Почему параллельные вселенные могут оказаться реальностью? Теория бесконечности вселенной


Научные теории о множественной Вселенной

Может оказаться, что наша Вселенная не единственная.

Возможно, такая концепция и кажется удивительной, но за ней стоит физика. И есть не один способ, позволяющий убедиться в этом, — множество независимых физических теорий делают подобный вывод. В действительности, по мнению некоторых экспертов, скрытые вселенные скорее существуют, нежели нет. Есть пять самых правдоподобных научных теорий, которые предполагают, что мы существуем в Мега-Вселенной.

Теория о математических Вселенных

Ученые ведут споры: является ли математика просто полезным инструментом, описывающим Вселенную, или она сама — фундаментальная реальность, а наши наблюдения – это всего лишь несовершенные представления о математическом характере Вселенной. Если данное утверждение истинно, то, вполне возможно, могут существовать математические инварианты для нашей Вселенной.

В данных структурных инвариантах работают законы математической логики, которые порой сильно отличаются от логики привычной для нас модели Мира.

Данная идея была предложена Максом Тегмарком из Массачусетского технологического института, который считает, что математическую структуру можно описать неким образом, находящимся в полной зависимости от человеческого багажа знаний. Причем, эта вселенная существует независимо, и будет существовать, даже если людей вообще не будет.

Другими словами, данные инварианты никоим образом не зависят от существования человечества, пытающегося их осознать.

Теория о дочерних Вселенных

Еще одну возможность существования множественных Вселенных описывает теория квантовой механики, царящая в мире субатомных частиц. В этой сфере мир описывается терминами вероятностей, а определенных результатов. Математика данной теории выдвигает предположение, что все возможные результаты имеют место в своих собственных отдельных Вселенных.

К примеру, на перекрестке, где можно пойти направо или налево, в реальной Вселенной рождается две дочерних Вселенных. Одна из них та, в которой вы повернули налево, а другая, в которой сделали поворот направо, причем, их невозможно отличить.

Теория о параллельных Вселенных

Еще одна идея берет свое начало в теории струн – это параллельные Вселенные, парящие вне досягаемости от нашей собственной Вселенной. Данная идея берет свое начало в теории существования большего количества измерений, нежели есть в нашем мире. Дополнением к нашей трехмерной реальности пространства становятся другие трехмерные реальности, которые могут находиться в многомерном пространстве.

По словам физика Брайана Грина из Колумбийского университета, наша Вселенная является одним «блоком» из большого количества «блоков», которые находятся в многомерном пространстве.

Есть предположение, что эти параллельные вселенные в действительности не всегда параллельны и не всегда находятся вне досягаемости. Иногда они сталкиваются друг с другом, создавая Большие Взрывы, порождающие все новые и новые Вселенные.

Теория о пузырьковых Вселенных

В научном мире существуют и другие теории существования Вселенных, в числе которых теория хаотической инфляции.

Предполагается, что после Большого Взрыва наша Вселенная начала расширяться, словно надуваемый воздушный шарик. Некоторая ее часть оформилась в виде «пузыря» нашей Вселенной, создав возможность формирования звезд.

Но в других районах пространства-времени происходили другие процессы, в результате которых началось формирование изолированных Вселенных, которые представляют собой отдельные «пузырьки», аналогичные выдуваемым мыльным пузырям. Они могут находиться на разных ступенях развития, обладая собственными физическими законами и константами.

Данную концепцию предложил космолог Александр Виленкин, который в настоящее время работает в университете Тафтса.

Теория о бесконечных Вселенных

По мнению ученых, наиболее вероятной является плоская форма пространства-времени, в отличие от тороидальной или сферической.

Но если пространство-время является бесконечным и течет вечно, то в какой-то из моментов оно начнет повторяться, так как возможно конечное число способов расположения частиц в пространстве и времени.

Поэтому, если продвинуться достаточно далеко, то можно наткнуться на другую нашу версию, а на самом деле, их может быть бесконечное множества. Некоторые близнецы будут повторять ваши действия, а другие – наденут разную одежду с утра, и у них могут быть совершенно другие карьеры и образы жизни.

Так как расширение наблюдаемой Вселенной происходит только в 13.7 миллиардов лет после Большого Взрыва, а это эквивалентно размеру в 13.7 миллиардов световых лет, можно считать, что пространство-время за той границей является самостоятельной отдельной Вселенной. Получается, что множество разных Вселенных находятся рядом, образуя огромное лоскутное одеяло из Вселенных.

No related links found

tainy.net

Почему параллельные вселенные могут оказаться реальностью?

Параллельные вселенные - это теория или действительность? Многие ученые-физики бьются над решением этого вопроса далеко не первый год.

Существуют ли параллельные вселенные?

параллельные вселенные

Является ли наша Вселенная одной из множества? Идея параллельных вселенных, ранее приписываемая исключительно научной фантастике, теперь становится все более уважаемой среди ученых – по крайней мере, среди физиков, которые обычно доводят любую идею до самых рамок того, что вообще можно предположить. В действительности существует огромное количество потенциальных параллельных вселенных. Физики предложили несколько возможных форм «мультивселенной», каждая из которых является возможной по тому или иному аспекту законов физики. Проблема, которая вытекает непосредственно из самого определения, заключается в том, что люди никогда не смогут посетить эти вселенные, чтобы убедиться в том, что они существуют. Таким образом, вопрос заключается в том, как другими методами проверить существование параллельных вселенных, которые невозможно увидеть или потрогать?

Зарождение идеи

параллельные вселенные

Предполагается, что по крайней мере в некоторых из этих вселенных живут человеческие двойники, которые проживают похожие или даже идентичные жизни с людьми из нашего мира. Такая идея затрагивает ваше эго и пробуждает фантазии – именно поэтому мультивселенные, какими бы далекими и недоказуемыми они ни были, всегда получали такую широкую популярность. Наиболее наглядно вы могли увидеть идеи мультивселенных в таких книгах, как «Человек в высоком замке» Филиппа К. Дика, и в таких фильмах, как «Осторожно, двери закрываются». На самом деле, нет ничего нового в идее мультивселенных – это наглядно доказывает религиозный философ Мери-Джейн Рубенштейн в своей книге «Миры без конца». В середине шестнадцатого века Коперник спорил о том, что Земля не является центром Вселенной. Спустя несколько десятилетий телескоп Галилео показал ему звезды вне досягаемости, так человечество получило первое представление о необъятности космоса. Таким образом, в конце шестнадцатого века итальянский философ Джордано Бруно рассуждал о том, что Вселенная может быть бесконечной и содержать в себе бесконечное число населенных миров.

Вселенная-матрешка

параллельные вселенные

Идея о том, что Вселенная содержит множество солнечных систем, стала довольно распространенной в восемнадцатом веке. В начале двадцатого века ирландский физик Эдмунд Фурнье Д’Альба даже предположил, что может существовать бесконечная регрессия «вложенных» вселенных разного размера, как больших, так и меньших. С этой точки зрения, отдельно взятый атом можно рассматривать как настоящую населенную солнечную систему. Современные ученые отрицают предположение о существовании мультивселенной-матрешки, но взамен они предложили несколько других вариантов, в которых могут существовать мультивселенные. Вот самые популярные среди них.

Лоскутная вселенная

ученые

Самая простая из этих теорий вытекает из идеи о бесконечности Вселенной. Невозможно знать наверняка, является ли она бесконечной, но и отрицать это невозможно. Если она все же бесконечна, то она должна быть разделена на «лоскуты»-регионы, которые не видны друг другу. Почему? Дело в том, что эти регионы находятся настолько далеко друг от друга, что свет не может преодолеть такую дистанцию. Возраст Вселенной составляет всего 13.8 миллиарда лет, так что любые регионы, находящиеся на расстоянии 13.8 миллиарда световых лет друг от друга, полностью отрезаны друг от друга. В соответствии со всеми данными, эти регионы могут считаться отдельными вселенными. Но они не остаются в таком состоянии навсегда - в конце концов свет переходит границу между ними, и они расширяются. И если Вселенная на самом деле состоит из бесконечного количества «островных вселенных», содержащих материю, звезды и планеты, то где-то должны быть и миры, идентичные Земле.

Инфляционная мультивселенная

физики

Вторая теория вырастает из идей о том, как Вселенная зародилась. В соответствии с доминирующей версией о Большом Взрыве, она началась как бесконечно малая точка, которая невероятно быстро расширилась в раскаленном огненном шаре. Спустя долю секунды после начала расширения ускорение уже достигло такой огромной скорости, которая намного превышала скорость света. И этот процесс называется «инфляцией». Инфляционная теория объясняет, почему Вселенная является относительно однородной в любой отдельно взятой ее точке. Инфляция расширила этот огненный шар до космических масштабов. Однако изначальное состояние также имело большое количество различных случайных вариаций, которые также подверглись инфляции. И теперь они сохраняются в качестве реликтовой радиации, слабого послесвечения Большого Взрыва. И это излучение пронизывает всю Вселенную, делая ее не такой равномерной.

Космический естественный отбор

физики

Данная теория была сформулирована Ли Смолиным из Канады. В 1992 году он предположил, что вселенные могут развиваться и воспроизводиться точно так же, как живые существа. На Земле естественный отбор способствует появлению «полезных» черт, таких как большая скорость бега или особое расположение больших пальцев. В мультвселенной также должно существовать определенное давление, которое делает одни вселенные лучшими, чем другие. Смолин назвал эту теорию «космическим естественным отбором». Идея Смолина заключается в том, что «материнская» вселенная может давать жизнь «дочерним», которые формируются внутри нее. Материнская вселенная может сделать это только в том случае, если у нее имеются черные дыры. Черная дыра формируется, когда большая звезда разрушается под воздействием ее собственной силы притяжения, сталкивая все атомы до такой степени, пока они не достигают бесконечной плотности.

Мультивселенная брана

ученые

Когда общая теория относительности Альберта Эйнштейна начала набирать популярность в двадцатые годы, многие люди обсуждали «четвертое измерение». Что может там находиться? Возможно, скрытая вселенная? Это была бессмыслица, Эйнштейн не предполагал существование новой вселенной. Все, что он говорил – это то, что время является таким же измерением, которое похоже на три измерения пространства. Все четыре сплетаются между собой, образую пространственно временной континуум, материя которого искажается – и получается гравитация. Несмотря на это, другие ученые начали обсуждать возможность существования других измерений в космосе. Впервые намеки на скрытые измерения появились в работах теоретического физика Теодора Калуцы. В 1921 году он продемонстрировал, что, добавляя к уравнению общей теории относительности Эйнштейна новые измерения, можно получить дополнительное уравнение, с помощью которого можно предсказывать существование света.

Многомировая интерпретация (квантовая мультивселенная)

Теория квантовой механики является одной из самых успешных во всей науке. Она обсуждает поведение самых малых объектов, таких как атомы и их составляющие элементарные частицы. Она может предсказывать самые различные феномены, начиная от формы молекул и заканчивая тем, как взаимодействуют свет и материя – и все это с невероятной точностью. Квантовая механика рассматривает частицы в форме волн и описывает их математическим выражением, которое именуется волновой функцией. Возможно, самой странной особенностью волновой функции является то, что она позволяет частице существовать одновременно в нескольких состояниях. Это называется суперпозицией. Но суперпозиции разрушаются, как только предмет измеряется любым способом, так как измерения заставляют объект выбрать конкретную позицию. В 1957 году американский физик Хью Эверетт предложил перестать жаловаться на странную природу такого подхода и просто жить с ним. Он также предположил, что объекты не переключаются на конкретную позицию при их измерении – вместо этого он считал, что все возможные позиции, заложенные в волновую функцию, одинаково реальны. Поэтому, когда происходит измерение предмета, человек видит лишь одну из многих реальностей, но все остальные реальности также существуют.

fb.ru

Бесконечность Вселенной

VN:F [1.9.22_1171]

Rating: 5.0/5 (2 votes cast)

Бесконечность Вселенной

Попытка понять бесконечность является одним из важнейших вопросов не только философии, но и астрономии. Философы могут рассматривать бесконечность нашего мира, как с точки зрения религии, так и с точки зрения разума. Астрономов привлекает, в первую очередь, сама физика бесконечной вселенной, ее способность к расширению до невиданных размеров.

Бесконечность вселенной крайне трудно представить и также трудно показать. Конечно в математике и других точных науках существует «перевернутая восьмерка», но она всего лишь символ, условное обозначение.

В бесконечности вселенной могут скрываться не только тайны, загадки и недосказанность, но и ответы на такие животрепещущие вопросы как существование инопланетных цивилизаций и других миров.

Расширение Бесконечной Вселенной

Сторонники Теории Большого Взрыва склонны верить в то, что вселенная непрерывно расширяется. Этот процесс не прекращается ни на минуту, а лишь все время ускоряется. Ведь Большие Взрывы продолжают происходить, порождая тем самым новые миры, которые становятся составляющими так называемой мультивселенной — скопления параллельных миров.

Теория о расширяющейся вселенной созвучна с попытками философов разных времен охарактеризовать бесконечность. Они полагали, что если у вселенной будет край и человек каким-либо способом сможет достигнуть его, то он окажется у границы известного нам мира, но попытавшись выйти за эту границу, он окажется во вновь образовавшемся участке вселенной, расширившейся вселенной.

Бесконечность Вселенной

Тем, кто не ждет сигналов из иных миров и вселенных, а живет здесь и сейчас, можно посоветовать, например, купить генераторы сигналов в интернет-магазине http://neokip.ru.

Бесконечность Вселенной, 5.0 out of 5 based on 2 ratings

Смотрите также:

paranormal-blog.ru

5 теорий, предполагающих, что мы живем в Мультивселенной |

Вселенная, в которой мы живем, может быть не единственной. По сути, наша Вселенная может быть только одной из бесконечного числа вселенных, образующих “мультивселенную”.Некоторые эксперты считают, что существование скрытых вселенных более вероятно, чем нет.

Вот пять наиболее правдоподобных научных теорий, предполагающих, что мы живем в Мультивселенной:

1. Бесконечные Вселенные

Ученые пока не уверены, какую форму имеет пространство-время, но, скорее всего, оно плоское (в отличие от сферической и даже пончиковой формы) и тянется бесконечно. Но если пространство-время бесконечно, то оно должно начать повторяться в какой-то момент, потому что есть конечное количество способов, как частицы могут быть устроены в пространстве и времени.

Так что если бы вы могли посмотреть достаточно далеко, вы бы увидели еще одну версию себя — на самом деле, бесконечное количество версий. Некоторые из этих близнецов будут делать именно то, что вы делаете прямо сейчас, в то время как другие будут носить этим утром другой свитер, а третьи и четвертые будут иметь совершенно разные карьеры и образ жизни.

Бесконечная вселенная

Поскольку наблюдаемая Вселенная простирается лишь настолько, насколько свет имеет шанс попасть за 13,7 млрд. лет после большого взрыва (13,7 млрд световых лет), пространство-время за пределами этого расстояния можно считать своей собственной, отдельной вселенной. Таким образом, множество вселенных существует рядом друг с другом в гигантской мозаике из вселенных.

Пространство-время может растянуться до бесконечности. Если это так, то все в нашей Вселенной обязано повториться в какой-то момент, создавая лоскутное одеяло из бесконечных вселенных.

2. Дочерние вселенные

Теория квантовой механики, которая правит в крошечном мире субатомных частиц, предлагает еще один способ возникновения множественных вселенных. Квантовая механика описывает мир в терминах вероятности, без конкретных результатов. И математика этой теории предполагает, что все возможные исходы ситуации происходят в их собственных отдельных вселенных. Например, если вы достигнете перекрестка, где вы можете пойти направо или налево, вселенная порождает две дочерние вселенные: одна, в которой вы идете направо, другая – налево.

“И в каждой Вселенной, есть копия вас, как свидетеля того или иного результата. Думать, что ваша реальность является единственной реальностью, – неправильно.”

– Написал Брайан Рэндолф Грин в “Скрытой реальности”.

3. Вселенная Пузырь

Помимо множественных вселенных, созданных бесконечно расширяющемся пространством-временем, другие вселенные могут возникать в связи с так называемой теорией “вечной инфляции”. Понятие инфляции заключается в том, что Вселенная быстро расширяется после Большого взрыва, словно надуваемый воздушный шар. Вечная инфляция, впервые предложенная космологом университета Тафтса Александром Виленкиным, говорит о том, что отдельные участки пространства перестают раздуваться, тогда как в других регионах продолжают раздуваться, тем самым порождая множество изолированных “пузырчатых вселенных”.

Вселенная пузырь

Таким образом наша собственная вселенная, где инфляция закончилась, позволив сформироваться звездам и галактикам, является всего лишь маленьким пузырем в обширном море пространства, часть из которого все еще раздувает, и которая содержит много других пузырей, как наша Вселенная. И в некоторых из этих вселенных пузырей, законы физики и фундаментальных констант могли бы отличаться от наших, делая некоторые вселенные действительно странными местами.

4. Математические Вселенные

Ученые спорят о том, является ли математика просто полезным инструментом для описания Вселенной, или сама математика является фундаментальной действительностью, и наши наблюдения за Вселенной – просто несовершенное восприятие ее истинного математического характера. Если последний случай имеет место, то, возможно, конкретная математическая структура, которая составляет нашу вселенную, не является единственным выбором, и на самом деле все возможные математические структуры существуют как свои собственные отдельные вселенные.

“Математическая структура – это нечто, что можно описать таким образом, что это полностью зависит от человеческого багажа”, – сказал Макс Тегмарк из Массачусетского технологического института, который предложил эту, на первый взгляд, безумную идею.

“Я действительно верю, что эта существующая Вселенная может существовать независимо от меня, и будет продолжать существовать, даже если бы не было никаких людей.”

5. Параллельные Вселенные

Еще одна идея, которая возникает из теории струн, является понятие “braneworlds” (мир бран) — параллельные вселенные, которые парят вне досягаемости наших собственных, предложенная Паулем Штайнхардтом Принстонского университета и Нилом Туроком из Института Периметра Теоретической Физики в Онтарио, Канада. Идея исходит из возможности существования многих других измерений в нашем мире, чем трехмерное пространство и одно время, которое мы знаем. В дополнение к нашему трехмерному брану пространства, другие трехмерные браны могут плавать в пространстве большей размерности.

Параллельные вселенные

Физик Колумбийского университета Брайан Грин в своей книге “Скрытая Действительность” описывает идею как понятие, что “наша вселенная – одна из потенциально многочисленных ‘плит’, плавающих в более многомерном космосе, во многом как кусок хлеба в более великой космической буханке”.

Данная теория предполагает, что эти браны вселенные – не всегда параллельны и вне досягаемости. Иногда, они могли бы врезаться друг в друга, вызывая повторные Большие взрывы, которые перезагружают Вселенную много раз.

qil.ru

Теория – Бесконечности и вечности вселенной

АрхеологияАрхитектураАстрономияАудитБиологияБотаникаБухгалтерский учётВойное делоГенетикаГеографияГеологияДизайнИскусствоИсторияКиноКулинарияКультураЛитератураМатематикаМедицинаМеталлургияМифологияМузыкаПсихологияРелигияСпортСтроительствоТехникаТранспортТуризмУсадьбаФизикаФотографияХимияЭкологияЭлектричествоЭлектроникаЭнергетика

Теория – творения.

Бог (Абсолют) – создатель всего, вне понятий времени и пространства, ибо они (все понятия) тоже созданы им - чистое и абсолютное сознание. Единственное, что существует - его сознание. Остальное его творение в себе самом. Т. е. единственная абсолютная личность, как чистое сознание. Сотворившая все в себе самом – создав майю (полностью понять, ограниченным разумом, это понятие практически невозможно, наиболее близкая ассоциация – иллюзия) и разделил в ней чистое сознание на энергию (материя во всём её многообразии) и сознание (все проникающее и во всём прибывающее), а также создал вибрации в майе (энергия, обладающая ограниченным сознанием). Первая вибрация – ОМ. С этого момента появляется понятие – время (это было вначале, а это потом). Одновременно с первой вибрацией появляться и понятие - пространство. И создал n-е количество вибраций (m-разнообразий, и какое то количество каждой разнообразии), или бесконечное их количество в сумме, а скорей всего этот процесс (гашение и творение вибраций) непрерывный. Также Абсолют создал законы и правила их взаимодействий и существования. Прибывая в каждой и управляя всем и наблюдая все своё творение «одновременно». Определенные вибрации имеют возможность развиваться или деградировать - души. Чем больше развивается душа, тем совершенней и её материя (материальное тело), при просветлении (избавление от воздействия майи) - душа престаёт быть ограниченным сознанием, больше не нуждается в материальном теле, сливается с Абсолютом и прибывает в нём как чистое сознание в Абсолютном сознании.

1) Теория слуги. Покланяться и служить совершать все действия для бога. Следовать его законам и правилам взаимодействия. Стремиться стать его любимым и любящим слугой. Только в этом смысл и только это даст счастье и спасение от бесконечных перерождений или мук ада. Теория большинства религий, необходимая для большей части населения, для упрощения понимания, управления, чтобы не допустить хаоса в каждой душе и обществе в целом.

2) Теория сына. Каждая частица Абсолюта по его замыслу наделена в потенциале равными правами и возможностями с ним. И теоритически существуют возможность приблизиться к нему по сути, а возможно и стать равным. В этом и замысел создателя. Автономность души, перерождения, хаос (идеальный генератор случайных чисел, событий, форм), добро и зло и другие понятия - необходимы для эволюции души, и в тоже время, приобретения собственного неповторимого опыта. Если же душа, при очередном погружении в маю, сумеет освободиться от майи самостоятельно, либо по воле Абсолюта (достичь просветления), в этом случае имеет возможность развиваться дальше обладая еще и всеобщим сознанием, а возможно и всеми его возможностями, поскольку всё равно, всё и есть Абсолют и всё в нём, и не может быть вне его, поскольку он бесконечен, вечен и всемогущ, а точнее вне понятий времени и пространства, поскольку все понятия им и созданы в самом себе. А дальше свобода воли. Душа сама распоряжается своей судьбой (свобода воли первое право каждой души), уже вне обусловленности майей. Может сама стать творцом, или помогать другим душам, или просто любоваться великолепным творением Абсолюта, или просто наслаждаться от пребывания в нём и множество других вариантов и комбинаций действий или бездействий.

 

Теория – Бесконечности и вечности вселенной.

Есть единое сознание, и есть вечно изменяющееся энергия (возможно действительно лишь в «воображении» единого сознания – майя и вибрации). Они тесно переплетены и не возможны друг без друга. Единое Сознание везде безвременно, бесконечно и в нём есть все, и оно есть всё и так было всегда и так будет всегда. Единое сознание и есть Абсолют (Бог).

Мы просто не можем оперировать бесконечностью и нулём или это сложно понять психологически обусловленному человеку, поскольку мы привыкли, что всё кем то создано, всё имеет начало и конец – но это не так.

На самом деле (в сути своей) всё есть Абсолют (единое сознание) нет ни чего отдельного от него. Всё существует или не существует, происходит или не происходит, управляется в нём и им.

Всё Абсолют. Всё разнообразие энергий (материя в нашем понимании это лишь разновидность энергии) лишь волны в нём. Когда колебания прекращаются, исчезает и энергия и заключённое в нее ограниченное сознание сливается с Единым Сознанием.

Мы есть энергия с ограниченным сознанием (душой), но имеющая свободу воли, как и у Единого Сознания и в то же «время» мы есть часть Единого Сознания, такая же, как и всё остальное. Понять это возможно, когда врываешься из обусловленности, достигнув единства с Абсолютом (просветление, самадхи, нирвана).

Бог, Абсолют, Единое Сознание, Абсолютное Сознание – суть одно.

Всё одно едино само в себе, нет ни в чём по сути разницы и разделения, такова природа, вечная суть всего, существующее и взаимодействующее по вечным правилам и законам, но которые также видоизменяются по воле Единого Сознания. И поэтому Бог есть одновременно и в каждом, и везде, и при этом управляет всем, и наблюдает, и творит сам в себе.

Всё Единое Сознание и всё материальное в нём в его «воображении», мир и мы (как материя) фантазии в едином сознании, но наделённые свободой выбора и воли, освободившись от понятия, что фантазия и есть реальность, мы сливаемся с единым сознанием, оставаясь собой и будучи единой частью целого.

В качестве земной ассоциации, для облегчения понимания, можно представить – бесконечный океан, наделённый абсолютным сознанием. Каждый в нём как вода, но часть океана, и каждый обладает различной возможностью доступа к сознанию всего океана. Структура воды в океане, течения, градиент температур и т.д. – только понятия, вымысел (замысел, идея, фантазия) океана. При этом абсолютное сознание океана всем управляет, прибывает во всём и наблюдает.

При просветлении, освобождении от майи (структура, тело это я), любой становиться и «водой» и «бесконечным океаном» одновременно.

Если себя считаешь отдельным от «океана» и думаешь что эта структура и есть ты, сознание океана не доступно тебе, ибо свобода воли первый закон океана, а желания души исполняются, если ты хочешь считать себя «структурой» (телом и разумом) а виртуальный мир (майю) реальностью это твоё право. Но в природе каждой души заложена тяга – слиться с единым сознанием (к Богу), поскольку в глубинах бессознательной памяти мы помним, как это прекрасно быть в нём, и что только там всеобъемлющее: совершенство, гармония, постоянство, счастье и спокойствие - Абсолют.

Единое сознание, всех прибывающих в нём и есть сознание Бога, всё есть сознание - вечное и бесконечное, а точнее вне этих понятий, поскольку понятия тоже возникают в нём.

И оно создаёт всё и управляет всем, наблюдает. И может снова образовывать «отдельные структуры» по собственному замыслу.

И каждый просветлённый является личностью, но не отделяющей себя от общего единого сознания, будучи одновременно и общим и частным. Обладая и собственным опытом и всеобщим бесконечным и всеми возможными знаниями одновременно, и может наблюдать нашу реальность такой, какой она и является – иллюзией, выдумкой, майей. Может творить собственную «реальность» - «фантазию», и даже снова погрузиться в неё, отказавшись от слияния с единым сознанием, что скорей всего сейчас и происходит, практически с каждым, ибо каждая душа вечна, а значит - всё уже было, точнее всё всегда есть в бесконечном многообразии в Абсолюте (Боге, Едином Сознании) J.

 

studopedya.ru

Бесконечная вложенность материи — WiKi

Теория Бесконечной вложенности материи (фрактальная теория) в противоположность атомизму — псевдонаучная теория, основанная на индуктивных логических выводах о строении наблюдаемой Вселенной и подчеркивающая иерархическую организацию природы: от наименьших наблюдаемых элементарных частиц до наибольших видимых скоплений галактик. Выдвигает на первый план тот факт, что глобальная иерархия природы является дискретной; особо выделяются атомный, звёздный и галактический уровни. Утверждает, что космологические уровни являются строго самоподобными, так что для каждого класса объектов или явлений в данном масштабном уровне есть аналогичный класс объектов или явления в любом другом масштабном уровне. Самоподобные аналоги объектов и явлений из различных уровней имеют совпадающую морфологию, кинематику и динамику. Таким образом, теория утверждает, что любая частица имеет собственную систему частиц, а электромагнитная волна состоит из электромагнитных волн.

То, что материя делится до бесконечности, утверждали ещё Аристотель, Декарт и Лейбниц[1] в своей монадологии.[источник не указан 2478 дней] В каждой частице, какой бы малой она ни была, «есть города, населённые людьми, обработанные поля, и светит солнце, луна и другие звёзды, как у нас», — утверждал греческий философ Анаксагор в своём труде о гомеомериях в V веке до нашей эры.

Для всех материально-вещественных объектов галактики Млечный путь (от атома до всей галактики): все, что меньше атома водорода — протовещество; все, что имеет плотность больше нейтронной — поствещество. В математике все ряды бесконечно больших и малых величин образуют бесконечный иерархический массив. В этом массиве выберем алгоритм N = Tn = 2n10[10–(n–1)]. Это позволит построить иерархический фрактальный ряд от 0,1 нм до 10 метров.

Этот принцип был принят за аксиому последователями герметической религиозной философии.

Кант и Ламберт

В основу космологических представлений Канта легло признание существования бесконечного количества звёздных систем, которые могут объединяться в системы более высокого порядка. В то же время, каждая звезда со своими планетами и их спутниками образует систему подчинённого порядка. Вселенная, следовательно, не только пространственно бесконечна, но и структурно многообразна, поскольку в состав её входят космические системы разных порядков и размеров. Выдвигая это положение, Кант приближался к идее о структурной бесконечности Вселенной, которая получила более полное развитие в космологическом течении современника Канта, немецкого учёного И. Г. Ламберта.

Бесконечная Вселенная и фотометрический парадокс Ольберса

До XX века в рамках классической космологии этот парадокс пытались разрешить в модели иерархического строения Вселенной, разработанной Карлом Шарлье на основе идеи Ламберта[2]. В 1908 году он опубликовал теорию строения Вселенной, согласно которой Вселенная представляет собой бесконечную совокупность входящих друг в друга систем всё возрастающего порядка сложности. В этой теории, отдельные звёзды образуют галактику первого порядка, совокупность галактик первого порядка образует галактику второго порядка и т. д. до бесконечности.

На основании такого представления о строении Вселенной, Шарлье пришёл к выводу, что в бесконечной Вселенной фотометрический парадокс устраняется, если расстояния между равноправными системами достаточно велики по сравнению с их размерами. Это приводит к непрерывному уменьшению средней плотности космического вещества по мере перехода к системам более высокого порядка. Для устранения парадокса требуется, чтобы плотность вещества падала быстрее, чем обратно пропорционально квадрату расстояния от наблюдателя. Такая зависимость плотности вещества в Метагалактике не наблюдается, поэтому современное объяснение парадокса Ольберса основано на других принципах (например, учитывается красное смещение, используется Общая теория относительности). Однако, сама идея о сложном строении Вселенной и вложенности систем разного уровня остаётся и развивается.

Фурнье Д’Альба

Ирландский учёный Фурнье Д'Альба (англ. Edmund Edward Fournier D’Albe) в 1907 году в своей работе «Два новых мира: Инфрамир и супрамир» сделал предположение, что иерархическая лестница простирается также вовнутрь материи в сторону уменьшения. У Фурнье Д’Альба знаменатель прогрессии, то есть отношение линейных размеров звезды и атома или размеров звезды супрамира и звезды данного уровня материи, являющейся атомом супрамира, выражается числом 1022. Такое соотношение пространственных размеров Фурнье Д’Альба распространил и на время. Одна секунда на «нулевом» уровне по мнению Фурнье Д’Альба равна сотням триллионов лет в инфрамире, а секунда в супрамире равна сотням триллионов земных лет. С работами Д’Альба был знаком К. Э. Циолковский.

Бенуа Мандельброт

Бенуа Мандельброт (фр. Benoit Mandelbrot) — создатель математической теории простых иерархических (рекурентных) самоподобных множеств, для описания данных систем вводит новый термин — фрактал. Космологические и философские взгляды Мандельброта в исторической перспективе хорошо отображены в его неопубликованной записке «Два наследия великой цепи бытия»[3] и в книге написанной совместно с Юрием Барышевым и Пеккой Теерикорпи — «Фрактальная структура Вселенной»[4].

Р. Л. Ольдершоу

Роберт Ольдершоу (англ. Robert L. Oldershaw) — независимый исследователь колледжа Амхерста (Массачусетс, США), в ряде работ с 1978 года развивал модель космологического самоподобия (The Self-Similar Cosmological Model). Он выделил три основных уровня материи — атомный, звёздный и галактический уровни, причём два последних уровня ближе друг к другу, чем к атомному уровню. На данных уровнях, материя сосредоточена, в основном, в виде нуклонов и звёзд, а звёзды, также, в своём большинстве входят в состав галактик[5][6]. Ольдершоу отмечает, что подавляющее количество вещества в космосе содержится в самых лёгких элементах — в водороде и в гелии, а на уровне звёзд в — в звёздах-карликах с массами 0,1—0,8 солнечных масс. Кроме этого, имеется много и других примеров подобия:

  • Вращение носителей друг возле друга под действием силы, убывающей обратно пропорционально квадрату расстояния;
  • Часто наблюдаемые джеты и выбросы материи одинаковой формы в звёздных и галактических системах;
  • Отношение размеров самых больших атомов к размеру нуклона того же порядка, что и отношение размера больших звёздных систем к размеру нейтронной звезды;
  • Зависимости между спином и массой, между магнитным моментом и спином имеют одинаковую форму у атомных и звёздных систем;
  • Ридберговские атомы демонстрируют зависимость между радиусами и периодами колебаний электрона, очень похожую на закон Кеплера для планет.

Определение коэффициентов подобия по массе, размерам и времени протекания процессов между атомными и звёздными системами Ольдершоу осуществляет через сопоставление Солнечной системы и Ридберговского атома с номером орбиты n = 168. При этом, водороду соответствуют звёзды с массами порядка 0.15 солнечных масс. В результате такого сопоставления, становится возможным делать достаточно точные предсказания масс и размеров звёзд, галактик, размера протона, периодов вращения галактик и т. д.

ru-wiki.org

происхождение и судьба Вселенной. Лекция вторая. Расширяющаяся Вселенная (С. У. Хокинг, 2006)

Лекция вторая

Расширяющаяся Вселенная

Наше Солнце и ближайшие к нему звезды являются частью обширного звездного скопления – галактики Млечный Путь. Долгое время люди думали, что это и есть вся Вселенная. Только в 1924 г. американский астроном Эдвин Хаббл показал, что наша Галактика – не единственная во Вселенной. На самом деле существует много других галактик, разделенных огромными участками пустого пространства. Чтобы доказать это, ему потребовалось измерить расстояния до этих галактик. Мы можем определить расстояния до ближайших звезд, наблюдая изменение их положений на небе по мере обращения Земли вокруг Солнца. Но другие галактики находятся так далеко, что в отличие от ближайших звезд кажутся неподвижными. Поэтому Хабблу пришлось использовать косвенные методы измерения расстояний.

Видимый блеск звезды зависит от двух факторов – ее светимости и расстояния от нас. Для ближайших звезд мы можем измерить видимый блеск и расстояние, что позволяет рассчитать их светимость. И наоборот, если бы мы знали светимость звезд из других галактик, мы могли бы вычислить расстояния до них, измерив их видимый блеск. Хаббл утверждал, что существуют определенные типы звезд, всегда имеющие одинаковую светимость (если удается ее измерить благодаря тому, что эти звезды находятся достаточно близко от нас). Следовательно, если мы найдем такие звезды в другой галактике, мы можем предположить, что они имеют такую же светимость. Таким образом, мы могли бы вычислить расстояние до этой галактики. Если расстояния, рассчитанные для множества звезд из одной и той же галактики, совпадают, то мы можем быть вполне уверены в полученных результатах. Таким способом Эдвин Хаббл вычислил расстояния до девяти разных галактик.

Мы можем определить расстояния до ближайших звезд, наблюдая изменение их положений на небе по мере обращения Земли вокруг Солнца.

В настоящее время мы знаем, что наша Галактика – лишь одна из сотен миллиардов галактик, наблюдаемых с помощью современных телескопов и состоящих из сотен миллиардов звезд. Мы живем в медленно вращающейся Галактике размером около ста тысяч световых лет; звезды в ее спиральных рукавах обращаются вокруг ее центра с периодом около ста миллионов лет. Наше Солнце – самая обычная желтая звезда средних размеров, расположенная близ внешнего края одного из спиральных рукавов. Несомненно, мы продвинулись далеко вперед со времен Аристотеля и Птолемея, когда Земля считалась центром Вселенной.

В галактике NGC 4214, находящейся на расстоянии около 13 млн световых лет от Земли, идет процесс образования скоплений новых звезд из межзвездного газа и пыли. На этом снимке, полученном на телескопе «Хаббл», мы видим этапы образования и эволюции звезд и звездных скоплений. Самые молодые из этих звездных скоплений расположены в правом нижнем углу снимка, где они выглядят, как несколько ярких сгустков светящегося газа.

Здесь молодые, горячие звезды отображаются белым и голубоватым цветом, поскольку они имеют высокие поверхностные температуры – от 10 000 до 50 000 °C. Переводя взгляд от самых молодых скоплений по направлению к левому нижнему углу, мы видим более старое звездное скопление. Самый удивительный объект на этом снимке расположен поблизости от центра галактики NGC 4214 – это скопление, состоящее из сотен массивных голубых звезд, каждая из которых более чем в 10 тыс. раз ярче нашего Солнца.

Звезды находятся так далеко от нас, что кажутся всего лишь светящимися точками. Мы не можем определить их размер или форму. Как же нам различать разные типы звезд? Для подавляющего большинства звезд наблюдению поддается только одна характеристика – цвет испускаемого ею света. Ньютон открыл, что при прохождении через призму солнечный свет разделяется на цветовые компоненты – спектр, – как в радуге. Наведя телескоп на конкретную звезду или галактику, можно наблюдать спектр света, идущего от этого объекта.

Как же нам различать разные типы звезд? Для подавляющего большинства звезд наблюдению поддается только одна характеристика – цвет испускаемого ею света.

Спектры звезд отличаются, но относительная яркость разных цветов спектра всегда соответствует той, которая наблюдается в свечении сильно раскаленных объектов. Следовательно, по спектру звезды мы можем оценить ее температуру. Более того, мы видим, что некоторые специфические цвета в спектре звезд отсутствуют, причем у разных звезд отсутствуют разные цвета. Мы знаем, что каждый химический элемент поглощает характерный только для него набор специфических цветов. Таким образом, сопоставляя эти цвета с теми, которые отсутствуют в спектре звезды, мы можем определить, какие химические элементы содержатся в атмосфере звезды.

В 1920-х годах, когда астрономы начали изучать спектры звезд из других галактик, они обнаружили удивительный факт: у этих звезд наблюдается такой же характерный набор отсутствующих спектральных линий, как и у звезд нашей Галактики, но эти линии смещены на одинаковую величину в сторону красной области спектра. Единственное разумное объяснение заключалось в том, что галактики удаляются от нас и частота излучаемых ими световых волн уменьшается вследствие эффекта Доплера (это явление называют красным смещением). Прислушайтесь к звуку автомобиля на дороге. Когда автомобиль приближается, звук его двигателя кажется выше, что соответствует более высокой частоте звуковых волн; а когда он проехал мимо и удаляется, звук двигателя кажется более низким. То же самое происходит и со световыми (или радиальными) волнами. На самом деле с помощью эффекта Доплера полиция измеряет скорость автомобилей по изменению частоты отраженного радиосигнала.

На одном из снимков самых дальних уголков Вселенной, полученном с помощью космического телескопа «Хаббл», представлена популяция слабых голубых галактик, которые оказались самым распространенным классом объектов во Вселенной.

Они удалены от нас на расстояние от 3 до 8 млрд световых лет. Это говорит о том, что они в изобилии встречались, когда Вселенная была в несколько раз моложе, чем сейчас. Но в настоящее время они встречаются редко, и обнаружить их трудно, поскольку излучение их ослабло или они подверглись саморазрушению. Если удастся разгадать загадку образования и эволюции этих голубых карликовых галактик, то, возможно, это даст нам новый ключ к пониманию процесса эволюции галактик, включая образование нашей Галактики Млечный Путь. Эти галактики – голубые, поскольку в них происходят эпизоды интенсивного звездообразования, во время которых рождается много молодых, горячих, голубых звезд.

После того как Хаббл доказал существование других галактик, он занялся составлением каталога расстояний до них и наблюдением их спектров. В то время большинство ученых полагали, что галактики движутся достаточно хаотично, и поэтому надеялись найти примерно одинаковое число спектров, смещенных в синюю и красную область. Когда оказалось, что все галактики имеют красное смещение, это стало сенсацией. Получается, что все галактики удаляются от нас. Еще более удивительным был результат, опубликованный Хабблом в 1929 г.: даже величина красного смещения галактики не случайна, а прямо пропорциональна расстоянию до нее. Другими словами, чем дальше галактика, тем быстрее она удаляется от нас. А это означало, что Вселенная не может быть стационарной, как думали раньше. В действительности она расширяется. Расстояние между галактиками все время растет.

Даже величина красного смещения галактики не случайна, а прямо пропорциональна расстоянию до нее – чем дальше галактика, тем быстрее она удаляется от нас.

Открытие расширения Вселенной – одна из величайших интеллектуальных революций XX века. Когда знаешь об этом, кажется удивительным, что никто не догадался об этом раньше. Ньютон и другие мыслители должны были понять, что стационарная Вселенная вскоре начала бы сжиматься под действием гравитации. Но представьте, что Вселенная не стационарна, а расширяется. Если бы она расширялась достаточно медленно, со временем сила гравитации положила бы конец расширению, и Вселенная начала бы сжиматься. Однако если она расширялась бы со скоростью, превышающей некоторое критическое значение, силы гравитации никогда бы не стали настолько велики, чтобы остановить это расширение, и Вселенная продолжала бы расширяться вечно. Это напоминает запуск ракеты с поверхности Земли. Если скорость ракеты достаточно низкая, в определенный момент под действием гравитации ракета остановится и начнет падать обратно. С другой стороны, если ее скорость превышает некоторое критическое значение (приблизительно 11,2 км/с), сила притяжения не сможет «вернуть» ракету на Землю, и она будет удаляться от нашей планеты.

Чтобы определить, прекратится ли расширение Вселенной и начнет ли она со временем сжиматься или будет расширяться вечно, можно сравнить ее с ракетой, удаляющейся от Земли. Если скорость ракеты достаточно низкая, со временем под действием гравитации она остановится и начнет падать обратно на Землю. Если же скорость ракеты превышает критическое значение (около 11,2 км/с), сила притяжения не сможет «вернуть» ракету на Землю, и она будет удаляться от нашей планеты вечно. Национальное управление по аэронавтике и исследованию космического пространства (NASA) успешно запустило более двухсот искусственных спутников, обращающихся вокруг Земли, в том числе восьмую орбитальную солнечную обсерваторию Годдарда, которая находилась на борту этой ракеты «Дельта», стартовавшей 21 июня 1975 г. с мыса Канаверел во Флориде.

Такое поведение Вселенной можно было предсказать на основе ньютоновской теории гравитации в XIX или XVIII столетиях и даже в конце XVII века. Но вера в стационарность Вселенной была столь сильна, что эта концепция просуществовала до начала XX века. Даже Эйнштейн, когда сформулировал общую теорию относительности в 1915 г., был уверен в том, что Вселенная должна быть стационарной. Поэтому он модифицировал свою теорию, введя в уравнения так называемую космологическую постоянную. Это была новая сила «антигравитации», которая, в отличие от других сил, не имела конкретного источника, но была встроена в саму ткань пространства-времени. Эта космологическая постоянная наделяла пространство-время внутренней тенденцией к расширению и позволяла уравновесить взаимное притяжение всей материи во Вселенной и сделать возможным существование стационарной Вселенной.

По-видимому, в те времена лишь один человек был готов принять общую теорию относительности за чистую монету. Пока Эйнштейн и другие физики искали способы обойти предсказание общей теории относительности о нестационарности Вселенной, русский физик Александр Фридман занялся объяснением этого предсказания.

Даже Эйнштейн, когда сформулировал общую теорию относительности в 1915 г., был уверен в том, что Вселенная должна быть стационарной.

Модели Фридмана

Уравнения общей теории относительности, описывающие эволюцию Вселенной, слишком сложны, чтобы решать их во всех подробностях. Поэтому Фридман сделал два очень простых предположения: в каком бы направлении мы ни посмотрели, Вселенная выглядит одинаково, причем то же предположение верно при наблюдении из любой другой точки пространства. На основе общей теории относительности и двух этих предположений Фридман показал, что Вселенная не может быть стационарной. Получается, что в 1922 г. Фридман предсказал именно то, что спустя несколько лет открыл Эдвин Хаббл.

Фридман сделал два очень простых предположения о природе Вселенной: в каком бы направлении мы ни посмотрели, Вселенная выглядит одинаково, причем то же предположение верно при наблюдении из любой другой точки.

Предположение о том, что Вселенная выглядит одинаково во всех направлениях, очевидно, не соответствует действительности. Например, остальные звезды нашей галактики образуют на ночном небе отчетливо различимую светящуюся полосу, называемую Млечным Путем. Но если мы посмотрим на далекие галактики, нам покажется, что в любом направлении их число примерно одинаково. То есть Вселенная почти одинакова во всех направлениях, если рассматривать ее в космических масштабах, сопоставимых с расстояниями между галактиками.

Долгое время это было достаточным подтверждением правильности предположения Фридмана как грубой аппроксимации реальной Вселенной. Но сравнительно недавно счастливый случай доказал, что на самом деле предположение Фридмана поразительно точно описывает нашу Вселенную. В 1965 г. два американских физика Арно Пензиас и Роберт Уилсон работали в Лабораториях Белла в Нью-Джерси над проектом очень чувствительного микроволнового приемника для связи с орбитальными искусственными спутниками. Их беспокоило, что прибор улавливает больше шума, чем следовало бы, причем этот шум приходил не с какого-то определенного направления. Сначала они проверили, нет ли на приемнике птичьего помета, и поискали другие возможные неисправности, но вскоре поняли, что дело не в этом. Им было известно, что если источник шума находится в атмосфере, то шум будет сильнее, когда приемник направлен не вертикально вверх, поскольку под углом к вертикали толщина атмосферы выше.

С помощью Космической рентгеновской обсерватории «Чандра» удалось получить удивительную высокоэнергетичную панораму центральных областей нашей Галактики Млечный Путь. На этом кадре размером 400 х 900 световых лет, составленном из нескольких снимков, можно увидеть сотни белых карликов, нейтронных звезд и черных дыр, плавающих в раскаленном тумане из газа с температурой много миллионов градусов.

Дополнительный шум оставался одинаковым независимо от того, в каком направлении поворачивали приемник. Следовательно, источник шума должен был находиться за пределами атмосферы. Кроме того, шум оставался неизменным днем и ночью на протяжении всего года, и это при том, что Земля вращается вокруг своей оси и обращается вокруг Солнца. Следовательно, источник этого излучения должен находиться за пределами Солнечной системы и даже вне нашей Галактики, ведь в противном случае сигнал менялся бы по мере того, как в процессе движения Земли приемник оказывался бы ориентирован в разных направлениях.

Дополнительный шум оставался одинаковым независимо от того, в каком направлении поворачивали приемник. Следовательно, источник шума должен был находиться за пределами атмосферы.

На самом деле мы знаем, что на пути к нам это излучение должно было пересечь большую часть наблюдаемой Вселенной. Коль скоро оно одинаково в разных направлениях, то и Вселенная должна быть одинакова во всех направлениях, по крайней мере на больших масштабах. В настоящее время нам известно, что в каком бы направлении мы ни повернули приемник, колебания этого шума никогда не превышают 0,01 %. Таким образом, Пензиас и Уилсон случайно наткнулись на поразительно точное подтверждение первого предположения Фридмана.

Примерно в то же время два американских физика Боб Дик и Джим Пиблс из соседнего Принстонского университета также заинтересовались микроволновым излучением. Они работали над гипотезой Джорджа Гамова (в прошлом – студента Александра Фридмана) о том, что Вселенная на ранних стадиях своей эволюции была очень плотной и горячей, раскаленной добела. Дик и Пиблс утверждали, что мы все еще можем наблюдать это свечение, поскольку свет из самых далеких уголков ранней Вселенной только-только достигает нас сейчас. Однако из-за расширения Вселенной этот свет должен иметь очень большое красное смещение и должен восприниматься нами как микроволновое излучение. Дик и Пиблс занимались поисками этого излучения, когда Пензиас и Уилсон узнали об их работе и поняли, что уже нашли его. За это открытие Пензиас и Уилсон в 1978 г. были удостоены Нобелевской премии, что представляется несколько несправедливым по отношению к Дику и Пиблсу.

На первый взгляд, все эти доказательства того, что Вселенная выглядит одинаково во всех направлениях, порождают идею о нашем особом месте во Вселенной. В частности, может показаться, что если все остальные галактики удаляются от нас, то мы находимся в центре Вселенной. Однако существует и другое объяснение: Вселенная может выглядеть одинаково во всех направлениях и при наблюдении из любой другой галактики. Как мы знаем, таково было второе предположение Фридмана.

Может показаться, что если все остальные галактики удаляются от нас, то мы находимся в центре Вселенной.

У нас нет никаких доказательств, подтверждающих или опровергающих это предположение. Мы принимаем его на веру только из скромности. Было бы в высшей степени удивительно, если бы Вселенная выглядела одинаковой во всех направлениях вокруг нас, но вела себя по-другому вокруг любой другой точки. В модели Фридмана все галактики удаляются друг от друга. Эта ситуация напоминает непрерывно надуваемый воздушный шарик, на котором нарисовано множество пятнышек. При надувании шарика расстояние между любыми двумя пятнышками увеличивается, но ни одно из них нельзя назвать центром расширения. Более того, чем больше расстояние между пятнышками, тем быстрее они удаляются друг от друга. Так же и в модели Фридмана скорость разбегания любых двух галактик пропорциональна расстоянию между ними. Следовательно, величина красного смещения галактики должна быть прямо пропорциональна ее удаленности от нас, что и обнаружил Хаббл.

Несмотря на то, что модель Фридмана была удачной и позволила предсказать результаты наблюдений Хаббла, работа Фридмана долгое время оставалась почти неизвестной на Западе. О ней узнали лишь после того, как в 1935 г. подобные модели были разработаны американским физиком Говардом Робертсоном и английским математиком Артуром Уолкером для объяснения равномерного расширения Вселенной, открытого Хабблом.

Фридман предложил только одну модель, однако на основе двух его фундаментальных предположений можно построить три разных вида моделей. В первой модели, которую и сформулировал Фридман, Вселенная расширяется достаточно медленно, так что гравитационное притяжение между галактиками замедляет его, а со временем приводит и к его прекращению. Затем галактики начинают двигаться по направлению друг к другу, и Вселенная сжимается. Сначала расстояние между двумя соседними галактиками равно нулю, затем оно увеличивается до некоторого максимального значения, а потом снова уменьшается до нуля.

Во втором решении Вселенная расширяется настолько быстро, что гравитационное притяжение никогда не сможет его остановить, хотя и немного замедляет его. В этой модели расстояние между соседними галактиками сначала равно нулю, а в конечном итоге они разбегаются с постоянной скоростью.

Наконец, существует третье решение, в котором скорость расширения Вселенной достаточна лишь для того, чтобы предотвратить обратное сжатие. В этом случае расстояние между галактиками сначала равно нулю, и оно постоянно растет. Однако скорость разбегания галактик все время уменьшается, но никогда не достигает нуля.

Замечательной особенностью первой модели Фридмана была идея о том, что Вселенная не бесконечна в пространстве, но пространство не имеет границ. Гравитация настолько сильна, что пространство искривляется, замыкаясь само на себя наподобие поверхности Земли. Путешествуя по поверхности Земли в определенном направлении, человек никогда не встретит непреодолимого препятствия и не упадет за край, но в конечном итоге вернется в исходную точку. В первой модели Фридмана пространство устроено так же, но имеет три измерения вместо двух, присущих поверхности Земли. Четвертое измерение – время – также является конечным, но напоминает линию с двумя краями или границами, началом и концом. Далее мы увидим, что если объединить общую теорию относительности с квантовомеханическим принципом неопределенности, пространство и время могут быть конечны, но при этом не иметь краев или границ. Идея путешествия вокруг Вселенной с возвращением в исходную точку хороша для научной фантастики, но не имеет практической ценности, поскольку можно доказать, что еще до завершения такого путешествия Вселенная сжалась бы обратно до нулевого размера. Чтобы вернуться в исходную точку до того, как Вселенная перестанет существовать, необходимо двигаться быстрее света, а это невозможно.

В первой модели Фридмана гравитация настолько сильна, что пространство искривляется, замыкаясь само на себя наподобие поверхности Земли.

Так какая из моделей Фридмана описывает нашу Вселенную? Прекратит ли Вселенная расширяться и начнет сжиматься, или она будет расширяться вечно? Чтобы ответить на этот вопрос, нам необходимо знать скорость расширения Вселенной и ее среднюю плотность в настоящее время. Если эта плотность меньше некоторого критического значения, зависящего от скорости расширения, гравитационное притяжение будет слишком слабым для того, чтобы остановить расширение. Если плотность больше этого критического значения, рано или поздно гравитация остановит расширение и заставит Вселенную сжиматься.

Мы можем определить современную скорость расширения Вселенной, измерив скорости, с которыми другие галактики удаляются от нас, с помощью эффекта Доплера. Это можно проделать с высокой точностью. Однако расстояния до галактик известны не очень точно, поскольку мы можем измерить их лишь косвенно. Поэтому мы знаем только то, что Вселенная расширяется на 5–10 % за каждый миллиард лет. Впрочем, текущая средняя плотность Вселенной известна нам с еще меньшей точностью.

Мы можем определить современную скорость расширения Вселенной, измерив скорости, с которыми другие галактики удаляются от нас, с помощью эффекта Доплера.

Если суммировать массы всех наблюдаемых звезд нашей и других галактик, получается меньше сотой доли значения, необходимого для того, чтобы остановить расширение Вселенной, даже при использовании нижней оценки скорости расширения. Однако нам известно, что в нашей и других галактиках должно содержаться большое количество темной материи, которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря влиянию ее гравитационного притяжения на орбиты звезд и газ в галактиках. Более того, большинство галактик образуют скопления, и мы можем предположить наличие еще большего количества темного вещества между галактиками в этих скоплениях по его влиянию на движение галактик. Сложив все это темное вещество, мы все равно получим лишь одну десятую величины, необходимой для остановки расширения. Впрочем, может существовать какая-то другая форма материи, которую мы пока не обнаружили и которая может увеличить среднюю плотность Вселенной до критического значения, необходимого для того, чтобы остановить расширение. Таким образом, современные наблюдения дают основания предполагать, что Вселенная будет расширяться вечно. Но не стоит делать на это ставку. Мы можем быть уверены лишь в том, что если Вселенная все-таки начнет сжиматься, это произойдет не раньше чем через десять миллиардов лет, поскольку по меньшей мере столько времени она расширяется. Не стоит напрасно беспокоиться по этому поводу, поскольку к тому времени человечество уже давно погибнет вместе с нашим Солнцем, если не создаст колонии за пределами Солнечной системы.

Если Вселенная начнет сжиматься, это произойдет не раньше чем через десять миллиардов лет.

Большой взрыв

Характерной особенностью всех решений Фридмана является то, что в некоторый момент в прошлом, от 10 до 20 млрд лет назад, расстояние между соседними галактиками должно было равняться нулю. В тот момент, который мы называем Большим взрывом, плотность Вселенной и кривизна пространства-времени были бесконечными. Это означает, что общая теория относительности, на основе которой построены решения Фридмана, предсказывает существование во Вселенной точки сингулярности.

Все научные теории основываются на предположении о том, что пространство-время является гладким и почти плоским, то есть все эти теории теряют силу в сингулярности Большого взрыва, когда кривизна пространства-времени бесконечна. Это означает, что даже если до Большого взрыва и происходили какие-то события, их нельзя использовать для определения того, что случится после него, поскольку в момент Большого взрыва предсказуемость нарушается. Соответственно, если нам известно только то, что произошло после Большого взрыва, мы не можем определить, что происходило до него. Применительно к нам события до Большого взрыва не имеют никаких последствий, поэтому не могут быть частью научной модели Вселенной. Таким образом, мы должны исключить их из модели и сказать, что началом времени является момент Большого взрыва.

Предпринималось множество попыток избежать вывода о существовании Большого взрыва.

Многим не нравится идея о том, что время имеет начало, вероятно, потому, что она отдает божественным вмешательством. (Католическая церковь, наоборот, ухватилась за модель Большого взрыва и в 1951 г. официально провозгласила, что эта модель соответствует Библии.) Предпринималось множество попыток избежать вывода о существовании Большого взрыва. Широкую поддержку получила теория стационарной Вселенной. Она была предложена в 1948 г. двумя учеными, бежавшими из оккупированной нацистами Австрии, Германом Бонди и Томасом Голдом, в соавторстве с британским ученым Фредом Хойлом, который в годы войны работал вместе с ними над усовершенствованием радаров. Идея заключалась в том, что по мере удаления галактик друг от друга в промежутках между ними постоянно образуются новые галактики из новой материи, которая непрерывно создается. В этом случае Вселенная будет выглядеть примерно одинаково в любой момент времени и в любой точке пространства.

Теория стационарной Вселенной требовала так изменить общую теорию относительности, чтобы допустить возможность непрерывного создания новой материи, но скорость ее образования была настолько низкой (примерно одна частица на кубический километр в год), что она не противоречила экспериментальным данным. Это была хорошая научная теория в том смысле, что она была проста, и ее предсказания можно было проверить с помощью наблюдений. Одно из таких предсказаний заключалось в том, что число галактик или подобных им объектов в любом заданном объеме пространства должно быть одним и тем же в любой момент времени и в любой точке Вселенной.

В конце 50-х – начале 60-х гг. XX века группа астрономов из Кембриджа под руководством Мартина Райла исследовала источники радиоволн, приходящих из космоса. Они выяснили, что большинство таких радиоисточников должны находиться за пределами нашей Галактики и что слабых источников гораздо больше, чем сильных. Они решили, что слабые источники находятся дальше от нас, а сильные – поблизости. Затем обнаружилось, что в единице объема близких источников меньше, чем далеких.

Это могло означать, что мы находимся в центре большой области Вселенной, в которой таких источников меньше, чем в других областях. Или то, что в прошлом, когда эти радиоволны только начали свой путь к нам, таких источников было больше, чем в настоящее время. Оба объяснения противоречили предсказаниям теории стационарной Вселенной. Более того, открытие микроволнового излучения, совершенное Пензиасом и Уилсоном в 1965 г., указывало на то, что в прошлом плотность Вселенной была гораздо выше. Поэтому, как ни печально, от теории стационарной Вселенной пришлось отказаться.

Еще одна попытка избежать вывода о существовании Большого взрыва и начала времени была предпринята русскими учеными Евгением Лифшицем и Исааком Халатниковым в 1963 г. Они предположили, что Большой взрыв может представлять собой специфическую особенность моделей Фридмана, которые, в конце концов, являются лишь приблизительным описанием реальной Вселенной. Возможно, из всех моделей, приближенно описывающих реальную Вселенную, лишь модели Фридмана содержат сингулярность Большого взрыва. В моделях Фридмана все галактики прямолинейно удаляются друг от друга. Поэтому неудивительно, что когда-то в прошлом все они находились в одной точке. Однако в реальной Вселенной галактики не просто удаляются друг от друга по прямой – их скорости имеют небольшую поперечную компоненту. Так что в действительности они должны были располагаться не в одной точке, а просто очень близко друг к другу. Тогда, возможно, наблюдаемая в настоящее время расширяющаяся Вселенная возникла не из сингулярности Большого взрыва, а из более ранней фазы сжатия. В процессе коллапса Вселенной не все частицы столкнулись друг с другом, некоторые смогли избежать столкновения и разлететься, создав современную картину расширяющейся Вселенной. Можно ли тогда утверждать, что реальная Вселенная началась с Большого взрыва?

Лифшиц и Халатников изучали модели Вселенной, которые были похожи на фридмановские, но учитывали неоднородности и случайное распределение скоростей галактик в реальной Вселенной. Они показали, что такие модели могли бы начинаться с Большого взрыва даже в том случае, если галактики не всегда удаляются друг от друга по прямолинейным траекториям. Но они утверждали, что такое возможно только в особенных моделях, в которых все галактики движутся особым, «правильным» образом. Лифшиц и Халатников утверждали, что раз моделей, подобных фридмановским, без сингулярности Большого взрыва гораздо больше, чем моделей с сингулярностью, мы должны сделать вывод, что вероятность Большого взрыва крайне мала. Однако в дальнейшем они поняли, что существует гораздо более общий класс моделей, подобных фридмановским, которые содержат сингулярности и в которых галактики не должны двигаться каким-то особым образом. Поэтому в 1970 г. они отказались от своего утверждения.

В реальной Вселенной галактики не просто удаляются друг от друга по прямой – их скорости имеют небольшую поперечную компоненту.

Работа, проделанная Лифшицем и Халатниковым, была важна, поскольку показала, что Вселенная могла иметь сингулярность – Большой взрыв, – если общая теория относительности верна. Однако они не ответили на решающий вопрос: предсказывает ли общая теория относительности существование Большого взрыва, начала времени? Ответ на этот вопрос был дан в рамках совершенно иного подхода, который в 1965 г. предложил британский физик Роджер Пенроуз. Он использовал поведение световых конусов в общей теории относительности и тот факт, что гравитация всегда вызывает притяжение, чтобы показать, что звезда, испытывающая коллапс под действием собственной гравитации, заключена в область, границы которой в итоге сжимаются до нулевого размера. Это означает, что все вещество звезды окажется в области нулевого объема, так что плотность вещества и кривизна пространства-времени становятся бесконечными. Другими словами, получается сингулярность, содержащаяся в области пространства-времени, известной под названием «черная дыра».

Роджер Пенроуз использовал поведение световых конусов в общей теории относительности и тот факт, что гравитация всегда вызывает притяжение, чтобы показать, что звезда, испытывающая коллапс под действием собственной гравитации, заключена в область, границы которой в итоге сжимаются до нулевого размера.

На первый взгляд, результат Пенроуза не проливал свет на вопрос, существовала ли в прошлом сингулярность Большого взрыва. Однако в то самое время, когда Пенроуз доказал свою теорему, я, будучи аспирантом, упорно искал задачу для завершения своей диссертации. Я понял, что если изменить направление течения времени в теореме Пенроуза на обратное (чтобы коллапс стал расширением), условия этой теоремы останутся прежними, если в настоящее время Вселенная на больших масштабах приблизительно соответствует модели Фридмана. Из теоремы Пенроуза следовало, что коллапс любой звезды должен заканчиваться сингулярностью, а рассуждения с обращением направления времени показали, что любая расширяющаяся Вселенная, соответствующая модели Фридмана, берет свое начало в сингулярности. По техническим причинам теорема Пенроуза требовала, чтобы Вселенная была бесконечна в пространстве. Я мог использовать это для доказательства того, что сингулярность возникает только в том случае, если Вселенная расширяется достаточно быстро, чтобы избежать последующего коллапса, поскольку только эта модель Фридмана была бесконечна в пространстве.

Конец ознакомительного фрагмента.

kartaslov.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики