Термоядерные реакторы в мире. Первый термоядерный реактор. Реактор водородный


Водородный генератор своими руками: схема, конструкция установки, чертежи

Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев – энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

  1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.Гидроген сгорает без дыма
  2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
  3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
  4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
  5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Пожар и падение дирижабляРаньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2h3 + O2 → 2h3O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2h3O → 2h3 + O2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Схема электролиза воды

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

  1. К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).Схема разделения воды
  2. В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
  3. Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
  4. Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Материалы для сборки генератора

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

  1. Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
  2. Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
  3. Поместите электроды в бутылку и завинтите крышку.
  4. Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.Подключение электролизера

Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Электронная схема частотного генератора

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Установка трубок из нержавейки

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Ячейка Мейера в сборе

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Монтажная схема электролизера
Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Блок пластин в сборе

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10—14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Чертеж сборки пластин и прокладок

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

Емкость с щелочным электролитомСхема генератора мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

Внутренняя часть электролизера

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:

  1. Конечная цена установки, низкая производительность и КПД делает крайне невыгодным сжигание водорода для отопления частного дома. Чем «наматывать» счетчик электролизером, проще поставить любой из электрокотлов – ТЭНовый, индукционный либо электродный.
  2. Чтобы заменить 1 л бензина для автомобиля, потребуется 4766 литров чистого водорода или 7150 л гремучего газа, треть которого составляет кислород. Самый завравшийся изобретатель в интернете еще не сделал электролизер, способный обеспечить подобную производительность.Водородная газосварка
  3. Газосварочный аппарат, сжигающий hydrogen, компактнее и легче баллонов с ацетиленом, пропаном и кислородом. Плюс температура пламени до 3000 °С позволяет работать с любыми металлами, стоимость получения горючего здесь особой роли не играет.

Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

Заключение

Водород в составе газа ННО, полученный из самодельного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.

otivent.com

Термоядерные реакторы в мире. Первый термоядерный реактор

Сегодня многие страны принимают участие в термоядерных исследованиях. Лидерами являются Европейский союз, США, Россия и Япония, а программы Китая, Бразилии, Канады и Кореи стремительно наращиваются. Первоначально термоядерные реакторы в США и СССР были связаны с разработкой ядерного оружия и оставались засекреченными до конференции «Атомы для мира», которая состоялась в Женеве в 1958 году. После создания советского токамака исследования ядерного синтеза в 1970 годы стали «большой наукой». Но стоимость и сложность устройств увеличивалась до точки, когда международное сотрудничество стало единственной возможностью продвигаться вперед.

Термоядерные реакторы в мире

Начиная с 1970 годов, начало коммерческого использования энергии синтеза постоянно отодвигалось на 40 лет. Однако в последние годы произошло многое, благодаря чему этот срок может быть сокращен.

Построено несколько токамаков, в том числе европейский JET, британский MAST и экспериментальный термоядерный реактор TFTR в Принстоне, США. Международный проект ITER в настоящее время находится в стадии строительства в Кадараше, Франция. Он станет самым крупным токамаком, когда заработает в 2020 годах. В 2030 г. в Китае будет построен CFETR, который превзойдет ITER. Тем временем КНР проводит исследования на экспериментальном сверхпроводящем токамаке EAST.

Термоядерные реакторы другого типа – стеллаторы – также популярны у исследователей. Один из крупнейших, LHD, начал работу в японском Национальном институте термоядерного синтеза в 1998 году. Он используется для поиска наилучшей магнитной конфигурации удержания плазмы. Немецкий Институт Макса Планка в период с 1988 по 2002 год проводил исследования на реакторе Wendelstein 7-AS в Гархинге, а в настоящее время – на Wendelstein 7-X, строительство которого длилось более 19 лет. Другой стелларатор TJII эксплуатируется в Мадриде, Испания. В США Принстонская лаборатория физики плазмы (PPPL), где был построен первый термоядерный реактор данного типа в 1951 году, в 2008 году остановила строительство NCSX из-за перерасхода средств и отсутствия финансирования.

Кроме того, достигнуты значительные успехи в исследованиях инерциального термоядерного синтеза. Строительство National Ignition Facility (NIF) стоимостью 7 млрд $ в Ливерморской национальной лаборатории (LLNL), финансируемое Национальной администрацией по ядерной безопасности, было завершено в марте 2009 г. Французский Laser Mégajoule (LMJ) начал работу в октябре 2014 года. Термоядерные реакторы используют доставленные лазерами в течение нескольких миллиардных долей секунды около 2 млн джоулей световой энергии в цель размером в несколько миллиметров для запуска реакции ядерного синтеза. Основной задачей NIF и LMJ являются исследования по поддержке национальных военных ядерных программ.

термоядерные реакторы

ITER

В 1985 г. Советский Союз предложил построить токамак следующего поколения совместно с Европой, Японией и США. Работа велась под эгидой МАГАТЭ. В период с 1988 по 1990 год были созданы первые проекты Международного термоядерного экспериментального реактора ITER, что также означает «путь» или «путешествие» на латыни, с целью доказать, что синтез может вырабатывать больше энергии, чем поглощать. Канада и Казахстан также приняли участие при посредничестве Евратома и России соответственно.

Через 6 лет совет ITER одобрил первый комплексный проект реактора на основе устоявшейся физики и технологии стоимостью 6 млрд $. Тогда США вышли из консорциума, что вынудило вдвое сократить затраты и изменить проект. Результатом стал ITER-FEAT стоимостью 3 млрд долл., но позволяющий достичь самоподдерживающей реакции и положительного баланса мощности.

В 2003 г. США вновь присоединились к консорциуму, а Китай объявил о своем желании в нем участвовать. В результате в середине 2005 года партнеры договорились о строительстве ITER в Кадараше на юге Франции. ЕС и Франция вносили половину от 12,8 млрд евро, а Япония, Китай, Южная Корея, США и Россия – по 10% каждый. Япония предоставляла высокотехнологичные компоненты, содержала установку IFMIF стоимостью 1 млрд евро, предназначенную для испытания материалов, и имела право на возведение следующего тестового реактора. Общая стоимость ITER включает половину затрат на 10-летнее строительство и половину – на 20 лет эксплуатации. Индия стала седьмым членом ИТЭР в конце 2005 г.

Эксперименты должны начаться в 2018 г. с использованием водорода, чтобы избежать активации магнитов. Использование D-T плазмы не ожидается ранее 2026 г.

Цель ITER – выработать 500 МВт (хотя бы в течение 400 с), используя менее 50 МВт входной мощности без генерации электроэнергии.

Двухгигаваттная демонстрационная электростанция Demo будет производить крупномасштабное производство электроэнергии на постоянной основе. Концептуальный дизайн Demo будет завершен к 2017 году, а его строительство начнется в 2024 году. Пуск состоится в 2033 году.

экспериментальный термоядерный реактор

JET

В 1978 г. ЕС (Евратом, Швеция и Швейцария) начали совместный европейский проект JET в Великобритании. JET сегодня является крупнейшим работающим токамаком в мире. Подобный реактор JT-60 работает в японском Национальном институте термоядерного синтеза, но только JET может использовать дейтерий-тритиевое топливо.

Реактор был запущен в 1983 году, и стал первым экспериментом, в результате которого в ноябре 1991 года был проведен управляемый термоядерный синтез мощностью до 16 МВт в течение одной секунды и 5 МВт стабильной мощности на дейтерий-тритиевой плазме. Было проведено множество экспериментов с целью изучения различных схем нагрева и других техник.

Дальнейшие усовершенствования JET касаются повышения его мощности. Компактный реактор MAST разрабатывается вместе с JET и является частью проекта ITER.

первый термоядерный реактор

K-STAR

K-STAR – корейский сверхпроводящий токамак Национального института термоядерных исследований (NFRI) в Тэджоне, который произвел свою первую плазму в середине 2008 года. Это пилотный проект ITER, являющийся результатом международного сотрудничества. Токамак радиусом 1,8 м – первый реактор, использующий сверхпроводящие магниты Nb3Sn, такие же, которые планируется использовать в ITER. В ходе первого этапа, завершившегося к 2012 году, K-STAR должен был доказать жизнеспособность базовых технологий и достигнуть плазменных импульсов длительностью до 20 с. На втором этапе (2013–2017) проводится его модернизация для изучения длинных импульсов до 300 с в режиме H и перехода к высокопроизводительному AT-режиму. Целью третьей фазы (2018–2023) является достижение высокой производительности и эффективности в режиме длительных импульсов. На 4 этапе (2023–2025) будут испытываться технологии DEMO. Устройство не способно работать с тритием и D-T топливо не использует.

K-DEMO

Разработанный в сотрудничестве с Принстонской лабораторией физики плазмы (PPPL) Министерства энергетики США и южно-корейским институтом NFRI, K-DEMO должен стать следующим шагом на пути создания коммерческих реакторов после ITER, и будет первой электростанцией, способной генерировать мощность в электрическую сеть, а именно 1 млн кВт в течение нескольких недель. Его диаметр составит 6,65 м, и он будет иметь модуль зоны воспроизводства, создаваемый в рамках проекта DEMO. Министерство образования, науки и технологий Кореи планирует инвестировать в него около триллиона корейских вон (941 млн $).

термоядерный реактор с водородной плазмой

EAST

Китайский экспериментальный усовершенствованный сверхпроводящий токамак (EAST) в Институте физики Китая в Хефее создал водородную плазму температурой 50 млн °C и удерживал ее в течение 102 с.

TFTR

В американской лаборатории PPPL экспериментальный термоядерный реактор TFTR работал с 1982 по 1997 годы. В декабре 1993 г. TFTR стал первым магнитным токамаком, на котором производились обширные эксперименты с плазмой из дейтерий-трития. В следующем году реактор произвел рекордные в то время 10,7 МВт управляемой мощности, а в 1995 году был достигнут рекорд температуры ионизированного газа в 510 млн °C. Однако установка не достигла цели безубыточности энергии термоядерного синтеза, но с успехом выполнила цели проектирования аппаратных средств, сделав значительный вклад в развитие ITER.

запуск термоядерного реактора

LHD

LHD в японском Национальном институте термоядерного синтеза в Токи, префектура Гифу, был самым большим стелларатором в мире. Запуск термоядерного реактора состоялся в 1998 г., и он продемонстрировал качества удержания плазмы, сравнимые с другими крупными установками. Была достигнута температура ионов 13,5 кэВ (около 160 млн °C) и энергия 1,44 МДж.

Wendelstein 7-X

После года испытаний, начавшихся в конце 2015 года, температура гелия на короткое время достигла 1 млн °C. В 2016 г. термоядерный реактор с водородной плазмой, используя 2 МВт мощности, достиг температуры 80 млн °C в течение четверти секунды. W7-X является крупнейшим стелларатором в мире и планируется его непрерывная работа в течение 30 минут. Стоимость реактора составила 1 млрд €.

термоядерные реакторы в мире

NIF

National Ignition Facility (NIF) в Ливерморской национальной лаборатории (LLNL) был завершен в марте 2009 года. Используя свои 192 лазерных лучей, NIF способен сконцентрировать в 60 раз больше энергии, чем любая предыдущая лазерная система.

Холодный ядерный синтез

В марте 1989 года два исследователя, американец Стенли Понс и британец Мартин Флейшман, заявили, что они запустили простой настольный холодный термоядерный реактор, работающий при комнатной температуре. Процесс заключался в электролизе тяжелой воды с использованием палладиевых электродов, на которых ядра дейтерия концентрировались с высокой плотностью. Исследователи утверждают, что производилось тепло, которое можно было объяснить только с точки зрения ядерных процессов, а также имелись побочные продукты синтеза, включая гелий, тритий и нейтроны. Однако другим экспериментаторам не удалось повторить этот опыт. Большая часть научного сообщества не считает, что холодные термоядерные реакторы реальны.

холодный термоядерный реактор

Низкоэнергетические ядерные реакции

Инициированные претензиями на «холодный термоядерный синтез», исследования продолжились в области низкоэнергетических ядерных реакций, имеющих некоторую эмпирическую поддержку, но не общепринятое научное объяснение. По-видимому, для создания и захвата нейтронов используются слабые ядерные взаимодействия (а не мощная сила, как при делении ядер или их синтезе). Эксперименты включают проникновение водорода или дейтерия через каталитический слой и реакцию с металлом. Исследователи сообщают о наблюдаемом высвобождении энергии. Основным практическим примером является взаимодействие водорода с порошком никеля с выделением тепла, количество которого больше, чем может дать любая химическая реакция.

fb.ru

ИТЭР - международный термоядерный реактор (ITER)

ИТЭР - международный термоядерный реактор (ITER)

ИТЭР — международный термоядерный реактор (ITER)

Потребление энергии человечеством растет с каждым годом, что подталкивает сферу энергетики к активному развитию. Так с возникновением атомных станций количество вырабатываемой энергии по всему миру значительно возросло, что позволило благополучно расходовать энергию на все потребности человечества. К примеру, 72,3 % от вырабатываемой электроэнергии во Франции приходится на атомные станции, в Украине — 52,3 %, в Швеции — 40,0 %, в Великобритании — 20,4 %, в России — 17,1 %. Однако, технологии не стоят на месте, и чтобы угодить дальнейшим энергетическим потребностям стран будущего, ученые работают над рядом инновационных проектов, одним из которых является ИТЭР — международный термоядерный реактор (ITER, International Thermonuclear Experimental Reactor).

Компьютерная модель ITER

Компьютерная модель ITER

Преимущества и недостатки

Хотя рентабельность данной установки еще находится под вопросом, согласно работам многих исследователей – создание и последующее развитие технологии управляемого термоядерного синтеза может в результате дать мощный и безопасный источник энергии. Рассмотрим некоторые положительные стороны подобной установки:

  • Основным топливом термоядерного реактора является водород, а это означает – практически неисчерпаемые запасы ядерного топлива.
  • Добыча водорода может происходить посредством переработки морской воды, которая доступна большинству стран. Из этого следует невозможность возникновения монополии топливных ресурсов.
  • Вероятность аварийного взрыва в процессе работы термоядерного реактора значительно меньше, чем в процессе работы ядерного реактора. Согласно оценкам исследователей, даже в случае аварии выбросы радиации не будут представлять опасности для населения, а значит отпадает и надобность в эвакуации.
  • В отличие от ядерных реакторов, термоядерные реакторы вырабатывают радиоактивные отходы, которые имеют короткий период полураспада, то есть быстрее распадаются. Также в термоядерных реакторах отсутствуют продукты сгорания.
  • Для работы термоядерного реактора не требуются материалы, которые используются также для ядерного оружия. Это позволяет исключить возможность прикрытия производства ядерного оружия путем оформления материалов для нужд ядерного реактора.
Термоядерный реактор - вид изнутри

Термоядерный реактор — вид изнутри

Однако, существует также ряд технических недоработок, с которыми постоянно сталкиваются исследователи.

Например, нынешний вариант топлива, представленный в виде смеси дейтерия и трития, требует разработки новых технологий. Например, по окончанию первой серии тестов на крупнейшем на сегодняшней день термоядерном реакторе ДЖЕТ, реактор стал настолько радиоактивным, что далее потребовалась разработка специальной роботизированной системы обслуживания для завершения эксперимента. Другим неутешительным фактором работы термоядерного реактора является его КПД – 20%, в то время как КПД АЭС – 33-34%, а ТЭС — 40%.

Термоядерный реактор ДЖЕТ

Термоядерный реактор ДЖЕТ

Создание проекта ИТЭР и запуск реактора

Проект ITER берет свое начало в 1985-м году, когда Советский Союз предложил совместное создание токамака — тороидальной камеры с магнитными катушками, которая способно удерживать плазму при помощи магнитов, тем самым создавая условия, требуемые для протекания реакции термоядерного синтеза. В 1992-м году было подписано четырехстороннее соглашение о разработке ИТЕР, сторонами которого выступили ЕС, США, Россия и Япония. В 1994-м году к проекту присоединилась Республика Казахстан, в 2001-м – Канада, в 2003-м – Южная Корея и Китай, в 2005-м — Индия. В 2005-м году было определено место для постройки реактора – исследовательский центр ядерной энергетики Кадараш, Франция.

Строительство реактора началось с подготовки котлована для фундамента. Так параметры котлована составили 130 х 90 х 17 метров. Весь комплекс с токамаком будет весить 360 000 тонн, из которых 23 000 тонн приходится на сам токамак.

Различные элементы комплекса ИТЕР будут разрабатываться и доставляться на место строительства со всех уголков мира. Так в 2016-м году в России была разработана часть проводников для полоидальных катушек, которые далее отправились в Китай, который будет производить сами катушки.

Очевидно, столь масштабную работу совсем непросто организовать, ряд стран неоднократно не поспевали за поставленным графиком проекта, в результате чего запуск реактора постоянно переносился. Так, согласно прошлогоднему (2016 г.) июньскому сообщению: «получение первой плазмы запланировано на декабрь 2025-го года».

Строительство ИТЭР в 2016 году

Строительство ИТЭР в 2016 году

Механизм работы токамака ITER

Термин «токамак» происходит из русского акронима, который обозначает «тороидальная камера с магнитными катушками».

Сердцем токамака является его вакуумная камера в форме тора. Внутри, под воздействием экстремальной температуры и давления, газообразное водородное топливо становится плазмой — горячим электрически заряженным газом. Как известно, звездное вещество представлено плазмой, а термоядерные реакции в ядре Солнца протекают как раз в условиях повышенной температуры и давления. Подобные условия для формирования, удержания, сжатия и разогрева плазмы создаются посредством массивных магнитных катушек, которые расположены вокруг вакуумного сосуда. Воздействие магнитов позволит ограничить горячую плазму от стен сосуда.

Модель формирования плазменного шнура в ИТЭР

Модель формирования плазменного шнура в ИТЭР

Перед началом процесса воздух и примеси удаляются из вакуумной камеры. Затем заряжаются магнитные системы, которые помогут контролировать плазму, и вводится газообразное топливо. Когда через сосуд проходит мощный электрический ток, газ электрически расщепляется и становится ионизированным (то есть электроны покидают атомы) и образует плазму.

По мере того, как частицы плазмы активируются и сталкиваются, они также начинают нагреваться. Вспомогательные методы нагрева помогают привести плазму к температурам плавления (от 150 до 300 миллионов ° C). Частицы, «возбужденные» до такой степени, могут преодолеть свое естественное электромагнитное отталкивание при столкновении, в результате таких столкновений высвобождается огромное количество энергии.

Основные элементы конструкции токамака

Основные элементы конструкции токамака

Конструкция токамака состоит из таких элементов:

Вакуумный сосуд

(«пончик») – тороидальная камера, выполненная из нержавеющей стали. Ее большой диаметр составляет 19 м, малый – 6 м, а высота – 11 м. Объем камеры составляет 1 400 м3, а масса – более 5 000 т. Стенки вакуумного сосуда двойные, между стенками будет циркулировать теплоноситель, в роли которого выступит дистиллированная вода. Во избежание загрязнения воды, внутренняя стенка камеры защищена от радиоактивного излучения при помощи бланкета.

Бланкет

(«одеяло») – состоит из 440 фрагментов, укрывающих внутреннюю поверхность камеры. Общая площадь банкета составляет 700м2. Каждый фрагмент представляет собой нечто вроде кассеты, корпус которой сделан из меди, а передняя стенка является съемной и сделана из бериллия. Параметры кассет 1х1,5 м, а масса — не более 4,6 т. Подобные бериллиевые кассеты будут замедлять высокоэнергетические нейтроны, образованные в процессе реакции. Во время замедления нейтронов будет выделяться тепло, отводимое системой охлаждения. Следует отметить, что бериллиевая пыль, образуемая в результате работы реактора, может вызвать тяжелое заболевание под названием бериллиоз, также несет канцерогенное воздействие. По этой причине в комплексе разрабатываются строгие меры безопасности.

Токамак в разрезе

Токамак в разрезе. Желтым — соленоид, оранжевым — магниты тороидального поля (TF) и полоидального поля (PF), синим — бланкет, светло-синим — VV — вакуумный сосуд, фиолетовым — дивертор

Дивертор

(«пепельница») полоидального типа – устройство, основной задачей которого является «очищение» плазмы от грязи, возникающей в результате нагрева и взаимодействия с ней стенок камеры, покрытых бланкетом. При попадании подобных загрязнений в плазму, они начинают интенсивно излучать, вследствие чего возникают дополнительные радиационные потери. Располагается в нижней части токомака и при помощи магнитов направляет верхние слои плазмы (которые являются наиболее загрязненными) в охлаждающую камеру. Здесь плазма охлаждается и превращается в газ, после чего откачивается из камеры обратно. Бериллиевая пыль, после попадания в камеру – практически неспособна вернуться обратно в плазму. Таким образом загрязнение плазмы остается лишь на поверхности и не проникает вглубь.

Дивертор

Дивертор

Криостат

– крупнейший компонент токомака, который представляет собой оболочку из нержавеющей стали объемом 16 000 м2 (29,3 х 28,6 м) и массой 3 850 т. Внутри криостата будут располагаться прочие элементы системы, а сам он служит барьером между токамаком и внешней средой. На его внутренних стенках будут расположены тепловые экраны, охлаждаемые циркулирующим азотом при температуре 80 К (-193,15 °C).

Криостат и части токамака ИТЭР

Криостат и части токамака ИТЭР

Магнитная система

– комплекс элементов, служащих для удержания и контроля плазмы внутри вакуумного сосуда. Представляет собой набор из 48 элементов:

  • Катушки тороидального поля – находятся снаружи вакуумной камеры и внутри криостата. Представлены в количестве 18-ти штук, каждая из которых размером 15 х 9 м и весит примерно 300 т. Вместе эти катушки генерируют вокруг плазменного тора магнитное поле напряженностью 11,8 Тл и запасают энергию в 41 ГДж.
  • Катушки полоидального поля – находятся поверх катушек тороидального поля и внутри криостата. Данные катушки отвечают за формирование магнитного поля, отделяющего массу плазмы от стенок камеры и сжимающего плазму для адиабатического нагрева. Количество таких катушек составляет 6. Две из катушек имеют диаметр 24 м, а массу – 400 т. Остальные четыре – несколько меньше.
  • Центральный соленоид – находится во внутренней части тороидальной камеры, вернее в «дырке бублика». Принцип его работы схож с трансформатором, а основная задача – возбуждение индуктивного тока в плазме.
  • Корректирующие катушки – находятся внутри вакуумного сосуда, между бланкетом и стенкой камеры. Их задача состоит в сохранении формы плазмы, способной локально «выпучиваться» и даже прикасаться к стенкам сосуда. Позволяет понизить уровень взаимодействия стенок камеры с плазмой, а следовательно – уровень ее загрязнения, а также понижает износ самой камеры.
Различные магниты в конструкции токамака

Различные магниты в конструкции токамака

Структура комплекса ИТЕР

Вышеописанная «в двух словах» конструкция токамака представляет собой сложнейший инновационный механизм, собираемый усилиями нескольких стран. Однако, для ее полноценной работы требуется целый комплекс построек, расположенных вблизи токамака. В их числе:

  • Система управления, связи и доступа к данным (Control, Data Access and Communication) – CODAC. Находится в ряде зданий комплекса ИТЕР.
  • Хранилища топлива и топливная система – служит для доставки топлива в токамак.
  • Вакуумная система – состоит из более чем четырехсот вакуумных насосов, задача которых – выкачка продуктов термоядерной реакции, а также различных загрязнений из вакуумной камеры.
  • Криогенная система – представлена азотным и гелиевым контуром. Гелиевый контур будет нормализировать температуру в токамаке, работа (а значит и температура) которого протекает не непрерывно, а импульсно. Азотный контур будет охлаждать тепловые экраны криостата и сам гелиевый контур. Также будет присутствовать водяная система охлаждения, которая направлена на понижение температуры стенок бланкета.
  • Электропитание. Токамаку потребуется примерно 110 МВт энергии для постоянной работы. Для этого будут проведены линии электропередач в километр, которые будут подключены к французской промышленной сети. Стоит напомнить, что экспериментальная установка ИТЭР – не предусматривает выработку энергии, а работает лишь в научных интересах.
Элементы комплекса ИТЭР

Элементы комплекса ИТЭР

Финансирование ИТЭР

Международный термоядерный реактор ITER – достаточно дорогое мероприятие, которое изначально оценивалось в 12 миллиардов долларов, где на Россию, США, Корею, Китай и Индию приходится в 1/11 части суммы, на Японию – 2/11, а на ЕС — 4/11. Позже эта сумма возросла до 15 миллиардов долларов. Примечательно, что финансирование происходит посредством поставки требуемого для комплекса оборудования, которое развито в каждой из стран. Так, Россия поставляет бланкеты, устройства нагрева плазмы и сверхпроводящие магниты.

Компоненты токамака и страны их производства

Компоненты токамака и страны их производства

Перспектива проекта

В данный момент происходит постройка комплекса ИТЭР и производство всех требуемых компонентов для токамака. После запланированного запуска токамака в 2025-м году начнется проведение ряда экспериментов, на основе результатов которых будут отмечены аспекты, требующие доработки. После успешного ввода в строй ИТЭР планируется постройка электростанции на основе термоядерного синтеза под названием DEMO (DEMOnstration Power Plant). Задача DEMo состоит в демонстрации так называемой «коммерческой привлекательности» термоядерной энергетики. Если ITER способен вырабатывать всего 500 МВт энергии, то DEMO позволит непрерывно генерировать энергию в 2 ГВт.

Однако, следует иметь ввиду, что экспериментальная установка ИТЭР не будет вырабатывать энергию, а ее предназначение состоит в получении чисто научной выгоды. А как известно, тот или иной физический эксперимент может не только оправдать ожидания, но также и принести человечеству новые знания и опыт.

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 1585

Система Orphus

spacegid.com

электролизер своими руками, чертежи, получение в домашних условиях, для автомобиля

Водородный генератор может отличаться по размерам и качеству материалов, которые применялись при его изготовлении Водородный генератор может отличаться по размерам и качеству материалов, которые применялись при его изготовлении Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.

Генератор водорода: устройство и его принцип работы

Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.

Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.

Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.

Перед тем как приступить к использованию генератора водорода, нужно тщательно ознакомиться с инструкцией Перед тем как приступить к использованию генератора водорода, нужно тщательно ознакомиться с инструкцией

Водяной двигатель имеет такое устройство:

  • Генератор водородного типа, где и происходит электролиз;
  • Горелка, она устанавливается в самой топке;
  • Котел, он выполняет функцию теплообменника.

На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.

Водородный генератор: его достоинства и недостатки

Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.

Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.

Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.

Водородный реактор имеет свои преимущества:

  • Работает на воде;
  • Экономит электричество;
  • Является экологически чистым;
  • Высокий КПД;
  • Простота обслуживания.

Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.

Самодельный водородный генератор: пошаговая инструкция

Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.

Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.

Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.

Инструкция изготовления:

  • Из листа нержавейки вырезаем 16 одинаковых пластин.
  • Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
  • Противоположный угол обязательно спиливаем.
  • Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
  • Стягиваем всю конструкцию гайками, получается батарея.
  • Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
  • Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.

Чтобы сделать самодельный водородный генератор, нужно предварительно посмотреть обучающее видео и изучить советы профессионалов Чтобы сделать самодельный водородный генератор, нужно предварительно посмотреть обучающее видео и изучить советы профессионалов

Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.

Электролизер для автомобиля: виды катализаторов

Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.

Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.

Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.

Существует несколько видов катализаторов:

  • Цилиндрические;
  • С открытыми пластинами или их еще называют сухими;
  • С раздельными ячейками.

Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.

Авто на воде своими руками: чертежи (видео)

В настоящее время, водородный генератор – это не просто плод воображения, а действительно реальное устройство, которое поможет эффективно обогреть ваш дом, а так же снизит расходы бензина для автомобиля. Так же водород является безопасным для атмосферы.

Добавить комментарий

teploclass.ru

Авто на водороде. HHO-генератор водорода на авто

Автомобилестроение является одним из самых перспективных направлений промышленности. Мировые концерны стремятся вкладывать немалые деньги в развитие новых технологий, которые в будущем должны улучшить эксплуатационные качества транспортных средств. Малейшее изменение в принципах работы автомобиля способно кардинально изменить его динамику, ходовые качества, а также уровень безопасности. При этом наиболее значительные перемены обещают альтернативные источники топлива и, в частности, авто на водороде, которые уже сегодня можно наблюдать в линейках передовых производителей. Несмотря на появление серийных моделей такого типа, конструкторы все еще находятся в поисках наилучшего применения водорода. Но тот факт, что внедрение данного топлива в алгоритм действия двигателя приносит целый ряд преимуществ, бесспорен.

Специфика водородных автомобилей

авто на водороде

Далеко не всегда переход от традиционных технологий к новым решениям позволяет достичь улучшения качественных показателей эксплуатации транспорта. Так происходит с электромобилями, которые хоть и считаются экологически чистым и сравнительно экономным видом технического средства, но имеют много недостатков, среди которых неудовлетворительная динамика. В свою очередь, авто на водороде при условии сбалансированного устройства топливных элементов может сохранить и достоинства машин с классическими двигателями, и обеспечить несколько новых преимуществ. Интерес к данному виду топлива со стороны производителей обусловлен возможностью повышения экологичности транспорта, а также экономией энергоносителя. По сравнению с обычными двигателями внутреннего сгорания агрегаты на водороде практически не выбрасывают вредные вещества. Такого результата можно добиться лишь при условии полного избавления от традиционных моторов, а в этом случае будут заметны и сокращения в мощности.

Комбинация водорода и ДВС

hho генератор водорода на авто

На сегодняшний день автопроизводители используют несколько концепций применения водорода. Одной из самых распространенных является гибридный вариант, при котором происходит совмещение двигателя внутреннего сгорания и водородных элементов. Изначально концептуальные авто на водороде, выполненные с таким подходом, отличались невысокой мощностью. Однако последние разработки демонстрируют обратную ситуацию, когда силовой потенциал увеличивается на 10-15%. Но, опять же, повышение мощности нивелирует преимущество в виде экологической чистоты и стоимости содержания машины. Есть и другой негативный фактор от использования водорода в системе ДВС. В процессе эксплуатации топливо вступает в реакцию с элементами конструкции, что существенно сокращает рабочий ресурс материалов силового агрегата.

Технические характеристики машин на водороде

Первым серийником, который снабжался водородной силовой установкой, является четырехдверный седан Mirai от концерна Toyota. Разработчики использовали нестандартную конфигурацию, в которой основу начинки представляет электромотор, подключенный к преобразователю водорода. В итоге гибридная машина обеспечивает 151 л. с., максимальную скорость в 180 км/ч и разгон до «сотни» за 9 сек. При этом одна заправка позволяет преодолевать почти 500 км, что очень неплохо для первого авто на водороде. Технические характеристики водородных кроссоверов также впечатляют – например, Hyundai Intrado получил аккумулятор на 36 кВт*ч, обеспечивающий ход до 600 км. Но самое важное, что вредные выбросы в данном случае сведены к нулю. Компании уже сегодня предлагают водородные машины с привлекательными рабочими данными. Среди останавливающих этот прогресс факторов можно отметить лишь отсутствие инфраструктуры, позволяющей использовать новые технологии широкой массе потребителей.

авто на водороде своими руками

Генераторы водорода

Пока крупные производители осваивают высокотехнологичные двигатели, задействующие водород в качестве источника энергообеспечения, в среднем звене наблюдается распространение вспомогательных генераторов, позволяющих перерабатывать топливные элементы данного типа. Поскольку основной целью использования новых видов топлива является повышение экологичности процесса и снижение стоимости питания, то в некоторых случаях для этого достаточно внедрить в конструкцию только соответствующий реактор. Такую функцию, в частности, выполняет HHO-генератор водорода на авто, который также называют газовым преобразователем. При этом существует две разновидности таких установок – с жидкими и сухими компонентами. С точки зрения эффективности, выгоднее второй вариант, так как жидкие элементы требуют больших объемов тока, повышая размеры батареи.

генератор водорода для авто

Принцип работы водородных реакторов

Устройство генератора включает в себя фильтры, шланги, элементы питания, клапаны и систему контроля. Данная инфраструктура предназначена для того, чтобы в процессе работы двигателя обеспечивалось смешивание основного топлива и водородной смеси. Дело в том, что обычный ДВС даже в самых лучших исполнениях не способен гарантировать полное сгорание бензина. Специальный реактор водорода для авто оптимизирует процесс работы клапанов, повышая интенсивность компрессии и, соответственно, объемы сгорания. В момент сжатия смеси поршнем водородная смесь увеличивает октановое число, тем самым способствуя эффективному сжиганию горючего. Существуют разные технологические подходы к реализации этого процесса, но все они, в той или иной степени, сокращают объем вредных выбросов в атмосферу и экономят расход основного топлива.

водород на авто отзывы

Авто на водороде своими руками

Монтаж выполняется в подкапотном пространстве с последующим подключением энергоснабжения от бортовой сети. Газ подается через систему воздушного забора, при этом не требуя создания специальной врезки для топливного канала. Важно отметить, что топливом для таких генераторов выступает раствор на основе питьевой соды и дистиллированной воды. В зависимости от комплектации пакета установка водорода на авто может осложниться за счет включения электродов, обеспечивающих более эффективное расщепление смесей. Однако подобные устройства пока встречаются только на экспериментальных концептах. Для рядового пользователя гораздо важнее обеспечивать снабжение машины качественным раствором с поправкой на сезонность. Например, чтобы агрегат не замерз в зимнее время, рекомендуется добавлять в состав изопропиловый спирт.

Положительные отзывы о водородных машинах

С точки зрения экологических организаций и самих производителей, преимущества использования водорода очевидны. Что касается конечного потребителя, то для него выгода от применения новых топливных элементов пока не так выражена. Тем не менее наиболее удачные образцы автомобилей такого типа демонстрируют экономию при эксплуатации, что в будущем может стать одним из главных факторов популярности данной техники. В плане динамических качеств и мощности генератор водорода для авто вызывает противоречивые суждения, но и тут есть положительные сдвиги. Рациональный расход топлива дает не только экономию, но и повышение производительности силовой установки – соответственно, в некоторых случаях повышается и мощность.

установка водорода на авто

Негативные отзывы

Даже если дело касается передовых разработок в этой области, пользователям приходится сталкиваться с проблемами неразвитой инфраструктуры. Как и в случае с другими версиями гибридов, водородные машины требуют обслуживания на специальных станциях. Конечно, есть и модели, которые работают на растворах, поставляемых в баллонах. Но в данном случае отмечаются жесткие условия хранения, соблюдения которых требует водород на авто. Отзывы с критикой отдельно отмечают модернизированные машины, работавшие на традиционных двигателях. Дело в том, что интеграция водородных установок зачастую приводит к быстрому износу ближайших узлов и деталей.

Сравнение с альтернативными технологиями

Как отмечают специалисты, рано или поздно в мировом автопроме будут преобладать технологии, соответствующие высоким нормам экологической безопасности. Наряду с водородными концептами, на эту роль претендуют электромобили, различные гибриды, модели, работающие на жидком азоте и т. д. Но, в отличие от перечисленных концепций, тот же HHO-генератор водорода на авто является наиболее простым в технической реализации. Если для электродвигателя разработчикам приходится зачастую создавать новую конструкцию в пространстве с двигателем, то внедрение водородного реактора под силу любой современной автомастерской. Другое дело, что генератор нельзя рассматривать как самый лучший пример использования альтернативного топлива для транспорта.

Заключение

авто на водороде технические характеристики

Водород в качестве источника для снабжения силовой установки транспорта использовали еще на заре появления первых автомобилей. Однако высокая производительность классических двигателей внутреннего сгорания затмила разработки такого рода. Собственно, и в наши дни по целому ряду параметров авто на водороде не способны конкурировать с привычными моделями. Актуальность же данного направления вызвана отсутствием загрязняющих атмосферу веществ. Есть и определенные преимущества в других нюансах эксплуатации, но они не являются принципиальными для производителей. Если же говорить о жертвах, на которые придется идти создателям водородных автомобилей, то они, скорее всего, ограничатся скромной мощностью и внесением конструкционных элементов, которые могут повлиять на эргономику.

fb.ru

«Реактор на основе водорода и бора будет готов в течение 10 лет»

По мнению Генриха Хора из Университета Нового Южного Уэльса, возможность синтеза водорода и бора теперь открыта и ближе к реализации, чем реакции дейтерия и трития, которой занимаются Национальный комплекс NIF в США и проект ITER во Франции. В 1970-х он предсказал, что синтез водорода и бора возможен без теплового равновесия. Вместо того чтобы нагревать топливо до температуры Солнца при помощи громадных магнитов, удерживающих плазму, синтез бора и водорода достигается быстрыми вспышками двух мощных лазеров, сжимающих ядра.

Этот вид синтеза не производит нейтронов и, поэтому, не радиоактивен в своей первичной реакции. И, в отличие от большинства других источников энергии — угольной, газовой или атомной, при которых нагретая жидкость вращает турбины, энергия, выработанная из водорода и бора, напрямую превращается в электричество. Минусом этой реакции всегда была необходимость в гораздо более высокой температуре и плотности — почти 3 млн градусов Цельсия.

Однако, значительный прогресс в создании мощных, высокоинтенсивных лазеров позволил ученым создать то, что некогда считалось невозможным, пишет Phys.org.

«Если через несколько лет исследований мы не наткнемся на серьезные инженерные трудности, то прототип реактора мы соберем в течение 10 лет, — утверждает Уоррен Маккензи, управляющий директор австралийской компании HB11 Energy, владеющая патентом на процесс Хоры. — С технической точки зрения, наш подход намного проще в реализации, потому что топливо и отходы безопасны, реактору не требуется теплообменник и паротурбогенератор, а необходимые лазеры можно свободно приобрести».

Как считает Эрл Мармар, один из ведущих специалистов по водородной энергетике в мире, энергия термоядерного синтеза станет доступна к 2030 году, и только с ее помощью у нас появится возможность отказаться от нефти и угля.

hightech.fm

Термоядерные реакторы, как они работают и есть ли у них будущее

Вторая половина XX века была периодом бурного развития ядерной физики. Стало ясно, что ядерные реакции можно использовать для получения огромной энергии из мизерного количества топлива. От взрыва первой ядерной бомбы до первой АЭС прошло всего девять лет, и когда в 1952 году была испытана водородная бомба, появились прогнозы, что уже в 1960-х вступят в строй термоядерные электростанции. Увы, эти надежды не оправдались.

Игорь Егоров

27 ноября 2017 08:00

Основной источник энергии для человечества в настоящее время — сжигание угля, нефти и газа. Но их запасы ограничены, а продукты сгорания загрязняют окружающую среду. Угольная электростанция дает больше радиоактивных выбросов, чем АЭС такой же мощности! Так почему же мы до сих пор не перешли на ядерные источники энергии? Причин тому много, но главной из них в последнее время стала радиофобия. Несмотря на то что угольная электростанция даже при штатной работе вредит здоровью куда большего числа людей, чем аварийные выбросы на АЭС, она делает это тихо и незаметно для публики. Аварии же на АЭС сразу становятся главными новостями в СМИ, вызывая общую панику (часто совершенно необоснованную). Впрочем, это вовсе не означает, что у ядерной энергетики нет объективных проблем. Немало хлопот доставляют радиоактивные отходы: технологии работы с ними все еще крайне дороги, и до идеальной ситуации, когда все они будут полностью перерабатываться и использоваться, еще далеко.

Из всех термоядерных реакций в ближайшей перспективе интересны лишь четыре: дейтерий+дейтерий (продукты — тритий и протон, выделяемая энергия 4,0 МэВ), дейтерий+дейтерий (гелий-3 и нейтрон, 3,3 МэВ), дейтерий+тритий (гелий-4 и нейтрон, 17,6 МэВ) и дейтерий+гелий-3 (гелий-4 и протон, 18,2 МэВ). Первая и вторая реакции идут параллельно с равной вероятностью. Образующиеся тритий и гелий-3 «сгорают» в третьей и четвертой реакциях.

От деления к синтезу

Потенциально решить эти проблемы позволяет переход от реакторов деления к реакторам синтеза. Если типичный реактор деления содержит десятки тонн радиоактивного топлива, которое преобразуется в десятки тонн радиоактивных отходов, содержащих самые разнообразные радиоактивные изотопы, то реактор синтеза использует лишь сотни граммов, максимум килограммы, одного радиоактивного изотопа водорода — трития. Кроме того, что для реакции требуется ничтожное количество этого наименее опасного радиоактивного изотопа, его производство к тому же планируется осуществлять непосредственно на электростанции, чтобы минимизировать риски, связанные с транспортировкой. Продуктами синтеза являются стабильные (не радиоактивные) и нетоксичные водород и гелий. Кроме того, в отличие от реакции деления, термоядерная реакция при разрушении установки моментально прекращается, не создавая опасности теплового взрыва. Так почему же до сих пор не построено ни одной действующей термоядерной электростанции? Причина в том, что из перечисленных преимуществ неизбежно вытекают недостатки: создать условия синтеза оказалось куда сложнее, чем предполагалось в начале.

Критерий Лоусона

Чтобы термоядерная реакция была энергетически выгодной, нужно обеспечить достаточно высокую температуру термоядерного топлива, достаточно высокую его плотность и достаточно малые потери энергии. Последние численно характеризуются так называемым «временем удержания», которое равно отношению запасённой в плазме тепловой энергии к мощности потерь энергии (многие ошибочно полагают, что «время удержания» — это время, в течение которого в установке поддерживается горячая плазма, но это не так). При температуре смеси дейтерия и трития, равной 10 кэВ (примерно 110 000 000 градусов), нам нужно получить произведение числа частиц топлива в 1 см3 (т.е. концентрации плазмы) на время удержания (в секундах) не менее 1014. При этом неважно, будет ли у нас плазма с концентрацией 1014 см-3 и временем удержания 1 с, или плазма с концентрацией 1023 и время удержания 1 нс. Это критерий называется «критерием Лоусона».Кроме критерия Лоусона, отвечающего за получение энергетически выгодной реакции, существует ещё критерий зажигания плазмы, который для дейтерий-тритиевой реакции примерно втрое больше критерия Лоусона. «Зажигание» означает, что той доли термоядерной энергии, что остаётся в плазме, будет хватать для поддержания необходимой температуры, и дополнительный нагрев плазмы больше не потребуется.

Z-пинч

Первым устройством, в котором планировалось получить управляемую термоядерную реакцию, стал так называемый Z-пинч. Эта установка в простейшем случае состоит всего из двух электродов, находящихся среде дейтерия (водорода-2) или смеси дейтерия и трития, и батареи высоковольтных импульсных конденсаторов. На первый взгляд кажется, что она позволяет получить сжатую плазму, разогретую до огромной температуры: именно то, что нужно для термоядерной реакции! Однако в жизни все оказалось, увы, далеко не так радужно. Плазменный жгут оказался неустойчивым: малейший его изгиб приводит к усилению магнитного поля с одной стороны и ослаблению с другой, возникающие силы еще больше увеличивают изгиб жгута — и вся плазма «вываливается» на боковую стенку камеры. Жгут неустойчив не только к изгибу, малейшее его утоньшение приводит к усилению в этой части магнитного поля, которое еще сильнее сжимает плазму, выдавливая ее в оставшийся объем жгута, пока жгут не будет окончательно «передавлен». Передавленная часть обладает большим электрическим сопротивлением, так что ток обрывается, магнитное поле исчезает, и вся плазма рассеивается.

Принцип работы Z-пинча прост: электрический ток порождает кольцевое магнитное поле, которое взаимодействует с этим же током и сжимает его. В результате плотность и температура плазмы, через которую течёт ток, возрастают.

Стабилизировать плазменный жгут удалось, наложив на него мощное внешнее магнитное поле, параллельное току, и поместив в толстый проводящий кожух (при перемещении плазмы перемещается и магнитное поле, что индуцирует в кожухе электрический ток, стремящийся вернуть плазму на место). Плазма перестала изгибаться и пережиматься, но до термоядерной реакции в сколько-нибудь серьезных масштабах все равно было далеко: плазма касается электродов и отдает им свое тепло.

Современные работы в области синтеза на Z-пинче предполагают еще один принцип создания термоядерной плазмы: ток протекает через трубку из плазмы вольфрама, которая создает мощное рентгеновское излучение, сжимающее и разогревающее капсулу с термоядерным топливом, находящуюся внутри плазменной трубки, подобно тому, как это происходит в термоядерной бомбе. Однако эти работы имеют чисто исследовательский характер (изучаются механизмы работы ядерного оружия), а выделение энергии в этом процессе все еще в миллионы раз меньше, чем потребление.

Чем меньше отношение большого радиуса тора токамака (расстояния от центра всего тора до центра поперечного сечения его трубы) к малому (радиусу сечения трубы), тем больше может быть давление плазмы при том же магнитном поле. Уменьшая это отношение, учёные перешли от круглого сечения плазмы и вакуумной камеры к D-образному (в этом случае роль малого радиуса выполняет половина высоты сечения). У всех современных токамаков форма сечения именно такая. Предельным случаем стал так называемый «сферический токамак». В таких токамаках вакуумная камера и плазма имеют почти сферическую форму, за исключением узкого канала, соединяющего полюса сферы. В канале проходят проводники магнитных катушек. Первый сферический токамак, START, появился лишь в 1991-м году, так что это достаточно молодое направление, но оно уже показало возможность получить то же давление плазмы при втрое меньшем магнитном поле.

Пробкотрон, стелларатор, токамак

Другой вариант создания необходимых для реакции условий — так называемые открытые магнитные ловушки. Самая известная из них — «пробкотрон»: труба с продольным магнитным полем, которое усиливается на ее концах и ослабевает в середине. Увеличенное на концах поле создает «магнитную пробку» (откуда русское название), или «магнитное зеркало» (английское — mirror machine), которое удерживает плазму от выхода за пределы установки через торцы. Однако такое удержание неполное, часть заряженных частиц, движущихся по определенным траекториям, оказывается способной пройти через эти пробки. А в результате столкновений любая частица рано или поздно попадет на такую траекторию. Кроме того, плазма в пробкотроне оказалась еще и неустойчивой: если в каком-то месте небольшой участок плазмы удаляется от оси установки, возникают силы, выбрасывающие плазму на стенку камеры. Хотя базовая идея пробкотрона была значительно усовершенствована (что позволило уменьшить как неустойчивость плазмы, так и проницаемость пробок), к параметрам, необходимым для энергетически выгодного синтеза, на практике даже приблизиться не удалось.

Можно ли сделать так, чтобы плазма не уходила через «пробки»? Казалось бы, очевидное решение — свернуть плазму в кольцо. Однако тогда магнитное поле внутри кольца получается сильнее, чем снаружи, и плазма снова стремится уйти на стенку камеры. Выход из этой непростой ситуации тоже казался довольно очевидным: вместо кольца сделать «восьмерку», тогда на одном участке частица будет удаляться от оси установки, а на другом — возвращаться назад. Именно так ученые пришли к идее первого стелларатора. Но такую «восьмерку» нельзя сделать в одной плоскости, так что пришлось использовать третье измерение, изгибая магнитное поле во втором направлении, что тоже привело к постепенному уходу частиц от оси к стенке камеры.

Ситуация резко изменилась с созданием установок типа «токамак». Результаты, полученные на токамаке Т-3 во второй половине 1960-х годов, были столь ошеломляющими для того времени, что западные ученые приезжали в СССР со своим измерительным оборудованием, чтобы убедиться в параметрах плазмы самостоятельно. Реальность даже превзошла их ожидания.

Эти фантастически переплетенные трубы не арт-проект, а камера стелларатора, изогнутая в виде сложной трехмерной кривой.

В руках инерции

Помимо магнитного удержания существует и принципиально иной подход к термоядерному синтезу — инерциальное удержание. Если в первом случае мы стараемся долгое время удерживать плазму очень низкой концентрации (концентрация молекул в воздухе вокруг вас в сотни тысяч раз больше), то во втором — сжимаем плазму до огромной плотности, на порядок выше плотности самых тяжелых металлов, в расчете, что реакция успеет пройти за то короткое время, пока плазма не успела разлететься в стороны.

Первоначально, в 1960-х годах, планировалось использовать маленький шарик из замороженного термоядерного топлива, равномерно облучаемый со всех сторон множеством лазерных лучей. Поверхность шарика должна была моментально испариться и, равномерно расширяясь во все стороны, сжать и нагреть оставшуюся часть топлива. Однако на практике облучение оказалось недостаточно равномерным. Кроме того, часть энергии излучения передавалась во внутренние слои, вызывая их нагрев, что усложняло сжатие. В итоге шарик сжимался неравномерно и слабо.

Есть ряд современных конфигураций стеллараторов, и все они близки к тору. Одна из наиболее распространённых конфигураций предполагает использование катушек, аналогичных катушкам полоидального поля токамаков, и четырёх-шести скрученных винтом вокруг вакуумной камеры проводников с разнонаправленным током. Создаваемое при этом сложное магнитное поле позволяет надёжно удерживать плазму, не требуя протекания через неё кольцевого электрического тока. Кроме того, в стеллараторах могут быть использованы и катушки тороидального поля, как у токамаков. А винтовые проводники могут отсутствовать, но тогда катушки «тороидального» поля устанавливаются вдоль сложной трёхмерной кривой. Последние разработки в области стеллараторов предполагают использование магнитных катушек и вакуумной камеры очень сложной формы (сильно «мятый» тор), просчитанной на компьютере.

Проблему неравномерности удалось решить, существенно изменив конструкцию мишени. Теперь шарик размещается внутри специальной небольшой металлической камеры (она называется «хольраум», от нем. hohlraum — полость) с отверстиями, через которые внутрь попадают лазерные лучи. Кроме того, используются кристаллы, конвертирующие лазерное излучение ИК-диапазона в ультрафиолетовое. Это УФ-излучение поглощается тончайшим слоем материала хольраума, который при этом нагревается до огромной температуры и излучает в области мягкого рентгена. В свою очередь, рентгеновское излучение поглощается тончайшим слоем на поверхности топливной капсулы (шарика с топливом). Это же позволило решить и проблему преждевременного нагрева внутренних слоев.

Однако мощность лазеров оказалась недостаточной для того, чтобы в реакцию успела вступить заметная часть топлива. Кроме того, эффективность лазеров была весьма мала, лишь около 1%. Чтобы синтез был энергетически выгодным при таком низком КПД лазеров, должно было прореагировать практически все сжатое топливо. При попытках заменить лазеры на пучки легких или тяжелых ионов, которые можно генерировать с куда большим КПД, ученые также столкнулись с массой проблем: легкие ионы отталкиваются друг от друга, что мешает их фокусировке, и тормозятся при столкновениях с остаточным газом в камере, а ускорителей тяжелых ионов с нужными параметрами создать не удалось.

Магнитные перспективы

Большинство надежд в области термоядерной энергетики сейчас связано с токамаками. Особенно после открытия у них режима с улучшенным удержанием. Токамак является одновременно и свернутым в кольцо Z-пинчем (по плазме протекает кольцевой электрический ток, создающий магнитное поле, необходимое для ее удержания), и последовательностью пробкотронов, собранных в кольцо и создающих «гофрированное» тороидальное магнитное поле. Кроме того, на тороидальное поле катушек и поле плазменного тока накладывается перпендикулярное плоскости тора поле, создаваемое несколькими отдельными катушками. Это дополнительное поле, называемое полоидальным, усиливает магнитное поле плазменного тока (также полоидальное) с внешней стороны тора и ослабляет его с внутренней стороны. Таким образом суммарное магнитное поле со всех сторон от плазменного жгута оказывается одинаковым, и его положение остается стабильным. Меняя это дополнительное поле, можно в определенных пределах перемещать плазменный жгут внутри вакуумной камеры.

Принципиально иной подход к синтезу предлагает концепция мюонного катализа. Мюон — это нестабильная элементарная частица, имеющая такой же заряд, как и электрон, но в 207 раз большую массу. Мюон может замещать электрон в атоме водорода, при этом размер атома уменьшается в 207 раз. Это позволяет одному ядру водорода приближаться к другому, не затрачивая на это энергию. Но на получение одного мюона тратится порядка 10 ГэВ энергии, что означает необходимость произвести нескольких тысяч реакций синтеза на один мюон для получения энергетической выгодны. Из-за возможности «прилипания» мюона к образующемуся в реакции гелию пока не удалось достичь более нескольких сотен реакций. На фото — сборка стелларатора Wendelstein z-x института физики плазмы Макса Планка.

Важной проблемой токамаков долгое время была необходимость создавать в плазме кольцевой ток. Для этого через центральное отверстие тора токамака пропускали магнитопровод, магнитный поток в котором непрерывно изменяли. Изменение магнитного потока рождает вихревое электрическое поле, которое ионизирует газ в вакуумной камере и поддерживает ток в получившейся плазме. Однако ток в плазме должен поддерживаться непрерывно, а это означает, что магнитный поток должен непрерывно изменяться в одном направлении. Это, разумеется, невозможно, так что ток в токамаках удавалось поддерживать лишь ограниченное время (от долей секунды до нескольких секунд). К счастью, был обнаружен так называемый бутстреп-ток, который возникает в плазме без внешнего вихревого поля. Кроме того, были разработаны методы нагрева плазмы, одновременно вызывающие в ней необходимый кольцевой ток. Совместно это дало потенциальную возможность сколь угодно длительного поддержания горячей плазмы. На практике рекорд на данный момент принадлежит токамаку Tore Supra, где плазма непрерывно «горела» более шести минут.

www.popmech.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики