Так был ли прав Эйнштейн? Проверяем теорию относительности. Теория эйнштейн


Знаменитые теории Альберта Эйнштейна

Броуновское движение

Год 1905 стал знаменательным в истории физики.

В этом году Эйнштейн опубликовал три важнейшие работы, сыгравшие выдающуюся роль во всем последующем развитии физики ХХ века. В первой из них, посвященной броуновскому движению, он сделал важные предсказания о движении взвешенных в жидкости частиц, обусловленном столкновениями с молекулами. Предсказания позднее подтвердились на опыте.

Во второй работе, посвященной фотоэффекту, Эйнштейн высказал революционную гипотезу о природе света: при определенных обстоятельствах свет можно рассматривать как поток частиц, фотонов, энергия которых пропорциональна частоте световой волны. Практически не нашлось физиков, которые согласились бы с этой идеей Эйнштейна. Потребовались два десятилетия напряженных усилий экспериментаторов и теоретиков, чтобы картина фотонов стала общепризнанной в рамках квантовой механики.

Но наиболее революционной стала третья работа Эйнштейна «К электродинамике движущихся тел», в которой с необычайной ясностью были изложены идеи частной теории относительности (ЧТО), разрушившей классические представления о пространстве-времени, существовавшие со времени Ньютона.

Первая из этих статей - «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории», вышедшая в 1905 году, была посвящена теории броуновского движения.

Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 году английским ботаником Р. Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований.

Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с невидимыми молекулами; кроме того, он предсказал, что наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Эта работа Эйнштейна имела особое значение потому, что существование молекул, считавшихся не более чем удобной абстракцией, в то время еще ставилось под сомнение.

Решения важнейшего для физики вопроса о реальности атомов Эйнштейн ждет не от туманных натурфилософских рассуждений и не от бесконечных словопрений, а от прямого, так сказать «лобового», опыта, причем, как видно, ждет с нетерпением. «Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы!» - таким восклицанием заканчивается статья. Для Эйнштейна эта статья не отвлеченная «игра ума», не еще одна публикация в солидном журнале, укрепляющая его репутацию в научном мире; нет, ему чрезвычайно интересно, просто необходимо - и причем поскорее - убедиться в том, что атомы, о которых говорят уже более 2000 лет, действительно существуют.

В 1908 году Ж. Перрен с сотрудниками серией тонких и систематических экспериментальных работ блестяще подтвердили все выводы Эйнштейна, касающиеся броуновского движения, и из прямых опытов получили для числа Авогадро значение, лежащее в пределах от 6,5·1023 до 7,2·1023 (современное значение 6,02·1023) и согласующееся с более ранними косвенными оценками. После этих работ отрицать реальность атомов было уже невозможно.

Но все это произошло, как уже говорилось, только в 1908 году, а пока Эйнштейн продолжает изыскивать возможные флуктуационные эксперименты. В декабре 1905 года он заканчивает свою вторую статью по броуновскому движению, «дополняющую в некоторых пунктах» предыдущую работу.

Кванты и фотоэффект

В том же 1905 вышла и другая работа Эйнштейна — «Об одной эвристической точке зрения на возникновение и превращение света». За пять лет до этого М. Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Физический смысл квантов оставался неясным, но величина кванта равна произведению некоторого числа (постоянной Планка) и частоты излучения.

Эйнштейн выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из дискретных, далее неделимых порций, квантов света. Они представляют собой частицы, которые движутся в пустоте со скоростью 300 000 километров в секунду. Впоследствии (в двадцатые годы) эти частицы получили название фотонов. Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования «красной границы», то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.

Идея Эйнштейна состояла в том, чтобы установить соответствие между фотоном (квантом электромагнитной энергии) и энергией выбитого с поверхности металла электрона. Каждый фотон выбивает один электрон. Кинетическая энергия электрона (энергия, связанная с его скоростью) равна энергии, оставшейся от энергии фотона за вычетом той ее части, которая израсходована на то, чтобы вырвать электрон из металла. Чем ярче свет, тем больше фотонов и больше число выбитых с поверхности металла электронов, но не их скорость. Более быстрые электроны можно получить, направляя на поверхность металла излучение с большей частотой, так как фотоны такого излучения содержат больше энергии.

В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Энергия Е каждой порции излучения в полном соответствии с гипотезой Планка пропорциональна частоте:

E = hv,

где h — постоянная Планка.

Из того, что свет, как показал Планк, излучается порциями, еще не вытекает прерывистая структура самого света. Ведь и минеральную воду продают в бутылках, но отсюда совсем не следует, что вода имеет прерывистую структуру и состоит из неделимых частей. Лишь явление фотоэффекта показало, что свет имеет прерывистую структуру: излученная порция световой энергии E = hv сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Кинетическую энергию фотоэлектрона можно найти, применив закон сохранения энергии. Это уравнение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в световом пучке и поэтому определяет число электронов, вырванных из металла. Скорость же электронов согласно определяется только частотой света и работой выхода, зависящей от рода металла и состояния его поверхности. От интенсивности света она не зависит.

Для каждого вещества фотоэффект наблюдается лишь в том случае, если частота v света больше минимального значения. Ведь чтобы вырвать электрон из металла даже без сообщения ему кинетической энергии, нужно совершить работу выхода А. Следовательно, энергия кванта должна быть больше этой работы. Предельную частоту, называют красной границей фотоэффекта.

Для цинка красной границе соответствует длина волны м (ультрафиолетовое излучение). Именно этим объясняется опыт по прекращению фотоэффекта с помощью стеклянной пластинки, задерживающей ультрафиолетовые лучи.

Работа выхода у алюминия или железа больше, чем у цинка. Поэтому в опыте использовалась цинковая пластина. У щелочных металлов работа выхода, напротив, меньше, а длина волны, соответствующая красной границе, больше. Пользуясь уравнением Эйнштейна можно найти постоянную Планка h. Для этого нужно экспериментально определить частоту света v, работу выхода А и измерить кинетическую энергию фотоэлектронов. Точно такое же значение было найдено Планком при теоретическом изучении совершенно другого явления — теплового излучения. Совпадение значений постоянной Планка, полученных различными методами, подтверждает правильность предположения о прерывистом характере излучения и поглощения света веществом. Уравнение Эйнштейна, несмотря на свою простоту, объясняет основные закономерности фотоэффекта. В современной физике фотон рассматривается как одна их элементарных частиц. Таблица элементарных частиц уже многие десятки лет начинается с фотона.

Эйнштейн выдвинул еще одну смелую гипотезу, предположив, что свет обладает двойственной природой. Как показывают проводившиеся на протяжении веков оптические эксперименты, свет может вести себя как волна, но, как свидетельствует фотоэлектрический эффект, и как поток частиц. Правильность предложенной Эйнштейном интерпретации фотоэффекта была многократно подтверждена экспериментально, причем не только для видимого света, но и для рентгеновского и гамма-излучения.

Таким образом, Эйнштейну принадлежит теоретическое открытие фотона, экспериментально обнаруженного в 1922 году А. Комптоном. А в 1924 году Луи де Бройль сделал еще один шаг в преобразовании физики, предположив, что волновыми свойствами обладает не только свет, но и материальные объекты, например электроны. Идея де Бройля также нашла экспериментальное подтверждение и заложила основы квантовой механики.

Работы Эйнштейна позволили объяснить флуоресценцию, фотоионизацию и загадочные вариации удельной теплоемкости твердых тел при различных температурах и др., которые не могла объяснить электромагнитная теория света.

В 1922 году Эйнштейну была вручена Нобелевская премия по физике 1921 года «за заслуги перед теоретической физикой, и особенно за открытие закона фотоэлектрического эффекта». «Закон Эйнштейна стал основой фотохимии так же, как закон Фарадея – основой электрохимии»,– заявил на представлении нового лауреата Сванте Аррениус из Шведской королевской академии. Условившись заранее о выступлении в Японии, Эйнштейн не смог присутствовать на церемонии и свою Нобелевскую лекцию прочитал лишь через год после присуждения ему премии.

Частная (специальная) теория относительности

Наибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в том же 1905 году, в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. В то время большинство физиков полагало, что световые волны распространяются в эфире – загадочном веществе, которое, как принято было думать, заполняет всю Вселенную. Однако обнаружить эфир экспериментально никому не удавалось. Поставленный в 1887 году Альбертом А. Майкельсоном и Эдвардом Морли эксперимент по обнаружению различия в скорости света, распространяющегося в гипотетическом эфире вдоль и поперек направления движения Земли, дал отрицательный результат. Если бы эфир был носителем света, который распространяется по нему в виде возмущения, как звук по воздуху, то скорость эфира должна была бы прибавляться к наблюдаемой скорости света или вычитаться из нее, подобно тому как река влияет, с точки зрения стоящего на берегу наблюдателя, на скорость лодки, идущей на веслах по течению или против течения.

Нет оснований утверждать, что специальная теория относительности Энштейна была создана непосредственно под влиянием эксперимента Майкельсона-Морли, но в основу ее были положены два универсальных допущения, делавших излишней гипотезу о существовании эфира: все законы физики одинаково применимы для любых двух наблюдателей, независимо от того, как они движутся относительно друг друга, свет всегда распространяется в свободном пространстве с одной и той же скоростью, независимо от движения его источника. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.

Выводы, сделанные из этих допущений, изменили представления о пространстве и времени: ни один материальный объект не может двигаться быстрее света; с точки зрения стационарного наблюдателя, размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает, чтобы скорость света была одинаковой для движущегося и покоящегося наблюдателей, движущиеся часы должны идти медленнее. Даже понятие стационарности подлежит тщательному пересмотру. Движение или покой определяются всегда относительно некоего наблюдателя. Наблюдатель, едущий верхом на движущемся объекте, неподвижен относительно данного объекта, но может двигаться относительно какого-либо другого наблюдателя. Поскольку время становится такой же относительной переменной, как и пространственные координаты x, y и z, понятие одновременности также становится относительным. Два события, кажущихся одновременными одному наблюдателю, могут быть разделены во времени, с точки зрения другого.

Из других выводов, к которым приводит специальная теория относительности, заслуживает внимание эквивалентность массы и энергии. Масса m представляет собой своего рода «замороженную» энергию E, с которой связана соотношением

 E = mc2,

 где c – скорость света.

Таким образом, испускание фотонов света происходит ценой уменьшения массы источника.

Релятивистские эффекты, как правило, пренебрежимо малые при обычных скоростях, становятся значительными только при больших, характерных для атомных и субатомных частиц. Потеря массы, связанная с испусканием света, чрезвычайно мала и обычно не поддается измерению даже с помощью самых чувствительных химических весов. Однако специальная теория относительности позволила объяснить такие особенности процессов, происходящих в атомной и ядерной физике, которые до того оставались непонятными. Почти через сорок лет после создания теории относительности физики, работавшие над созданием атомной бомбы, сумели вычислить количество выделяющейся при ее взрыве энергии на основе дефекта (уменьшения) массы при расщеплении ядер урана.

Восприятие работ Эйнштейна было неоднозначным. Многие ученые их попросту не понимали, и это происходило из-за специфических взглядов Эйнштейна на структуру правильных теорий и на связь между теорией и экспериментом. Хотя Эйнштейн и признавал, что единственным источником знаний является опыт, он был также убежден, что научные теории являются свободными творениями человеческой интуиции и что основания, на которых зиждется хорошая теория, не обязательно должны быть логически связаны с опытом. Идеальная теория, по Эйнштейну, должна базироваться на минимально возможном количестве постулатов и описывать максимально возможное количество явлений. Именно эта «скупость» на постулаты, свойственная всей научной деятельности Эйнштейна, делала его работы труднодоступными для коллег. Однако, ряд выдающихся физиков сразу поддержал молодого ученого, и среди них - Макс Планк. Именно он помог Эйнштейну перебраться из патентного бюро в Цюрихе сначала в Прагу, а затем в Берлин на должность директора Института физики кайзера Вильгельма.

Общая теория относительности

В 1905 году Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1914 году принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. Путь, приведший Эйнштейна к успеху, был трудным и извилистым. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 году появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915 годом. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия? Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства — времени.

Общая теория относительности охватывала все возможные движения, в том числе и ускоренные (т.е. происходящие с переменной скоростью). Господствовавшая ранее механика, берущая начало из работ Исаака Ньютона, становилась частным случаем, удобным для описания движения при относительно малых скоростях. Эйнштейну пришлось заменить многие из введенных Ньютоном понятий. Такие аспекты ньютоновской механики, как, например, отождествление гравитационной и инертной масс, вызывали у него беспокойство. По Ньютону, тела притягивают друг друга, даже если их разделяют огромные расстояния, причем сила притяжения, или гравитация, распространяется мгновенно. Гравитационная масса служит мерой силы притяжения. Что же касается движения тела под действием этой силы, то оно определяется инерциальной массой тела, которая характеризует способность тела ускоряться под действием данной силы.

Он произвел так называемый «мысленный эксперимент». Если бы человек в свободно падающей коробке, например в лифте, уронил ключи, то они не упали бы на пол: лифт, человек и ключи падали бы с одной и той же скоростью и сохранили бы свои положения относительно друг друга. Так происходило бы в некой воображаемой точке пространства вдали от всех источников гравитации. Один из друзей Эйнштейна заметил по поводу такой ситуации, что человек в лифте не мог бы отличить, находится ли он в гравитационном поле или движется с постоянным ускорением. Эйнштейновский принцип эквивалентности, утверждающий, что гравитационные и инерциальные эффекты неотличимы, объяснил совпадение гравитационной и инертной массы в механике Ньютона. Затем Эйнштейн расширил картину, распространив ее на свет. Если луч света пересекает кабину лифта «горизонтально», в то время как лифт падает, то выходное отверстие находится на большем расстоянии от пола, чем входное, так как за то время, которое требуется лучу, чтобы пройти от стенки к стенке, кабина лифта успевает продвинуться на какое-то расстояние. Наблюдатель в лифте увидел бы, что световой луч искривился. Для Эйнштейна это означало, что в реальном мире лучи света искривляются, когда проходят на достаточно малом расстоянии от массивного тела.

Общая теория относительности Эйнштейна заменила ньютоновскую теорию гравитационного притяжения тел пространственно-временным математическим описанием того, как массивные тела влияют на характеристики пространства вокруг себя. Согласно этой точке зрения, тела не притягивают друг друга, а изменяют геометрию пространства-времени, которая и определяет движение проходящих через него тел. Как однажды заметил коллега Эйнштейна, американский физик Дж. А. Уилер, «пространство говорит материи, как ей двигаться, а материя говорит пространству, как ему искривляться». Для проверки своей теории предложил три эффекта: искривление светового луча в поле тяготения Солнца, смещение перигелия Меркурия и гравитационное красное смещение. Эти эффекты, как показали последующие эксперименты, действительно действуют и количественно правильно предсказывались общей теорией относительности.

В декабре 1915 года на заседании Академии наук в Берлине Эйнштейн доложил, наконец, окончательные уравнения общей теории относительности. Эта теория стала вершиной творчества Эйнштейна, и, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Однако понимание общей теории относительности пришло не сразу. Первые три года эта теория интересовала узкий круг специалистов и была понятна лишь десятку избранных.

Ситуация резко изменилась в 1919 году, так как в этом году удалось проверить прямыми наблюдениями одно из парадоксальных предсказаний общей теории относительности - искривление луча света от далекой звезды полем тяготения Солнца. Такое наблюдение возможно только во время полного солнечного затмения. Именно в 1919 г. такое затмение можно было наблюдать в районах земного шара с обычно хорошей погодой, что позволяло провести максимально точное фотографирование видимого положения звезд на небе в момент полного затмения. Экспедиция, снаряженная английским астрофизиком сэром Артуром Эддингтоном, сумела получить данные, подтвердившие предсказание Эйнштейна. Буквально в один день Эйнштейн стал знаменит на весь мир.

Обрушившаяся на него слава не поддается описанию. Теория относительности на долгое время стала предметом салонных бесед. Газеты всех стран были переполнены статьями о теории относительности, вышло множество популярных книг, в которых авторы пытались объяснить обывателям суть этой теории. Университеты упрашивали его работать у них в качестве преподавателя, ученые из различных стран мира обращались к нему за советом, а политические партии и всевозможные благотворительные организации и фонды сражались между собой за его поддержку и помощь, он был избран почетным членом множества академий.

Пришло, наконец, признание.

Слово и мнение Эйнштейна стало одним из самых авторитетных в мире. В 1920-е гг. Эйнштейн много ездит по свету, участвует в международных конференциях. Особенно важна была роль Эйнштейна в дискуссиях, развернувшихся в конце 1920-х гг. по концептуальным проблемам квантовой механики. Беседы и споры Эйнштейна с Бором на эти темы стали знаменитыми.

Портреты Эйнштейна появились на обложках иллюстрированных журналов, его имя мелькало в заголовках ежедневных газет. Аудитории, где Эйнштейн читал лекции в Берлинском университете, во время «релятивистской шумихи» были всегда переполнены, иногда число слушателей превышало тысячу человек. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952 году, которое он не принял.

Свою мировую славу Эйнштейн начал воспринимать как тягостное бремя. Его научный триумф вышел далеко за рамки естественных наук. Он совершает многочисленные зарубежные поездки. Журнал «Scientific American» профинансировал конкурс на самое понятное объяснение теории относительности с призом в 5 тысяч долларов. Эйнштейн пошутил, что среди своих друзей он один не участвовал: «Я боялся, что не справлюсь». Любопытно (или символично), что победитель конкурса Болтон был сотрудником Британского патентного бюро.



biofile.ru

Альберт Эйнштейн: теория относительности

«Воображение важнее, чем знания. Знания ограниченны, тогда как воображение охватывает целый мир, стимулируя прогресс, порождая эволюцию.» А. Эйнштейн

Альберт Эйнштейн был одним из основоположников современной теоретической физики. Его теория относительности произвела революцию в науке, в частности в астрофизике.

«Год чудес» и научная революция

Альберт Эйнштейн

Альберт Эйнштейн (1879–1955), физик-теоретик

Альберт Эйнштейн родился в Германии в небогатой еврейской семье. В школе будущий гений особыми талантами не блистал, отличные оценки у него были только по математике.

Он даже не смог с первого раза получить аттестат и поступить в Цюрихский политехникум. Но и поступив, он вовсе не отдавал всего себя учебе. Еще в то время Эйнштейн умел отделять главное от второстепенного и не хотел тратить время на то, что ему неинтересно. Во время лекций он частенько сидел в кафе, читая и анализируя научные журналы с новейшими теориями.

После окончания Политехникума Эйнштейн долго не мог найти работу, он в буквальном смысле голодал, но продолжал заниматься физикой и даже опубликовал несколько статей. Вскоре он устроился в патентное бюро, где платили немного, но зато была масса свободного времени для занятий наукой. В 1905 году, который ученые позже назвали «годом чудес», Эйнштейн опубликовал три работы, с которых началась научная революция.

Когда его спрашивали, как в его голову пришла теория относительности, ученый отвечал: «Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым».

Эйнштейн умел взглянуть на проблему с неожиданного ракурса и найти неординарное решение. Иногда, чтобы выйти из тупика, он играл на скрипке, и мысли принимали нужное направление

Парадоксы теории относительности

Эйнштейну принадлежит множество научных открытий, но главное достижение ученого — создание теории относительности, которая подняла физику и астрономию на новый уровень. По легенде, прозрение осенило Эйнштейна в тот момент, когда он ехал в трамвае мимо уличных часов. Он вдруг понял, что, если бы трамвай разогнался до скорости света, то в его восприятии часы, находящиеся снаружи, остановились бы. Из этого был выведен основной постулат: наблюдатели, находящиеся в разных системах отсчета, по-разному воспринимают реальность, в том числе пространство и время.

Если бы человек, находящийся в трамвае, уронил какой-то предмет, он бы увидел, что тот падает вертикально.

Хотя на самом деле, с учетом движения трамвая, предмет падал бы по параболе. Тем не менее законы природы, вызвавшие падение этого предмета, не меняются. Меняется только их восприятие наблюдателем. В этом заключается принцип относительности.

теория относительности

Ученые установили на одном из трансатлантических авиалайнеров сверхточные атомные часы и выяснили, что после каждого скоростного перелета часы начинают отставать на сотые доли секунды. Это одно из экспериментальных подтверждений теории относительности

Из этого принципа Эйнштейн вывел две теории: частную и общую теории относительности. Самый известный эффект, следующий из частной теории относительности, — это замедление времени. В системе координат, где объекты движутся со скоростями, близкими к скорости света, время растягивается. Обычно это иллюстрируется так называемым парадоксом близнецов. Если один из двух близнецов улетит в космос на ракете, движущейся со скоростью света, и вернется через десять лет, то окажется, что он на десять лет младше второго. Ведь в его системе часы замедлились, и для него прошло всего несколько часов.

«Единственная причина для существования времени — чтобы все не случилось одновременно» (А. Эйнштейн)

Общая теория относительности математически более сложна, чем частная. На ее разработку Эйнштейну понадобилось 11 лет. Эта теория превращает наш трехмерный мир (который можно измерить в длину, ширину и высоту) в четырехмерный, где четвертым измерением является время. Причем все измерения неразрывно связаны, нет отдельного пространства и отдельного времени, есть пространственно-временной континуум. А гравитация, таким образом, является следствием искривления ткани пространства-времени под воздействием массы.

«Теория — это когда все известно, но ничего не работает. Практика — это когда все работает, но никто не знает почему. Мы же объединяем теорию и практику: ничего не работает… и никто не знает почему!» (А. Эйнштейн)

Поделиться ссылкой

sitekid.ru

Так был ли прав Эйнштейн? Проверяем теорию относительности

Сто лет назад, в 1915 году, молодой швейцарский учёный, который на тот момент уже сделал революционные открытия в физике, предложил принципиально новое понимание гравитации.

В 1915 году Эйнштейн опубликовал общую теорию относительности, которая характеризует гравитацию как основное свойство пространства-времени. Он представил серию уравнений, описывающих влияние кривизны пространства-времени на энергию и движение присутствующей в нём материи и излучения.

Сто лет спустя общая теория относительности (ОТО) стала основой для построения современной науки, она выдержала все тесты, с которыми на неё набросились учёные.

Но до недавнего времени было невозможно проводить эксперименты в экстремальных условиях, чтобы проверить устойчивость теории.

Удивительно, насколько сильной показала себя теория относительности за 100 лет. Мы всё ещё пользуемся тем, что написал Эйнштейн!

Клиффорд Уилл, физик-теоретик, Флоридский университет

Теперь у учёных есть технология, с помощью которой можно искать физику за пределами ОТО.

Новый взгляд на гравитацию

Общая теория относительности описывает гравитацию не как силу (так она предстаёт в ньютоновской физике), а как искривление пространства-времени за счёт массы объектов. Земля вращается вокруг Солнца не потому, что звезда её притягивает, а потому, что Солнце деформирует пространство-время. Если на растянутое одеяло положить тяжёлый шар для боулинга, оделяло изменит форму — гравитация влияет на пространство примерно так же.

Теория Эйнштейна предсказала несколько безумных открытий. Например, возможность существования чёрных дыр, которые искривляют пространство-время до такой степени, что ничего не может вырваться изнутри, даже свет. На основе теории были найдены доказательства общепринятому сегодня мнению, что Вселенная расширяется и ускоряется.

Общая теория относительности была подтверждена многочисленными наблюдениями. Сам Эйнштейн использовал ОТО, чтобы рассчитать орбиту Меркурия, чьё движение не может быть описано законами Ньютона. Эйнштейн предсказал существование объектов настолько массивных, что они искривляют свет. Это явление гравитационного линзирования, с которым часто сталкиваются астрономы. Например, поиск экзопланет основан на эффекте едва заметных изменений в излучении, искривлённом гравитационным полем звезды, вокруг которой вращается планета.

Проверка теории Эйнштейна

Общая теория относительности хорошо работает для гравитации обычной силы, как показывают опыты, проведённые на Земле, и наблюдения за планетами Солнечной системы. Но её никогда не проверяли в условиях экстремально сильного воздействия полей в пространствах, лежащих на границах физики.

Наиболее перспективный способ тестирования теории в таких условиях — наблюдение за изменениями в пространстве-времени, которые называются гравитационными волнами. Они появляются как итог крупных событий, при слиянии двух массивных тел, таких как чёрные дыры, или особенно плотных объектов — нейтронных звёзд.

Космический фейерверк такого масштаба отразится на пространстве-времени только мельчайшей рябью. Например, если бы две чёрные дыры столкнулись и слились где-то в нашей Галактике, гравитационные волны могли бы растянуть и сжать расстояние между объектами, находящимися на Земле в метре друг от друга, на одну тысячную диаметра атомного ядра.

Появились эксперименты, которые могут зафиксировать изменения пространства-времени вследствие таких событий.

Есть неплохой шанс зафиксировать гравитационные волны в ближайшие два года.

Клиффорд Уилл

Лазерно-интерферометрическая обсерватория гравитационных волн (LIGO) с обсерваториями в окрестностях Ричленда (Вашингтон) и Ливингстона (Луизиана) использует лазер для определения мельчайших искажений в двойных Г-образных детекторах. Когда рябь пространства-времени проходит через детекторы, она растягивает и сжимает пространство, вследствие чего детектор изменяет размеры. А LIGO может их измерить.

LIGO начала серию запусков в 2002 году, но не достигла результата. В 2010-м была проведена работа по улучшению, и преемник организации, обсерватория Advanced LIGO, снова должна заработать в этом году. Многие из запланированных экспериментов нацелены на поиск гравитационных волн.

Ещё один способ протестировать теорию относительности — посмотреть на свойства гравитационных волн. Например, они могут быть поляризованы, как свет, прошедший через поляризационные очки. Теория относительности предсказывает особенности такого эффекта, и любые отклонения от расчётов могут стать поводом усомниться в теории.

Единая теория

Клиффорд Уилл считает, что открытие гравитационных волн только укрепит теорию Эйнштейна:

Думаю, мы должны продолжать поиск доказательств общей теории относительности, чтобы быть уверенными в её правоте.

А зачем вообще нужны эти эксперименты?

Одна из важнейших и труднодостижимых задач современной физики — поиск теории, которая свяжет воедино исследования Эйнштейна, то есть науку о макромире, и квантовую механику, реальность мельчайших объектов.

Успехи этого направления, квантовой гравитации, могут потребовать внести изменения в общую теорию относительности. Возможно, что эксперименты в области квантовой гравитации потребуют столько энергии, что их будет невозможно провести. «Но кто знает, — говорит Уилл, — может, в квантовой вселенной существует эффект, незначительный, но доступный для поиска».

lifehacker.ru

Альберт Эйнштейн – биография, открытия, теории, фото

Альберт Эйнштейн: биография

Известную фигуру в мире естественных наук Альберта Эйнштейна (годы жизни: 1879-1955) знают даже гуманитарии, которые не любят точные предметы, потому что фамилия этого человека стала нарицательным именем для людей, обладающих невероятными умственными способностями.

Легендарный физик Альберт ЭйнштейнЛегендарный физик Альберт Эйнштейн

Эйнштейн – основатель физики в ее современном понимании: великий ученый – основоположник теории относительности и автор более трехсот научных работ. Еще Альберт известен, как публицист и общественный деятель, который является почетным доктором около двадцати высших учебных заведений мира. Этот человек привлекает неоднозначностью: факты говорят, что, несмотря на невероятную сообразительность, он был несмышлен в решении бытовых вопросов, что делает его интересной фигурой в глазах общественности.

Детство и юность

Биография великого ученого начинается с небольшого немецкого города Ульма, расположенного на реке Дунай – это место, где Альберт появился на свет 14 марта 1879 года в небогатой семье еврейского происхождения.

Отец гениального физика Герман занимался производством наполнения матрасов перьевой набивкой, но вскоре семья Альберта переехала в город Мюнхен. Герман вместе с Якобом, своим братом, занялся небольшой компанией, продающей электрическое оборудование, которая сначала развивалась успешно, но вскоре не выдержала конкуренции крупных фирм.

Родители Альберта Эйнштейна

В детстве Альберт считался недалеким ребенком, например, он не говорил до трехлетнего возраста. Родители даже боялись, что их чадо так и не научится произносить слова, когда в 7 лет Альберт еле как шевелил губами, пытаясь повторить заученные фразы. Также мать ученого Паулина боялась, что у ребенка врожденное уродство: у мальчика был крупный затылок, который сильно выпирал вперед, а бабушка Эйнштейна постоянно повторяла, что ее внук толстый.

Альберт мало общался со сверстниками и больше любил одиночество, например, строил карточные домики. С малых лет великий физик проявил негативное отношение к войне: он ненавидел шумную игру в солдатики, потому что она олицетворяет кровавую войну. Отношение к войне не поменялось у Эйнштейна и на протяжении дальнейшей жизни: он активно выступал против кровопролития и ядерного оружия.

Альберт Эйнштейн в детствеАльберт Эйнштейн в детстве

Яркое воспоминаний гения – это компас, который Альберт получил от отца в пятилетнем возрасте. Тогда мальчик болел, и Герман показал ему предмет, который заинтересовал ребенка: ведь удивительно то, что стрелка прибора показывала одинаковое направление. Этот небольшой предмет возбудил невероятный интерес у юного Эйнштейна.

Маленького Альберта часто учил его дядя Якоб, который с детства прививал любовь племянника к точным математическим наукам. Они вместе читали учебники по геометрии и математике, а решить самостоятельно задачу для юного гения всегда было счастьем. Однако мать Эйнштейна Паулина отрицательно относилась к подобным занятиям и считала, что для пятилетнего ребенка любовь к точным наукам не обернется ничем хорошим. Но было ясно, что этот человек в будущем сделает великие открытия.

Альберт Эйнштейн в детстве с сестройАльберт Эйнштейн с сестрой

Также известно, что Альберта с детства интересовала религия, он считал, что невозможно начать изучать вселенную без понимания Бога. Будущий ученый с трепетом наблюдал за священнослужителями и не понимал, почему высший библейский разум не останавливает войны. Когда мальчику было 12 лет, его религиозное убеждение кануло в лету из-за изучения научных книг. Эйнштейн стал приверженцем того, что библия – высокоразвитая система для управления молодежью.

После окончания школы Альберт поступает в мюнхенскую гимназию. Учителя считали его умственно отсталым из-за того же дефекта речи. Эйнштейн изучал только те предметы, которые ему были интересны, игнорируя историю, литературу и немецкий язык. С немецким языком у него были особые проблемы: учитель говорил Альберту в глаза, что тот не закончит школу.

Альберт Эйнштейн в юностиАльберт Эйнштейн в 14 лет

Эйнштейн ненавидел ходить в учебное заведение и считал, что преподаватели сами многое не знают, но зато мнят себя выскочками, которым все дозволено. Из-за таких суждений юный Альберт постоянно вступал в споры с ними, поэтому у него сложилась репутация как не только отсталого, но и нелучшего ученика.

Не окончив гимназию, 16-летний Альберт вместе с семьей переезжает в солнечную Италию, в Милан. В надежде поступить в Федеральную высшую техническую школу Цюриха будущий ученый отправляется из Италии в Швецию пешком. Эйнштейну удалось показать достойные результаты по точным наукам на экзамене, однако гуманитарные Альберт полностью провалил. Но ректор технической школы оценил выдающиеся способности подростка и посоветовал поступить в школу Швейцарии Аарау, которая, кстати, считалась далеко не лучшей. Да и Эйнштейна в этой школе вовсе не считали гением. 

Прическа Альберта ЭйнштейнаПрическа Альберта Эйнштейна

Лучшие студенты Аарау уезжали получать высшие образование в столице Германии, однако в Берлине низко оценили способности выпускников. Альберт узнал тексты задач, с которыми не справились любимчики директора, и решил их. После чего довольный будущий ученый пришел в кабинет Шнайдера, показав решенные задачи. Альберт разозлил начальника школы, сказав, что он несправедливо выбирает учеников для состязаний.

После успешного окончания учебы Альберт поступает в учебное заведение своей мечты – школу Цюриха. Однако отношения с профессором кафедры Вебером у молодого гения сложились плохо: два физика постоянно ругались и спорили.

Начало научной карьеры

Из-за разногласий с профессорами в институте Альберту закрыли путь в науку. Он хорошо сдал экзамены, но не идеально, профессора отказали студенту в научной карьере. Эйнштейн с интересом трудился на научной кафедре Политехнического института, Вебер говорил, что его студент – умный малый, однако не воспринимает критики.

В возрасте 22 лет Альберт получил диплом преподавателя в области математики и физики. Но из-за тех же ссор с учителями Эйнштейн не мог найти работу, проведя два года в мучительных поисках постоянного заработка. Альберт жил бедно и даже не мог купить еды. Друзья ученого помогли устроиться в бюро патентов, где он проработал достаточно долго.

Альберт Эйнштейн в молодостиАльберт Эйнштейн в молодости

В 1904 году Альберт начал сотрудничество с журналом «Анналы физики», приобретя авторитет в издании, и в 1905 году ученый публикует собственные научные работы. Но революцию в мире науки сделали три статьи великого физика:

  • К электродинамике движущихся тел, ставшей основой теории относительности;
  • Работа, заложившая начало квантовой теории;
  • Научная статья, которая сделала открытие в статистической физике о броуновском движении.

Теория относительности

Теория относительности Эйнштейна в корне поменяла научные физические представления, которые раньше держались на ньютоновской механике, существовавшей порядка двухсот лет. Но теорию относительности, выведенную Альбертом Эйнштейном, смогли полностью понять только единицы, поэтому в учебных заведениях преподают лишь специальную теорию относительности, являющуюся частью общей. СТО говорит о зависимости пространства и времени от скорости: чем выше скорость движения тела, тем больше искажаются как размеры, так и время. 

Теория относительности Альберта ЭйнштейнаТеория относительности Альберта Эйнштейна

Согласно СТО, возможно путешествие во времени путем преодоления скорости света, поэтому, исходя из невозможности таких путешествий, введено ограничение: скорость любого объекта не может превышать скорость света. Для небольших же скоростей пространство и время не искажаются, поэтому здесь применяются классические законы механики, а большие скорости, для которых искажение заметно, называются релятивистскими. И это только малая доля как специальной, так и общей теории всего движения Эйнштейна.

Нобелевская премия

Альберт Эйнштейн не раз номинировался на Нобелевскую премию, однако эта награда около 12 лет обходила ученого стороной из-за его новых и не всем понятных взглядов на точную науку. Однако комитет решил пойти на компромисс и номинировать Альберта за работу о теории фотоэффекта, за что ученый и удостоился премии. Все из-за того, что это изобретение – не столь революционное, в отличие от ОТО, к которой Альберт, собственно, и готовил речь. 

Альберт Эйнштейн получает нобелевскую премиюАльберт Эйнштейн получает нобелевскую премию

Однако в то время, когда ученому пришла телеграмма от комитета о номинации, ученый был в Японии, поэтому ему решили вручить награду в 1922 году за 1921 год. Однако ходят слухи о том, что Альберт задолго до поездки знал, что его номинируют. Но ученый решил не оставаться в Стокгольме в столь ответственный момент.

Личная жизнь

Жизнь великого ученого овеяна интересными фактами: Альберт Эйнштейн – странный человек. Известно, что он не любил носить носки, а также ненавидел чистить зубы. К тому же у него была плохая память на простые вещи, например, на номера телефонов.

Альберт Эйнштейн показывает языкАльберт Эйнштейн показывает язык

Альберт женился на Милеве Марич в 26 лет. Несмотря на 11-летний брак, вскоре у супругов появились разногласия по поводу семейной жизни, по слухам, из-за того, что Альберт был еще тем ловеласом и имел около десяти пассий. Однако он предложил жене контракт о сожительстве, согласно которому та должна была соблюдать некоторые условия, например, периодически стирать вещи. Но по контракту у Милевы и Альберта не предусматривалось никаких любовных отношений: бывшие супруги даже спали раздельно. От первого брака у гения были дети: младший сын умер, находясь в психиатрической лечебнице, а со старшим у ученого не сложились отношения.

Альберт Эйнштейн и Милева МаричАльберт Эйнштейн и Милева Марич

После развода с Милевой ученый женился на Эльзе Левенталь, своей кузине. Однако ему также интересна была дочь Эльзы, не питавшая взаимных чувств к мужчине, который старше нее на 18 лет.

Альберт Эйнштейн и Эльза ЛевентальАльберт Эйнштейн и Эльза Левенталь

Многие, кто знал ученого, отмечали, что он – необычайно добрый человек, готов был подать руку помощи и признать ошибки.

Причина смерти и память

Весной 1955 года во время прогулки между Эйнштейном и его другом завязался незатейливый разговор о жизни и смерти, в ходе которого 76-летний ученый сказал, что смерть – это также облегчение.

Памятник Альберту Эйнштейну работы Роберта БерксаПамятник Альберту Эйнштейну работы Роберта Беркса

13 апреля состояние Альберта резко ухудшилось: врачи поставили диагноз аневризма аорты, но ученый отказался оперироваться. Альберт лежал в больнице, где ему внезапно поплохело. Он прошептал слова на родном языке, однако сиделка не смогла понять их. Женщина подошла к койке больного, но Эйнштейн уже умер от кровоизлияния в полость живота 18 апреля 1955 года. Все его знакомые отзывались о нем, как о кротком и очень добром человеке. Эта было горькая потеря для всего научного мира.

Цитаты

Цитаты физика о философии и жизни – это предмет для отдельного рассуждения. Эйнштейн сформировал свой собственный и независимый взгляд на жизнь, с которым согласно не одно поколение.

  • Есть только два способа прожить жизнь. Первый — будто чудес не существует. Второй — будто кругом одни чудеса. 
  • Если вы хотите вести счастливую жизнь, вы должны быть привязаны к цели, а не к людям или к вещам. 
  • Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно...
  • Если теория относительности подтвердится, то немцы скажут, что я немец, а французы — что я гражданин мира; но если мою теорию опровергнут, французы объявят меня немцем, а немцы — евреем. 
  • Если беспорядок на столе означает беспорядок в голове, то что же тогда означает пустой стол? 
  • Морскую болезнь вызывают у меня люди, а не море. Но боюсь, наука еще не нашла лекарства от этого недуга. 
  • Образование — это то, что остаётся после того, как забывается всё выученное в школе. 
  • Все мы гении. Но если вы будете судить рыбу по её способности взбираться на дерево, она проживёт всю жизнь, считая себя дурой. 
  • Единственное, что мешает мне учиться — это полученное мной образование.
  • Стремись не к тому, чтобы добиться успеха, а к тому, чтобы твоя жизнь имела смысл.

Фото

24smi.org

Основной закон Эйнштейна

Всем нам знакома личность Эйнштейна. Закон относительности стал основным открытием в карьере великого ученого. Однако это далеко не единственное научное изыскание, которым славится немецкий физик. Об истории жизни Эйнштейна и его основных достижениях будет рассказано в нашем материале.

Жизнь Альберта Эйнштейна

Величайший физик родился в 1879 году в Ульме, небольшом немецком городке. Альберт получил школьное образование, после чего поступил в технический техникум Цюриха. Вопреки многочисленным мифам, с математикой у Эйнштейна всегда все было в порядке.

По окончании учебы Альберт Эйнштейн работал в штабе Бернского бюро патентования изобретений. Первое время ученый жил почти в бедности. Зарабатывал он путем сотрудничества с журналом «Анналы физики».

Закон относительности Эйнштейн представил в 1905 году. Спустя четыре года, ученый получает должность преподавателя в университете Цюриха. Чуть позже немецкого физика номинируют на Нобелевскую премию. Награду Эйнштейн получил, но не за главную свою идею: к теории относительности научный комитет отнесся прохладно. Зато им пришлась по душе теория фотоэффекта, именно за нее гениальный физик и получил "Нобеля".

Законы фотоэффекта

В начале XX века германский физик Макс Планк объяснил спектральность состава излучения от горячих тел. Согласно его теории, процесс излучения дискретен, то есть испускание его должно быть порционно. Однако Планк так и не смог растолковать физическое значение квантов – неделимых порций света.

Теорию Планка подхватил Эйнштейн. Смысл закона фотоэффекта заключается в том, что световые волны не только излучаются и поглощаются, но и как раз состоят из квантов. Это частицы, передвигающиеся в пустоте со скоростью 300 тыс. километров в секунду. Чуть позже кванты света стали именоваться фотонами.

закон сохранения энергии эйнштейна

Большую роль в законе Эйнштейна играет понятие "красной границы" – нижней частоты, после которой ничего не происходит. Связано это с выбиванием электронов из вещества при помощи света. Важно понимать, что закон о фотоэффекте не един. Он включает в себя множество разных положений о роли квантов, фотонов и различных веществ.

Броуновское движение

Непрерывное движение частиц в жидкости было открыто британским ботаником Робертом Броуном еще в начале XIX века. В качестве предмета для опыта использовалась цветочная пыльца. Броун смог придать движению статистическое объяснение, но в теории Эйнштейна оно приобрело законченную форму.

Немецкий физик сформировал теорию, в соответствии с которой движение частиц происходит из-за столкновения с невидимыми молекулами. Более того, Эйнштейн представил ряд принципов, согласно которым существует возможность вычислить количество молекул и их массу.

основной закон эйнштейна

Немецкий физик не только дополнил теорию Броуна, но и укрепил научное мнение о реальности молекул. Дело в том, что большинство ученых начала XX века ставили существование микрочастиц под сомнение. Для них это было не более чем гипотеза времен Демокрита. Однако Эйнштейн привел необходимое количество доказательств.

Специальная теория относительности

До конца XIX века многие физики были уверены в существовании эфира – некоего вещества, заполняющего Вселенную. Сомневались в теории лишь два американских физика: Майкельсон и Морли. Они поставили эксперимент, в котором искали различия в скорости света, якобы распространяющегося по эфиру. Итог опыта был ожидаемым: роль эфира как носителя света оказалась маловероятна.

Теорию Майкельсона-Морли дополнил Эйнштейн. Он сформировал идею о том, что свет всегда распространяется с одинаковой скоростью. Он не зависит от движения его источника. Таким образом, концепция эфира была полностью опровергнута.

Эйнштейн изменил представления о времени и пространстве. Ни один физический объект не может передвигаться быстрее, чем свет. При этом наблюдатель видит, как размеры движущегося объекта сокращаются в направлении движения. Скорость света может быть одинаковой как для покоящихся, так и для движущихся наблюдателей лишь в том случае, если время несколько замедлится.

Один из важнейших постулатов представлен в законе Эйнштейна об относительности. Им является идея эквивалентности энергии и массы.

Закон о сохранении энергии

Эйнштейну принадлежит знакомая многим формула E=mc2. E здесь обозначает энергию, m – это масса, а c – скорость света. Но что все это значит и как это соотнести?

Масса и энергия – это одно и то же. Доказательства тому есть повсюду. Например, превращенная в чистую энергию пальчиковая батарейка будет равна 250 млрд таких же батареек, но уже используемых по старинке. Почему так получается? В законе Эйнштейна есть ответ на этот вопрос, причем довольно простой. Полная энергия физического тела равняется его же массе, умноженной на размерный множитель квадрата скорости в вакуумном пространстве. Таким образом, любой категории энергии соответствует свой тип массы.

закон эйнштейна физика

Идея об эквивалентности массы объекта наличествующей в теле энергии стала главным постулатом частной теории относительности. К тому же закон Эйнштейна имеет важное практическое значение. Сегодня он повсеместно применяется в энергетике и военной сфере.

Восприятие идей Эйнштейна

Таким образом, специальная теория относительности базируется на двух постулатах. Первая идея – принцип относительности, согласно которому системы отсчета, двигающиеся в отношении друг друга с неизменной скоростью в одном направлении, управляются одними и теми же законами. Второй принцип связан со скоростью света. Она одинакова для каждого наблюдателя и не имеет зависимости от скорости их передвижения. Ничто в природе не может быть быстрее скорости света.

законы фотоэффекта

Многие ученые не воспринимали идеи Эйнштейна. Немецкий ученый говорил малопонятные вещи и часто отрицал устоявшиеся гипотезы. Однако все теории и законы Эйнштейна в физике были получены в результате опыта, а не теоретических работ. Идеальная теория, говорил немецкий физик, должна базироваться на минимальном числе постулатов и описывать наибольшее количество явлений.

Общая теория относительности

Под конец следует рассказать про основной закон Эйнштейна – общую теорию относительности (ОТО). Первые идеи были опубликованы в 1912 году. Вместе с Гроссманом, своим товарищем, Эйнштейн опубликовал статью "Набросок обобщенной ТО". Окончательная формулировка появилась лишь в 1915 году.

закон относительности эйнштейна

Немецкий ученый опирался на тот факт, что "инертная" и "тяжелая" массы равны. Но каков может быть способ передачи гравитационного воздействия между телами? Что может быть распространителем такого воздействия? Эйнштейн дал весьма неожиданный ответ: посредником выступает система пространства и времени.

Пространство говорит материи, как ей двигаться, а материя говорит пространству, как ему искривляться.

С появлением теории Эйнштейна Ньютоновская механика ушла в прошлое. Гравитационное притяжение тел сменилось пространственно-временным описанием того, как массивные объекты воздействуют на характеристики пространства вокруг самих себя. Так, тела не притягиваются друг к другу, а меняют пространственно-временной континуум. Джон Арчибальд Уилер, американский друг и коллега Эйнштейна, лучше других охарактеризовал теорию великого физика: "Пространство говорит материи, как ей двигаться, а материя говорит пространству, как ему искривляться".

Признание научных идей

Первые годы теорию Эйнштейна почти никто не принимал. Ситуация изменилась лишь в 1919 году, когда был поставлен прямой опыт. Он доказал одно из предсказаний ОТО. Дело в том, что луч света, исходящий от далекой звезды, искривился полем тяготения Солнца.

закон эйнштейна физика

Подобное наблюдение можно наблюдать каждое солнечное затмение. Эйнштейн прославился на весь мир.

Ниже представлен к/ф "Что такое теория относительности?" (1964 год, СССР).

Впервые в мировой истории научная теория произвела настоящей фурор даже в обычном обществе. Теория относительности стала предметом бесед в светских салонах. Газеты были переполнены новостями о необычном ученом, преподаватели разных университетов стали обращаться к Эйнштейну за советами. Даже политики не остались в стороне: на имени немецкого ученого пытались заработать и сделать карьеру. Мнение Эйнштейна стало одним из самых популярных и авторитетных в мире.

fb.ru

Читать онлайн "Эйнштейн. Теория относительности [Пространство – это вопрос времени]" автора Ласерна Давид Бланко - RuLit

Наука. Величайшие теории 1: Эйнштейн. Теория относительности.

Пространство – это вопрос времени.

Наука. Величайшие теории Выпуск № 1, 2015 Еженедельное издание

Пер. с исп. – М.: Де Агостини, 2015. – 176 с.

ISSN 2409-0069

© David Blanco Laserna, 2012 (текст)

Иллюстрации предоставлены:

Age Fotostock, Album, Archivo RBA, Cordon Press, Corbis, M. Faraday Electricity, The Illustrated London News, Time.

Эйнштейн жил в эпоху революций. В XIX веке реклама завоевала прессу, в 1920-х годах она утвердилась на радио, а через пару десятилетий пришла на телевидение. Человек впервые оказался перед лицом информационной стихии и встретил во весь рост ее мощную ударную волну. В коллективной памяти навеки запечатлены фигуры людей, поднятых в тот исторический момент на гребень славы: Чарли Чаплин, Мэрилин Монро, Элвис Пресли, Альберт Эйнштейн…

Можно сказать, что к концу своей жизни Эйнштейн был причислен к лику светских святых. После двух мировых конфликтов, узаконивших химическое оружие и ядерные атаки, преклонение перед научным прогрессом граничило с ужасом. Фигура рассеянного мудреца с взлохмаченными волосами, ратовавшего за разоружение и проповедовавшего интеллектуальное смирение перед силами природы, стала для всего разочарованного поколения символом последней возможности воскресить веру в гуманизм науки. В момент, когда Эйнштейн достиг зенита своей славы, ему было 72 года. К тому времени остыли многие из его страстей, кроме одной – мечты примирить квантовую механику с теорией относительности. В 1980 году был открыт доступ к его частной переписке, и почитатели ученого смогли узнать своего кумира как обычного человека. Для некоторых стало настоящим открытием, что он не надевал носков, курил трубку, играл на скрипке и имел ряд других не связанных с наукой занятий и интересов.

В памяти многих Эйнштейн остался образцовым гражданином и пацифистом, противником Первой мировой войны, нацизма и маккартизма, однако его личную жизнь нельзя было назвать столь же образцовой.

Журнал Time назвал Эйнштейна человеком столетия, и снять его с этого пьедестала вряд ли возможно. Это место принадлежит ученому совершенно заслуженно – как личности, которая воплощает для нас целый век. Для нас Эйнштейн – это обе мировые войны, это ядерный гриб Хиросимы, это преследование и истребление евреев, это неумолимый рост научного знания и его влияния на общество, это сионизм, паранойя сенатора Маккарти, коллекция афоризмов, формула Е = mc² , мечта о мире во всем мире…

Эйнштейн попытался сохранить свое личное пространство, написав автобиографию, которая содержала меньше биографических фактов, чем любое другое жизнеописание, когда-либо существовавшее в истории. На первых же страницах он поместил программное заявление, которое цитировалось потом несметное количество раз: «Главное в жизни человека моего склада заключается в том, что он думает и как думает, а не в том, что он делает или испытывает». И все же маловероятно, что это предупреждение может остановить человеческое любопытство. Мы попытаемся проследить связь между жизненными перипетиями, через которые прошел ученый, и его поразительными научными озарениями. Возможно, если бы Эйнштейн сразу добился академической должности вместо того, чтобы по восемь часов в день работать в швейцарском патентном бюро, он бы пришел к тем же результатам. Но сама по себе реконструкция обстоятельств, в которых на самом деле работал ученый, крайне увлекательное занятие, наводящее на определенные размышления.

С самого рождения Эйнштейн находился рядом с последними достижениями технического прогресса, от электрических лампочек до различных приспособлений, которые использовал на своей фабрике его отец. Иллюстрируя теорию относительности, ученый постоянно приводит примеры, отсылающие нас к железной дороге и часовой механике. В годы детства и юности Эйнштейна железная дорога стала новым транспортным средством. Скорость, которую развивали поезда, для того времени была неслыханной. В Берне Эйнштейн наблюдал, как синхронизация часов между городами разжигала и без того горячую страсть швейцарцев к пунктуальности. Может быть, именно эти обстоятельства подтолкнули его воображение и способствовали возникновению теории, которая объединяла время, неимоверные скорости и постоянное изменение системы отсчета. Позже секреты силы тяготения были приоткрыты с помощью еще одного изобретения, которое во времена Эйнштейна находилось на вершине технического прогресса: «Что мне необходимо знать точно, – восклицал физик, – так это то, что происходит с пассажирами лифта, который падает в пустоту!»

В своих первых статьях ученый продемонстрировал безупречное владение статистической механикой и исчерпал все возможности традиционной молекулярно-кинетической теории. Его работы объясняли движение частиц пыли в луче света, синий цвет неба и дрожание цветочной пыльцы в стакане с водой. Кроме того, он дал объяснение и феномену фотоэффекта, занимавшему умы многих экспериментальных физиков. Однако главное ждало его впереди. Публикацией в 1905 году труда по специальной теории относительности открывается настоящая эпоха Эйнштейна с ее главным наследием – новым способом мыслить, который стал откровением и вдохновением для следующего поколения физиков. Сам ученый описывал этот переход так: «Новая теория необходима, когда, во-первых, мы сталкиваемся с новыми явлениями, которые старые теории объяснить не могут. Но эта причина, скажем так, банальна, навязана извне. Есть и другая причина, не менее важная. Заключается она в стремлении к простоте и унификации предпосылок теории в ее собственных рамках». Следуя по стопам Евклида, который вывел всю известную нам геометрию из пригоршни аксиом, сшнштеин расширил сферу приложения своих теорий на всю физику. Собственно говоря, общая теория относительности, сформулированная в 1915 году, заложила основы современной астрономии. Исходя из простых гипотез, как, к примеру, постоянная величина скорости света или допущение, что все законы физики одинаково применимы ко всем наблюдателям независимо от их движения относительно друг друга, Эйнштейн навсегда изменил наше понятие о времени, пространстве и гравитации. Его научное воображение сумело добраться до таких пределов, об одной мысли о которых захватывает дух, – от квантовой шкалы (10~15 м) до самой границы видимого космоса (1026 м).

Умение отделять зерна от плевел – особый дар. Эйнштейн с ним родился. Любой, кто хоть раз бился над решением задач по физике, знает, как трудно бывает взлететь над цепочками уравнений – вроде того, как футболист должен видеть не просто надвигающегося на него центрального нападающего, а сразу все поле. Выдающаяся интуиция была характерной чертой Эйнштейна, и именно благодаря ей он мог просчитывать наперед ходы природы, в то время как другие терялись во внешнем хаосе экспериментальных результатов. Если не было иного выхода, он пускал в ход самые изощренные математические инструменты, но все-таки главным его талантом было умение незамедлительно вступать в глубинный диалог с реальностью, откуда он выносил что-то вроде прозрений, позже находивших выражение с помощью языка логики.

Зернами, из которых проросли две великие теории ученого, общая и специальная теории относительности, стали два мысленных образа, пришедших к нему в моменты озарения. Первым был образ его самого, преследующего в темноте солнечный луч и одновременно задающегося вопросом: а что случится, когда я его догоню? Вторым образом был человек, падающий в пропасть и по мере своего падения теряющий ощущение собственного веса. Есть мнение, что самый амбициозный проект великого физика – построение окончательной теории, суммы предпосылок, из которой можно было бы вывести все законы физики,- потерпел неудачу именно потому, что для него не нашлось никакого интуитивного образа, способного послужить путеводной звездой.

Modus operandi (образ действия) Эйнштейна способствовал тому, что его фигура стала полемической: часто догадки ученого на целые десятилетия опережали их экспериментальные доказательства, но после обнаружения решения само противоречие превращалось в лучшее подтверждение его правоты. Обнародованное в 1919 году известие о том, что траектория лучей света звезд искривляется вблизи от Солнца, в мгновение ока вознесло физика к вершинам славы.

www.rulit.me

Общая теория относительности Эйнштейна: четыре шага, предпринятых гением

Революционный физик использовал свое воображение, а не сложную математику, чтобы придумать свое самое известное и элегантное уравнение. Общая теория относительности Эйнштейна известна тем, что предсказывает странные, но истинные явления, вроде замедления старения астронавтов в космосе по сравнению с людьми на Земле и изменения форм твердых объектов на высоких скоростях.

Но интересно то, что если вы возьмете копию оригинальной статьи Эйнштейна об относительности 1905 года, ее будет довольно просто разобрать. Текст прост и понятен, а уравнения в основном алгебраические — их сможет разобрать любой старшеклассник.

Все потому, что сложная математика никогда не была коньком Эйнштейна. Он любил думать образно, проводить эксперименты в своем воображении и осмыслять их до тех пор, пока физические идеи и принципы не станут видны кристально ясно.

Вот с чего начались мысленные эксперименты Эйнштейна, когда ему было всего 16 лет, и как они в конечном итоге привели его к самому революционному уравнению в современной физике.

1895 год: бег рядом с лучом света

К этому моменту жизни Эйнштейна его плохо скрываемое презрение к немецким корням, авторитарным методам обучения в Германии уже сыграло свою роль, и его выгнали из средней школы, поэтому он переехал в Цюрих в надежде на поступление в Швейцарский федеральный технологический институт (ETH).

Но сперва Эйнштейн решил провести год подготовки в школе в соседнем городе Аарау. В этом месте он вскоре обнаружил, что интересуется тем, каково это — бежать рядом с лучом света.

Эйнштейн уже узнал в физическом классе, что такое луч света: множество колеблющихся электрических и магнитных полей, движущихся на скорости 300 000 километров в секунду, измеренной скорости света. Если он бежал бы рядом с такой же скоростью, осознал Эйнштейн, он мог бы увидеть множество колеблющихся электрических и магнитных полей рядом с ним, словно застывшие в пространстве.

Но это было невозможно. Во-первых, стационарные поля нарушали бы уравнения Максвелла, математические законы, в которых было заложено все, что физики знали об электричестве, магнетизме и свете. Эти законы были (и остаются) довольно строгими: любые волны в этих полях должны двигаться со скоростью света и не могут стоять на месте, без исключений.

Хуже того, стационарные поля не вязались с принципом относительности, который был известен физикам со времен Галилея и Ньютона в 17 веке. По сути, принцип относительности говорит, что законы физики не могут зависеть от того, как быстро вы движетесь: вы можете измерить лишь скорость одного объекта относительно другого.

Но когда Эйнштейн применил этот принцип к своему мысленному эксперименту, возникло противоречие: относительность диктовала, что все, что он мог увидеть, двигаясь рядом с лучом света, включая стационарные поля, должно быть чем-то приземленным, что физики могут создать в лаборатории. Но такого никто никогда не наблюдал.

Эта проблема будет волновать Эйнштейна еще 10 лет, на протяжении всего его пути обучения и работы в ETH и движения к столице Швейцарии Берну, где он станет экзаменатором в швейцарском патентном бюро. Именно там он разрешит парадокс раз и навсегда.

1904 год: измерение света с движущегося поезда

Это было непросто. Эйнштейн пробовал любое решение, которое приходило ему в голову, но ничего не работало. Почти отчаявшись, он начал раздумывать, но простым, однако радикальным решением. Возможно, уравнения Максвелла работают для всего, подумал он, но скорость света всегда была постоянной.

Другими словами, когда вы видите пролетающий пучок света, не имеет значения, будет ли его источник двигаться к вам, от вас, в сторону или еще куда-нибудь, и не имеет значения, насколько быстро движется его источник. Скорость света, которую вы измерите, всегда будет 300 000 километров в секунду. Помимо всего прочего, это означало, что Эйнштейн никогда не увидит стационарных колеблющихся полей, поскольку никогда не сможет поймать луч света.

Это был единственный способ, который увидел Эйнштейн, чтобы примирить уравнения Максвелла с принципом относительности. На первый взгляд, впрочем, это решение имело собственный роковой недостаток. Позже он объяснил его другим мысленным экспериментом: представьте себе луч, который запускается вдоль железнодорожной насыпи, в то время как поезд проходит мимо в том же направлении со скоростью, скажем, 3000 километров в секунду.

Некто стоящий возле насыпи должен будет измерить скорость светового луча и получить стандартное число в 300 000 километров в секунду. Но кто-то на поезде будет видеть свет, движущийся со скоростью 297 000 километров в секунду. Если скорость света непостоянна, уравнение Максвелла внутри вагона должно выглядеть иначе, заключил Эйнштейн, и тогда принцип относительности будет нарушен.

Это кажущееся противоречие заставило Эйнштейна задуматься почти на год. Но затем, в одно прекрасное утро в мае 1905 года, он шел на работу со своим лучшим другом Мишелем Бессо, инженером, которого он знал со студенческих лет в Цюрихе. Двое мужчин говорили о дилемме Эйнштейна, как и всегда. И вдруг Эйнштейн увидел решение. Он работал над ним всю ночь, и когда следующим утром они встретились, Эйнштейн сказал Бессо: «Спасибо. Я полностью решил проблему».

Май 1905 года: молния бьет в движущийся поезд

Откровение Эйнштейна состояло в том, что наблюдатели в относительном движении воспринимают время по-разному: вполне возможно, что два события будут происходить одновременно с точки зрения одного наблюдателя, но в разное время с точки зрения другого. И оба наблюдателя будут правы.

Позднее Эйнштейн проиллюстрировал свою точку зрения другим мысленным экспериментом. Представьте, что рядом с железной дорогой снова стоит наблюдатель и мимо него проносится поезд. В тот момент, когда центральная точка поезда проходит мимо наблюдателя, в каждый конец поезда бьет молния. Поскольку молнии бьют на одном расстоянии от наблюдателя, их свет попадает в его глаза одновременно. Справедливо будет сказать, что молнии бьют одновременно.

Между тем ровно в центре поезда сидит другой наблюдатель. С его точки зрения свет от двух ударов молний проходит одинаковое расстояние и скорость света будет одинаковой в любом направлении. Но поскольку поезд движется, свет, приходящий от задней молнии, должен пройти большее расстояние, поэтому попадает к наблюдателю несколькими мгновениями позже, чем свет из начала. Поскольку импульсы света приходят в разное время, можно заключить, что удары молнии не одновременны — один происходит быстрее.

Эйнштейн понял, что относительна как раз эта одновременность. И как только вы это признаете, странные эффекты, которые мы сейчас связываем с относительностью, разрешаются при помощи простой алгебры.

Эйнштейн лихорадочно записал свои мысли и отправил свою работу для публикации. Названием стало «Об электродинамике движущихся тел», и в нем отразилась попытка Эйнштейна увязать уравнения Максвелла с принципом относительности. Бессо была вынесена отдельная благодарность.

Сентябрь 1905 года: масса и энергия

Эта первая работа, впрочем, не стала последней. Эйнштейн был одержим относительностью до лета 1905 года, а в сентябре отправил вторую статью для публикации, уже вдогонку, задним числом.

Она была основана еще на одном мысленном эксперименте. Представьте объект в состоянии покоя, говорил он. Теперь представьте, что тот одновременно испускает два идентичных импульса света в противоположных направлениях. Объект будет оставаться на месте, но поскольку каждый импульс уносит определенное количество энергии, заключенная в объекте энергия будет уменьшаться.

Теперь, писал Эйнштейн, как будет выглядеть этот процесс для движущегося наблюдателя? С его точки зрения, объект просто будет продолжать двигаться по прямой линии, в то время как два импульса будут улетать. Но даже если скорость двух импульсов будет оставаться прежней — скоростью света — их энергии будут разными. Импульс, который движется вперед по направлению движения, будет иметь более высокую энергию, чем тот, что движется в обратном направлении.

Добавив немного алгебры, Эйнштейн показал, что для того, чтобы все это было последовательным, объект должен не только терять энергию при отправке световых импульсов, но и массу. Или же масса и энергия должны быть взаимозаменяемы. Эйнштейн записал уравнение, которое их связывает. И оно стало самым знаменитым уравнением в истории науки: E = mc2.

hi-news.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики