Россия и США разработали технологию "ядерного" квантового компьютера. Атомный компьютер


IBM построила 50-кубитный квантовый компьютер

IBM

Корпорация IBM объявила о создании прототипа 50-кубитного квантового компьютера. Об этом на саммите Института инженеров электротехники и электроники (IEEE Industry Summit on the Future of Computing) сообщил исполнительный директор IBM Дарио Гил (Dario Gil), подробнее о разработке можно прочитать в пресс-релизе компании.

Квантовые компьютеры отличаются от классических тем, что используют для вычислений особый тип битов — кубиты, которые могут одновременно находиться в нескольких состояниях. Это позволяет разрабатывать более эффективные алгоритмы вычислений (например, гораздо быстрее раскладывать числа на простые множители), причем эффективность квантового компьютера тем больше, чем больше кубитов в него входит. Некоторые ученые считают, что для обеспечения превосходства квантового компьютера над обычным достаточно уже 50 кубитов. К этому пределу сейчас подбираются исследователи из различных групп.

Например, в июле этого года группа ученых под руководством Михаила Лукина, сооснователя Российского квантового центра и профессора Гарварда, сообщила о создании квантового компьютера, оперирующего 51 кубитом на холодных атомах рубидия. Тогда исследователи не только показали, что их компьютер работает, но и предсказали новый эффект в модели Изинга. Мы кратко сообщали об этом событии, более подробно о нем можно прочитать в нашем материале «Пятьдесят кубитов и еще один». Также о планах построить 49-кубитный компьютер заявляла группа ученых из Google под руководством Джона Мартиниса.

Криостат IBM, подключенный к 50-кубитной системе

IBM

Теперь о создании 50-кубитного квантового компьютера сообщила и IBM. Впрочем, подробной информации о своей разработке они не раскрывают. Известно только то, что в этом компьютере 50 сверхпроводниковых кубитов и что время когерентности системы (грубо говоря, время, в течение которого можно производить вычисления) достигло 90 микросекунд, что почти в два раза больше, чем у предыдущей модели. Тем не менее, пока сложно сказать, превосходит ли созданная ими система классические вычислители или разработку группы Лукина.

Схема архитектуры 50-кубитного компьютера IBM

IBM

Также IBM представила 20-кубитную систему IBM Q с облачным доступом. Это улучшение уже существующей системы с процессорами из пяти и шестнадцати кубитов, доступ к которым был запущен весной 2016 года. На этих системах успело поработать уже более 60 тысяч пользователей, которые поставили около 1,7 миллионов экспериментов.

Подробно прочитать о том, что такое квантовые компьютеры и чем они полезны, вы можете в нашем материале Квантовая азбука: «Компьютер». А о том, как ученые исправляют ошибки, возникающие при вычислениях на квантовых компьютерах — в недавней новости.

Дмитрий Трунин

nplus1.ru

Новый 5-атомный квантовый компьютер сможет легко взламывать все современные шифровальные коды

Сохранность зашифрованной информации во всё мире сегодня зависит от решения задачи разложения на множители больших чисел, но теперь учёные заявили, что создали первый пятиатомный квантовый компьютер, способный в перспективе взломать все существующие алгоритмы шифрования.

shutterstock_318285818

В традиционных вычислениях числа представляются либо 0 или 1, но в квантовых вычислениях используются величины атомного масштаба или «кубиты», которые могут быть одновременно и 0, и 1 — явление, известное как суперпозиция – что значительно повышает эффективность вычислений. Обычно необходимо около 12 кубитов, чтобы разложит на множители число 15, но исследователи из Массачусетского технологического института и Университета Инсбрука в Австрии нашли способ уменьшить их количество до пяти кубитов, каждый из которых представлен одним атомом.

Новая квантовая система, в которой используются лазерные импульсы для поддержания её в стабильном состоянии за счёт удержания атомов в ионной ловушке, позволит обеспечивать возможность масштабирования, так как можно будет добавлять новые атомы и лазеры, чтобы создать более мощный и быстрый квантовый компьютер, способный разложить на множители значительно большие числа. Это, в свою очередь, создаёт новые риски для таких методов на основе факторного анализа, как шифрование по методу RSA, используемое для защиты кредитных карт, сведений, составляющих государственную тайну и другой конфиденциальной информации.

Новая разработка во многом стала решением задачи, поставленной в 1994 году, когда профессор MТИ Питер Шор предложил квантовый алгоритм для вычисления простых множителей больших чисел с гораздо большей эффективностью, чем классический компьютер.

Пятнадцать это наименьшее число, на котором можно убедительно продемонстрировать возможности алгоритма Шора. Новая система рассчитывает множители с точностью более 99 процентов.

«Мы показали, что алгоритм Шора, самый сложный квантовый алгоритм на сегодняшний день, вполне реализуем, но для этого придётся разработать новые технологии, чтобы сделать большой квантовый компьютер»,  — сказал профессор МТИ Исаак Чжуан

«Это может потребовать колоссальных средств, но теперь это больше инженерная задача, чем вопрос фундаментальной физики», — добавил профессор.

Результаты новой работы учёных опубликованы в пятницу в журнале Science.

Пока ещё не создан достаточной большой действующий квантовый компьютер, способный взломать традиционный алгоритм шифрования RSA, но в Агентстве национальной безопасности США относятся к этой возможности очень серьёзно.

ПОХОЖИЕ ЗАПИСИ

© Gearmix 2013 Права на опубликованный перевод принадлежат владельцам вебсайта gearmix.ru Все графические изображения, использованные при оформлении статьи принадлежат их владельцам. Знак охраны авторского права распространяется только на текст статьи. Использование материалов сайта без активной индексируемой ссылки на источник запрещено.

gearmix.ru

Что такое ядро в компьютере?

Что такое ядро в компьютере?

Что такое ядро в компьютере?

Что такое ядро в компьютере?

Статья для начинающих о том, что понимается под процессорным ядром, способ выборочного отключения ядра процессора, а также суть ускорения и синхронизации ядер.

Что такое ядро?

Наверняка многие из вас слышали рекламный лозунг «Купить компьютер 4 ядра 4 гига», где 4 гига, это 4ГБ, оперативной памяти.Этот лозунг рассчитан на привлечение покупателей красивым словосочетанием.

Однако давайте поговорим о том, что такое ядро в компьютере, ведь очень многие люди имеют расплывчатое представление об этом весьма важном компоненте любой вычислительной системы.По своей сути высказывание «ядро в компьютере» подразумевает процессорное ядро, на основе которого процессор выполняет свою главную функцию – математические вычисления на базе определенного набора инструкций. 

Процессор - вид сверху и снизу

Процессор — вид сверху и снизу

(Рисунок 1)

Любое процессорное ядро имеет свое кодовое название.В качестве примера возьмем известного производителя Nortwood, хотя подобных производителей сегодня существует очень много.Как мы уже упоминали, процессорное ядро отвечает за математические вычисления, а значит, оно в большей степени влияет на общую производительность компьютера.

Процессорное ядро работает на определенной частоте, которая зависит от техпроцесса (0.13 мкм, 0.18 мкм, и.т.д.), который применялся в ходе изготовления процессорного ядра.

Сколько ядер может быть у процессора?

На сегодняшний день рынок компьютерных комплектующих предлагает не только одноядерные процессоры, но и более производительные двухядерные и даже четырехядерные процессоры с поддержкой работы на самых высоких тактовых частотах. Нужно отметить, что количество ядер в одном процессоре зависит от модельного ряда, которые создал производитель, к примеру, семейство i3 (Core 2 Duo) сочетает в себе 2 ядра в одном процессоре, тогда когда линейка процессоров i5 (Core 2 Quad) – это уже четырехядерный процессор для выполнения множества задач.

На что влияет количество ядер?

К сожалению, многие люди ложно полагают, что объединение двух ядер в одном процессоре приводит к двукратному увеличению производительности компьютера, но на самом деле все не так. Многоядерные процессоры изначально создавались для многозадачной среды, тогда когда использование всего потенциала двух или четырех ядер в однозадачной среде просто невозможно. Задача, это запущенная программа, процесс, а многозадачная среда — операционная система, где выполняются несколько задач одновременно. Проще говоря, чтобы вы запустив антивирусник не ходили курить, а могли еще послушать музыку используя незанятые мощности вторго ядра.Другими словами купить «компьютер 4 ядра 4 гига» имеет смысл для решения сразу множества задач, хотя сегодня такая тенденция прослеживается очень редко.Стоимость четырех и восьмиядерных компьютеров сегодня может сильно разниться, ведь все зависит от характеристик ядра процессора, а в частности от степени тепловыделения (рабочая температура ядра), уровня FSB, объема кэша на уровнях L1, L2, L3, а так же стоимости других модулей компьютера.

Как отключить ядра?

Помимо своей высокой производительности, многоядерные процессоры отличаются возможность активировать и деактивировать отдельно взятые ядра процессора, и вы наверняка спросите «зачем многоядерный процессор делать одноядерным?», но здесь ответ очень простой – для возможности тестирования другого ядра процессора и возможности его адекватной оценки производительности.

Так давайте поговорит о том, как отключить одно ядро компьютера? 1. Для этого нам понадобится открыть панель управления и перейти в раздел «Администрирование».2. Здесь нас интересует ярлык «Конфигурация системы».3. Запустив его во вкладке «загрузка», мы видим текущую версию Windows и меню «дополнительные параметры» вы сможем выбрать число активных ядер процессора.

При следующем запуске Windows будет использовать те параметры, которые мы вновь указали, и теперь вы можете тестировать каждое ядро процессора отдельно и в соответствие с этим производить их оптимизацию.Синхронизация и ускорение ядер – это обычная операция, направленная на ускорение работы процессора посредством увеличения его тактовой частоты, однако здесь важно помнить, что при увеличении тактовой частоты, повышается температура ядра, а значит, прежде чем будет осуществляться синхронизация и ускорения ядер следует позаботиться об эффективной системе охлаждения.

 

Выводы

В итоге данной статьи хотелось бы еще раз отметить, то, что основным назначением многоядерных процессоров является работа в многозадачной среде, в среде, которая поддерживает многопоточность приложений. Если вы решили купить компьютер 4 ядра 4 гига, то вы должны понимать, что такой высокопроизводительный компьютер должен использоваться в соответствующей среде, которая могла бы обеспечить использование всего потенциала четырехядерного процессора, которые, кстати, используют большой объем кэша, что значительно увеличивает производительность ядер и комфортабельность в работе с процессором.

www.lamer-stop.ru

Вся правда о многоядерных процессорах

Первые компьютерные процессоры с несколькими ядрами появились на потребительском рынке ещё в середине двухтысячных, но множество пользователей до сих пор не совсем понимает — что это такое, многоядерные процессоры, и как разобраться в их характеристиках.

Видео-формат статьи «Вся правда о многоядерных процессорах»

Простое объяснение вопроса «что такое процессор»

Микропроцессор — одно из главных устройств в компьютере. Это сухое официальное название чаще сокращают до просто «процессор») . Процессор — микросхема, по площади сравнимая со спичечным коробком. Если угодно, процессор — это как мотор в автомобиле. Важнейшая часть, но совсем не единственная. Есть у машины ещё и колёса, и кузов, и проигрыватель с фарами. Но именно процессор (как и мотор автомобиля) определяет мощность «машины».

Многие называют процессором системный блок — «ящик», внутри которого находятся все компоненты ПК, но это в корне неверно. Системный блок — это корпус компьютера вместе со всеми составляющими частями — жёстким диском, оперативной памятью и многими другими деталями.

Размер процессора по сравнению с монеткой. Есть процессоры и крупнее, есть и гораздо мельче.

Размер процессора по сравнению с монеткой. Есть процессоры и крупнее, есть и гораздо мельче.

Функция процессора — вычисления. Не столь важно, какие именно. Дело в том, что вся работа компьютера завязана исключительно на арифметических вычислениях. Сложение, умножение, вычитание и прочая алгебра — этим всем занимается микросхема под названием «процессор». А результаты таких вычислений выводятся на экран в виде игры, вордовского файла или просто рабочего стола.

Главная часть компьютера, которая занимается вычислениями — вот, что такое процессор.

вверх

Что такое процессорное ядро и многоядерность

Испокон процессорных «веков» эти микросхемы были одноядерными. Ядро — это, фактически, сам процессор. Его основная и главная часть. Есть у процессоров и другие части — скажем, «ножки»-контакты, микроскопическая «электропроводка» — но именно тот блок, который отвечает за вычисления, называется ядром процессора. Когда процессоры стали совсем небольшими, то инженеры решили совместить внутри одного процессорного «корпуса» сразу несколько ядер.

Если представить процессор в виде квартиры, то ядро — это крупная комната в такой квартире. Однокомнатная квартира — это одно процессорное ядро (крупная комната-зал), кухня, санузел, коридор… Двухкомнатная квартира — это уже как два процессорных ядра вместе с прочими комнатами. Бывают и трёх-, и четырёх, и даже 12-комнатные квартиры. Также и в случае с процессорами: внутри одного кристалла-«квартиры» может быть несколько ядер-«комнат».

Многоядерность — это разделение одного процессора на несколько одинаковых функциональных блоков. Количество блоков — это число ядер внутри одного процессора.

вверх

Разновидности многоядерных процессоров

Бытует заблуждение: «чем больше ядер у процессора — тем лучше». Именно так стараются представить дело маркетологи, которым платят за создание такого рода заблуждений. Их задача — продавать дешёвые процессоры, притом — подороже и в огромных количествах. Но на самом деле количество ядер — далеко не главная характеристика процессоров.

Вернёмся к аналогии процессоров и квартир. Двухкомнатная квартира дороже, удобнее и престижнее однокомнатной. Но только если эти квартиры находятся в одном районе, оборудованы одинаково, да и ремонт у них схожий. Существуют слабенькие четырёхядерные (а то и 6-ядерные) процессоры, которые значительно слабее двухядерных. Но поверить в это сложно: ещё бы, магия крупных чисел 4 или 6 против «какой-то» двойки. Однако именно так и бывает весьма и весьма часто. Вроде как та же четырёхкомнатная квартира, но в убитом состоянии, без ремонта, в совершенно отдалённом районе — да ещё и по цене шикарной «двушки» в самом центре.

вверх

Сколько бывает ядер внутри процессора?

Для персональных компьютеров и ноутбуков одноядерные процессоры толком не выпускаются уже несколько лет, а встретить их в продаже — большая редкость. Число ядер начинается с двух. Четыре ядра — как правило, это более дорогие процессоры, но отдача от них присутствует. Существуют также 6-ядерные процессоры, невероятно дорогие и гораздо менее полезные в практическом плане. Мало какие задачи способны получить прирост производительности на этих монструозных кристаллах.

Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

Теперь вы знаете, что у процессоров бывает 1, 2, 3, 4, 6 и 12 ядер. Одноядерные и 12-ядерные процессоры — большая редкость. Трёхядерные процессоры — дело прошлого. Шестиядерные процессоры либо очень дороги (Intel), либо не такие уж сильные (AMD), чтобы переплачивать за число. 2 и 4 ядра — самые распространённые и практичные устройства, от самых слабых до весьма мощных.

вверх

Частота многоядерных процессоров

Одна из характеристик компьютерных процессоров — их частота. Те самые мегагерцы (а чаще — гигагерцы). Частота — важная характеристика, но далеко не единственная. Да, пожалуй, ещё и не самая главная. К примеру, двухядерный процессор с частотой 2 гигагерца — более мощное предложение, чем его одноядерный собрат с частотой 3 гигагерца.

Совсем неверно считать, что частота процессора равна частоте его ядер, умноженной на количество ядер. Если проще, то у 2-ядерного процессора с частотой ядра 2 ГГц общая частота ни в коем случае не равна 4 гигагерцам! Даже понятия «общая частота» не существует. В данном случае, частота процессора равна именно 2 ГГц. Никаких умножений, сложений или других операций.

И вновь «превратим» процессоры в квартиры. Если высота потолков в каждой комнате — 3 метра, то общая высота квартиры останется такой же — всё те же три метра, и ни сантиметром выше. Сколько бы комнат не было в такой квартире, высота этих комнат не изменяется. Так же и тактовая частота процессорных ядер. Она не складывается и не умножается.

вверх

Виртуальная многоядерность, или Hyper-Threading

Существуют ещё и виртуальные процессорные ядра. Технология Hyper-Threading в процессорах производства Intel заставляет компьютер «думать», что внутри двухядерного процессора на самом деле 4 ядра. Очень похоже на то, как один-единственный жёсткий диск делится на несколько логических — локальные диски C, D, E и так далее.

Hyper-Threading — весьма полезная в ряде задач технология. Иногда бывает так, что ядро процессора задействовано лишь наполовину, а остальные транзисторы в его составе маются без дела. Инженеры придумали способ заставить работать и этих «бездельников», разделив каждое физическое процессорное ядро на две «виртуальные» части. Как если бы достаточно крупную комнату разделили перегородкой на две.

Имеет ли практический смысл такая уловка с виртуальными ядрами? Чаще всего — да, хотя всё зависит от конкретных задач. Вроде, и комнат стало больше (а главное — они используются рациональнее), но площадь помещения не изменилась. В офисах такие перегородки невероятно полезны, в некоторых жилых квартирах — тоже. В других случаях в перегораживании помещения (разделении ядра процессора на два виртуальных) смысла нет вообще.

Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper-Threading. В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

Процессоры Core i3 — типичные «середнячки», как по цене, так и по производительности. У них два ядра и никакого намёка на Hyper-Threading. Итого получается, что у Core i3 всего два вычислительных потока. Это же относится и к откровенно бюджетным кристаллам Pentium и Celeron. Два ядра, «гипе-трединг» отсутствует = два потока.

вверх

Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

Все современные процессоры достаточно производительны для обычных задач. Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

Для игр следует обратить внимание на процессоры Core i3 или i5. Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника. Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

вверх

Есть ли польза от многоядерных процессоров?

Безусловно, да. Одновременно компьютер занимается несколькими задачами — хотя бы работа Windows (кстати, это сотни разных задач) и, в тот же момент, проигрывание фильма. Проигрывание музыки и просмотр интернета. Работа текстового редактора и включённая музыка. Два процессорных ядра — а это, по сути, два процессора, справятся с разными задачами быстрее одного. Два ядра сделают это несколько быстрее. Четыре — ещё быстрее, чем два.

В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

Поэтому укоренившийся миф о том, что, якобы, программы не могут использовать несколько ядер — устаревшая информация. Когда-то действительно было так, сегодня ситуация улучшилась кардинально. Преимущества от нескольких ядер неоспоримы, это факт.

вверх

Когда меньше ядер у процессора — лучше

Не следует покупать процессор по неверной формуле «чем больше ядер — тем лучше». Это не так. Во-первых, 4, 6 и 8-ядерные процессоры ощутимо дороже своих двухядерных собратьев. Значительная прибавка в цене далеко не всегда оправдана с точки зрения в производительности. К примеру, если 8-ядерник окажется лишь на 10% быстрее CPU с меньшим количеством ядер, но будет в 2 раза дороже, то такую покупку сложно оправдать.

Во-вторых, чем больше ядер у процессора, тем он «прожорливее» с точки зрения энергопотребления. Нет никакого смысла покупать гораздо более дорогой ноутбук с 4-ядерным (8-поточным) Core i7, если на этом ноутбуке будут обрабатываться лишь текстовые файлы, просматриваться интернет и так далее. Никакой разницы с двухядерником (4 потока) Core i5 не будет, да и классический Core i3 лишь с двумя вычислительными потоками не уступит более именитому «коллеге». А от батарейки такой мощный ноутбук проработает гораздо меньше, чем экономичный и нетребовательный Core i3.

вверх

Многоядерные процессоры в мобильных телефонах и планшетах

Мода на несколько вычислительных ядер внутри одного процессора касается и мобильных аппаратов. Смартфоны вместе с планшетами с большим количеством ядер почти никогда не используют все возможности своих микропроцессоров. Двухядерные мобильные компьютеры иногда действительно работают чуть быстрее, но 4, а тем более 8 ядер — откровеннейший перебор. Аккумулятор расходуется совершенно безбожно, а мощные вычислительные устройства попросту простаивают без дела. Вывод — многоядерные процессоры в телефонах, смартфонах и планшетах — лишь дань маркетингу, а не насущная необходимость. Компьютеры — более требовательные устройства, чем телефоны. Два процессорных ядра им действительно нужны. Четыре — не помешают. 6 и 8 — излишество в обычных задачах и даже в играх.

вверх

Как выбрать многоядерный процессор и не ошибиться?

Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.

Заметим, что таблица основана на процессорах образца 2012-2014 годов. Более старые образцы имеют другие характеристики. Также мы не стали упоминать редкие варианты CPU, например — одноядерный Celeron (бывают и такие даже сегодня, но это нетипичный вариант, который почти не представлен на рынке). Не следует выбирать процессоры исключительно по количеству ядер внутри них — есть и другие, более важные характеристики. Таблица лишь облегчит выбор многоядерного процессора, но конкретную модель (а их десятки в каждом классе) следует покупать только после тщательного ознакомления с их параметрами: частотой, тепловыделением, поколением, размером кэша и другими характеристиками.

Процессор Количество ядер Вычислительные потоки Типичная область применения
Atom 1-2 1-4 Маломощные компьютеры и нетбуки. Задача процессоров Atom — минимальное энергопотребление. Производительность у них минимальна.
Celeron 2 2 Самые дешёвые процессоры для настольных ПК и ноутбуков. Производительности достаточно для офисных задач, но это совсем не игровые CPU.
Pentium 2 2 Столь же недорогие и малопроизводительные процессоры Intel, как и Celeron. Отличный выбор для офисных компьютеров. Pentium оснащаются чуть более ёмким кэшем, и, иногда, слегка повышенными характеристиками по сравнению с Celeron
Core i3 2 4 Два достаточно мощных ядра, каждое из которых разделено на два виртуальных «процессора» (Hyper-Threading). Это уже довольно мощные CPU при не слишком высоких ценах. Хороший выбор для домашнего или мощного офисного компьютера без особой требовательности к производительности.
Core i5 4 4 Полноценные 4-ядерники Core i5 — довольно дорогие процессоры. Их производительности не хватает лишь в самых требовательных задачах.
Core i7 4-6 8-12 Самые мощные, но особенно дорогие процессоры Intel. Как правило, редко оказываются быстрее Core i5, и лишь в некоторых программах. Альтернатив им просто нет.
вверх

Краткий итог статьи «Вся правда о многоядерных процессорах». Вместо конспекта

  • Ядро процессора — его составная часть. Фактически, самостоятельный процессор внутри корпуса. Двухядерный процессор — два процессора внутри одного.
  • Многоядерность сравнима с количеством комнат внутри квартиры. Двухкомнатные лучше однокомнатных, но лишь при прочих равных характеристиках (расположение квартиры, состояние, площадь, высота потолков).
  • Утверждение о том, что чем больше ядер у процессора, тем он лучше — маркетинговая уловка, совершенно неверное правило. Квартиру ведь выбирают далеко не только по количеству комнат, но и по её расположению, ремонту и другим параметрам. Это же касается и нескольких ядер внутри процессора.
  • Существует «виртуальная» многоядерность — технология Hyper-Threading. Благодаря этой технологии, каждое «физическое» ядро разделяется на два «виртуальных». Получается, что у 2-ядерного процессора с Hyper-Threading лишь два настоящих ядра, но эти процессоры одновременно обрабатывают 4 вычислительных потока. Это действительно полезная «фишка», но 4-поточный процессор нельзя считать четырёхядерным.
  • Для настольных процессоров Intel: Celeron — 2 ядра и 2 потока. Pentium — 2 ядра, 2 потока. Core i3 — 2 ядра, 4 потока. Core i5 — 4 ядра, 4 потока. Core i7 — 4 ядра, 8 потоков. Ноутбучные (мобильные) CPU Intel имеют иное количество ядер/потоков.
  • Для мобильных компьютеров часто важнее экономичность в энергопотреблении (на практике — время работы от батареи), чем количество ядер.

woocomp.ru

Киберугрозы: защищены ли АЭС?

Кибербезопасность не равна информбезопасности Атомные станции — важнейшая инфраструктура государства. Поэтому кибербезопасностью в госкорпорации «Росатом» занимаются давно — с конца 1980-х годов. ВНИИАЭС — головная организация, ответственная за кибербезопасность атомных станций.

Специалисты этого профиля есть также в АО «Русатом — Автоматизированные системы управления» (РАСУ), которое занимается полным циклом внедрения АСУ ТП. В отдельное направление выделена кибербезопасность предприятий ядерного оружейного комплекса. Несмотря на то что у каждого предприятия свои задачи, их специалисты обмениваются лучшими практиками, говорит О. Лобанок.

«Кибербезопасность» — более широкое понятие, чем «информационная безопасность», отмечают эксперты. Во втором случае речь идет о защите информации: чтобы ее не украли, не изменили, не воспрепятствовали ее обработке и передаче. Кибербезопасность на АЭС означает, что защищен весь технологический процесс. «Кибербезопасность всеобъемлюща, она охватывает более широкий спектр угроз и объединяет части различных систем безопасности», — сказал «Атомному эксперту» руководитель отдела информационных технологий Загорского трубного завода Святослав Гвоздев.

Кибербезопасность АЭС означает защиту технологического процесса от несанкционированного доступа. «Ведь самое опасное для атомной станции — если кто-то несанкционированно возьмет управление технологическим процессом на себя. Либо вирус, либо человек», — говорит В. Дурнев.

Многоуровневая защита Кибербезопасность атомной станции обеспечивается на многих уровнях — на каждом, где есть информация или цифровое управление.

На первом информационном уровне находятся датчики, установленные на оборудовании, а также программно-логические микроконтроллеры (ПЛК), к которым подключены эти датчики. Микроконтроллеры получают от датчиков информацию, анализируют ее согласно специальным алгоритмам и выдают управляющие воздействия на исполнительные механизмы оборудования. На этом уровне стоят различные средства защиты технологического процесса.

На следующем уровне собранная микроконтроллерами информация через специализированные шлюзы (так называемый шлюзовой контур) передается выше, в локальную сеть системы верхнего блочного уровня — СВБУ.

На информационном щите СВБУ все происходящее с оборудованием видит оператор. Операторы напрямую с компьютеров технологическим процессом не управляют, подчеркивают специалисты. Прямое управление идет от контроллеров, в которых установлены небольшие программные продукты, причем собственной разработки предприятий Росатома. Все команды от операторов проходят верификацию. «Если команда разрешена, то она будет передана управляющей системе. Если запрещена, то будет заблокирована. Это также одна из мер по обеспечению кибербезопасности технологического процесса», — пояснил О. Лобанок.

Для обеспечения кибербезопасности в Росатоме уходят от иностранных операционных систем, которые достаточно уязвимы. «В 2013 году Microsoft прекратил поддерживать Windows NT, и два года спустя было официально объявлено, что в этой операционной системе найдено 40 тысяч уязвимостей, которые могут быть использованы для взлома и проникновения в компьютер. Многие внедрены специально», — говорит О. Лобанок.

Третий информационный уровень на АЭС — уровень неоперативного управления. Сотрудники станции на своих компьютерах могут наблюдать технологические процессы — как в реальном времени, так и архивные, — но не могут ими управлять. АСУ ТП атомной станции не связана с Интернетом: она физически не подключена к глобальной сети. АЭС передает необходимую информацию «вовне» (в частности, в кризисный центр) по специальным, защищенным каналам связи. С Интернетом связана обычная сеть, которая используется, например, для бухгалтерского документооборота. Но эти сети также существуют отдельно и физически не соединены с АСУ ТП.

Секретная защита На каждом из информационных уровней — свои меры для защиты от киберугроз. Например, АСУ ТП управляют всегда два администратора. «Они друг другу не подчиняются, не знают пароли, один контролирует действия другого», — говорит О. Лобанок. Используются только защищенные компьютеры, в которых все составляющие («железо» и установленные программы) тщательно проверены.

«Мы досконально проверяем все оборудование на „закладки“, или, правильнее сказать, незадекларированные возможности, то есть функции, не описанные в документации, которые могут оказаться вредоносными — например, кража информации», — рассказывает О. Лобанок. В РАСУ добавляют, что оборудование тестируется перед поставкой на станцию в специальных лабораториях. Затем — на самой станции. Также проводятся периодические проверки во время эксплуатации. Действует запрет доступа внешних носителей: на АЭС нельзя подсоединить к компьютеру, работающему в системе АСУ ТП, чужую флеш-карту. Есть требования, касающиеся паролей. «В советское время пароль на блочных щитах управления практически на всех станциях был с кодом 235. В крайнем случае — 239. Такое, конечно, сегодня недопустимо и невозможно», — вспоминает В. Дурнев.

atomicexpert.com

Россия и США разработали технологию "ядерного" квантового компьютера

Исследователи в США и России разработали технологии модуляции высокоэнергетичных фотонов гамма-диапазона при комнатной температуре. Это открывает возможность для развития квантовомеханических технологий, обеспечивающих очень высокую точность измерений, а также квантово-информационных систем на основе ядерных процессов. Новый подход также может быть полезен для тех, кто занимается фундаментальными исследованиями в различных областях, начиная от роли квантовых явлений в биологических процессах до собственно фундаментальных вопросов квантовой оптики.

Этот метод разработали ученые Ольга Кочаровская и Фарит Вагизов совместно с коллегами из Техасского университета (США) и Казанского государственного университета (Россия). Физический принцип разработанной ими технологии аналогичен известному из физики эффекту Мессбауэра. Изотоп кобальта-57 в результате радиоактивного распада превращается в возбужденный изомер железа-57, который переходит в стабильное состояние в результате испускания «мягкого» гамма-кванта с энергией 14,4 кэВ. Этот фотон в дальнейшем может поглощаться и заново переизлучаться атомами железа-57 в кристаллической решётке, причём благодаря использованию эффекта Мессбауэра его энергия не теряется и не рассеивается.

Металлическая фольга поглощает и излучает фотоны в мегагерцевом диапазоне. Используя эффект Доплера, возможно преобразование одиночного фотона в двойной импульс и даже массив из серии сверхкоротких импульсов. Это делает возможным использование гамма-квантов для кодирования информации в виде «кубитов» - квантовых битов, в которых закодирована информация в зависимости от времени испускания фотонов.

Новый метод имеет значительные преимущества по сравнению с ранее разрабатывавшимися проектами оптических компьютеров на оптическом или микроволновом излучении – чем больше частота излучения, тем больший объем информации можно передать за единицу времени. Кроме того, фотоны в диапазоне энергий от 10 до 100 кэВ (образующиеся в результате внутриатомных переходов и находящиеся на границе рентгеновского и гамма-диапазонов) обладают более высокой проникающей способностью и поэтому их проще фиксировать. И, наконец, использование эффекта Мессбауэра позволяет свести к минимуму эффект «отдачи» при передаче фотонов, что делает возможным использование данной технологии при комнатной температуре.

Новая технология позволяет физикам управлять высокоэнергетичными фотонами более эффективно, чем это было возможно ранее. Как уточняет Кочаровская, в рамках данного подхода можно манипулировать большим числом параметров – менять амплитуду, фазу, частоту излучения и т.п., создавая «по требованию» сигналы произвольной формы, что позволяет обеспечить значительно более высокую, чем в ранее применявшихся технологиях, скорость передачи информации.

 

 

Специалист по рентгеновской оптике Радльф Рольсбергер из немецкой ядерной лаборатории DESY отмечает, что полученный результат впервые даёт возможность для передачи модулированных сигналов с помощью гамма-квантов, однако на настоящий момент технология имеет и недостатки: управлять фотонами в высоком диапазоне энергий значительно труднее, чем в оптическим или микроволновом диапазоне. Также пока имеются высокие потери энергии из-за поглощения и рассеяния.

В настоящее время команда исследователей работает над усовершенствованием метода и возможностью его применения к практическим задачам.

www.atomic-energy.ru

4 способа узнать сколько ядер в компьютере

В наше прогрессивное время, количество ядер играет главенствующую роль в выборе компьютера. Ведь именно благодаря ядрам, расположенным в процессоре, измеряется мощность компьютера, его скорость во время обрабатывания данных и выдачи полученного результата. Расположены ядра в кристалле процессора, и их количество в данный момент может достигать от одного до четырёх.

Как узнать сколько ядер в компьютере

В то «давнее время», когда ещё не существовало четырёхядерных процессоров, да и двухядерные были в диковинку, скорость мощности компьютера измерялась в тактовой частоте. Процессор обрабатывал всего один поток информации, и как вы понимаете, пока полученный результат обработки доходил до пользователя, проходило энное количество времени. Теперь же многоядерный процессор, с помощью специально предназначенных улучшенных программ, разделяет обработку данных на несколько отдельных, независимых друг от друга потоков, что значительно ускоряет получаемый результат и увеличивает мощностные данные компьютера. Но, важно знать, что если приложение не настроено на работу с многоядерностью, то скорость будет даже ниже, чем у одноядерного процессора с хорошей тактовой частотой. Так как узнать сколько ядер в компьютере?

Центральный процессор – одна из главнейших частей любого компьютера, и определить, сколько ядер в нём, является вполне посильной задачей и для начинающего компьютерного гения, ведь от этого зависит ваше успешное превращение в опытного компьютерного зубра. Итак, определяем, сколько ядер в вашем компьютере.

Как узнать сколько ядер в компьютере?

Приём №1
  • Для этого нажимаем компьютерную мышку с правой стороны, щёлкая на значке «Компьютер», или контекстном меню, расположенном на рабочем столе, на значке «Компьютер». Выбираем пункт «Свойства».

Свойства

  • С лева открывается окно, найдите пункт «Диспетчер устройств».
  • Для того чтоб раскрыть список процессоров, находящихся в вашем компьютере, нажмите на стрелку, размещённую левее основных пунктов, в том числе пункта «Процессоры».

Ядра компьютера

  • Подсчитав, сколько процессоров находится в списке, вы можете с уверенностью сказать, сколько ядер в процессоре, ведь каждое ядро будет иметь хоть и повторяющуюся, но отдельную запись. В образце, представленном вам, видно, что ядер два.

Этот способ подходит для операционных систем Windows, а вот на процессорах Intel, отличающихся гиперпоточностью (технология Hyper-threading), этот способ, скорее всего, выдаст ошибочное обозначение, ведь в них одно физическое ядро может разделяться на два потока, независимых один от одного. В итоге, программа, которая хороша для одной операционной системы, для этой посчитает каждый независимый поток за отдельное ядро, и вы получите в результате восьмиядерный процессор. Поэтому, если у вас процессор поддерживает технологию Hyper-threading, обратитесь к специальной утилит – диагностике.

Приём №2

Существуют бесплатные программы для любопытствующих о количестве ядер в процессоре. Так, неоплачиваемая программа CPU-Z, вполне справится с поставленной вами задачей. Для того чтоб воспользоваться программой:

  • зайдите на официальный сайт cpuid.com, и скачайте архив с CPU-Z. Лучше воспользоваться версией, которую не нужно устанавливать на компьютер, на этой версии стоит обозначение «no installation».
  • Далее следует распаковать программу и спровоцировать её запуск в исполняемом файле.
  • В открывшемся главном окне этой программы, на вкладке «CPU», в нижней части найдите пункт «Cores». Вот здесь и будет указано точное количество ядер вашего процессора.

CPU-Z

Можно узнать, сколько ядер в компьютере с установленной системой Windows, с помощью диспетчера задач.

Приём №3

Очерёдность действий такая:

  • Запускаем диспетчер с помощью клика правой стороны мышки на панели быстрого запуска, обычно расположенной внизу.
  • Откроется окно, ищем в нём пункт «Запустить диспетчер задач»

Запустить диспетчер задач

  • В самом верху диспетчера задач Windows находится вкладка «Быстродействие», вот в ней, с помощью хронологической загрузки центральной памяти и видно количество ядер. Ведь каждое окно и обозначает ядро, показывая его загрузку.

Список ядер

Приём №4

И ещё одна возможность для подсчёта ядер компьютера, для этого нужна будет любая документация на компьютер, с полным перечнем комплектующих деталей. Найдите запись о процессоре. Если процессор относится к AMD, то обратите внимание на символ Х и стоящую рядом цифру. Если стоит Х 2, то значит, вам достался процессор с двумя ядрами, и т.д.

В процессорах Intel количество ядер прописывается словами. Если стоит Core 2 Duo, Dual, то ядра два, если Quad – четыре.

Конечно, можно сосчитать ядра, зайдя на материнскую плату через BIOS, но стоит ли это делать, когда описанные способы дадут вполне чёткий ответ по интересующему вас вопросу, и вы сможете проверить, правду ли сказали вам в магазине и сосчитать, сколько же ядер в вашем компьютере самостоятельно.

P.S. Ну вот и все, теперь мы знаем как узнать сколько ядер в компьютере, даже целых четыре способа, а уж какой применить — это уже ваше решение 😉

Facebook

Twitter

Вконтакте

Одноклассники

Google+

www.itshneg.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики