Газотурбинный двигатель подробно. Газотурбинный двигатель на автомобиле
Десять самых крутых автомобилей с газотурбинными двигателями – Обзор – Autoutro.ru
Газотурбинные двигатели - это невероятная вещь, и их применение не ограничивается лишь самолетами. Мы подобрали для вас десять самых интересных наземных транспортных средств, питающихся от огромных турбин.
Jet Corvette. Кастомайзеры очень любят брать моторы от Corvette и устанавливать их на другие машины, чтобы сделать их быстрее. Винс Гранателли подошел к делу с другого конца. Он, наоборот, избавил свой Corvette от V8 в пользу... газотурбинного двигателя Pratt & Whitney ST6B. 880-сильная турбина делает машину самым быстрым Corvette, допущенным к эксплуатации по дорогам общего пользования. Разгон до 100 км/ч осуществляется всего за 3,2 секунды.
Thrust SSC. Невероятный (но еще не завершенный) Bloodhound SSC наверняка возьмет свой рекорд (запланированы 1 600 км/ч), однако оригинальный Thrust SSC по-прежнему является серьезным техническим достижением. Благодаря 110 000 л. с. от двух турбореактивных двигателей Rolls-Royce, Thrust в 1997 году установил сухопутный рекорд скорости на отметке 1 228 км/ч и стал первым автомобилем, преодолевшим звуковой барьер.
Турбинный мотоцикл MTT. Как будто мотоциклы и без этого недостаточно страшны... MTT снабдили свой мотоцикл турбиной Rolls-Royce, которая передает 286 л. с. на заднее колесо. Один из таких принадлежит американскому телеведущему Джею Лено, который описывает его так: "Он веселый, но способен запугать вас до смерти".
Бэтмобиль. Главный транспорт из кинофильмов "Бэтмен" и "Бэтмен возвращается". Построен на шасси Chevrolet Impala. На сегодняшний день существуют компании, которые изготавливают реплики этого бэтмобиля с настоящими газотурбинными двигателями.
Shockwave. Этот седельный тягач Peterbilt оснащен тремя реактивными двигателями Pratt & Whitney J34-48 и однажды разогнался до 605 км/ч. Четверть мили он проезжает за 6,63 секунды, сопровождая свой заезд потрясающим огненным зрелищем!
Big Wind. Это ультимативное средство пожаротушения идеально дополнило бы предыдущий грузовик. Что скажете насчет борьбы с огнем при помощи огня? Big Wind как раз этим и занимается. Он представляет собой два двигателя от МИГ-21, смонтированные на советский танк Т-34. Эти штуки тушили нефтяные пожары в Кувейте во время войны в Персидском заливе. Сначала шесть шлангов гасят огонь, а затем реактивные двигатели нагнетают мощную струю пара, который буквально сдувает пламя с нефти.
Lotus 56. Этот болид имел вертолетный газотурбинный двигатель и был лишен коробки передач, сцепления и системы охлаждения. В 1971 году он дебютировал в Формуле-1. Самой серьёзной проблемой было значительное запаздывание реакции турбины на нажатие газа — поначалу задержка составляла шесть секунд. Это вынуждало пилота открывать газ ещё в торможении перед поворотом. Позднее задержку сократили до трех секунд, но это увеличило расход топлива и стартовый вес. В Сильверстоуне машина отстала на 11 кругов, а в Монце Эмерсону Фиттипальди удалось финишировать восьмым с отставанием в 1 круг. Контрольное взвешивание показало, что Lotus 56 на 101 кг тяжелее машины победителя. Естественно, от него пришлось отказаться.
Газотурбинный автомобиль Chrysler. Эти экспериментальные автомобили так и называют, потому что своего имени у модели не было. Они разрабатывались с 1953 по 1979 годы. За это время Chrysler испытал 7 поколений и построил 77 прототипов. В начале 60-х годов они успешно прошли тесты на дорогах общего пользования, но финансовый кризис в Chrysler и введение новых норм токсичности и расхода топлива помешали запуску модели в массовое производство. Девять машин сохранились в музеях и домашних коллекциях, а остальные были уничтожены.
ГАЗ М20 Аэросани "Север". В 1959 году в вертолетном конструкторском бюро Н. И. Камова был разработан автомобиль-аэросани "Север". Это была поставленная на лыжи "Победа" с авиационным мотором АИ-14 мощностью 260 л. с. Она использовалась как быстроходный транспорт для северных районов страны в зимние периоды. Средняя скорость составляла 35 км/ч. Маршруты проходили по целинному снегу и торосистому льду в морозы до 50 градусов. Аэросани работали вдоль Амура, обслуживали поселки по берегам рек Лена, Обь и Печора.
Трактор. Американцы любят разного рода забавы, и тракторные гонки - одна из них. Главным состязанием является транспортировка трактором тяжеленной платформы на дистанцию 80-100 метров. И тут, конечно, на помощь трактору приходят мощные газотурбинные двигатели.
Как появился газотурбинный двигатель на автомобиле?
Под газотурбинным двигателем подразумевают двигатель внутреннего сгорания, принцип работы которого заключается в преобразовании тепловой энергии в механическую.
Основная сфера применения такого типа двигателя – это авиация и танковая промышленность. Ввиду определенных технических ограничений газотурбинный двигатель для автомобиля изначально было использовать крайне сложно. Но теперь эта схема запущена и активно внедряется в систему функционала легковых автомобилей.
Появление газотурбинного двигателя на автомобиле
Принцип работы двигателя
Автомобильный двигатель такого типа представляет собой два агрегата: турбину с компрессией и газогенератор. Основное отличие газогенератора автомобильного двигателя от авиационного заключается в том, что газы после выхода из камеры сгорания попадают в турбину, которая собственно и запускает движение колес автомобиля. Основное преимущество – это наличие теплообменника, который снижает расход топлива и уменьшает шум от отработанных газов.
Использование подобной установки компенсирует отсутствие гидротраснформатора и поршневого двигателя. Потому необходимость использования сложных гидромеханических коробок передач отпадает, а также упрощается управление самим автомобилем.
Виды газотурбинных двигателей
Среди основных видов, используемых при производстве легковых автомобилей, называют два типа двигателей:
- Двухвальный с теплообменником. Такой тип можно встретить чаще всего. Использование таких двигателей улучшает динамические свойства машины и сводит к минимуму количество ступеней в коробке передач. Автомобили с реактивными двигателями такого типа при разгоне практически не требуют переключения коробки передач. Среди недостатков можно назвать увеличение массы агрегата за счет использования дополнительных деталей (воздуховода и теплообменника).
Двухвальный газотурбинный двигатель
- Двигатель со свободно-поршневым газовым генератором. Такой тип считается самым перспективным в плане конструкции легковых автомобилей нового типа. Схема конструкции двигателя представляет собой блок, который объединяет двухтактный дизель и поршневой компрессор.
Принцип работы свободно-поршневого газотурбинного двигателя
Особенности конструкции двигателя
Среди главных отличий между газотурбинным и поршневым типами двигателей называют отсутствие цикличности. В первом типе сжатие топливной смеси, выделение энергии происходит каждую секунду.
Главной движущей силой в работе газотурбинного двигателя являются лопатки. Они имеют такую форму, чтобы увеличить уровень КПД. Сжатие воздуха происходит изначально в лопастном компрессоре, после чего поступает в рабочую зону. И уже здесь впрыскивается топливо.Внутренняя конструкция двигателя представляет собой сложный механизм, где можно заметить два ряда лопаток, один из которых является неподвижным и закреплен на корпусе. Вторые же соединены с валом, в результате чего и происходит их вращение. Подобный вид конструкции объясняется тем, что газу при поступлении требуется опора, которую и выполняют неподвижные лопатки.
Общая схема устройства газотурбинного двигателя
В газотурбинных двигателях автомобиля применяются два вида турбин: центростремительные и осевые. Тяговая выполняет роль осевой турбины, а компрессорная – центростремительной. Вал компрессора в движение приводит стартер.
Газотурбинный двигатель отличается высокой пусковой способностью. Он может принять основную нагрузку уже через пару минут после запуска. Двигатель максимально уравновешен, поэтому рама для поршневого двигателя по массе значительно превосходит раму для газотурбинного.
Достоинства и недостатки газотурбинных двигателей
Если сравнивать их с поршневыми моторами, в плане функционала газотурбинные двигатели их превосходят в разы. Устройство обладает высокой мощностью, потому может развивать большие обороты, однако в результате этого отличается габаритными размерами. Топливным материалом выступают либо керосин, либо дизельное топливо. Однако масса такого двигателя раз в 10 меньше, чем аналогичного по мощности двигателя внутреннего сгорания.
В системе газотурбинного двигателя не предусмотрено наличие трущихся деталей, потому система охлаждения в этом случае не требуется.Есть некоторые недостатки, которыми отличается в некоторых случаях газотурбинный двигатель. Расход топлива иногда превышает норму, поскольку оно тратится на искусственное ограничение температуры газов. Металлы, которые устойчивы к подобным температурам, достаточно дорогие. Эта проблема вызывает повышенный интерес у ученых, которые в скором времени планируют разработать более экономически выгодные газотурбинные двигатели.
Среди прочих неудобств в использовании газотурбинных двигателей можно назвать высокий уровень шума. Этот двигатель генерирует огромное количество колебаний на низких частотах, что является более восприимчивым для слуха человека. Помимо этого, если традиционные моторы автомобилей можно починить, не имея под рукой сложного оборудования, то газотурбинный двигатель своими руками починить уже не получится.
Среди общих плюсов использования можно отметить, что двигатель заводится и набирает обороты при любой температуре, даже в лютый мороз. Также среди преимуществ следует отметить удобство установки на автомобиль. Здесь не нужно сцепление, потому что раскручивание вала происходит при неподвижной тяговой турбине. Это значительно облегчает последующую работу водителя.
Перспективы развития и улучшения двигателя
Сейчас у ученых основной проблемой является разработка способа понижения расхода топлива. Повышение эргономичности может достигаться в случае:
- Увеличения КПД центробежных процессоров;
- Повышения температуры и давления газов и использования тепла исходящих газов.
Идея использования теплообменника не является новой. Но ситуация модернизации двигателя в сторону уменьшения размеров, массы двигателя, обеспечения полной передачи тепла от газа к воздуху при минимальных потерях давления.
blog-mycar.ru
Газотурбинный двигатель подробно — Энциклопедия журнала "За рулем"
ИДЕЯ применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.Что представляет собой газотурбинный двигатель?На рис. показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках.По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных.Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л. с ). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°С, а в авиационных турбинах до 800—900°С потому, что еще очень дороги высокожаропрочные сплавы.В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.
Принципиальная схема двухвального газотурбинного двигателя с теплообменником
Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля — тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами. Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.
Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис., где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.Характеристика одновального газотурбинного двигателя отличается от показанной на рис. и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).
Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газаБольшую перспективу имеет газотурбинный двигатель. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и поршневой компрессор, объединенные в общем блоке. Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппозитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания: Дизель 0,26—0,35Двигатель бензиновый 0,22—0,26Газовая турбина с камерами сгорания постоянного объема без теплообменника 0,12-0,18Газовая турбина с камерами сгорания постоянного объема с теплообменником 0,15—0,25Газовая турбина со свободно-поршневым генератором газа 0,25—0,35
Таким образом, КПД лучших образцов турбин не уступает КПД дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.
Схема реального газотурбинного двигателяЭтот двухкамерный двигатель, без теплообменника, имеет эффективную мощность 370 л. с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13 000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815° Ц, давление воздуха на выходе из компрессора — 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса — 197 кг.
wiki.zr.ru
Поршневой двигатель или ГТД — Энциклопедия журнала "За рулем"
Схема устройства и работы газотурбинного двигателя:1 — входное устройство;2 — компрессор;3 — форсунка;4 — камера сгорания;5 — турбина привода компрессора;6 — тяговая турбина;7 — камера выпуска;8 — редуктор;А —- впуск;Б — сжатие;В — сгорание и расширение;Г — выпуск в поршневом двигателе.
Это один из первых автомобильных газотурбинных двигателей, над которым много лет трудились сотни инженеров. Такое пристальное внимание к применению газовой турбины на автомобиле неудивительно — по многим технико-экономическим показателям она существенно превосходит поршневые двигатели.Газотурбинные двигатели отличаются тем, что тепловой цикл в них происходит последовательно в отдельных агрегатах. У поршневого двигателя этот цикл совершается в одном и том же рабочем объеме цилиндра. Принцип работы газовой турбины на автомобиле показан на рис. Воздух засасывается через входное устройство 1, сжимается в компрессоре 2; впрыснутое форсункой 3 топливо сгорает в камере сгорания 4. Часть энергии газа используется в турбине 5 привода компрессора, остальная же ее часть — в тяговой турбине 6. Именно эта, последняя энергия, превращенная в работу, является полезной — она передается через редуктор 8 на трансмиссию и колеса автомобиля.Две механически не связанные турбины придают мотору хорошие тягово-динамические свойства. Двигатели этой схемы называются двухтурбинными, или двухвальными. Турбины здесь осевого типа. В связи с тем, что число оборотов первичного вала коробки передач автомобиля находится в пределах 2500—4500 об/мин„ передаточное число редуктора составляет от 4 до 10.В двигателе применяется центробежный одно- или двухступенчатый компрессор с числом оборотов от 20000 до 60000 в минуту и с давлением сжатия в цикле от 3,5 до 16 кг/см2. В камере сгорания температура газа повышается до 850—950 градусов. Один и, тот же двигатель может работать на дизельном топливе, керосине или бензине любых сортов.Автомобильный газотурбинный двигатель компактен. По длине он примерно равен поршневому, а в поперечнике в 1,3—1,5 раза меньше. Он легче поршневого двигателя равной мощности в три-пять раз.Валы всех механизмов автомобильного ГТД устанавливаются на подшипниках качения.Топливо воспламеняется свечой. Система пуска автоматизирована: после нажатия пусковой кнопки последовательно включаются стартер, пусковой и подкачивающий топливные насосы и свечи. Когда турбокомпрессор достигнет устойчивых оборотов холостого хода, стартер, свечи и пусковой насос автоматически выключаются. Двигатель выходит на устойчивый режим холостого хода за 15—30 секунд. Можно почти сразу же после пуска, в течение 15—20 секунд, выводить турбокомпрессор на «полный газ». Даже при низких температурах окружающего воздуха (до минус 25 градусов) для пуска автомобильного ГТД не требуется предварительного подогрева.Для управления служат лишь две педали— подачи топлива и тормоза. Переключением ступеней в коробке передач пользоваться приходится крайне редко благодаря автоматическому изменению крутящего момента тяговой турбины в зависимости от нагрузки.В развитии автомобильных ГТД имеются четыре основных направления: двигатели без теплообменника; с вращающимся теплообменником; с пластинчатым неподвижным теплообменником; двигатели сложного цикла.
Газотурбинный двигатель;1 — центробежный компрессор;2 — компрессорная турбина;3 — тяговая турбина;4 — редуктор;5 — теплообменник;6 — камера сгорания;7 — свеча;8 — впускное отверстие.
Двигатель состоит из осевого центробежного компрессора, кольцевой камеры сгорания с поворотом потока на 180 градусов, осевой одноступенчатой компрессорной турбины и такой же тяговой. Двигатель прошел испытания на легковом пятиместном автомобиле.Двигатель состоит из одноступенчатого центробежного компрессора 1, одноступенчатой, осевой компрессорной турбины 2, одноступенчатой осевой тяговой турбины 3 с поворотным сопловым аппаратом, редуктора 4 с косозубыми шестернями, дискового вращающегося теплообменника 5 из двух секций, расположенных по сторонам двигателя, камеры сгорания 6 трубчатого типа, в которой установлена свеча 7, и входного устройства большого сечения, на котором установлены пылеочистители. Две выпускные трубы плоскоовального сечения отводят отработавшие газы назад.По подсчетам, стоимость этой машины с ГТД при серийном производстве 50 автомобилей в неделю на 25-30% выше обычной.
Другой вариант ГТД состоит из одноступенчатого центробежного компрессора низкого давления 1, одноступенчатого компрессора высокого давления 4, двух пластинчатых неподвижных теплообменников, расположенных по сторонам двигателя, камеры сгорания 6 первого подогрева газа, радиальной центростремительной турбины 5 привода компрессора высокого давления, камеры сгорания 7 второго подогрева, расположенной после первой турбины, осевой одноступенчатой тяговой турбины 9, расположенной перед последней двухступенчатой осевой турбиной 10 привода компрессора низкого давления.Вентилятор 3 подает воздух на обдув воздушных охладителей. В поддон 11 собирается все отработавшее масло, а трубка 2 служит для заливки масла. Редуктор 8 планетарного типа с тремя промежуточными переборами передает усилия на колеса.Газотурбинный двигатель двухвальной схемы сложно использовать для торможения автомобиля. Этот недостаток устраняется применением поворотных управляемых сопловых лопаток тяговой турбины. Тормозят поворотом лопаток в положение, при котором газовый поток направлен против вращения рабочего колеса. Использовать двигатель для торможения можно, переключив коробку передач на задний ход. В этом случае в ней должна быть предусмотрена муфта, способная поглотить кинетическую энергию ротора тяговой турбины, высвобождающуюся при переключении ее на обратное направление вращения.Особенно важна проблема приемистости двигателя. Это понятие означает способность двигателя за определенное время развить максимальное число оборотов. До недавнего времени приемистость автомобильных ГТД была хуже (10—12 секунд), чем у поршневых двигателей (1,5—3 секунды). В последние годы, применяя поворотные лопатки в сопловом аппарате, повышая температуру газа при разгоне и облегчая ротор турбокомпрессора, конструкторы сократили время разгона у автомобильных ГТД до 1,5—3 секунд, то есть уравняли их по приемистости с поршневыми двигателями.У ГТД примерно в три-пять раз меньше деталей, чем у поршневого; у большей части их проще конструктивная форма. В основном это тела вращения. Здесь нет сложных блоков и головок цилиндров, коленчатых валов и шатунов. Это предопределяет хорошую технологичность и дешевизну деталей в производстве. Масштабы же производства играют, как известно, решающую роль в себестоимости продукции. В этом отношении автомобильные газотурбинные двигатели находятся в невыгодном положении. Для того чтобы организовать крупносерийное производство (только тогда можно получить дешевую продукцию), нужно иметь хорошо отработанные конструкции и большие капитальные средства. При этом надо учитывать, что капитальные вложения неизбежно повысят себестоимость газотурбинных двигателей на первом этапе производства, вследствие чего они окажутся дороже поршневых.Автомобильный ГТД должен быть многоцелевым, то есть пригодным для использования на различных автомобилях, катерах, на небольших маневровых локомотивах, на тракторах, в качестве вспомогательных первичных двигателей различных силовых установок. Это позволит расширить масштабы производства и выпускать дешевые газотурбинные двигатели.
wiki.zr.ru
Газотурбинный двигатель
Газотурбинный двигатель успешно применяется в танках и авиации. К сожалению, ряд конструктивных ограничений не позволяет использовать эту прогрессивную конструкцию в качестве силовой установки для легкового автомобиля.
Преимущество двигателей этого типа в том, что у них самая большая удельная мощность среди существующих силовых установок, относящихся к двигателям внутреннего сгорания, до 6 кВт/кг. Кроме того, газотурбинный двигатель может работать на различных видах жидкого топлива, а не только на бензине или дизеле.
История создания газотурбинного двигателя
Первая газовая турбина была разработана в 1519 году. Она существенно отличалась от современных устройств и применялась в "сфере малой механизации". Турбина вращала вертел, предназначенного для жарки мяса. Использовалась газовая турбина и для приведения в движение повозки изобретателя Джона Барбера.
Один из первых газотурбинных двигателей для танков разработала компания BMW в 1944 году. Он был опробован на самоходной установке "Пантера"
В 1950 году компанией «Rover» был разработан газотурбинный двигатель, предназначенный для автомобилей. В результате появилась экспериментальная модель гоночного автомобиля «JET1». Двигатель машины был расположен позади сидений, по бокам монтировались воздухозаборники, а на верхней задней части находились отверстия для выхода выхлопных газов. Скорость вращения турбины достигала 50 тысяч оборотов за 1 минуту. В качестве топлива использовался бензин, парафиновое масло и дизельное топливо. Максимальная скорость, с которой могла двигаться машина, составляла 140 км/ч. Из-за значительного расхода топлива автомобили с газотурбинным двигателем не пользовались особым спросом.
Единственный случай применения газотурбинного двигателя в конструкции мотоцикла - MTT Y2K Turbine Superbike с ДВС Rolls-Royce-Allison Model 250
Модернизировав устройство и сконструировав модель «BRM», копания «Rover» приняла участие в гоночных соревнованиях 1963 года и установила рекорд: машина разгонялась до скорости 229 км/ч. Позже в аналогичных соревнованиях участвовали и другие автомобильные производители. Например, компания «Howmet» выпустила модель «TX», которая работала на газотурбинном двигателе и неоднократно становилась гоночным фаворитом.
Единственная в истории модель серийного автомобиля с газотурбинным двигателем, предназначенного для передвижения по дорогам общего пользования, была выпущена американским концерном Chrysler в 1963 году. Пятьдесят экземпляров автоьмобля под названием Chrysler Turbine были вручную собраны специалистами итальянского кузовного ателье Ghia. В продажу автомобили не поступали, а были розданы добровольцам, на два года для тестирования. Эксперимент прошёл удачно, но для запуска нового производства требовалась постройка завода по выпуску двигателей нового типа, и концерн Chrysler не рискнул инвестировать большие деньги. В семидесятые годы, когда в США существенно ужесточились экологические нормы, и, вдобавок, начался топливный кризис, взвинтивший цены на нефть компания отказалась от продолжения разработок.
Устройство и принцип действия газотурбинного двигателя
Попадая в компрессор, воздух подвергается сжатию и нагреванию. Далее он поступает в камеру сгорания, куда также подается и часть топлива. Из-за высокой скорости воздух и топливо воспламеняются при столкновении. Во время сгорания смеси выделяется энергия, которая преобразуется в механическую работу за счет вращения. Часть данной энергии используется для сжатия воздуха в компрессоре. Другая часть поступает в электрический генератор. После этого отработавшие газы отправляются в утилизатор.
Достоинства и недостатки газотурбинных двигателей
Газотурбинные двигатели во многом превосходят поршневые моторы. Благодаря способности развивать большие обороты устройство отличается высокой мощностью, но при этом имеет компактные размеры. В качестве топлива используют керосин или дизельное топливо. Масса газотурбинного двигателя в 10 раз меньше массы аналогичного по мощности двигателя внутреннего сгорания. Ввиду отсутствия трущихся деталей газовая турбина не требует наличия разветвленной системы охлаждения.
Инженеры Chrysler, создавшие единственный мелкосерийный автомобиль с газотурбинным двигателем, опытным путем выяснили, что лучшее топливо для ГТД - обычный керосин
Основным недостатком становится повышенный расход топлива, вызванный необходимостью искусственного ограничения температуры газов. Это ограничение связано с тем, что в случае с автомобилем двигатель устанавливается внутри кузова, а не под крылом, как, у самолета, например. Соответственно, температура двигателя не должна превышать 700 градусов. Металлы, устойчивые к таким температурам, имеют очень высокую стоимость. Эта проблема часто вызывает интерес у ученых, и в скором будущем должны появиться газотурбинные двигатели, обладающие хорошими показателями экономичности. Очевидно, это произойдет только в том случае, если будет решена проблема отвода большого количества тепла, что позволит ставить на автомобили "незадушенные" двигатели, в конструкции которых проблема экономичности решена. Среди недостатков также следует отметить высокие требования к качеству атмосферного воздуха и отсутствие возможности торможения двигателем.
Двухвальный газотурбинный двигатель, оснащенный теплообменником
Этот тип двигателей встречается наиболее часто. По сравнению с одновальными аналогами, данные устройства соответствуют более высоким требованиям к динамике автомобилей. Двухвальные агрегаты предполагают наличие специальной (для привода компрессора) и тяговой (для привода колес) турбин, валы которых не соединены. Такие двигатели позволяют улучшить динамические свойства машины и дают возможность сократить количество ступеней в коробке передач.
После отказа от массового производства автомобилей с газотурбинными двигателями компания Chrysler уничтожила большую часть тестовых экземпляров, чтобы "турбины не попали на авторазборки"
В отличие от поршневых моторов, двухвальные газотурбинные установки предполагают автоматическое возрастание крутящего момента при увеличении нагрузки. Благодаря этому переключение коробки передач требуется значительно позже или вообще не требуется. При равной мощности автомобили с двухвальным газотурбинным двигателем разгоняются быстрее, чем машины с поршневыми моторами. Недостатками данного вида является сложность изготовления, увеличение размеров и веса вследствие наличия дополнительных деталей: теплообменника, газо- и воздухопроводов.
Газотурбинный двигатель со свободно-поршневым газовым генератором
На данный момент газотурбинные двигатели этой конструкции - самые перспективные для строительства автомобилей. Устройство представляет собой блок, объединяющий поршневой компрессор и двухтактный дизель. В средней части находится цилиндр с прямоточной продувкой, внутри которого располагается два связанных между собой специальным механизмом поршня. При схождении поршней происходит сжимание воздуха, и топливо воспламеняется. Сгоревшее топливо способствует образованию газов, которые при высокой температуре и давлении провоцируют расхождение поршней в стороны. Далее через выхлопные окна газы попадают в газосборник. Благодаря наличию продувочных окон в цилиндр проникает сжатый воздух, который способствует очищению от выхлопных газов и подготавливает двигатель к следующему циклу. После этого процесс повторяется.
blamper.ru
Газотурбинный двигатель
В авиации газотурбинный двигатель полностью заменил поршневой даже в сравнительно небольших установках. Все больше применяется газовая турбина в судостроении и на тепловых электростанциях. От турбины в этих установках требуется отдача максимальной мощности при постоянной частоте вращения, частичные нагрузки при максимальной частоте вращения не используются и нет необходимости в быстром изменении мощности и частоты вращения. Повышается интерес к применению газовой турбины и для привода автомобиля. Ряд особенностей газотурбинного двигателя служат причиной того, что он до сих пор не применяется в автомобилях.
Характер кривой крутящего момента одновального газотурбинного двигателя невыгоден для применения в автомобиле. Момент быстро падает с уменьшением частоты вращения и имеет нулевое значение при снижении максимальной частоты вращения приблизительно на 40 %. Для привода автомобиля пригодна только двухвальная газовая турбина, изображенная на рис. 1. Турбина привода компрессора 3 приводит в движение компрессор 1, тяговая турбина 4 размещена на валу отбора мощности. В теплообменнике 5 отработавшие газы подогревают воздух на входе его в камеру сгорания 2, что улучшает термический КПД установки.
а — схема двигателя; б — зависимость относительной величины крутящего момента от относительной частоты вращения. |
Турбинное колесо 4 имеет наибольший момент, когда его частота вращения равна нулю, при этом компрессор с турбинным колесом 3 может вращаться с максимальной частотой вращения. При возрастании частоты вращения тяговой турбины ее крутящий момент изменяется в соответствии с графиком, приведенным на рис. 1, б. Такая характеристика крутящего момента очень выгодна для использования в автомобиле и может исключать использование преобразователя момента.
Другое отрицательное свойство газотурбинного двигателя состоит в том, что его удельный расход топлива при частичной нагрузке быстро возрастает. У автомобиля, особенно легкового, двигатель в основном работает при частичных нагрузках и полностью загружен лишь в течение очень короткого периода времени. Этим объясняется тот факт, что газотурбинный двигатель начали применять прежде всего на грузовых автомобилях для дальних магистральных перевозок, когда автомобильный двигатель постоянно работает в условиях, близких к полной нагрузке.
Возникают также проблемы размеров газотурбинного двигателя. КПД газовой турбины зависит не от частоты вращения колеса, а от его окружной скорости. Для сохранения оптимальной окружной скорости при необходимости уменьшения максимальной мощности следует уменьшить диаметр колеса, а его частоты вращения увеличить. Однако у турбин с небольшим диаметром колеса зазор между наружным диаметром лопаток и корпусом в связи с наличием допусков на изготовление не уменьшается пропорционально снижению диаметра турбинного колеса, а имеет большее относительное увеличение. Это означает большие потери при перетекании газа через этот зазор и ухудшение КПД турбины. Поэтому газовую турбину невыгодно применять в установках мощностью ниже 100 кВт. Эти недостатки газотурбинного двигателя тормозят его применение в легковых автомобилях.
Следует, однако, рассмотреть и основные преимущества газотурбинного двигателя, к ним относятся:
- возможность применения почти всех видов топлива;
- небольшое содержание вредных веществ в отработавших газах вследствие большого коэффициента избытка воздуха при сгорании в турбине;
- более простое обслуживание, так как отпадает необходимость замены масла, которое не взаимодействует с горячими газами; минимальные потери трения в подшипниках, малый износ и большая долговечность;
- отсутствие вибраций, так как вращающиеся детали можно легко сбалансировать;
- малая шумность и возможности ее дальнейшего снижения;
- благоприятная характеристика кривой крутящего момента;
- легкость холодного пуска двигателя без необходимости обогащения смеси;
- высокая удельная мощность на единицу массы;
- отсутствие системы охлаждения.
Эти преимущества являются настолько важными, что в настоящее время ведутся интенсивные разработки газотурбинного двигателя для легковых автомобилей. Основное внимание уделено повышению максимальной температуры газов на входе в турбину. Уже получены хорошие результаты, и имевшаяся первоначально температура газов 900 °C увеличилась до требуемых 1300 °C. На рис. 2 показано влияние температуры на входе в турбину на ее мощность, термический КПД и удельный расход топлива.
Работу в условиях постоянной температуры выше 1300 °C не выдерживает ни один металл, поэтому необходимо применять керамические материалы. Для изготовления лопаток турбины целесообразно использовать нитриды кремния, которые и при указанной температуре имеют достаточную прочность. Недостатки керамических материалов состоят в том, что они не выдерживают резкого изменения температур при холодном пуске и изменении нагрузки. Разработки керамических материалов успешно продолжаются и можно ожидать, что после 1985 г. появятся материалы, которые позволят газотурбинному двигателю иметь такой же удельный расход топлива, как у дизеля.
Для снижения удельного расхода топлива в газовой турбине используют вращающийся теплообменник. Он представляет собой диск из пористого керамического материала, приводимый от двигателя и вращающийся с очень низкой частотой вращения. Отработавшие газы из турбины проходят через этот диск и нагревают его. Поворачиваясь, нагретая часть диска подходит к отверстиям трубопровода, ведущего от компрессора в камеру сгорания, и воздух, проходя через диск в противоположном направлении, нагревается. Теплота, которая была бы отведена из двигателя с отработавшими газами, используется для подогрева воздуха, подаваемого в камеру сгорания. Трудности состоят в герметизации диска теплообменника, необходимой для предотвращения потерь теплоты при перемещении диска от одного трубопровода к другому. Негерметичность современных теплообменников составляет сейчас лишь 2 % от величины, наблюдавшейся у их первых прототипов.
Хорошие динамические характеристики двухвальной газовой турбины обеспечиваются регулируемым направляющим аппаратом, т. е. поворотными направляющими лопатками перед вторым турбинным колесом. Привод лопаток – гидравлический, управляемый электронным устройством, которое осуществляет также контроль безопасности работы турбины при возникновении неисправностей в ней или в некоторых из ее деталей.
При резком отпускании педали управления двигателем поворотные лопатки перед турбиной устанавливаются в положение торможения и на турбине возникает отрицательный момент, в результате действия которого частота вращения тяговой турбины быстро снижается.
В качестве примера на рис. 3 представлен схематичный разрез турбины, разработанной фирмой «Мерседес-Бенц» для большого легкового автомобиля. Турбина выполнена по двухвальной схеме с вращающимся теплообменником. Достигнутая мощность 94 кВт, наибольший крутящий момент 332 Н∙м при заторможенном вале тяговой турбины. Степень сжатия одноступенчатого радиального компрессора равна при этом 4, температура на входе в турбинное колесо достигает 1252 °C.
1 — воздушный фильтр; 2 — компрессор; 3 — камера сгорания; 4 — турбина привода компрессора; 5 — тяговая турбина с регулируемым направляющим аппаратом; 6 — вращающийся керамический теплообменник; 7 — привод вспомогательных агрегатов. |
Расчетная мощность этого двигателя составляет 110 кВт при частоте вращения вала первой турбины 60000 – 65000 мин-1, максимальный крутящий момент 550 Н∙м. Двигатель рассчитан на работу при температуре поступающих из камеры сгорания газов на вход в турбину около 1350 °C. Диаметр колеса компрессора составляет 180 – 185 мм, колеса первой турбины 165 мм, второй – 170 – 175 мм. На основе характеристики этого двигателя были проведены расчеты расхода топлива автомобилем массой 1600 кг, оснащенного таким двигателем. При скорости 90 км/ч, расчетный расход топлива равен 5,1 л/100 км, при скорости 120 км/ч — 6,7 л/100 км, в городском цикле согласно стандарту ДИН 70030 расход топлива составил 14,2 л/100 км. Турбина совместно с воздушным фильтром и приводом вспомогательных агрегатов имеет массу 240 кг, длину 770 мм, ширину 650 мм, высоту 550 мм. При проведении расчетов площадь фронтальной проекции автомобиля считалась равной 2 м2, а значение коэффициента сопротивления воздуха cx – 0,3.
Другая турбина, разработанная фирмой «Фольксваген», имеет сходную концепцию и развивает мощность 110 кВт. Степень сжатия компрессора 4,5, расход воздуха 0,84 кг/с. Температура газа на входе в турбину равна 1110 °C, минимальный удельный расход топлива составляет 290 г/(кВт∙ч), расход топлива при 30 %-ной нагрузке равен 330 г/(кВт∙ч). Масса турбины 210 кг. Расход топлива автомобилем модели «Ro 80» массой 1700 кг в городском цикле составил 15,3 л/100 км, на шоссе — 9,4 л/100 км, а в среднем — 12,6 л/100 км. Окружная скорость колеса компрессора с загнутыми назад лопатками составляет 513 м/с, максимальная частота вращения компрессора равна 63700 мин-1, тяговой турбины — 52200 мин-1. На входе в компрессор имеется регулируемый направляющий аппарат в виде поворотных лопаток, которые позволяют снизить расход топлива при частичных нагрузках и на холостом ходу.
Состояние развития в области газовых турбин в 1981 г. показывало, что достигнут заметный рост долговечности турбин мощностью выше 100 кВт, хотя по этому параметру турбины все еще отстают от двигателей внутреннего сгорания. Большое преимущество турбины состоит в том, что она может работать на заменителях нефтяного топлива. Дальнейшее развитие газотурбинных двигателей зависит от применения новых керамических материалов для рабочего колеса и направляющего аппарата турбины, ее теплообменника и камеры сгорания. При использовании в автомобиле двухвального газотурбинного двигателя необходимо после тяговой турбины применить редуктор и многоступенчатую автоматическую коробку передач. При этом использование трансформатора крутящего момента после турбины не требуется.
Опубликовано 17.03.2014Читайте также
- Наружные боковые подушки безопасности
Технология наружных подушек безопасности в ближайшее время может появиться в конструкции автомобиля как средство минимизировать урон при боковых ударах.
- Характеристика крутящего момента двигателя
Для того чтобы двигатель имел малую массу и размеры, необходимо повышать его рабочие частоты вращения. Тем самым к двигателю предъявляются требования противоположного характера, и из-за этого возникает необходимость поиска компромиссного решения.
Сноски
- ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. - М.: Машиностроение, 1987. - 320 с.: ил.//Стр. 22 - 23 (книга есть в библиотеке сайта). – Прим. icarbio.ru
Комментарии
icarbio.ru
Почему автомобиль с газотурбинным двигателем так и не пошел в производство
Поршневые двигатели уже в 60-е годы прошлого столетия считались анахронизмом, ищущим свою альтернативу. Но до сих пор подавляющее количество автомобилей работают от двигателя внутреннего сгорания. В свое время мир уже испытал эйфорию по поводу машин, работающих на электроэнергии, но несмотря на всеобщее стремление, электрокар так и не стал повседневным транспортным средством. И вопрос, произойдет ли это теперь?
Но тогда же, в середине прошлого столетия, в какой-то момент будущее виделось по-другому. Некоторые попытались сделать ставку на реактивный двигатель. Вдохновляло его применение на самолетах, поэтому не удивительно, что многим казалось, внеся соответствующие изменения, его можно использовать на железнодорожных локомотивах и автомобилях.
На локомотивах они появились, а вот автомобилю так и не пришлось применить его в серийных моделях. Хотя некоторые пытались внедрить такой агрегат и даже изготовили прототипы. Наиболее известным брендом, работавшим над реактивным автомобилем, был американский Chrysler. Инженер Джордж Хюбнер загорелся этой идеей и убедил группу управления, что небольшая турбина будет лучше поршневого двигателя, в котором большие «куски металла летают взад вперед» сотни раз в секунду. А реактивный двигатель, как тогда считалось, можно заправлять практически любым топливом — «от бензина и дизтоплива до кухонного арахисового масла и духов вашей жены».
Первый автомобиль с реактивной турбиной Chrysler представил в 1954 году. Это был Plymouth Belvedere, названный Turbine Cars. С 1963 по 1964 годы был выпущен целый парк таких автомобилей, состоящий из 55 экземпляров. Кузов, производившийся итальянской фирмой Ghia, имел футуристический дизайн с множеством деталей, повторяющих силуэт реактивного двигателя, и был окрашен в оранжево-коричневый цвет. Автомобиль сильно отличался от остальных машин, которые в то время были похожи друг на друга бОльше, чем сегодня.
Под капотом скрывался газотурбинный двигатель, разработанный Chrysler с обозначением А831. Максимальные обороты достигали 44 600 об/мин, а на холостом ходу — 22 000 об/мин. Несмотря на мощность в 130 л.с., крутящий момент составлял 576 Нм на самых низких оборотах, но с их увеличением он падал. На выходе стоял редуктор, снижающий скорость вращения до 5 000 об/мин, а за ним — автоматическая коробка передач.
Главным преимуществом реактивного двигателя была его надежность. Его гораздо проще было обслуживать, исчезала необходимость в системе охлаждения, в нем было гораздо меньше деталей, да и заводка при низких температурах не доставляла проблем. А еще, у него полностью отсутствовала вибрация (кто удосужится посмотреть видео полностью, увидит, как Джей Лено ставит на него стакан с водой). Управлялся автомобиль, как и все остальные — с помощью двух педалей, рулевого колеса и рычага переключения передач.
Но есть и ряд недостатков. Как говорят, приемистость была ужасной — на отзыв приходилось ждать около секунды, а то и полторы. Расход топлива был огромен, а выхлопные газы настолько горячими, что, для того, чтобы не плавить асфальт, нуждались в специальных кулерах. Хотя турбина могла работать на любой горючей жидкости, водителям не рекомендовалось заправлять автомобиль обычным бензином, так как в то время у него было большое содержание свинца, который откладывался на лопастях турбины. Но самой главной причиной, почему эти автомобили так и не вышли «в люди», был высокий уровень потребления топлива, который автопроизводитель так и не озвучил и запретил это делать всем испытателям. К этому добавилось введение в США ограничение на вредные выбросы.
Правда, от самой идеи Chrysler не отказался. Компания предприняла еще несколько не удавшихся попыток запустить «реактивный» автомобиль. Но с танком у нее сложилось более удачно — созданный в 1970-е годы М1 «Абрамс» стал основной боевой машиной армии США.
Собственно, интерес к газотурбинным автомобилям никогда не исчезал. В частности, в 2010 году концепт Jaguar C-X75, который недавно использовали в новом фильме о Джеймсе Бонде, имел две «микротурбины», работающие на дизельном топливе. Они вращали генератор, который питал четыре электромотора автомобиля. Такое решение может быть более эффективным, чем использование его для вращения трансмиссии автомобиля. Поэтому, возможно, в будущем мы сможем увидеть автомобили с газотурбинами на борту.
https://www.youtube.com/v/b2A5ijU3Ivs
avtomaniya.com