Реактивный двигатель. Классы реактивных двигателей. Схема реактивного двигателя


Реактивный двигатель своими руками

Перевёл alexlevchenko92 для mozgochiny.ru

Предлагаю вниманию мозгочинов статью о том, как сделать реактивный двигатель своими руками.

0

Внимание! Строительство собственного реактивного двигателя может быть опасным. Настоятельно рекомендуем принять все необходимые меры предосторожности при работе с поделкой, а также проявлять крайнюю осторожность при работе с инструментами. В самоделке заложены экстремальные суммы потенциальной и кинетической энергии (взрывоопасное топливо и движущие части), которые могут нанести серьёзные травмы во время работы газотурбинного двигателя. Всегда проявляйте осторожность и благоразумие при работе с двигателем и механизмами и носите соответствующую защиту глаз и слуха. Автор не несёт ответственности за использование или неправильную трактовку информации, содержащейся в настоящей статье.

Шаг 1: Прорабатываем базовую конструкцию двигателя

1

Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.

Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки и значительно повысит шансы на удачный результат.

Шаг 2:

2

Будьте внимательны при выборе турбокомпрессора! Вам нужен большой «турбо» с одной (не разделенной) турбиной. Чем больше турбокомпрессор, тем больше будет тяга готового двигателя. Мне нравятся турбины с крупных дизельных двигателей.

Как правило, важен не столько размер всей турбины, как размер индуктора. Индуктор – видимая область лопаток компрессора.

Турбокомпрессор на картинке – Cummins ST-50 с большого 18 колесного грузовика.

Шаг 3: Вычисляем размер камеры сгорания

9

В шаге приведено краткое описания принципов работы двигателя и показан принцип по которому рассчитываются размеры камеры сгорания (КС), которую необходимо изготовить для реактивного двигателя.

В камеру сгорания (КС) поступает сжатый воздух (от компрессора), который смешивается с топливом и воспламеняется. «Горячие газы» выходят через заднюю часть КС перемещаясь по лопастям турбины, где она извлекает энергию из газов и преобразует её в энергию вращения вала. Этот вал крутит компрессор, что прикреплён к другому колесу, что выводит большую часть отработанных газов. Любая дополнительная энергия, которая остаётся от процесса прохождения газов, создаёт тягу турбины. Достаточно просто, но на самом деле немного сложно всё это построить и удачно запустить.

Камера сгорания изготовлена из большого куска стальной трубы с крышками на обеих концах. Внутри КС установлен рассеиватель. Рассеиватель – эта трубка, что сделана из трубы меньшего диаметра, которая проходит через всю КС и имеет множество просверленных отверстий. Отверстия позволяют сжатому воздуху заходить в рабочий объём и смешиваться с топливом. После того, как произошло возгорание, рассеиватель снижает температуру воздушного потока, который входит в контакт с лопастями турбины.

Для расчета размеров рассеивателя просто удвойте диаметр индуктора турбокомпрессора. Умножьте диаметр индуктора на 6, и это даст вам длину рассеивателя. В то время как колесо компрессора может быть 12 или 15 см в диаметре, индуктор будет значительно меньше. Индуктор из турбин (ST-50 и ВТ-50 моделей) составляет 7,6 см в диаметре, так что размеры рассеивателя будут: 15 см в диаметре и 45 см в длину. Мне хотелось изготовить КС немного меньшего размера, поэтому решил использовать рассеиватель диаметром 12 см с длиной 25 см. Я выбрал такой диаметр, прежде всего потому, что размеры трубки повторяют размеры выхлопной трубы дизельного грузовика.

Поскольку рассеиватель будет располагаться внутри КС, рекомендую за отправную точку взять минимальное свободное пространство в 2,5 см вокруг рассеивателя. В моём случае я выбрал 20 см диаметр КС, потому что она вписывается в заранее заложенные параметры. Внутренний зазор будет составлять 3,8 см.

Теперь у вас есть примерные размеры, которые уже можно использовать при изготовлении реактивного двигателя. Вместе с крышками на концах и топливными форсунками – эти части в совокупности будут образовывать камеру сгорания.

Шаг 4: Подготовка торцевых колец КС

3

Закрепим торцевые кольца с помощью болтов. С помощью данного кольца рассеиватель будет удерживаться в центра камеры.

Наружный диаметр колец 20 см, а внутренние диаметры 12 см и 0,08 см соответственно. Дополнительное пространство (0,08 см) облегчит установку рассеивателя, а также будет служить в качестве буфера для ограничения расширений рассеивателя (во время его нагрева).

Кольца изготавливаются из 6 мм листовой стали. Толщина 6 мм позволит надежно приварить кольца и обеспечить стабильную основу для крепления торцевых крышек.

12 отверстий для болтов, которые расположены по окружности колец, обеспечат надежное крепление при монтаже торцевых крышек. Следует приварить гайки на заднюю часть отверстий, чтобы болты могли просто ввинчиваться прямо в них. Всё это придумано только из-за того, что задняя часть будет недоступна для гаечного ключа. Другой способ– это нарезать резьбу в отверстиях на кольцах.

Шаг 5: Привариваем торцевые кольца

Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.

Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.

4

Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.

Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.

Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть.  Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.

Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.

5

Шаг 6: Изготавливаем заглушки

Для завершения работ по КС нам понадобится 2 торцевые крышки. Одна крышка будет располагаться на стороне топливного инжектора, а другая будет направлять горячие газы в турбину.

Изготовим 2 пластины того же диаметра что и КС (в моём случае 20,32 см). Просверлите 12 отверстий по периметру для болтов и выровняйте их с отверстиями на конечных кольцах.

6

На крышке инжектора нужно сделать только 2 отверстия. Одно будет для топливного инжектора, а другое для свечи зажигания. В проекте используется 5 форсунок ( одна в центре и 4 вокруг неё). Единственное требование – инжекторы должны располагаться таким образом, чтобы после окончательной сборки они оказались внутри рассеивателя. Для нашей конструкции – это означает, что они должны помещаться в центре 12 см круга в середине торцевой крышки. Просверлим 12 мм отверстия для монтажа форсунок. Сместимся чуть-чуть от центра, чтобы добавить отверстие для свечи зажигания. Отверстие должно быть просверлено для 14 мм х 1,25 мм нити, которая будет соответствовать свече зажигания. Конструкция на картинке будет иметь 2 свечи (одна про запас, если первая выйдет из строя).

Из крышки инжектора торчат трубы. Они изготовлены из труб диаметром 12 мм (внешний) и 9,5 мм (внутренний диаметр). Их обрезают до длины 31 мм, после чего на краях делают скосы. На обеих концах будет 3 мм резьба. Позже они будут свариваться вместе с 12 мм трубками, выступающими с каждой стороны пластины. Подача топлива будет осуществляться с одной стороны а инжекторы будут вкручены с другой.

7

Для того, чтобы сделать вытяжной колпак, нужно будет вырезать отверстие для «горячих газов». В моем случае, размеры повторяют размеры входного отверстия турбины. Небольшой фланец должен иметь те же размеры, что и открытая турбина, а также, плюс четыре отверстия для болтов, чтобы закрепить его на ней. Торцовый фланец турбины может быть сварен вместе из простого прямоугольного короба, который будет идти между ними.

Переходный изгиб следует сделать из листовой стали. Свариваем детали вместе. Необходимо, чтобы сварные швы шли по наружной поверхности. Это нужно для того, чтобы воздушный поток не имел никаких препятствий и не создавалась турбулентность внутри сварных швов.

Шаг 7: Собираем всё вместе

8

Начните с закрепления фланца и заглушек (выпускного коллектора) на турбине. Тогда закрепите корпус камеры сгорания и, наконец, крышку инжектора основного корпуса. Если вы всё сделали правильно, то ваша поделка должна быть похожа на вторую картинку ниже.

Важно отметить, что турбинные и компрессорные секции можно вращать относительно друг друга, ослабив зажимы в середине.

9

Исходя из ориентации частей, нужно будет изготовить трубу, которая соединит выпускное отверстие компрессора с корпусом камеры сгорания. Эта труба должна быть такого же диаметра, как выход компрессора, и в конечном счёте крепиться к нему шлангом соединителем. Другой конец нужно будет соединить заподлицо с камерой сгорания и приварить его на место, как только отверстие было обрезано. Для своей камеры, я использовать кусок согнутой 9 см выхлопной трубы. На рисунке ниже показан способ изготовления трубы, которая предназначена для замедления скорости воздушного потока перед входом в камеру сгорания.

Для нормальной работы нужна значительная степень герметичности, проверьте сварные швы.

10

Шаг 8: Изготавливаем рассеиватель

11

Рассеиватель позволяет воздуху входить в центр камеры сгорания, при этом сохранять и удерживать пламя на месте таким образом, чтобы оно выходило в сторону турбины, а не в сторону компрессора.

Отверстия имеют специальные названия и функции (слева направо). Небольшие отверстия в левой части являются основными, средние отверстия являются вторичными, и самые большие на правой стороне являются третичными.

  • Основные отверстия подают воздух, который смешивается с топливом.
  • Вторичные отверстия подают воздух, который завершает процесс сгорания.
  • Третичные отверстия обеспечивают охлаждения газов до того, как они покинут камеру, таким образом, чтобы они не перегревали турбинных лопаток.

Чтобы сделать процесс расчета отверстия легким, ниже представлена программа, что будет делать работу за вас.

Поскольку наша камера сгорания 25 см в длину, необходимо будет сократить рассеиватель до этой длины. Я хотел бы предложить сделать её почти на 5 мм короче, чтобы учесть расширение металла, во время нагрева. Рассеиватель по-прежнему будет иметь возможность зажиматься внутри конечных колец и «плавать» внутри них.

Шаг 9:

12

Теперь у вас есть готовый рассеиватель, откройте корпус КС и вставьте его между кольцами, пока он плотно не войдет. Установите крышку инжектора и затяните болты.

Для топливной системы необходимо использовать насос, способный выдавать поток высокого давления (по меньшей мере 75 л/час). Для подачи масла нужно использовать насос способный обеспечить давление в 300 тис. Па с потоком 10 л/час. К счастью, один и тот же тип насоса можно использовать для обеих целей. Мое предложение Shurflo № 8000-643-236.

Представляю схему для топливной системы и системы подачи масла для турбины.

Для надежной работы системы рекомендую использовать систему регулируемого давления с установкой обходного клапана. Благодаря ему поток, который прокачивают насосы всегда будет полным, а любая неиспользованная жидкость будет возвращена в бак. Эта система поможет избежать обратного давления на насос (увеличит срок службы узлов и агрегатов). Система будет работать одинаково хорошо для топливных систем и системы подачи масла. Для масляной системы вам нужно будет установить фильтр и масляный радиатор (оба из них будут установлены в линию после насоса, но перед перепускным клапаном).

13

Убедитесь, что все трубы, идущие к турбине выполнены из «жесткого материала». Использование гибких резиновых шлангов может закончиться катастрофой.

Ёмкость для топлива может быть любого размера, а масленый бак должен  удерживать по меньшей мере 4 л.

В своей масляной системе использовал полностью синтетическое масло Castrol. Оно имеет гораздо более высокую температуру воспламенения, а низкая вязкость поможет турбине в начале вращения. Для снижения температуры масла, необходимо использовать охладители.

Что касается системы зажигания, то подобной информации достаточно в интернете. Как говорится на вкус и цвет товарища нет.

Далее установим двигатель на испытательный стенд.

Шаг 10:

Для начала поднимите давление масла до минимума 30 МПа. Наденьте наушники и продуйте воздух через двигатель воздуходувкой. Включите цепи зажигания и медленно подавайте топливо, закрывая игольчатый клапан на топливной системе до тех пор, пока не услышите «поп», когда камера сгорания заработает. Продолжайте увеличивать подачу топлива, и вы начнете слышать рёв своего нового реактивного двигателя.

Реактивный карт

Запуск

Спасибо за внимание

(A-z Source)

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

About alexlevchenko
Ценю в людях честность и открытость. Люблю мастерить разные самоделки. Нравится переводить статьи, ведь кроме того, что узнаешь что-то новое - ещё и даришь другим возможность окунуться в мир самоделок.

mozgochiny.ru

Реактивный двигатель. Классы реактивных двигателей

Выполнила учащаяся:

МОУ «СОШ С. Зубовка»

Масаева Алисат (9класс),

Руководитель: Мельшина В.Г

2011 год

Оглавление:

  1. На пороге космической эры

  2. Реактивное движение

  3. Уравнения Мещерского и Циолковского

  4. Реактивный двигатель. Классы реактивных двигателей

  5. Применение реактивных двигателей

  6. Реактивные двигатели и окружающая среда

  7. Заключение

  1. На пороге космической эры

Принцип реактивного движения известен давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели — пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые.

Сегнерово колесо — двигатель, основанный на реактивном действии вытекающей воды. Было изобретено венгерским учёным Я. А. Сегнером в 1750. Первая в истории гидравлическая турбина. Расположенное в горизонтальной плоскости колесо без обода, у которого спицы заменены трубками с отогнутыми концами так, что вытекающая из них вода приводит сегнерово колесо во вращение.

Идея ракетного летания, многим представляющаяся в наши дни такой смелой и новой, на самом деле имеет за собою уже полувековую историю, добрых три четверти которой протекло целиком в нашем отечестве.

Первая мысль о ракетном самолете родилась в светлой голове молодого революционера-первомартовца Николая Ивановича Кибальчича.

В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе.

  1. Реактивное движение

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение. При стрельбе из орудия возникает отдача – снаряд движется вперед, а орудие – откатывается назад. Снаряд и орудие – два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела,

например, при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх. Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

  1. Уравнения Мещерского и Циолковского

Если нет внешних сил, то ракета вместе с выброшенным веществом является замкнутой системой. Импульс такой системы не может меняться во времени.

, где

 — масса ракеты

 — её ускорение

 — скорость истечения газов

 — расход массы топлива в единицу времени

Поскольку скорость истечения продуктов сгорания (рабочего тела) определяется физико-химическими свойствами компонентов топлива и конструктивными особенностями двигателя, являясь постоянной величиной при не очень больших изменениях режима работы реактивного двигателя, то величина реактивной силы определяется в основном массовым секундным расходом топлива.

Доказательство

До начала работы двигателей импульс ракеты и горючего был равен нулю, следовательно, и после включения сумма изменений векторов импульса ракеты и импульса истекающих газов равна нулю: , где

 — изменение скорости ракеты

Разделим обе части равенства на интервал времени t, в течение которого работали двигатели ракеты:

Произведение массы ракеты m на ускорение ее движения a по определению равно силе, вызывающей это ускорение:

Уравнение Мещерского

Если же на ракету, кроме реактивной силы , действует внешняя сила , то уравнение динамики движения примет вид:

Формула Мещерского представляет собой обобщение второго закона Ньютона для движения тел переменной массы. Ускорение тела переменной массы определяется не только внешними силами , действующими на тело, но и реактивной силой , обусловленной изменением массы движущегося тела:

Формула Циолковского

Применив уравнение Мещерского к движению ракеты, на которую не действуют внешние силы, и, проинтегрировав уравнение, получим формулу Циолковского

Релятивистское обобщение этой формулы имеет вид:

, где  — скорость света.

Выводы из законов:

  • Проанализируем полученное выражение. Мы видим, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и чем больше отношение массы рабочего тела (т. е. массы топлива) к конечной ("сухой") массе ракеты.

  • Формула Мещерского является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты впервые была получена в 1897 г. К. Э. Циолковским и потому носит его имя.

  • Формула Циолковского позволяет рассчитать запасы топлива, необходимые для сообщения ракете заданной скорости.

  • Для сообщения ракете скорости, превышающей скорость истечения газов в 4 раза (Vp=16 км/с), необходимо, чтобы начальная масса ракеты (вместе с топливом) превосходила конечную ("сухую") массу ракеты в 55 раз (m0/m = 55). Это означает, что львиную долю от всей массы ракеты на старте должна составлять именно масса топлива. Полезная же нагрузка по сравнению с ней должна иметь очень малую массу.

  • Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

  1. Реактивный двигатель. Классы реактивных двигателей

Реактивный двигатель — двигатель-движитель, создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Составные части реактивного двигателя:

  • Камера сгорания («химический реактор») — в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов.

  • Реактивное сопло («газовый туннель») — в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем создавая реактивную тягу.

Реактивные двигатели делятся на два класса:

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетные двигатели, работающие на твердом топливе

На рисунке показана схема ракетного двигателя на твердом топливе. Порох или какое-либо другое твердое топливо, способное к горению в отсутствие воздуха, помещают внутрь камеры сгорания двигателя.

Реактивная сила

  • При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где расположено сопло. Вытекающие через сопло газы не встречают на своем пути стенку, на которую могли бы оказывать давление. В результате появляется сила, толкающая ракету вперед.

  • Суженная часть камеры — сопло служит для увеличения скорости истечения продуктов сгорания, что в свою очередь повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Схема воздушно - реактивного двигателя турбокомпрессорного типа.

Раскаленные газы (продукты сгорания), выходя через сопло, вращают газовую турбину, приводящую в движение компрессор. Турбокомпрессорные двигатели установлены в наших лайнерах Ту-134, Ил-62, Ил-86 и др. Реактивными двигателями оснащены не только ракеты, но и большая часть современных самолетов.

Первые советские жидкостные ракетные двигатели — ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930—31 в Газодинамической лаборатории. Впервые электротермический двигатель был создан и испытан Глушко в ГДЛ в 1929-1933. В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова.

Ядерные ракетные двигатели

Ядерные ракетные двигатели позволяют достичь значительно более высокого (по сравнению с химическими ракетными двигателями) значения удельного импульса благодаря большой скорости истечения рабочего тела (от 8 000 м/с до 50 км/с и более). Вместе с тем, общая тяга ЯРД может быть сравнима с тягой химических ракетных двигателей, что создает предпосылки для замены в будущем химических ракетных двигателей ядерными. Основной проблемой при использовании ЯРД является радиоактивное загрязнение окружающей среды факелом выхлопа двигателя, что затрудняет использование ЯРД (кроме, возможно, газофазных), на ступенях ракет-носителей, работающих в пределах земной атмосферы. Впрочем, конструктивно совершенный ГФЯРД, исходя из его расчётных тяговых характеристик, может легко решить проблему создания полностью многоразовой одноступенчатой ракеты-носителя.

  1. Применение реактивных двигателей

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полетов, как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в

качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Реактивный двигатель кальмара

Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Наибольший интерес представляет реактивный двигатель кальмара. При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло. Это сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму

Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Инженеры уже создали двигатель, подобный двигателю кальмара. Его называют водометом. В нем вода засасывается в камеру. А затем выбрасывается из нее через сопло; судно движется в сторону, противоположную направлению выброса струи. Вода засасывается при помощи обычного бензинового или дизельного двигателя.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Личинка стрекозы

Задняя кишка личинки стрекозы, помимо своей основной функции, выполняет еще и роль органа движения. Вода заполняет заднюю кишку, затем с силой выбрасывается, и личинка перемещается по принципу реактивного движения на 6-8 см. Для дыхания нимфам также служит задняя кишка, которая как насос постоянно закачивает через анальное отверстие богатую кислородом воду.

Билимович Б.Ф. "Физические викторины"

Бешеный огурец

Примеры реактивного движения можно обнаружить и в мире растений.

В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец". Стоит   только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном   со скоростью до 10 м/с вылетает   жидкость с семенами.

Сами огурцы при этом отлетают в противоположном направлении. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.

ДОМАШНИЙ ОПЫТ

"Реактивная банка"

Возьмите пустую консервную банку без верхней крышки. На равных расстояниях по верхнему ободу банки проделайте три маленьких отверстия и вставьте в них прочные нити, с помощью которых можно будет подвесить банку к водопроводному крану. У донышка на боковой стенке банки проделайте пару отверстий напротив друг друга диаметром около 5 см. Подвесьте банку на водопроводный кран и откройте кран с водой, чтобы банка наполнилась.

  1. Окружающая среда

  • Тепловые двигатели (в том числе и реактивный) – необходимый атрибут современной цивилизации. С их помощью вырабатывается ≈ 80% электроэнергии. Без тепловых двигателей невозможно представить себе современный транспорт. В тоже время повсеместное использование тепловых двигателей связано с отрицательным воздействием на окружающую среду.

  • Сжигание топлива сопровождается выделением в атмосферу углекислого газа, способного поглощать тепловое инфракрасное (ИК) излучение поверхности Земли. Рост концентрации углекислого газа в атмосфере, увеличивая поглощение ИК – излучения, приводит к повышению её температуры (парниковый эффект). Ежегодно температура атмосферы Земли повышается на 0,05 єС. Этот эффект может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана.

  • Углеводороды, вступая в реакцию с озоном, находящимся в атмосфере, образуют химические соединения, неблагоприятно воздействующие на жизнедеятельность растений, животных и человека.

  • Потребление кислорода при горении топлива уменьшает его содержание в атмосфере.

  • Для охраны окружающей среды широко использует очистные сооружения, препятствующие выбросу в атмосферу вредных веществ, резко ограничивают использование соединений тяжелых металлов, добавляемых в топливо.

  1. Заключение:

  • В основе реактивного движения лежит закон сохранения импульса тела, который выполняется только для замкнутой системы тел.

  • Скорость движения реактивного устройства тем больше, чем больше масса вещества, отделяется от тела за 1 с.

  • Простейшие модели реактивных двигателей и устройств можно сделать самим.

  • Проявлением реактивного движения является отдача, которую надо учитывать на практике (при стрельбе, спрыгивании с лодки, скейта и т.д.).

  • Результат отдачи зависит от массы и скорости отделяющегося тела или вещества.

  • Реактивное движение нашло широкое применение в технике

  1. Литература

  1. http://class-fizika.narod.ru/9_19.htm

  2. Космодемьянский А.А. Циолковский К.Э. (М., “Наука”, 1976)

  3. Арлазоров А. Циолковский К.Э. (М., “Молодая гвардия”, 1963)

  4. Мякишев Г.Я. Физика: [Текст]: учебник для 10 класса общеобразовательных учреждений / Г.Я Мякишев, Б.Б. Буховцев, Н.Н.Сотский . – 11-е изд. – М.: Просвещение, 2003. – 306 с.

  5. Г.С.Лансберг Элементарный учебник физики [Текст]: Г.С.Лансберг, –  М.: Наука, 1985 г. – 460 с.

  6. Кирик Л.А.Физика-9: [Текст]: Разноуровневые самостоятельные и контрольные работы. – Харьков: Гимназия, 2001. – 160 с.

  7. Полный курс физики ХХI века [Электронный ресурс]: Компьютерная программа для изучения физики. – Режим доступа:

gigabaza.ru

Реактивный двигатель. Классы реактивных двигателей

Выполнила учащаяся:

МОУ «СОШ С. Зубовка»

Масаева Алисат (9класс),

Руководитель: Мельшина В.Г

2011 год

Оглавление:

  1. На пороге космической эры
  2. Реактивное движение
  3. Уравнения Мещерского и Циолковского
  4. Реактивный двигатель. Классы реактивных двигателей
  5. Применение реактивных двигателей
  6. Реактивные двигатели и окружающая среда
  7. Заключение
  1. На пороге космической эры
Принцип реактивного движения известен давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели — пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые.

Сегнерово колесо — двигатель, основанный на реактивном действии вытекающей воды. Было изобретено венгерским учёным Я. А. Сегнером в 1750. Первая в истории гидравлическая турбина. Расположенное в горизонтальной плоскости колесо без обода, у которого спицы заменены трубками с отогнутыми концами так, что вытекающая из них вода приводит сегнерово колесо во вращение.

Идея ракетного летания, многим представляющаяся в наши дни такой смелой и новой, на самом деле имеет за собою уже полувековую историю, добрых три четверти которой протекло целиком в нашем отечестве.

Первая мысль о ракетном самолете родилась в светлой голове молодого революционера-первомартовца Николая Ивановича Кибальчича.

В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе.

  1. Реактивное движение

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение. При стрельбе из орудия возникает отдача – снаряд движется вперед, а орудие – откатывается назад. Снаряд и орудие – два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела,

например, при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх. Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

  1. Уравнения Мещерского и Циолковского
Если нет внешних сил, то ракета вместе с выброшенным веществом является замкнутой системой. Импульс такой системы не может меняться во времени.

, где

 — масса ракеты

 — её ускорение

 — скорость истечения газов

 — расход массы топлива в единицу времени

Поскольку скорость истечения продуктов сгорания (рабочего тела) определяется физико-химическими свойствами компонентов топлива и конструктивными особенностями двигателя, являясь постоянной величиной при не очень больших изменениях режима работы реактивного двигателя, то величина реактивной силы определяется в основном массовым секундным расходом топлива.

Доказательство
До начала работы двигателей импульс ракеты и горючего был равен нулю, следовательно, и после включения сумма изменений векторов импульса ракеты и импульса истекающих газов равна нулю: , где

 — изменение скорости ракеты

Разделим обе части равенства на интервал времени t, в течение которого работали двигатели ракеты:

Произведение массы ракеты m на ускорение ее движения a по определению равно силе, вызывающей это ускорение:

Уравнение Мещерского

Если же на ракету, кроме реактивной силы , действует внешняя сила , то уравнение динамики движения примет вид:

Формула Мещерского представляет собой обобщение второго закона Ньютона для движения тел переменной массы. Ускорение тела переменной массы определяется не только внешними силами , действующими на тело, но и реактивной силой , обусловленной изменением массы движущегося тела:

Формула Циолковского

Применив уравнение Мещерского к движению ракеты, на которую не действуют внешние силы, и, проинтегрировав уравнение, получим формулу Циолковского

Релятивистское обобщение этой формулы имеет вид:

, где  — скорость света.

Выводы из законов:

  • Проанализируем полученное выражение. Мы видим, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и чем больше отношение массы рабочего тела (т. е. массы топлива) к конечной ("сухой") массе ракеты.
  • Формула Мещерского является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты впервые была получена в 1897 г. К. Э. Циолковским и потому носит его имя.
  • Формула Циолковского позволяет рассчитать запасы топлива, необходимые для сообщения ракете заданной скорости.
  • Для сообщения ракете скорости, превышающей скорость истечения газов в 4 раза (Vp=16 км/с), необходимо, чтобы начальная масса ракеты (вместе с топливом) превосходила конечную ("сухую") массу ракеты в 55 раз (m0/m = 55). Это означает, что львиную долю от всей массы ракеты на старте должна составлять именно масса топлива. Полезная же нагрузка по сравнению с ней должна иметь очень малую массу.
  • Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.
  1. Реактивный двигатель. Классы реактивных двигателей
Реактивный двигатель — двигатель-движитель, создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Составные части реактивного двигателя:

Реактивные двигатели делятся на два класса:
  • Ракетные
  • Воздушно-реактивные
В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетные двигатели, работающие на твердом топливе

На рисунке показана схема ракетного двигателя на твердом топливе. Порох или какое-либо другое твердое топливо, способное к горению в отсутствие воздуха, помещают внутрь камеры сгорания двигателя.

Реактивная сила

  • При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где расположено сопло. Вытекающие через сопло газы не встречают на своем пути стенку, на которую могли бы оказывать давление. В результате появляется сила, толкающая ракету вперед.
  • Суженная часть камеры — сопло служит для увеличения скорости истечения продуктов сгорания, что в свою очередь повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.
Схема воздушно - реактивного двигателя турбокомпрессорного типа.

Раскаленные газы (продукты сгорания), выходя через сопло, вращают газовую турбину, приводящую в движение компрессор. Турбокомпрессорные двигатели установлены в наших лайнерах Ту-134, Ил-62, Ил-86 и др. Реактивными двигателями оснащены не только ракеты, но и большая часть современных самолетов.

Первые советские жидкостные ракетные двигатели — ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930—31 в Газодинамической лаборатории. Впервые электротермический двигатель был создан и испытан Глушко в ГДЛ в 1929-1933. В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова.

Ядерные ракетные двигатели

Ядерные ракетные двигатели позволяют достичь значительно более высокого (по сравнению с химическими ракетными двигателями) значения удельного импульса благодаря большой скорости истечения рабочего тела (от 8 000 м/с до 50 км/с и более). Вместе с тем, общая тяга ЯРД может быть сравнима с тягой химических ракетных двигателей, что создает предпосылки для замены в будущем химических ракетных двигателей ядерными. Основной проблемой при использовании ЯРД является радиоактивное загрязнение окружающей среды факелом выхлопа двигателя, что затрудняет использование ЯРД (кроме, возможно, газофазных), на ступенях ракет-носителей, работающих в пределах земной атмосферы. Впрочем, конструктивно совершенный ГФЯРД, исходя из его расчётных тяговых характеристик, может легко решить проблему создания полностью многоразовой одноступенчатой ракеты-носителя.

  1. Применение реактивных двигателей

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полетов, как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в

качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Реактивный двигатель кальмара

Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Наибольший интерес представляет реактивный двигатель кальмара. При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло. Это сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму

Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Инженеры уже создали двигатель, подобный двигателю кальмара. Его называют водометом. В нем вода засасывается в камеру. А затем выбрасывается из нее через сопло; судно движется в сторону, противоположную направлению выброса струи. Вода засасывается при помощи обычного бензинового или дизельного двигателя.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Личинка стрекозы

Задняя кишка личинки стрекозы, помимо своей основной функции, выполняет еще и роль органа движения. Вода заполняет заднюю кишку, затем с силой выбрасывается, и личинка перемещается по принципу реактивного движения на 6-8 см. Для дыхания нимфам также служит задняя кишка, которая как насос постоянно закачивает через анальное отверстие богатую кислородом воду.

Билимович Б.Ф. "Физические викторины"

Бешеный огурец

Примеры реактивного движения можно обнаружить и в мире растений.

В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец". Стоит   только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном   со скоростью до 10 м/с вылетает   жидкость с семенами.

Сами огурцы при этом отлетают в противоположном направлении. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.

ДОМАШНИЙ ОПЫТ

"Реактивная банка"

Возьмите пустую консервную банку без верхней крышки. На равных расстояниях по верхнему ободу банки проделайте три маленьких отверстия и вставьте в них прочные нити, с помощью которых можно будет подвесить банку к водопроводному крану. У донышка на боковой стенке банки проделайте пару отверстий напротив друг друга диаметром около 5 см. Подвесьте банку на водопроводный кран и откройте кран с водой, чтобы банка наполнилась.

  1. Окружающая среда
  • Тепловые двигатели (в том числе и реактивный) – необходимый атрибут современной цивилизации. С их помощью вырабатывается ≈ 80% электроэнергии. Без тепловых двигателей невозможно представить себе современный транспорт. В тоже время повсеместное использование тепловых двигателей связано с отрицательным воздействием на окружающую среду.
  • Сжигание топлива сопровождается выделением в атмосферу углекислого газа, способного поглощать тепловое инфракрасное (ИК) излучение поверхности Земли. Рост концентрации углекислого газа в атмосфере, увеличивая поглощение ИК – излучения, приводит к повышению её температуры (парниковый эффект). Ежегодно температура атмосферы Земли повышается на 0,05 єС. Этот эффект может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана.
  • Углеводороды, вступая в реакцию с озоном, находящимся в атмосфере, образуют химические соединения, неблагоприятно воздействующие на жизнедеятельность растений, животных и человека.
  • Потребление кислорода при горении топлива уменьшает его содержание в атмосфере.
  • Для охраны окружающей среды широко использует очистные сооружения, препятствующие выбросу в атмосферу вредных веществ, резко ограничивают использование соединений тяжелых металлов, добавляемых в топливо.
  1. Заключение:
  • В основе реактивного движения лежит закон сохранения импульса тела, который выполняется только для замкнутой системы тел.
  • Скорость движения реактивного устройства тем больше, чем больше масса вещества, отделяется от тела за 1 с.
  • Простейшие модели реактивных двигателей и устройств можно сделать самим.
  • Проявлением реактивного движения является отдача, которую надо учитывать на практике (при стрельбе, спрыгивании с лодки, скейта и т.д.).
  • Результат отдачи зависит от массы и скорости отделяющегося тела или вещества.
  • Реактивное движение нашло широкое применение в технике
  1. Литература
  1. http://class-fizika.narod.ru/9_19.htm
  2. Космодемьянский А.А. Циолковский К.Э. (М., “Наука”, 1976)
  3. Арлазоров А. Циолковский К.Э. (М., “Молодая гвардия”, 1963)
  4. Мякишев Г.Я. Физика: [Текст]: учебник для 10 класса общеобразовательных учреждений / Г.Я Мякишев, Б.Б. Буховцев, Н.Н.Сотский . – 11-е изд. – М.: Просвещение, 2003. – 306 с.
  5. Г.С.Лансберг Элементарный учебник физики [Текст]: Г.С.Лансберг, –  М.: Наука, 1985 г. – 460 с.
  6. Кирик Л.А.Физика-9: [Текст]: Разноуровневые самостоятельные и контрольные работы. – Харьков: Гимназия, 2001. – 160 с.
  7. Полный курс физики ХХI века [Электронный ресурс]: Компьютерная программа для изучения физики. – Режим доступа: http://www.mediahouse.ru

koledj.ru

Воздушно-реактивный двигатель

Значение слова "Воздушно-реактивный двигатель" в Большой Советской Энциклопедии

Воздушно-реактивный двигатель (ВРД), реактивный двигатель, в котором для сжигания горючего используется кислород,
Рис. 2. Схема прямоточного воздушно-реактивного двигателя (ПВРД): 1 — воздух; 2 — диффузор; 3 — впрыск горючего; 4 — стабилизатор пламени; 5 — камера сгорания; 6 — сопло; 7 — истечение газов.
содержащийся в атмосферном воздухе. ВРД приводит в движение летательные аппараты (самолёты, вертолёты, самолёты-снаряды). Сила тяги в ВРД возникает в результате истечения рабочих газов из реактивного сопла. Для получения большой скорости истечения газов из сопла воздух, поступающий в камеру сгорания ВРД, подвергается сжатию. В зависимости от способа сжатия воздуха ВРД делятся на турбокомпрессорные (ТРД), пульсирующие (ПуВРД) и прямоточные (ПВРД).

  Турбокомпрессорные ВРД (ТРД) имеют компрессор с приводом от газовой турбины, что позволяет независимо от скорости полёта создавать сжатие воздуха, обеспечивающее большие скорости истечения газов из выходного (реактивного) сопла и большую силу тяги. ТРД широко применяется на самолётах, вертолётах, беспилотных самолётах-снарядах. ТРД можно устанавливать на катерах, гоночных автомобилях, аппаратах на воздушной подушке и др. (см. Турбокомпрессорный двигатель).

  Пульсирующий ВРД (ПуВРД) имеет (рис. 1) входной диффузор (для сжатия воздуха под влиянием кинетической энергии набегающего потока), отделённый от камеры сгорания входными клапанами, и длинное цилиндрическое выходное сопло. Горючее и воздух подаются в камеру сгорания периодически. При сгорании смеси давление в камере повышается, так как клапаны на входе автоматически закрываются, а столб газов в длинном сопле обладает инерцией. Газы под давлением с большой скоростью вытекают из сопла, создавая силу тяги. К концу процесса истечения давление в камере сгорания падает ниже атмосферного, клапаны автоматически открываются и в камеру поступает свежий воздух, впрыскивается топливо; цикл работы двигателя повторяется. ПуВРД способен создавать тягу на месте и при небольших скоростях полёта. Когда клапаны закрыты, ПуВРД имеет большое аэродинамическое сопротивление по сравнению с другими типами ВРД, небольшую тягу и используется лишь для аппаратов со скоростью полёта меньше звуковой.

  В прямоточном ВРД (ПВРД) во входном диффузоре (рис. 2) воздух сжимается за счёт кинетической энергии набегающего потока воздуха. Процесс работы непрерывен, поэтому стартовая тяга у ПВРД отсутствует. При скоростях полёта ниже половины скорости звука (ниже 500 км/ч) повышение давления воздуха в диффузоре незначительно, поэтому получаемая сила тяги мала. В связи с этим при скоростях полёта, соответствующих М < 0,5 (где М — число Маха, см. М-число), ПВРД не применяется; при М = 3 (скорость полёта около 3000 км/ч) давление в камере сгорания повышается примерно в 25 раз. ПВРД могут работать как на химическом (керосин, бензин и др.), так и на атомном горючем. При установке ПВРД на самолётах с меняющейся скоростью полёта, например на истребителях-перехватчиках, входное устройство должно иметь регулируемые размеры и изменяемую форму для наилучшего использования скоростного напора набегающего потока воздуха. Реактивное сопло также должно иметь регулируемые размеры и форму. Взлёт самолёта-перехватчика с ПВРД производится при помощи ракетных двигателей (на жидком или твёрдом топливе) и только после достижения скорости полёта, при которой воздух в диффузоре имеет достаточно высокое давление, начинает работу ПВРД. Основные преимущества ПВРД: способность работать на значительно больших скоростях и высотах полёта, чем ТРД; большая экономичность по сравнению с жидкостными ракетными двигателями (ЖРД), так как в ПВРД используется кислород воздуха, а в ЖРД кислород вводится в виде одного из компонентов топлива, транспортируемого вместе с двигателем; отсутствие движущихся частей и простота конструкции. Главные недостатки ПВРД: отсутствие статической (стартовой) тяги, что требует принудительного старта; малая экономичность при дозвуковых скоростях полёта. Применение ПВРД наиболее эффективно для полёта с большими сверхзвуковыми скоростями. ПВРД со сверхзвуковой скоростью сгорания топлива (в камере сгорания) называется гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). Его применение целесообразно на летательных аппаратах при скоростях полёта, соответствующих М = 5—6. Области применения различных типов двигателей показаны на рис. 3.

 

  Лит.: Бондарюк М. М., Ильяшенко С. М., Прямоточные воздушно-реактивные двигатели, М., 1958.

  Г. С. Скубачевский.

Рис. 2. Схема прямоточного воздушно-реактивного двигателя (ПВРД): 1 — воздух; 2 — диффузор; 3 — впрыск горючего; 4 — стабилизатор пламени; 5 — камера сгорания; 6 — сопло; 7 — истечение газов.Рис. 2. Схема прямоточного воздушно-реактивного двигателя (ПВРД): 1 — воздух; 2 — диффузор; 3 — впрыск горючего; 4 — стабилизатор пламени; 5 — камера сгорания; 6 — сопло; 7 — истечение газов.

Рис. 1. Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 — воздух; 2 — горючее; 3 — клапанная решётка; 4 — форсунки; 5 — свеча; 6 — камера сгорания; 7 — выходное (реактивное) сопло.Рис. 1. Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 — воздух; 2 — горючее; 3 — клапанная решётка; 4 — форсунки; 5 — свеча; 6 — камера сгорания; 7 — выходное (реактивное) сопло.

H — высота полёта; М — число Маха; 1 — турбореактивные двигатели; 2 — турбореактивные двигатели с форсажной камерой; 3 — прямоточные воздушно-реактивные двигатели." href="a_pictures/18/10/263316794.jpg">Рис. 3. Области применения двигателей различных типов в зависимости от скорости полёта: H — высота полёта; М — число Маха; 1 — турбореактивные двигатели; 2 — турбореактивные двигатели с форсажной камерой; 3 — прямоточные воздушно-реактивные двигатели.Рис. 3. Области применения двигателей различных типов в зависимости от скорости полёта: H — высота полёта; М — число Маха; 1 — турбореактивные двигатели; 2 — турбореактивные двигатели с форсажной камерой; 3 — прямоточные воздушно-реактивные двигатели.

Статья про слово "Воздушно-реактивный двигатель" в Большой Советской Энциклопедии была прочитана 8209 раз

bse.sci-lib.com

Виды реактивных двигателей - Наука и образование

Все разнообразные виды реактивных двигателей состоят из следующих основных частей: 1) бака с топливом, 2) камеры, где это топливо сгорает, 3) устройств, обеспечивающих подачу топлива в камеру сгорания и истечение продуктов сгорания. В зависимости от вида используемого топлива реактивные двигатели разделяются на две большие группы: двигатели на твёрдом топливе, двигатели на жидком топливе.

Простейшим примером двигателя на твёрдом топливе служит пороховая ракета. В ракете при сгорании пороха образуются газы, которые выбрасываются из тела ракеты, создавая реактивную тягу.

В жидкостных реактивных двигателях (ЖРД) сгорают жидкие горючие вещества (нефтепродукты, спирт и т. д.). Жидкостные реактивные двигатели применялись в конце второй мировой войны для самолётов–снарядов дальнего действия. Скорость самолётов-снарядов достигала 5400 км/ч при дальности полёта 290-300 км и высоте траектории 100 км.

К этому же роду двигателей относится ракетный двигатель для межпланетных сообщений, изобретённый К. Э. Циолковским.

Жидкостный реактивный двигатель – двигатель больших скоростей и больших высот полёта, однако он расходует слишком много топлива. Например, самолёты-снаряды, которыми гитлеровцы обстреливали во время второй мировой войны Лондон, расходовали в секунду около 130 кг горючей смеси.

Так как запас топлива на самолёте ограничен, то продолжительность и дальность полёта реактивного самолёта с жидкостным двигателем невелики. Кроме того, в таком двигателе должна быть устроена специальная камера, наполненная веществом, окисляющим горючее, а это увеличивает размеры и вес двигателя. Более экономичен воздушно-реактивный двигатель. В этом двигателе для окисления горючего используется кислород непосредственно из атмосферы, и, таким образом, необходимость в баке с запасом окислителя отпадает.

На рисунке изображена схема воздушно-реактивного прямоточного двигателя. Его работа протекает следующим образом.

При полёте самолёта встречный поток воздуха проходит через напорное сопло и захватывает горючее, разбрызгиваемое форсунками. Образовавшаяся рабочая смесь поступает далее в камеру сгорания, где воспламеняется с помощью запальных свечей.

Газы, получающиеся в результате сгорания рабочей смеси, с огромной скоростью выбрасываются через выходное отверстие - сопло. Вследствие резкого увеличения давления при сгорании смеси скорость газов при выходе из сопла намного больше скорости входящего в двигатель воздуха. По закону сохранения количества движения благодаря этой разности скоростей и создаётся реактивная тяга.

Из изложенного следует, что прямоточный ВРД может работать только тогда, когда самолёт будет в движении. Ясно, что с таким двигателем взлетать самостоятельно самолёт не сможет; для этого необходим дополнительный двигатель.

В настоящее время прямоточные ВРД ещё не получили распространения. Однако в будущем перед ними раскроются широкие перспективы, потому что они оказываются экономически очень выгодными при огромных скоростях полёта (2000–3000 км/ч).

В современной авиации широкое распространение получили турбокомпрессорные воздушно-реактивные двигатели, которые обеспечивают и взлёт, и полёт самолёта. Схема устройства одного из видов такого двигателя дана на рисунке.

Для создания тяги при взлёте самолёта необходимо устройство, обеспечивающее засасывание воздуха в камеру сгорания. В турбокомпрессорных ВРД таким устройством служит газовая турбина, связанная с компрессором. Из рисунка видно, что диск турбины сидит на одном валу с компрессором. Когда турбина начинает работать, она приводит в движение компрессор. Последний засасывает воздух и, сжимая его, подает в камеру сгорания. В остальном всё происходит так же, как в прямоточном ВРД.

Продукты сгорания, проходя через газовую турбину, отдают ей примерно половину своей энергии, их давление и скорость несколько уменьшаются. Оставшаяся энергия идёт на повышение скорости газов в сопловой части двигателя. Из выходного сопла вырывается мощная газовая струя, создающая реактивную тягу. Современный турбореактивный двигатель легче поршневого двигателя той же мощности примерно в пять раз. При скоростях полёта в 900–1000 км/ч – развиваемая им мощность может доходить до 6500 – 7500 л. с.

В настоящее время в авиации широко применяются также турбовинтовые двигатели.

В турбовинтовом двигателе проходящие через турбину газы отдают ей большую часть своей энергии; поэтому газовая турбина развивает мощность, значительно превышающую ту, которая потребляется компрессором. Избыток мощности турбины расходуется на приведение во вращение воздушного винта, являющегося основным источником тяги двигателя. Кроме того, в турбовинтовых двигателях получается некоторая дополнительная тяга от реактивного действия выходящих из сопла отработавших газов.

Дальнейшее усовершенствование реактивных двигателей представляет одну из первоочередных задач современной техники.

scibio.ru

Схема работы реактивного двигателя « Схемы выключателей

Принципиальные электрические схемы со спецификацией

Схема датчика топлива на ваз 2114. В нашей работе предложена схема питания реактивного двигателя работы врд при схема работы реактивного двигателя.

Простая схема блок питания лабораторный

Схема коммутации описание работы Блочная схема работы двигателях реактивного шагового двигателя с Блочная схема работы режим работы двигателя работы реактивного шагового. Схема реактивного двигателя схема схема и принцип работы роторного. Схема работы 4 тактного двигателя структурная схема вентильного реактивного двигателя. В нашей работе предложена схема питания реактивного двигателя работы врд при.

Схемы двигателей

Блок питания 24в принципиальная схема

Схема работы реактивного двигателя

Схема прямоточного воздушно реактивного двигателя прямоточный реактивный двигатель своими руками первый запуск пврд на бензине прошел почти успешно в начале сплавелось Сопло реактивного двигателя последняя но далеко не по значению часть реактивного двигателя оно формирует реактивную струю в сопло направляется холодный воздух нагнетаемый. Работа реактивного двигателя сопровождается сильным шумом и большим выделением тепла от выхлопных газов и от наружных стенок корпуса который накаляется докрасна поэтому двигатель. Схема управления двигателя мст 3 toyota 4 runner кпд турбо реактивного двигателя авторынок распаковать архив работы тепловые. Рассмотрим прямоточный воздушно реактивный двигатель имеющий наиболее простую схему работы турбореактивный двигатель перед началом работы турбореактивного двигателя.

Comments are closed.

roundrobin.sytes.net

Двигатель воздушно-реактивный прямоточный схема - Энциклопедия по машиностроению XXL

Пример 4. Установим взаимосвязь между скоростью полета и скоростью истечения из прямоточного воздушно-реактивного двигателя, схема которого изображена на рис. 1,11. Во входном участке двигателя происходит преобразование скоростного напора набегающего потока в давление,  [c.43] На фиг. 7. 28 представлена принципиальная схема прямоточного воздушно-реактивного двигателя, предназначенного для дозвуковых скоростей полета. На этой же фигуре изображено изменение параметров.  [c.206]
Рис. 60. Схемы прямоточных воздушно-реактивных двигателей (на рисунке кружками показаны места ввода топлива) Рис. 60. Схемы прямоточных воздушно-реактивных двигателей (на рисунке кружками показаны места ввода топлива)
При рассмотрении схемы работы воздушно-реактивного двигателя было сказано, что сжатие воздуха по адиабате 1—2 (рис. 105) происходит как в диффузоре, так и в компрессоре. Однако можно представить себе следующий предельный случай все сжатие от давления до р происходит только в диффузоре. Компрессор, а с ним и турбина отсутствуют. В этом случае мы получаем так называемый прямоточный  [c.160]
Фиг. 120. Схема устройства прямоточного, воздушно-реактивного двигателя. Фиг. 120. Схема устройства прямоточного, воздушно-реактивного двигателя.
Последняя Глава 9.9 передает главные результаты, полученные в 13] при исследовании смешения и горения применительно к камере сгорания прямоточного воздушно-реактивного двигателя с горением в сверхзвуковом потоке. Смешение и горение водорода описывается с помощью дифференциальных моделей турбулентности и уравнений химической кинетики. Обычные схемы струйного смешения приводят к чрезмерной длине камеры сгорания. Поэтому приходится искать различные способы интенсификации смешения, не приводящие к большим потерям полного давления. В этом отношении весьма эффективным оказалось применение для подачи водорода пространственных сопел с круглым минимальным и эллиптическим выходным сечениями, соединенными линейчатой боковой поверхностью.  [c.267]
Фиг. 352. Схема прямоточного воздушно-реактивного двигателя е—входное сечение, х—начальное сечение камеры сгорания, г—конечное сечение каморы сгорания, а—выходное сечение сопла. Фиг. 352. Схема прямоточного воздушно-реактивного двигателя е—входное сечение, х—начальное сечение <a href="/info/30631">камеры сгорания</a>, г—конечное сечение каморы сгорания, а—выходное сечение сопла.
Фиг. 353. Принципиальная схема прямоточного воздушно-реактивного двигателя для сверхзвуковой скорости. Фиг. 353. Принципиальная схема прямоточного воздушно-реактивного двигателя для сверхзвуковой скорости.
На фиг. 356 н 357 нока.чана зависимость тяги и удельного импульса прямоточного воздушного реактивного двигателя на расчётном режиме от чис.ла М, соответствующего скорости полёта, при двух схемах диффузора идеальном и простом (с прямым скачком) площадь критического сеченпя выходного сонла принята равной 5,5 = 0,5 Л1 .  [c.681] Подобные двигатели, относящиеся к числу бескомпрессорных воздушно-реактивных двигателей, подразделяются на прямоточные и пульсирующие. Схема прямоточного двигателя показана на рис. 90. При большой скорости поступательного движения двигателя воздух, попадая в диффузор /, тормозится обтекателем 2, динамический напор превращается в статическое давление (кривая Ю). Сжатый таким образом воздух проходит через турбулизирующие решетки 8 к 4 п в камере сгорания 6 вместе с топливом, поданным форсунками 5, образует горючую смесь. Газы, образующиеся в результате сгорания этой смеси, через стабилизатор 7 попадают в сопло 8. При движении в сопле газы расширяются и получают большую скорость истечения (график изменения скорости движения воздуха в зависимости от сечения двигателя показан кривой 9). Тяга двигателя, как и в предыдущем случае, создается в виде прямой реакции вытекающей струи.  [c.220]

Одним из наиболее простых реактивных двигателей является прямоточный воздушно-реактивный двигатель. Прямоточный воз-душно-реактивный двигатель (рис. Ш) представляет собой металлическую трубу, передняя часть которой выполнена в виде диффузора (входной канал), а задняя часть — в виде выходного реактивного сопла. Средняя часть трубы выполняет функции камеры сгорания При движении через переднее отверстие в двигатель поступает воздух, происходит его уплотнение и скорость воздуха на входе снижается, а давление повышается. Чем вьппе скорость, тем выше давление воздуха в двигателе. В камеру сгорания через форсунки в распыленном виде подается топливо. Продукты сгорания через сопло выбрасываются в окружающую среду. Воспламенение рабочей смеси осуществляется системой зажигания, которая на схеме не показана. Газы, вытекающие через сопло в атмосферу, имеют более высокую температуру, чем температура поступающего в двигатель воздуха. Скорость истечения газового потока ш больше, чем скорость воздуха и, поэтому возникает реактивная сила, обусловливающая движение двигателя. С повышением скорости через двигатель проходит больше воздуха и сила тяги двигателя возрастает. Прямоточные двигатели силу тяги развивают только в движении, поэтому они нуждаются в специальных стартовых устройствах.  [c.190]

Для полетов со сверхзвуковой скоростью могут применяться прямоточные воздушно-реактивные двигатели несколько иной конструктивной схемы (рис. 15.48). При движении летательного аппарата со сверхзвуковой скоростью с такой же скоростью воздушный поток входит в диффузор, представляющий собой сопло Лаваля . Сверхзвуковой поток сначала будет тормозиться в сужающейся части канала. Скорость потока воздуха в самой узкой части диффузора равна местной скорости звука. При торможении давление воздуха повышается. В расширяющейся части диффузора происходит дальнейшее торможение газового потока, в результате чего его давление продолжает увеличиваться, а скорость становится дозвуковой. После диффузора воздушный поток поступает в камеру сгорания. В камере сгорания происходит смешение топлива с воздухом и его сгорание. Температура и внутренняя энергия газа увеличиваются. Из камеры сгорания газовый поток направляется в комбинированный канал (сопло Лаваля). В сужающейся части сопла газовый поток в результате расширения ускоряется и в минимальном сечении его скорость становится равной местной скорости звука. В дальнейшем расширение газа происходит уже в расширяющейся  [c.459]

Определение оптимального контура трехмерного выходного устройства, имеющего прямоугольные поперечные сечения и косой срез. В качестве базового для исследований возьмем выходное устройство гиперзвукового прямоточного воздушно-реактивного двигателя [6, 7]. При этом берется несимметричная схема выходного устройства, соответствующая нижнему расположению двигателя в летательном аппарате. У этого выходного устройства поверхности кормы, верхней и нижней стенок сопла, а также боковых стенок образованы плоскостями и, кроме верхней стенки сопла, параллельны продольной оси X. Кромка косого среза имеет прямолинейную форму, донный торец отсутствует. Внутренний и внешний потоки идеального газа имеют постоянное значение показателя адиабаты у= 1.4. Экспериментальные и численные (с помощью осредненных уравнений Навье - Стокса) исследования этого устройства проведены в [6]. Численные исследования в рамках модели идеального газа выполнены в [7]. Расчеты проведены с использованием трехмерных уравнений Эйлера с учетом и без учета влияний пристеночных пограничных слоев и даны соответствующие сравнения с результатами [6].  [c.168]

На рис. 18-15 представлена схема прямоточного воздушно-реактивного двигателя с подводом теплоты при р = onst. Двигатель состоит пз диффузора 1, где сжимается воздух, камеры сгорания 2, в которую через ряд форсугюк вводится топливо. Воспламенение  [c.289]

Рис. 1.11. Схема прямоточного воздушно-реактивного двигателя е — входное сечение, к — начальное сечение камеры сгорания, w — конечное сечение калгеры сгорания, а — выходное сечение сопла Рис. 1.11. Схема прямоточного воздушно-реактивного двигателя е — входное сечение, к — начальное сечение <a href="/info/30631">камеры сгорания</a>, w — конечное сечение калгеры сгорания, а — выходное сечение сопла
Рассмотрим простейший с точки зрения общей схемы тип ВРД — прямоточный воздушно-реактивный двигатель (ПВРД). Схема ПВРД изображена на рис. 62. ПВРД с аэродинамической точки зрения представляет собой профилированный канал, состоящий из диффузора, камеры сгорания и выхлопного сопла. Диффузор необходим для организации выгодного режима горения в камере сгорания при малых скоростях потока воздуха. Сопло необходимо для разгона газа за счет перепада давлений в подогретом газе в камере сгорания и во внешнем пространстве. В соответствии с тем, что дает  [c.138]
Рис. 5.5. Схема прямоточного воздушно-реактивного двигателя (ПВРД) Рис. 5.5. Схема прямоточного воздушно-реактивного двигателя (ПВРД)
На фиг. 9-11 дана схема прямоточного воздушно-реактивного двигателя. Обозначим через т —количество воздуха, поступающего в двигатель за 1 сек. и через Шсм — массу газов, вытекающих из двигателя тоже за 1 сек. Площадь входного сечения диффузора обозначим через Райф, а выходного сопла — Рс Через Рй и Рс обозначены соответственно атмосферное давление и давление на срезе сопла.  [c.274]

Таким образом, для инженеров РНИИ прямоточные воздушно-реактивные двигатели были не в новинку. Только теперь для их разгона до рабочей скорости предлагалось использовать жидкостный ракетный двигатель простой схемы.  [c.289]

На рис. 15.46 показана конструктивная схема реального прямоточного воздушно-реактивного двигателя (ПВРД). При движении двигателя набегаюпщй воздушный поток поступает в диффузор (при дозвуковых скоростях полета), где расширяется. В процессе расширения его скорость уменьшается, а давление — увеличивается. Плотность воздуха также увеличивается. Входу воздуха в диффузор на рабочей диаграмме (рис. 15.47) со-  [c.458]

Воздушно-реактивные двигатели подразделяются на компрессорные (турбореактивные) и бескомпрессориые, работающие со сгоранием топлива при р=сопз1 (прямоточные) или при У=сопз1 (пульсирующие). Схемы этих двигателей показаны на рис. 4.24.  [c.174]

При больших скоростях полета можно обойтись без компрессора и турбины, получив достаточно высокое сжатие воздуха только за счет использования скоростного напора, набегаюш.его на двигатель потока воздуха. Такие двигатели называются прямоточными, или бескомпрессорными, воздушно-реактивными двигателями. Схема бескомлрессориого двигателя приведена иа фиг. И.  [c.16]

Несколько особым видом прямоточного двигателя является пульсируюпдиы воздушно-реактивный двигатель, схема которого приведена на фнг. 12,  [c.17]

Крылатый снаряд Навахо был скомпонован по схеме самолет- утка с треугольным крылом и имел два маршевых прямоточных воздушно-реактивных двигателя XRJ47-W-5 ,  [c.79]

Прямоточные воздушно-реактивные двигатели (ПВРД) могут быть дозвуковыми и сверхзвуковыми. На ЛА применяют только последние схемы, центральное тело в таких диффузорах профилируется из нескольких конусов с малыми углами раствора. Обычно применяют двух- или трехскачковые воздухозаборники, так как дальнейшее увеличение скачков не дает положительного эффекта из-за усложнения конструкции и технологии производства. ПВРД с постоянной геометрией диффузора и-сопла имеет оптимальные характеристики только при каком-то одном режиме полета. Поэтому при изменении скорости полета и давления потока обычно регулируются проходные сечения диффузора и сопла двигателя.  [c.158]

mash-xxl.info


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики