иллюстрации до ката работает европейский ATV. Станцию поднимают часто и понемногу: коррекция происходит примерно раз в месяц маленькими порциями порядка 900 секунд работы двигателя, у «Прогрессов» используют двигатели поменьше, чтобы не сильно влиять на ход экспериментов.

Двигатели могут включить единожды, таким образом увеличится высота полёта на другой стороне планеты. Такие операции используют для маленьких подъёмов, поскольку меняется эксцентриситет орбиты.

Также возможна коррекция с двумя включениями, при которой второе включение сглаживает орбиту станции до окружности.

Некоторые параметры диктуются не только научными данными, но и политикой. Космическому аппарату возможно придать любую ориентацию, но при запуске более экономичным будет использовать скорость, которую даёт вращение Земли. Таким образом, дешевле запускать аппарат на орбиту с наклоном, равным широте, а манёвры потребуют дополнительного расхода топлива: больше для движения к экватору, меньше при движении к полюсам. Наклон орбиты МКС в 51,6 градуса может показаться странным: аппараты НАСА, запускаемые с мыса Канаверал, традиционно имеют наклонение примерно в 28 градусов.

Когда обсуждалось местоположение будущей станции МКС, то решили, что будет более экономичным отдать предпочтение российской стороне. Также такие параметры орбиты позволяют видеть больше поверхности Земли.

Но Байконур находится на широте в приблизительно 46 градусов, почему же тогда обычным для российских запусков является наклонение в 51,6 °? Дело в том, что к востоку есть сосед, который не слишком обрадуется, если на него что-то будет падать. Поэтому орбиту наклоняют к 51,6 °, чтобы при запуске никакие части космического аппарата ни при каких обстоятельствах не могли упасть на Китай и Монголию.

habr.com

Ложь на орбите. Можно ли увидеть МКС с Земли невооруженным глазом?

Интересный комментарий к недавнему посту:

когда за затмением наблюдал, тоже видел яркий объект, пролетевший высоко с запада на восток, сравнительно звезд довольно яркий. пересмотрел примерное время, звездную величину и направление по программе Stellarium. вышло, что это был МКС)

Меня всегда удивляли заявления о том, что МКС и прочие заявленные официалами спутники видно с Земли невооруженным глазом. Давайте попробуем разобраться.

Для начала публичная информация:

Орбита МКС заявлена на высоте 408 км.Макс. размеры станции заявлены 109 метров (вместе с развернутыми батареями). Это примерно 4 вагона пассажирского поезда или 7 грузовиков (20-тонников, еврофур).И насколько мне известно, МКС - самый крупный орбитальный объект (нашей цивилизации).

А теперь вспомните вид из иллюминатора самолета во время полета.Вспомнили? Хорошо там были видны фуры или поезда внизу?И это только 10 км высоты...

Для проверки рассмотрим такую штуку:

Вот вам 2 острова на озере Чапала в Мексике.

Я их выбрал по двум причинам:

1. На глади воды остров лучше видно, чем любой другой артефакт на земле, которая вся застроена и объекты при отдалении смешиваются в кашу (можно конечно поискать фермы солнечных батарей в пустыне для максимальной наглядности, но лень. если найдете, просьба сообщить)

2. Один из островов хорошо видно с высоты, его можно использовать для ориентира

Обращаем внимание на маленький остров. Его размеры в 2.5 раза больше МКС (~260 на 100 м) и он отлично виден с высоты 5.44 км, как и большой рядом:

А теперь поднимаемся на высоту 400 км:

Видите там такая точка маленькая прямо между острием стрелки и буквой П?

Это большой остров и он еле виден. Маленький и вовсе исчез.

Смотрел на обычном Google Earth при разрешении экрана 1920х1080. Можете попробовать сами.

Понятно, что МКС и её зеркальные батареи могут отсвечивать, но достаточно ли этого света, чтобы быть видным с Земли?

Другие спутники, насколько мне известно, и вовсе не превышают размеры машин при орбитах не менее 200 км и это для шпионских аппаратов, которые явно в гражданские базы данных не занесут.

Если такие доводы кажутся вам недостаточными, вспомните, что 400 км - это дистанция от Москвы до Нижнего Новгорода.

И попробуйте рассмотреть даже не отдельное здание, а весь город с такого расстояния )

Или просто взгляните на Землю в обратном порядке, лучше в полный экран:

Земля из космоса в 4к. Пролёты МКС над континентами Земли, новейшие снимки. VITA mission. ESA 2018

На отметке 1:45 видно Женевское озеро Leman.

Стрелкой отмечен женевский аэропорт Cointrin, на общем фоне города его тоже можно использовать как ориентир:

Вот так это выглядит при полном экране с качеством видео 4К:

Длина взлетно-посадочной полосы ~ 4 км, ширина вместе с газонами ~400 м, но даже она почти не видна с высоты 400 км!

Google Earth:

Так можно ли увидеть МКС с этого расстояния, как думаете?

И бонусные вопросы нашей викторины:

Кто или что снимает все эти шедевральные снимки МКС с пары сотен метров, квадрокоптер, спутник, папарацци-камикадзе?

Почему на них никогда не видно звезд, кроме случаев явного CGI с фотошопом?

ВСЕ видео ролики выхода космонавтов в космос сняты с борта, НЕТ НИ ОДНОГО ВИДЕО, снятого со стороны, только графика! Можете это объяснить?

И почему бы не записать столь интересующие всех затмения на камеры МКС, ведь НАСА и другие анентства постоянно транслируют их с Земли? ;)

УПД из комментариев:

Вот так выглядит высота МКС 400 км в сравнении с планетой.

Что подсвечивает её снизу, фонари городов? ведь солнце это может делать только на ОЧЕНЬ короткий период

Бонус:

Возможно ли с этой высоты увидеть вот такое преломление поверхности, как нам показывют, т.е. практически четверть планеты, а иногда и более?

По теме

Корабли, спутники, липовая МКС и прочая ложь с орбиты

Реальность многомерна, мнения о ней многогранны. Здесь показана лишь одна или несколько граней. Не стоит принимать их за истину в последней инстанции, ибо истина безгранична, а у каждого уровня сознания своя картина мира и уровень обработки информации. Учимся отделять наше от не нашего, либо добывать информацию автономно )

О методике | Обучение | Запись на сеанс | Отзывы о сеансах и курсах | Духовные практики | Книга Памяти Звездного Племени | Психология | Медицина | Питание | Спорт | Как проходят чистки в сеансах | Регрессия в прошлые жизни | Реинкарнация | Карма | Дети звезд | Хранители | Авторские статьи | Творец и творение | Аватары богов | Альтернативная история | Матрица | Животные | Градостроение | Кристаллы | Драконы | Род и родовые связи | Информация для новичков

ВКонтактеВКонтакте FacebookFacebook YouTubeYouTube InstagramInstagram TwitterTwitter Telegram

digitall-angell.livejournal.com

Как идет время на МКС?

  • История
    • Быт и жизненный уклад
    • Войны
    • Изобретения
    • Личности
    • События
  • Мифы
  • Моя планета
    • Общество, культура, традиции
    • Удивительные места
    • Флора и фауна
    • Явления
  • Наука
    • Археология
    • Естественные науки
    • Космос
    • Технологии
  • Рекорды
  • В мире
    • Животные
    • Люди
    • Новости
    • Открытия

Поиск

Интересные статьи, новости, факты — MyDiscoveries.ru
  • История
    • ВсеБыт и жизненный укладВойныИзобретенияЛичностиСобытия

      Шер Ами — голубь-герой, получивший боевую награду

      Уинстон Черчилль хотел построить авианосец изо… льда

      Самые необычные способы казни

      Откуда взялась Баба Яга?

  • Мифы
    • Правда, что если хрустеть суставами, можно заработать артрит?

      Правда, что мухомор убивает мух?

      Правда ли, что носороги топчут огонь?

      «Правило пяти секунд» — правда или вымысел?

      Правда ли, что акулам не нравится вкус человека?

  • Моя планета
    • ВсеОбщество, культура, традицииУдивительные местаФлора и фаунаЯвления

      Почему радиация ассоциируется с зеленым цветом?

      Устрашающие фотографии грязной грозы над вулканами

      Мосты из корней деревьев — уникальные сооружения индийских племен

      video

      Муравьи построили мост из собственных тел, чтобы добраться до осиного гнезда

  • Наука
    • ВсеАрхеологияЕстественные наукиКосмосТехнологии

      Все эти предметы удалось найти на дне реки

      Почему радиация ассоциируется с зеленым цветом?

      Почему одних людей комары кусают больше, чем других?

      Зачем фрукты меняют свой вкус и цвет во время созревания?

  • Рекорды
    • Нисияма Онсэн Кэйункан — самая старая гостиница в мире

      Haliade-X 12-MW — «король ветра» или самый большой ветряк в мире

      Самый продолжительный пассажирский авиарейс в мире

      Самый большой комар в мире

      Самый большой самолет в мире

  • В мире

mydiscoveries.ru

МКС онлайн - веб-камеры, траектория и местоположение

Наблюдение с веб-камер МКС за поверхностью Земли и самой Станцией онлайн. Атмосферные явления, стыковки кораблей, выходы в открытый космос, работа внутри американского сегмента - все в режиме реального времени. Параметры МКС, траектория полета и местоположение на карте мира.

  1. Трансляция с веб-камер МКС
  2. Особенности трансляции с веб-камер МКС
  3. Местоположение, траектория и параметры МКС
  4. Что можно увидеть через веб-камеры МКС

Трансляция с веб-камер МКС

Видеоплеер №1

Видеоплеер №2

Карта с орбитой МКС

Особенности трансляции с веб-камер МКС

Трансляция с Международной Космической Станции онлайн ведется с нескольких веб-камер, установленных внутри американского сегмента и снаружи Станции. Звуковой канал в обычные дни подключается редко, но всегда сопровождает такие важные события, как стыковки с транспортными кораблями и кораблями со сменным экипажем, выходы в открытый космос, проведение научных экспериментов.

Периодически направление веб-камер на МКС меняется, как и качество передаваемого изображения, которое может меняться в течение времени даже при трансляции с одной и той же веб-камеры. Во время работ в открытом космосе изображение чаще передается с камер, установленных на скафандрах астронавтов.

Стандартная или серая заставка на экране Видеоплеера №1 и стандартная или синяя заставка на экране Видеоплеера №2 говорят о временном прекращении видеосвязи Станции c Землей, аудиосвязь может продолжаться. Черный экран - пролет МКС над ночной зоной.

Звуковое сопровождение подключается редко, обычно, на Видеоплеере №2. Иногда включают запись - это видно по несоответствию передаваемой картинки с положением Станции на карте и отображению текущего и полного времени транслируемого видеоролика на полосе прогресса. Полоса прогресса появляется справа от значка динамика при наведении курсора на экран видеоплеера.

Нет полосы прогресса - значит видео с текущей веб-камеры МКС транслируется онлайн. Видите Черный экран? - сверьтесь с картой!

При зависании видеоплееров обычно помогает простое обновление страницы.

Местоположение, траектория и параметры МКС

Текущее положение Международной Космической Станции (International Space Station) на карте обозначает условный значок МКС.

В левом верхнем углу карты отображаются текущие параметры Станции - координаты, высота орбиты, скорость движения, время до восхода или заката.

Условные обозначения параметров МКС (единицы измерения по умолчанию):

  • Lat: широта в градусах;
  • Lng: долгота в градусах;
  • Alt: высота в километрах;
  • V: скорость в км/час;
  • Время до восхода или заката солнца на Станции (на Земле смотрите границу светотени по карте).

Скорость в км/ч, конечно, впечатляет, но более наглядна ее величина в км/с. Чтобы изменить единицу измерения скорости МКС, нажмите на шестеренки в левом верхнем углу карты. В открывшемся окне на панели сверху нажмите на значок с одной шестеренкой и в списке параметров вместо km/h выберите km/s. Здесь же можно изменить и другие параметры карты.

Всего на карте мы видим три условных линии, на одной из которых расположен значок текущего положения МКС - это текущая траектория перемещения Станции. Две другие линии обозначают две следующие орбиты МКС, над точками которых, расположенных на одной долготе с текущем положением Станции, МКС пролетит, соответственно, через 90 и 180 минут.

Масштаб карты изменяется кнопками «+» и «-» в левом верхнем углу или обычной прокруткой, когда курсор расположен на поверхности карты.

Что можно увидеть через веб-камеры МКС

Американское космическое агентство NASA ведет трансляцию с веб-камер МКС онлайн. Часто изображение передается с камер, направленных на Землю, и во время пролета МКС над дневной зоной можно наблюдать облака, циклоны, антициклоны, в ясную погоду земную поверхность, поверхность морей и океанов. Подробности ландшафта можно хорошо рассмотреть, когда транслирующая веб-камера направлена вертикально на Землю, но иногда бывает хорошо видно и когда она направлена на горизонт.

При пролете МКС над материками в ясную погоду хорошо видны русла рек, озера, снежные шапки на горных хребтах, песчаная поверхность пустынь. Острова в морях и океанах проще наблюдать только в самую безоблачную погоду, так как с высоты МКС они внешне мало отличаются от облаков. Гораздо проще на поверхности мирового океана обнаружить и наблюдать кольца атоллов, которые при небольшой облачности видны хорошо.

Когда один из видеоплееров транслирует изображение с веб-камеры, направленной вертикально на Землю, обратите внимание, как по отношению к спутнику по карте перемещается транслируемая картинка. Так будет проще поймать отдельные объекты для наблюдения: острова, озера, русла рек, горные массивы, проливы.

Иногда изображение онлайн передается с веб-камер, направленных внутрь Станции, тогда мы можем наблюдать за американским сегментом МКС и действиями астронавтов в режиме реального времени.

Когда на Станции происходят какие-то события, например, стыковки с транспортными кораблями или кораблями со сменным экипажем, выход в открытый космос, трансляция с МКС ведется с подключением звука. В это время мы можем слышать переговоры членов экипажа Станции между собой, с Центром Управления Полетом или со сменным экипажем на приближающемся для стыковки корабле.

О приближающихся событиях на МКС можно узнать из сообщений средств массовой информации. Кроме того, с помощью веб-камер могут транслироваться онлайн некоторые научные эксперименты, проводимые на МКС.

К сожалению, веб-камеры установлены только в американском сегменте МКС, и мы можем наблюдать только за американскими астронавтами и проводимыми ими экспериментами. Но при включении звука, часто бывает слышна и русская речь.

Чтобы включить воспроизведение звука, наведите курсор на окно плеера и кликните левой кнопкой мыши по появившемуся изображению динамика с крестиком. Звуковое сопровождение будет подключено с уровнем громкости по умолчанию. Для увеличения или уменьшения силы звука, поднимите или опустите планку громкости до желаемого уровня.

Иногда, звуковое сопровождение кратковременно подключают и без повода. Передача звука может быть включена и при синем экране, во время отключения видеосвязи с Землей.

Если вы много времени проводите за компьютером, оставьте вкладку открытой с включенным звуковым сопровождением на видеоплеерах, иногда заглядывайте на нее, чтобы увидеть восход и закат, когда на земле темно, а части МКС, если они есть в кадре, освещены восходящим или закатывающимся солнцем. Звук же даст о себе знать сам. При подвисании видеотрансляции обновите страницу.

Полный оборот вокруг Земли МКС совершает за 90 минут, однократно пересекая ночную и дневную зоны планеты. Где Станция находится в данный момент, смотрите на карте с орбитой выше.

Что можно увидеть над ночной зоной Земли? Иногда вспышки молний во время грозы. Если веб-камера направлена на горизонт, бывают видны самые яркие звезды и Луна.

Через веб-камеру с МКС невозможно увидеть огни ночных городов, ведь расстояние от Станции до Земли более 400 километров, и без специальной оптики никаких огоньков не видно, кроме самых ярких звезд, но это уже не на Земле.

Наблюдайте за полетом Международной Космической Станции с Земли. Смотрите интересные скриншоты, сделанные с представленных здесь видеоплееров.

В перерывах между наблюдениями за поверхностью Земли из космоса попробуйте поймать умного кота или разложить пасьянс Солитер (достаточно сложный).

vremya-ne-zhdet.ru

Как NASA управляет МКС для избежания столкновений с космическим мусором / Хабр

Находящаяся на орбите примерно в 400 километрах над нами Международная Космическая Станция — это один из наиболее сложных и дорогих инженерных проектов за всю историю человечества. Станция весит около 400 метрических тонн, а размеры ее немного превышают размеры поля для американского футбола. Для ее сборки потребовались десятки и десятки запусков со стороны России и США (включая 37 полетов шаттлов), а так же более 155 выходов космонавтов и астронавтов в открытый космос — а это вдвое больше, чем общее количество выходов в открытый космос на тот момент.

Сравнение размеров МКС и поля для американского футбола

Постройка и запуск МКС обошлась человечеству примерно в 150 миллиардов долларов и 13 лет работы. И в этот самый момент, где-то там, высоко над нашими головами, шесть человек работают в космосе. Конечно, станция не просто висит там без движения. Сама по себе орбита МКС имеет тенденцию к снижению из-за сопротивления атмосферы — скорость этого снижения составляет около 2 километров в год — поэтому станцию нужно время от времени подталкивать, чтобы помочь ей оставаться на необходимой высоте. Более того, вся эта огромная структура является довольно мобильной — ее можно двигать, поворачивать и наклонять в трех измерениях для того, чтобы избежать возможных столкновений с космическим мусором. Так как же удается переместить 400 тонн довольно хрупкой МКС в случае, если на нее, к примеру, движется астероид?

Ground control to Major Tom
Комната управления МКС

Для того чтобы выяснить как двигать станцию по орбите, я прокатился в Космический Центр Джонсона и встретился с Джошем Пэррисом (Josh Parris). Пэррис — один из людей, сидящих за консолью в комнате управления полетом МКС. На самом деле его должность называется TOPO — руководитель операций с траекторией (Trajectory Operations Officer). Как это и было с первых дней пилотируемых полетов, люди, занимающие подобные должности, имеют большой опыт и обширный набор знаний — Пэррис и его сослуживцы потратили годы на обучение, чтобы заслужить право сидеть «за штурвалом» МКС.

Josh Parris

«Мы отвечаем за то, где в данный момент находится станция и желающие с ней состыковаться корабли, где они будут через определенное время, а так же за то, чтобы они ни с чем не столкнулись», — объясняет Пэррис. На высоте орбиты МКС (400 км) не так много спутников, но там вдоволь космического мусора. За последние пару лет были получены сотни сообщений радаров о возможных столкновениях станции с обломками. Только в 2013 году таких потенциально опасных ситуаций было 67.

«Что же представляют из себя эти обломки?» — поинтересовался я, — «Это из-за китайских экспериментов по уничтожению спутников?» «В значительной степени да», — отвечает Пэррис, — «Помимо этого, большое количество обломков осталось после столкновения спутников Космос и Iridium. Заметьте, что все эти обломки — это то, что уже спустилось на высоту нашей орбиты. На более высоких орбитах тоже полно всякого мусора, который может спуститься к нам». «И кто же все это отслеживает? У вас есть большая сгенерированная компьютером карта с красивой графикой, как показывают в кино?» «Этим занимаются ребята из USSTRATCOM [Стратегическое командование вооруженных сил США, — прим.пер.] на авиационной базе Ванденберг», — объясняет Пэррис. «Они поддерживают каталог всех известных кусков космического мусора, и примерно три раза в день они сравнивают траекторию МКС с данными из каталога. Так что именно они оповещают нас о опасных сближениях»

Опасное сближение? Звучит страшновато. Я попросил Пэрриса рассказать поподробнее, и он объяснил, что вокруг МКС существует «защитный периметр» в форме коробки для пиццы размером в четыре километра в высоту (по 2 километра вверх и вниз от станции), и 25 километров в длину и ширину. Если один из обломков попадает в этот периметр, USSTRATCOM уведомляет об этом NASA.

Основной дисплей, отображающий положение и траекторию МКС, и основные наземные станции, которые обслуживают ее

Операторы следят за всем, что попадает внутрь этой «коробки для пиццы», и рассчитывают вероятность столкновения для каждого из отслеживаемых объектов. Каждый объект при этом получает класс опасности, основываясь на вероятности столкновения. Объекты с шансом столкновения от 1/10000 до 1/100000 получают «желтый» уровень. Правила полетов предписывают перемещать станцию в случае появления подобных объектов, если только этот маневр не повлияет на текущие программы — например если из-за маневра будет потеряна возможность вовремя запустить Союз. Красный уровень опасности объявляется для любого объекта, вероятность столкновения с которым составляет от 1 (100%) до 1/10000. Для таких случаев правила более строги — станция должна быть обязательно перемещена, если только перемещение не является более опасным, чем сам кусок мусора (например, если на МКС имеется поврежденное оборудование, а маневр перемещения станции еще более повредит его).

Ускорители и гиродины
МКС, для своего размера и хрупкости, довольно подвижна. Она оснащена четырьмя гиродинами (Control Momentum Gyros — CMG), которые позволяют ей менять ориентацию в пространстве. За гиродины отвечает человек, чья должность называется ADCO (Attitude Determination and Control Officer), и который помогает TOPO принять решение о том, как наилучшим способом избежать столкновений с мусором.

Рабочее место ADCO. Обратите внимание на бейсбольную биту — для регулировки ориентации

В дополнении к этому, у станции есть несколько наборов ускорителей, позволяющих ей перемещаться и поворачиваться. Сервисный модуль Звезда укомплектован ускорителями; также ускорители есть на пристыкованных к станции кораблях (например, на Прогрессах). Для типичного маневра уклонения станции обычно необходима величина дельта-V порядка 1 м/с.

Один из важных параметров, за которыми приходится следить — это масса станции, так как точное количество тяги, необходимой для достижения нужного дельта-V, зависит от перемещаемой массы. В основном масса станции изменяется когда к ней пристыковываются или расстыковываются корабли. Величина дельта-V, достигаемая во время маневра, слишком мала, чтобы как-то повлиять на ежедневную работу экипажа — они знают, когда совершается маневр, но само перемещение контролируется с Земли, и экипажу не приходится делать ничего особенного.

«То есть они не сидят там с джойстиками, руля станцией?» «Нет», — смеется Пэррис, — «Все полностью контролируется с Земли».

В бой!
Итак, когда какому-то куску обломков присваивается желтый или красный код, приходит время действовать. За 28.5 часов до момента наибольшего сближения со станцией, операторы начинают процесс планирования маневра уклонения. Но почему именно 28.5 часов? На вид это довольно странное число. «Поворот будет осуществлять российский сегмент станции», — объясняет Пэррис. «Учитывая разницу во времени между Хьюстоном и российским ЦУПом, 28.5 часов — это вполне достаточно, чтобы специалисты в России составили так называемую циклограмму — точную последовательность действий, необходимых для совершения маневра, которую передают на станцию. Ну и к тому же такой запас оставляет нам больше времени на отслеживание мусора.»

TOPO совместно со специалистами по баллистике из России определяет параметры, достаточные для уклонения, включая величину дельта-V. Затем они связываются с USSTRATCOM для того чтобы убедиться, что запланированный маневр позволит увернуться от опасного обломка, но в то же время не выведет их на траекторию движения какого-нибудь другого объекта. Когда сам маневр наконец приводится в исполнение, за него отвечают компьютеры станции, а специалисты на Земле только следят за ходом процесса. Так что на самом деле невозможно просто схватиться за баранку и «порулить» МКС — все ее перемещения осуществляются после тщательного планирования, и запуск любых двигателей всегда происходит только автоматически, в соответствии с программой.

Худший сценарий
Если вам кажется что описанный выше процесс чрезмерно сложен, то вспомните, что на кону стоят человеческие жизни. «Если мы столкнемся с одним из отслеживаемых объектов, то это может привести к потере станции», — заявляет Пэррис. «МКС перемещается с такой большой скоростью [около 7,6 км/с, — прим.пер.], что любое столкновение будет катастрофой». Нижний предел размера отслеживаемого космического мусора составляет 10 сантиметров. И да — «потеря станции» это именно то, о чем вы подумали. Достаточно большой кусок мусора может не только повредить оборудование станции, но и привести к смерти экипажа.

К счастью, Пэррис оценивает наши данные о обломках больше 10 см на орбите станции как исчерпывающие. «К тому же, у станции есть щиты [жаль, что не силовые поля, — прим.пер.] для защиты от микрометеоритов, и других подобных вещей. К сожалению, между пределом прочности щитов и минимальным размером обломков, которые мы можем отслеживать, есть небольшой зазор. Однако мы изо всех сил стараемся предотвратить любые внештатные ситуации».

Стараясь не выглядеть слишком мрачным, я поинтересовался, что же произойдет в наихудшем случае — если NASA узнает, что МКС грозит непредвиденное столкновение. Чаще всего сотрудники USSTRACOM дают NASA трехдневное предупреждение о возможных столкновениях, но иногда они могут что-то пропустить. «Обычно мы можем найти способ облететь что-то о чем мы заранее знаем», — объясняет Пэррис. Но если у него нет нужных нам 28.5 часов для того, чтобы совместно с коллегами из России составить маневр уклонения, они могут осуществить так называемый PDAM — Предрассчитанный Маневр Уклонения от Обломков (Predetermined Debris Avoidance Maneuver). Это заранее записанный маневр, проходящий с дельта-V порядка 0.5 м/с, который может быть выполнен очень быстро. Наконец, если даже он не может быть приведен в исполнение — например, если это вывело бы МКС на траекторию какого-либо другого куска мусора — то экипаж станции садится в пристыкованный корабль Союз и ждет столкновения, в полной готовности к эвакуации, если это будет необходимо. С момента, когда на станции появился первый человек, эту процедуру приходилось проводить трижды.

Конфигурация станции на май 2013 года. Показаны пристыкованные корабли Союз и Прогресс

На самом деле, маневр PDAM был разработан после инцидента 2011 года. Тогда NASA слишком поздно получила предупреждение о возможном столкновении, и экипажу станции пришлось укрыться в Союзе. Закончилось это тем, что обломок разминулся с МКС на расстоянии около 725 метров. NASA надеется, что с разработкой PDAM подобные ситуации больше не повторятся.

День за днем
Если TOPO не занимается расчетом положения станции относительно какого-нибудь космического мусора, он занят сотней других вещей. «Если мы не отслеживаем никакие обломки — сейчас, кажется, как раз такое затишье — у нас есть ряд задач на каждый день недели, которые мы должны выполнять. Я уже говорил, что мы отслеживаем точное положение станции, так что мы работаем с различными ЦУПами, особенно с центром динамики полетов в Годдарде». Пэррис объяснил, что TOPO снабжают людей в Годдарде информацией о точном местоположении станции, чтобы различные системы слежения NASA могли точно позиционировать свои антенны.

Пэррис на своем рабочем месте

В целом, за исключением планирования маневров уклонения, работа TOPO заключается в основном в пассивном мониторинге. На своем рабочем месте Пэррис и его коллеги работают за тремя мониторами. «На первом мониторе — наши наземные данные GPS. Слева, там где вы видите три столбца, мы сопоставляем данные на земле с данными телеметрии станции». Это необходимо для сравнения того, где, по мнению МКС, она находится, с тем где она находится по мнению наземных станций слежения. Средний монитор также отслеживает пространственное положение МКС. «Графики показывают разницу между различными источниками данных. Обычно они все выглядят как одна ровная линия», — объясняет Пэррис.

На правой части среднего монитора, за графиками сравнения, находится окошко которое показывает состояние того оборудования станции, которое необходимо TOPO. Наконец, на правом мониторе находится ПО, которое NASA использует для расчета эфемерид. «Сверху вы видите список векторов движения станции, а снизу — каталог всех эфемерид, которые у нас есть для МКС». Пэррис также подчеркнул, что если бы TOPO был в процессе работы над маневром уклонения, то на экранах был бы совершенно другой набор приложений. Сами компьютеры — это обычные PC, работающие под управлением Linux (в комнате управления полетом есть также компьютеры на Windows 7, но основные контрольные мониторы работают на Linux). Это является следствием тех давних дней, когда каждая консоль была уникальна, и ее переконфигурация занимала часы, если не дни.

Что в итоге?
Комната управления МКС находится на втором этаже здания 30 Космического Центра Джонсона, и занимает одно из двух помещений, которые когда-то использовалось в качестве комнаты управления миссий Аполло (вторая комната, на третьем этаже, была восстановлена в примерно то же состояние, что и во время миссий Аполло, и вы можете посетить ее как часть экскурсии в Космический Центр Джонсона). Когда я уходил, Пэррис уже занял свое рабочее место, изучая параметры станции, летящей сквозь космическое пространство, и внимательно наблюдая за возможными столкновениями. Это работа которая никогда не заканчивается, и которая требует постоянной бдительности.

habr.com

Расстояния в космосе

Расстояние между Землей и Луной.

Расстояние между Землей и Луной громадно, но кажется крохотным в сравнении с масштабами космоса.

Космические просторы, как известно, довольно масштабны, а потому астрономы не используют для их измерения метрическую систему, привычную для нас. В случае с расстоянием до Луны (384 000 км) километры еще могут быть применимы, однако если выразить в этих единицах расстояние до Плутона, то получится 4 250 000 000 км, что уже менее удобно для записи и вычислений. По этой причине у астрономов в ходу иные единицы измерения расстояния, о которых читайте ниже.

Астрономическая единица

Наименьшей из таких единиц является астрономическая единица (а.е.). Исторически так сложилось, что одна астрономическая единица равняется радиусу орбиты Земли вокруг Солнца, иначе – среднее расстояние от поверхности нашей планеты до Солнца. Данный метод измерения был наиболее подходящим для изучения структуры Солнечной системы в XVII веке. Ее точное значение 149 597 870 700 метра. Сегодня астрономическая единица используется в расчетах с относительно малыми длинами. То есть при исследовании расстояний в пределах Солнечной системы или других планетных систем.

Световой год

Несколько большей единицей измерения длины в астрономии является световой год. Он равен расстоянию, которое проходит свет в вакууме за один земной, юлианский год. Подразумевается также нулевое влияние гравитационных сил на его траекторию. Один световой год составляет около 9 460 730 472 580 км или 63 241 а.е. Данная единица измерения длины используется лишь в научно-популярной литературе по той причине, что световой год позволяет читателю получить примерное представление о расстояниях в галактическом масштабе. Однако из-за своей неточности и неудобности световой год практически не используется в научных работах.

Материалы по теме

Парсек

Наиболее практичной и удобной для астрономических вычислений является такая единица измерения расстояния как парсек. Чтобы понять ее физический смысл, следует рассмотреть такое явление как параллакс. Его суть состоит в том, что при движении наблюдателя относительно двух отдаленных друг от друга тел, видимое расстояние между этими телами также меняется. В случае со звездами происходит следующее. При движении Земли по своей орбите вокруг Солнца визуальное положение близких к нам звезд несколько меняется, в то время как дальние звезды, выступающие в роли фона, остаются на тех же местах. Изменение положения звезды при смещении Земли на один радиус ее орбиты, называется годичный параллакс, который измеряется в угловых секундах.

Тогда один парсек равен расстоянию до звезды, годичный параллакс которой равен одной угловой секунде – единице измерения угла в астрономии. Отсюда и название «парсек», совмещенное из двух слов: «параллакс» и «секунда». Точное значение парсека равняется 3,0856776·1016 метра или 3,2616 светового года. 1 парсек равен примерно 206 264,8 а. е.

Метод лазерной локации и радиолокации

Эти два современных метода служат для определения точного расстояния до объекта в пределах Солнечной системы. Он производится следующим образом. При помощи мощного радиопередатчика посылается направленный радиосигнал в сторону предмета наблюдения. После чего тело отбивает полученный сигнал и возвращает на Землю. Время, потраченное сигналом на преодоление пути, определяет расстояние до объекта. Точность радиолокации – всего несколько километров. В случае с лазерной локацией, вместо радиосигнала лазером посылается световой луч, который позволяет аналогичными расчетами определить расстояние до объекта. Точность лазерной локации достигается вплоть до долей сантиметра.

Телескоп ТГ-1 лазерного локатора ЛЭ-1, полигон Сары-Шаган

Телескоп ТГ-1 лазерного локатора ЛЭ-1, полигон Сары-Шаган

Метод тригонометрического параллакса

Наиболее простым методом измерения расстояния до удаленных космических объектов является метод тригонометрического параллакса. Он основывается на школьной геометрии и состоит в следующем. Проведем отрезок (базис) между двумя точками на земной поверхности. Выберем на небосводе объект, расстояние до которого мы намерены измерить, и определим его как вершину получившегося треугольника. Далее измеряем углы между базисом и прямыми, проведенными от выбранных точек до тела на небосводе. А зная сторону и два прилежащих к ней угла треугольника, можно найти и все другие его элементы.

Тригонометрический параллакс

Тригонометрический параллакс

Величина выбранного базиса определяет точность измерения. Ведь если звезда расположена на очень большом расстоянии от нас, то измеряемые углы будут почти перпендикулярны базису и погрешность в их измерении может значительно повлиять на точность посчитанного расстояния до объекта. Поэтому следует выбирать в качестве базиса максимально отдаленные точки на Земле. Изначально в роли базиса выступал радиус Земли. То есть наблюдатели располагались в разных точках земного шара и измеряли упомянутые углы, а угол, расположенный напротив базиса назывался горизонтальным параллаксом. Однако позже в качестве базиса стали брать большее расстояние – средний радиус орбиты Земли (астрономическая единица), что позволило измерять расстояние до более отдаленных объектов. В таком случае, угол, лежащий напротив базиса, называется годичным параллаксом.

Данный метод не очень практичен для исследований с Земли по той причине, что из-за помех земной атмосферы, определить годичный параллакс объектов, расположенных более чем на расстоянии в 100 парсек – не удается.

Однако в 1989 год Европейским космическим агентством был запущен космический телескоп Hipparcos, который позволил определить звезды на расстоянии до 1000 парсек. В результате полученных данных ученые смогли составить трехмерную карту распределения этих звезд вокруг Солнца. В 2013 году ЕКА запустило следующий спутник – Gaia, точность измерения которого в 100 раз лучше, что позволяет наблюдать все звезды Млечного Пути. Если бы человеческие глаза обладали точностью телескопа Gaia, то мы имели бы возможность видеть диаметр человеческого волоса с расстояния 2 000 км.

Метод стандартных свечей

Для определения расстояний до звезд в других галактиках и расстояний до самих этих галактик используется метод стандартных свечей. Как известно, чем дальше от наблюдателя расположен источник света, тем более тусклым он кажется наблюдателю. Т.е. освещенность лампочки на расстоянии 2 м будет в 4 раза меньше, чем на расстоянии 1 метр.Это и есть принцип, по которому измеряется расстояние до объектов методом стандартных свечей. Таким образом, проводя аналогию между лампочкой и звездой, можно сравнивать расстояния до источников света с известными мощностями.

Масштабы разведанной существующими методами Вселенной впечатляют.

Масштабы разведанной существующими методами Вселенной впечатляют. Смотреть инфографику в полном размере.

В качестве стандартных свечей в астрономии выступают объекты, светимость (аналог мощности источника) которых известна. Это может быть любого рода звезда. Для определения ее светимости астрономы измеряют температуру поверхности, опираясь на частоту ее электромагнитного излучения. После чего, зная температуру, позволяющую определить спектральный класс звезды, выясняют ее светимость при помощи диаграммы Герцшпрунга-Рассела. Затем, имея значения светимости и измерив яркость (видимую величину) звезды, можно посчитать расстояние до нее. Такая стандартная свеча позволяет получить общее представление о расстоянии до галактики, в которой она находится.

Однако данный метод достаточно трудоемкий и не отличается высокой точностью. Поэтому астрономам удобнее использовать в качестве стандартных свечей космические тела с уникальными особенностями, для которых светимость известна изначально.

Уникальные стандартные свечи

Цефеида PTC Puppis

Цефеида PTC Puppis

Цефеиды – наиболее используемые стандартные свечи, представляющие собой переменные пульсирующие звезды. Изучив физические особенности этих объектов, астрономы узнали, что цефеиды обладают дополнительной характеристикой – периодом пульсации, который легко можно измерить и который соответствует определенной светимости.

В результате наблюдений ученым удается измерить яркость и период пульсации таких переменных звезд, а значит и светимость, что позволяет высчитать расстояние до них. Нахождение цефеиды в иной галактике дает возможность относительно точно и просто определить расстояние до самой галактики. Поэтому данный тип звезд часто именуется «маяками Вселенной».

Несмотря на то, что метод цефеид является наиболее точным на расстояниях до 10 000 000 пк, его погрешность может достигать 30%. Для повышения точности потребуется как можно больше цефеид в одной галактике, но и в таком случае погрешность сводится не менее чем к 10%. Причиной тому служит неточность зависимости период-светимость.

Цефеиды — "маяки Вселенной".

Цефеиды — «маяки Вселенной».

Кроме цефеид в качестве стандартных свечей могут использоваться и другие переменные звезды с известными зависимостями период-светимость,  а также для наибольших расстояний — сверхновые с известной светимостью. Близким по точности к методу цефеид является метод, с красными гигантами в роли стандартных свеч. Как выяснилось, ярчайшие красные гиганты имеют абсолютную звездную величину в достаточно узком диапазоне, которая позволяет посчитать светимость.

Расстояния в цифрах

Расстояния в Солнечной системе:

  • 1 а.е. от Земли до Солнца = 500 св. секунд или 8,3 св. минуты
  • 30 а. е. от Солнца до Нептуна = 4,15 световых часа
  • 132 а.е. от Солнца – таково расстояние до космического аппарата «Вояджер-1», было отмечено 28 июля 2015 года. Данный объект является самым отдаленным из тех, что были сконструированы человеком.

Расстояния в Млечном Пути и за его пределами:

  • 1,3 парсека (268144 а.е. или 4,24 св. года) от Солнца до Проксима Центавра – ближайшей к нам звезды
  • 8 000 парсек (26 тыс. св. лет) – расстояние от Солнца до центра Млечного Пути
  • 30 000 парсек (97 тыс. св. лет) – примерный диаметр Млечного Пути
  • 770 000 парсек (2,5 млн. св. лет) – расстояние до ближайшей большой галактики – туманность Андромеды
  • 300 000 000 пк — масштабы в которых Вселенная практически однородна
  • 4 000 000 000 пк (4 гигапарсек) – край наблюдаемой Вселенной. Это расстояние прошел свет, регистрируемый на Земле. Сегодня объекты, излучившие его, с учетом расширения Вселенной, расположены на расстоянии 14 гигапарсек (45,6 млрд. световых лет).

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 3882

Система Orphus

spacegid.com


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики