Презентация к индивидуальному проекту на тему: Компьютер внутри нас. Компьютер внутри нас
Реферат на тему "Компьютер внутри человека", сопровождаемый презентацией.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Средняя общеобразовательная школа
с углубленным изучением отдельных предметов №256
Р Е Ф Е Р А Т
по информатике
ТЕМА: Компьютер внутри человека
Исполнитель Руководитель
Шмелёва Михайличенко
Анна Алексеевна Наталия Викторовна
11 «А»
г. Фокино
2006
Оглавление
Введение...............................................................................................3
1. Нейрон – структурная единица ЦНС.....................................................4
2.1. Нейронные механизмы восприятия.................................................8
2.2.Восприятие цвета с позиции векторной модели
обработки информации.................................................................11
2.3.Векторная модель управления двигательными и
вегетативными реакциями............................................................12
3. Нейронные сети................................................................................14
4. Настоящий компьютер внутри человека..............................................16
Заключение..........................................................................................17
Список литературы................................................................................18
Приложение 1........................................................................................19
Приложение 2........................................................................................21
Введение
Многие исследователи уподобляют нервную систему компьютеру, регулирующему и координирующему жизнедеятельность организма. Чтобы человек удачно вписался в картину окружающего мира, этому внутреннему компьютеру приходится решать четыре главные задачи. Они являются основными функциями нервной системы.
Прежде всего, она воспринимает все действующие на организм раздражители. Всю воспринятую информацию о температуре, цвете, вкусе, запахе и других характеристиках явлений и предметов нервная система преобразует в электрические импульсы, которые передаёт в отделы мозга — головного и спинного. Каждый из нас обладает «биологическим телеграфом» — в его пределах сигналы распространяются со скоростью до 400 км/час. «Телеграфные провода» — корешки, корешковые нервы, узлы и магистральные нервные стволы. Их насчитывают 86, причём каждый разделяется на множество более мелких веточек, и все они «приписаны» к периферической нервной системе (см. Приложение 1, рис.1).
Наш внутренний компьютер обрабатывает поступившие данные: анализирует, систематизирует, запоминает, сравнивает с ранее полученными сообщениями и уже имеющимся опытом. «Генеральный штаб», обрабатывающий сигналы, подаваемые как извне, так и изнутри тела, — головной мозг. Верный «адъютант» при штабе — мозг спинной – служит своеобразным органом местного самоуправления, а также связующим звеном с вышестоящими отделами биологического компьютера. Вместе с головным спинной мозг образует центральную нервную систему (ЦНС).
В своем реферате я рассмотрела процессы передачи и кодирования информации, происходящие в нервной системе, с точки зрении информационных технологий, кратко рассказала об искусственных нейронных сетях и о компьютере, способном работать внутри человека.
1. Нейрон – структурная единица ЦНС
Безупречную слаженность нервной системы обеспечивают 20 млрд. нейронов (греч. «нейрон» — «жила», «нерв») — специализированных клеток. Четвёртая часть нейронов сосредоточена в спинном мозге и примыкающих к нему спинномозговых узлах. Остальные располагаются в так называемом сером веществе (коре и подкорковых центрах) головного мозга.
Нейрон состоит из тела (сома с ядром), множества древовидных отростков — дендритов — и длинного аксона (см. Приложение 1, рис.3). Дендриты служат в качестве входных каналов для нервных импульсов от других нейронов. Импульсы поступают в сому, вызывая её специфическое возбуждение, распространяющееся затем по выводному отростку — аксону. Соединяются нейроны с помощью специальных контактов — синапсов, в которых разветвления аксона одного нейрона подходят очень близко (на расстоянии нескольких десятков микронов) к соме или дендритам другого нейрона.
Нейроны, размещающиеся в рецепторах, воспринимают внешние раздражения, в сером веществе ствола головного и спинного мозга — управляют движениями человека (мышцами и железами), в мозге — связывают чувствительные и двигательные нейроны. Последние образуют различные мозговые центры, где происходит преобразование информации, поступившей от внешних раздражителей, в двигательные сигналы.
Как же работает эта система? В нейронах происходят три основных процесса: синаптическое возбуждение, синаптическое торможение и возникновение нервных импульсов. Синаптические процессы обеспечиваются особыми химическими веществами, которые выделяются окончаниями одного нейрона и взаимодействуют с поверхностью другого. Синаптическое возбуждение вызывает ответную реакцию нейрона и при достижении определённого порога переходит в нервный импульс, быстро распространяющийся по отросткам. Торможение, напротив, уменьшает общий уровень возбудимости нейрона.
2.Принципы кодирования информации в нервной системе
Сегодня можно говорить о нескольких принципах кодирования в нервной системе. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие — более сложны и характеризуют передачу информации на более высоких уровнях нервной системы, включая кору.
Одним из простых способов кодирования информации признается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др.
Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Частотный способ кодирования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим законом Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя.
Однако позже закон Фехнера был подвергнут серьезной критике. С. Стивене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимости.
Анализ передачи сигнала о вибрации от соматических рецепторов показал, что информация о частоте вибрации передается с помощью частоты, а ее интенсивность кодируется числом одновременно активных рецепторов.
В качестве альтернативного механизма к первым двум принципам кодирования — меченой линии и частотного кода — рассматривают также паттерн ответа нейрона. Устойчивость временного паттерна ответа — отличительная черта нейронов специфической системы мозга. Система передачи информации о стимулах с помощью рисунка разрядов нейрона имеет ряд ограничений. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делает данную систему кодирования недостаточно надежной.
Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая условные рефлексы на раздражение разных участков кожи лапы через «касалки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуждения в определенном локусе соматосенсорной коры. Пространственное соответствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает пространственное расположение волосковых клеток кортиевого органа, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что рецепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности максимум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раздражение определенного участка рецепторной поверхности. Детекторы локальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наиболее простыми детекторами. Совокупность детекторов локальности образует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором.
Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а другими признаками. Появление локуса возбуждения на детекторной карте зависит от параметров стимула. С их изменением локус возбуждения на карте смещается. Для объяснения организации нейронной сети, работающей как детекторная система, Е.Н. Соколов предложил механизм векторного кодирования сигнала.
Принцип векторного кодирования информации впервые был сформулирован в 50-х годах шведским ученым Г. Йохансоном, который и положил начало новому направлению в психологии — векторной психологии. Г. Йохансон показал, что если две точки на экране движутся навстречу друг другу — одна по горизонтали, другая по вертикали, — то человек видит движение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Движение точки рассматривается им как результат формирования двухкомпонентного вектора, отражающего действие двух независимых факторов (движения в горизонтальном и вертикальном направлениях). В дальнейшем векторная модель была распространена им на восприятие движений корпуса и конечностей человека, а также на движение объектов в трехмерном пространстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигательных и вегетативных реакций.
Векторная психофизиология — новое направление, ориентированное на соединение психологических явлений и процессов с векторным кодированием информации в нейронных сетях.
2.1. Нейронные механизмы восприятия
Сведения о нейронах сенсорных систем, накопленные за последние десятилетия, подтверждают детекторный принцип нейронной организации самых разных анализаторов. Рассмотрим механизмы восприятия в нервной системе на примере зрительного анализатора.
Для зрительной коры были описаны нейроны-детекторы, избирательно отвечающие на элементы фигуры, контура — линии, полосы, углы.
Важным шагом в развитии теории сенсорных систем явилось открытие константных нейронов-детекторов, учитывающих, кроме зрительных сигналов, сигналы о положении глаз в орбитах. В теменной коре реакция константных нейронов-детекторов привязана к определенной области внешнего пространства, образуя константный экран. Другой тип константных нейронов-детекторов, кодирующих цвет, открыт С. Зеки в экстрастриарной зрительной коре. Их реакция на определенные отражательные свойства цветовой поверхности объекта не зависит от условий освещения.
Изучение вертикальных и горизонтальных связей нейронов-детекторов различного типа привело к открытию общих принципов нейронной архитектуры коры. В. Маунткасл — ученый из медицинской школы Университета Джонса Гопкинса — в 60-х годах впервые описал вертикальный принцип организации коры больших полушарий. Исследуя нейроны соматосенсорной коры у наркотизированной кошки, он нашел, что они по модальности сгруппированы в вертикальные колонки. Одни колонки реагируют на стимуляцию правой стороны тела, другие — левой, а два других типа колонок различались тем, что одни из них избирательно реагировали на прикосновение или на отклонение волосков на теле (т.е. на раздражение рецепторов, расположенных в верхних слоях кожи), другие — на давление или на движение в суставе (на стимуляцию рецепторов в глубоких слоях кожи). Колонки имели вид трехмерных прямоугольных блоков разной величины и проходили через все клеточные слои. Со стороны поверхности коры они выглядели как пластины размером от 20—50 мкм до 0,25—0,5 мм. Позже эти данные подтвердились и на наркотизированных обезьянах другие исследователи уже на ненаркотизированных животных (макаках, кошках, крысах) также представили дополнительные доказательства колончатой организации коры.
Благодаря работам Д. Хьюбела и Т. Визеля сегодня мы более детально представляем колончатую организацию зрительной коры. Исследователи используют термин «колонка», предложенный В. Маунткаслом, но отмечают, что наиболее подходящим был бы термин «пластина». Говоря о колончатой организации, они подразумевают, что «некоторое свойство клеток остается постоянным во всей толще коры от ее поверхности до белого вещества, но изменяется в направлениях, параллельных поверхности коры» Сначала в зрительной коре были обнаружены группы клеток (колонок), связанных с разной глазодоминантностъю, как наиболее крупные. Было замечено, что всякий раз, когда регистрирующий микроэлектрод входил в кору обезьяны перпендикулярно ее поверхности, он встречал клетки, лучше реагирующие на стимуляцию только одного глаза. Если же его вводили на несколько миллиметров в сторону от предыдущего, но также вертикально, то для всех встречающихся клеток доминирующим был только один глаз — тот же, что и раньше, или другой. Если же электрод вводили с наклоном и как можно более параллельно поверхности коры, то клетки с разной глазодоми-нантностью чередовались. Полная смена доминантного глаза происходила примерно через каждый 1 мм.
В коре обнаружены также колонки, избирательно реагирующие на направление движения или на цвет. Ширина цветочувствителъных колонок в стриарной коре около 100—250 мкм. Колонки, настроенные на разные длины волн, чередуются. Колонка с максимальной спектральной чувствительностью к 490-500 нм сменяется колонкой с максимумом цветовой чувствительности к 610 нм. Затем снова следует колонка с избирательной чувствительностью к 490-500 нм. Вертикальные колонки в трехмерной структуре коры образуют аппарат многомерного отражения внешней среды.
В зависимости от степени сложности обрабатываемой информации в зрительной коре выделено три типа колонок. Микроколонки реагируют на отдельные градиенты выделяемого признака, например на ту или другую ориентацию стимула (горизонтальную, вертикальную или другую). Макроколонки объединяют микроколонки, выделяющие один общий признак (например, ориентацию), но реагирующие на разные значения его градиента (разные наклоны — от 0 до 180°). Гиперколонка, или модуль, представляет собой локальный участок зрительного поля и отвечает на все стимулы, попадающие на него. Модуль — вертикально организованный участок коры, выполняющий обработку самых разнообразных характеристик стимула (ориентации, цвета, глазодоминантности и др.). Модуль собирается из макроколонок, каждая из которых реагирует на свой признак объекта в локальном участке зрительного поля. Членение коры на мелкие вертикальные подразделения не ограничивается зрительной корой. Оно присутствует и в других областях коры (в теменной, префронтальной, моторной коре и др.).
В коре существует не только вертикальная (колончатая) упорядоченность размещения нейронов, но и горизонтальная (послойная). Нейроны в колонке объединяются по общему признаку. А слои объединяют нейроны, выделяющие разные признаки, но одинакового уровня сложности. Нейроны-детекторы, реагирующие на более сложные признаки, локализованы в верхних слоях.
Таким образом, колончатая и слоистая организации нейронов коры свидетельствуют, что обработка информации о признаках объекта, таких, как форма, движение, цвет, протекает в параллельных нейронных каналах. Вместе с тем изучение детекторных свойств нейронов показывает, что принцип дивергенции путей обработки информации по многим параллельным каналам должен быть дополнен принципом конвергенции в виде иерархически организованных нейронных сетей. Чем сложнее информация, тем более сложная структура иерархически организованной нейронной сети требуется для ее обработки.
2.2.Восприятие цвета с позиции векторной модели обработки информации
Анализатор цвета включает рецепторный и нейронный уровни сетчатки, ЛКТ таламуса и различные зоны коры. На уровне рецепторов падающие на сетчатку излучения видимого спектра у человека преобразуются в реакции трех типов колбочек, содержащих пигменты с максимумом поглощения квантов в коротковолновой, средневолновой и длинноволновой частях видимого спектра. Реакция колбочки пропорциональна логарифму интенсивности стимула. В сетчатке и ЛКТ существуют цветооппонентные нейроны, противоположно реагирующие на пары цветовых стимулов (красный-зеленый и желтый—синий). Их часто обозначают первыми буквами от английских слов: +К-С; -К+С; +У-В; -У+В. Различные комбинации возбуждений колбочек вызывают разные реакции оппонентных нейронов. Сигналы от них достигают цветочувствительных нейронов коры.
Восприятие цвета определяется не только хроматической (цветочувствительной) системой зрительного анализатора, но и вкладом ахроматической системы. Ахроматические нейроны образуют локальный анализатор, детектирующий интенсивность стимулов. Первые сведения об этой системе можно найти в работах Р. Юнга, показавшего, что яркость и темнота в нервной системе кодируются двумя независимо работающими каналами: нейронами В, измеряющими яркость, и нейронами В, оценивающими темноту. Существование нейронов-детекторов интенсивности света было подтверждено позже, когда в зрительной коре кролика были найдены клетки, селективно реагирующие на очень узкий диапазон интенсивности света.
2.3.Векторная модель управления двигательными и
вегетативными реакциями
Согласно представлению о векторном кодировании информации в нейронных сетях реализацию двигательного акта или ее фрагмента можно описать следующим образом, обратившись к концептуальной рефлекторной дуге (см. Приложение 1, рис.2). Исполнительная ее часть представлена командным нейроном или полем командных нейронов. Возбуждение командного нейрона воздействует на ансамбль премоторных нейронов и порождает в них управляющий вектор возбуждения, которому соответствует определенный паттерн возбужденных мотонейронов, определяющий внешнюю реакцию. Поле командных нейронов обеспечивает сложный набор запрограммированных реакций. Это достигается тем, что каждый из командных нейронов поочередно может воздействовать на ансамбль премоторных нейронов, создавая в них специфические управляющие векторы возбуждения, которые и определяют разные внешние реакции. Все разнообразие реакций, таким образом, можно представить в пространстве, размерность которого определяется числом премоторных нейронов, возбуждение последних образуют управляющие векторы.
Структура концептуальной рефлекторной дуги включает блок рецепторов, выделяющих определенную категорию входных сигналов. Второй блок — предетекторы, трансформирующие сигналы рецепторов в форму, эффективную для селективного возбуждения детекторов, образующих карту отображения сигналов. Все нейроны-детекторы проецируются на командные нейроны параллельно. Имеется блок модулирующих нейронов, которые характеризуются тем, что они не включены непосредственно в цепочку передачи информации от рецепторов на входе к эффекторам на выходе. Образуя «синапсы на синапсах», они модулируют прохождение информации. Модулирующие нейроны можно разделить на локальные, оперирующие в пределах рефлекторной дуги одного рефлекса, и генерализованные, охватывающие своим влиянием рефлекторных дуг и тем самым определяющие общий уровень функционального состояния. Локальные модулирующие нейроны, усиливая или ослабляя синаптические входы на командных нейронах перераспределяют приоритеты реакций, за которые эти командные нейроны ответственны. Модулирующие нейроны действуя через гиппокамп, куда на нейроны «новизны» и «тождества» проецируются детекторные карты.
Реакция командного нейрона определяется скалярным произведением вектора возбуждения и вектора синаптических связей. Когда вектор синаптических связей в результате обучения совпадает с вектором возбуждения по направлению, скалярное произведение достигает максимума и командный нейрон становится селективно настроенным на условный сигнал. Дифференцировочные раздражители вызывают векторы возбуждения, отличающиеся от того, который порождает условный раздражитель. Чем больше это различие, тем меньше вероятность вызова возбуждения командного нейрона. Для выполнения произвольной двигательной реакции требуется участие нейронов памяти. На командных нейронах сходятся пути не только от детекторных сетей, но и от нейронов памяти.
Управление двигательными и вегетативными реакциями осуществляется комбинациями возбуждений, генерируемыми командными нейронами, которые действуют независимо друг от друга, хотя, по-видимому, некоторые стандартные паттерны их возбуждений появляются более часто, чем другие.
3. Нейронные сети
Изучение структуры и функций ЦНС привело к появлению новой научной дисциплины – нейроинформатики. По сути, нейроинформатика есть способ решения всевозможных задач с помощью искусственных нейронных сетей, реализованных на компьютере.
Нейронные сети представляют собой новую и весьма перспективную вычислительную технологию, дающую новые подходы к исследованию динамических задач в финансовой области. Первоначально нейронные сети открыли новые возможности в области распознавания образов, затем к этому прибавились статистические и основанные на методах искусственного интеллекта средства поддержки принятия решений и решения задач в сфере финансов.
Способность к моделированию нелинейных процессов, работе с зашумленными данными и адаптивность дают возможности применять нейронные сети для решения широкого класса финансовых задач. В последние несколько лет на основе нейронные сетей было разработано много программных систем для применения в таких вопросах, как операции на товарном рынке, оценка вероятности банкротства банка, оценка кредитоспособности, контроль за инвестициями, размещение займов.
Приложения нейронные сетей охватывают самые разнообразные области: распознавание образов, обработка зашумленные данных, дополнение образов, ассоциативный поиск, классификация, оптимизация, прогноз, диагностика, обработка сигналов, абстрагирование, управление процессами, сегментация данных, сжатие информации, сложные отображения, моделирование сложных процессов, машинное зрение, распознавание речи.
Несмотря на большое разнообразие вариантов нейронных сетей, все они имеют общие черты. Так, все они, так же как и мозг человека, состоят из большого числа однотипных элементов – нейронов, которые имитируют нейроны головного мозга, связанных между собой. На рисунке 4 (см. Приложение 1) показана схема нейрона.
Из рисунка видно, что искусственный нейрон, так же как и живой, состоит из синапсов, связывающих входы нейрона с ядром, ядра нейрона, которое осуществляет обработку входных сигналов и аксона, который связывает нейрон с нейронами следующего слоя. Каждый синапс имеет вес, который определяет, насколько соответствующий вход нейрона влияет на его состояние.
Состояние нейрона определяется по формуле
где
– число входов нейрона;
– значение i-го входа нейрона;
– вес i-го синапса.
Затем определяется значение аксона нейрона по формуле
Где - некоторая функция, которая называется активационной. Наиболее часто в качестве активационной функции используется так называемый сигмоид, который имеет следующий вид:
4. Настоящий компьютер внутри человека
В предыдущих разделах о компьютере внутри человека говорилось в переносном смысле; однако достижения науки дают основания перейти от метафоры к прямому значению слов.
Израильские ученые создали молекулярный компьютер, который использует ферменты для произведения подсчетов.
Итамар Виллнер, сконструировавший молекулярный калькулятор со своими коллегами в Еврейском университете Иерусалима, считает, что компьютеры, работающие на ферментах, когда-нибудь можно будет вживлять в человеческий организм и использовать, например, для регулирования выброса лекарств в систему метаболизма.
Ученые создали свой компьютер, используя два фермента - глюкозу дегидрогеназу (glucose dehydrogenase, GDH) и пероксидаз из хрена (horseradish peroxidase, HRP) - для запуска двух взаимосвязанных химических реакций. Два химических компонента - перекись водорода и глюкоза - использовались как вводимые значения (А и В). Присутствие каждого из химических веществ соответствовало 1 в двоичном коде, а отсутствие - 0 в двоичном коде. Химический результат ферментной реакции определялся оптически.
Ферментный компьютер использовали для проведения двух фундаментальных логических вычислений, известных как AND (где A и B должны быть равными единице) и XOR (где A и B должны иметь разные значения). Добавление еще двух ферментов - глюкозооксидазы (glucose oxidase) и каталазы (catalase) - связало две логические операции, дав возможность сложить двоичные числа, используя логические функции.
Ферменты уже используют при вычислениях, применяя специально закодированную ДНК. Такие ДНК-компьютеры потенциально способны превзойти по скорости и мощности кремниевые компьютеры, поскольку могут осуществлять множество параллельных вычислений и помещать огромное количество компонентов в крошечное пространство.
Заключение
Работая над рефератом, я узнала много нового об устройстве центральной нервной системы человека и обнаружила тесную связь между процессами, происходящими внутри человека и внутри машины. Несомненно, изучение устройства ЦНС и мозга открывает перед человечеством огромные перспективы. Нейронные сети уже сейчас решают задачи, непосильные для искусственного интеллекта. Нейрокомпьютеры особенно эффективны там, где нужен аналог человеческой интуиции для распознавания образов (узнавания лиц, чтения рукописных текстов), подготовки аналитических прогнозов, перевода с одного естественного языка на другой и т.п. Именно для таких задач обычно трудно сочинить явный алгоритм. В ближайшем будущем возможно создание электронных носителей, сопоставимых по ёмкости с человеческим мозгом. Но для того, чтобы осуществить все смелые замыслы ученых, необходима прочная теоретическая база. А обеспечить её поможет молодая, стремительно развивающаяся наука, своеобразный союз биологии и информатики – биоинформатика.
Список литературы
Энциклопедия для детей. Том 22. Информатика. М.: Аванта+, 2003.
Энциклопедия для детей. Том 18. Человек. Ч. 1.Происхождение и природа человека. Как работает тело. Искусство быть здоровым. М.: Аванта+, 2001.
Энциклопедия для детей. Том 18. Человек. Ч. 2. Архитектура души. Психология личности. Мир взаимоотношений. Психотерапия. М.: Аванта+, 2002.
Данилова Н.Н. Психофизиология: Учебник для вузов.- М.: Аспект Пресс, 2001
Марцинковская Т. Д. История психологии: Учеб. пособие для студ. высш. учеб. заведений.- М.: Издательский центр "Академия", 2001
NewScientist.com news service; Angewandte Chemie International Edition (vol. 45, p. 1572)
Приложение 1
рис.1. Нервная система человека – центральная, вегетативная и периферическая
рис.2. Образование рефлекторной дуги
рис.3. Нейрон с множеством дендритов, получающий информацию через синаптический контакт с другим нейроном.
рис.4. Строение искусственного нейрона
Приложение 2
Краткий словарь терминов и понятий
Аксон - отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к иннервируемым органам или др. нервным клеткам. Пучки аксонов образуют нервы.
Гиппокамп - структура, расположенная в глубинных слоях доли височной головного мозга.
Градиент - вектор, показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой.
Дендрит - ветвящийся цитоплазматический отросток нервной клетки, проводящий нервные импульсы к телу клетки.
Кортиевый орган - рецепторный аппарат слухового анализатора.
ЛКТ – латеральное коленчатое тело.
Локус - конкретный участок ДНК, отличающийся каким-либо свойством.
Нейрон - нервная клетка, состоящая из тела и отходящих от него отростков - относительно коротких дендритов и длинного аксона.
Паттерн - пространственно-временная картина развития какого-то процесса.
Рецептивное поле - периферическая область, раздражение которой оказывает влияние на разряд данного нейрона.
Рецепторы - окончания чувствительных нервных волокон или специализированные клетки (сетчатки глаза, внутреннего уха и др.), преобразующие раздражения, воспринимаемые извне (экстерорецепторы) или из внутренней среды организма (интерорецепторы) в нервное возбуждение, передаваемое в центральную нервную систему.
Синапс - структура, которая передает сигналы от нейрона к соседнему (или к другой клетке).
Сома - 1) тело, туловище; 2) совокупность всех клеток организма, за исключением репродуктивных клеток.
Соматосенсорная кора - область коры больших полушарий мозга, где представлены афферентные проекции частей тела.
Таламус - основная часть промежуточного мозга. Главный подкорковый центр, направляющий импульсы всех видов чувствительности (температурный, болевой и др.) к стволу мозга, подкорковым узлам и коре больших полушарий.
infourok.ru
Все люди, живущие в обществе, являются коммуникаторами, поскольку всякое индивидуальное действие осуществляется в условиях прямых или косвенных отношений с другими людьми, т.е. включает (наряду с физическим) коммуникативный аспект. Действия, сознательно ориентированные на смысловое их восприятие другими людьми, иногда называют коммуникативными действиями. Коммуникацию можно считать эффективной, если ее функция (управленческая, информативная или фатическая) успешно выполнена. К сожалению, на практике далеко не всегда коммуникативные действия приводят к ожидаемому коммуникатором эффекту. Одной из причин этого является неумение общаться правильно. Многие люди часто общаются не столько с человеком, сколько с представлением об этом человеке. Иногда складывается впечатление, что у них в голове что-то вроде магнитофона и им просто надо сказать тот текст, который записан на пленку. Например, какой-нибудь продавец в магазине продолжает убеждать посетителя в прелестях товара, тратя и свое и его время, хотя тот уже всем видом показал, что он ЭТОГО НЕ ХОЧЕТ. Кончается это тем, что посетитель, отвязавшись наконец от навязчивого консультанта,стремительно покидает помещение, а тот ищет новую жертву. В данном случае можно говорить о неэффективной коммуникации, так как ни продавец, ни покупатель не достигли своей цели. Стратегия эффективной коммуникации. Когда изучали успешных коммуникаторов, то выяснили, что у них существует одна общая стратегия. Эта стратегия общения построена на взаимодействии людей. Профессиональный коммуникатор всегда получает обратную связь и может, если надо, изменить собственное поведение. Стратегия успешного коммуникатора включает ряд шагов, смысл и последовательность которых кратко выглядит так: 1. Калибровка 2. Подстройка. 3. Ведение. 1. Калибровка.Человек, с которым мы общаемся, может находиться в разных эмоциональных и психологических состояниях, которые необходимо учитывать в процессе взаимодействия. Обнаружение даже мельчайших внешних признаков этих состояний и называется калибровкой. Калибровка требует развития определенных навыков анализа движений, напряжения мышц, изменений голоса или дыхания и т.п. Различия, которые нужно определить, могут быть достаточно тонкими – легкий поворот головы, понижение голоса и т.п. Однако, если быть достаточно внимательным, то всегда можно найти эти отличия, какими бы крошечными они ни казались. Наиболее стандартный набор для калибровки, это определение 6 состояний: 1. Положительное активное (радость, восторг, счастье). 2. Положительное пассивное (спокойствие, умиротворение). 3. Состояние интереса, обучения. 4. Состояние принятия решения. 5. Отрицательное пассивное (грусть, разочарование). 6. Отрицательное активное (злость, ярость). Еще несколько полезных калибровок, это: 1. Да – Нет. 2. Нравится – Не нравится. 3. Правда – Ложь. Определение каждого из этих состояний позволяет оптимальным образом построить взаимодействие с партнером для достижения нужного результата. Полезно в этом смысле умение расшифровывать невербальные источники информации. Австралийский специалист А. Пиз утверждает, что с помощью слов передается 7 % информации, звуковых средств - 38%, мимики, жестов, позы - 55%. Иными словами, не столь значимо, что говорится, а как это делается. Владение языком жестов позволяет лучше понимать собеседника и при случае самому применять средства невербальной коммуникации с целью воздействия на собеседника. Важно обращать внимание не только на выражение лица – мимику, но и на жесты, поскольку люди больше контролируют свое выражение лица, чем позу и жесты. Ниже описывается ряд наиболее типичных жестов и способов реагирования на них. Жесты нетерпения: Постукивание предметами или пальцами, ерзание по стулу, помахивание ногой, разглядывание часов, взгляд «мимо» Вас. Если человек сидит на краешке стула, всем телом как бы устремлен вперед, руками уперся в колени - он спешит, или ему настолько надоел разговор, что он хочет поскорее его закончить. Жесты эмоционального дискомфорта: Собирание несуществующих ворсинок, отряхивание одежды, почесывание шеи, снимание и надевание кольца говорят о том, что партер испытывает внутреннее напряжение. Он не готов принимать решения и брать на себя ответственность. Постарайтесь его успокоить. Некоторое время ведите разговор «ни о чем» или переключитесь на менее значимую тему. Обязательно выслушивайте ответы даже на дежурные вопросы, люди не любят чувствовать, что с ними общаются «формально», не интересуясь их мнением реально. Жесты лжи: Когда человек хочет скрыть что-либо, он бессознательно касается рукой лица - как бы «прикрывает» ладонью угол рта, или потирает нос. Не стоит показывать человеку, что Вы сомневаетесь в его словах и ловить его на лжи. Лучше, переспросите его («То есть, если я Вас правильно понял, то:..»), так, чтобы оставить ему путь для отступления, чтобы ему легче было вернуться в конструктивное русло. Жесты превосходства: Направленный на Вас указательный палец, высоко поднятый подбородок, фигура в форме «руки в боки». Подыгрывать такому «важному» человеку, сутулясь, подобострастно кивая и соглашаясь с каждым его словом, либо повторять все его движения, расправить плечи, поднять подбородок будет не очень эффективно. Лучше всего, встретив такого напыщенного человека, подчеркнуть его значимость, сохраняя при этом свое лицо. Например, заявить: «Мне рекомендовали Вас как опытного, знающего специалиста», или «А как бы Вы поступили на моем месте?». Задав подобный вопрос, разумеется, надо обязательно внимательно выслушать ответ, каким бы парадоксальным он ни казался Вам. Естественно, внешние реакции каждого человека отличаются, поэтому не стоит безоговорочно следовать этим рекомендациям, а лучше изучать вашего собеседника и стараться лучше понять его индивидуальные реакции. 2. Подстройка.Для людей очень важно, чтобы тот, с кем они общаются был «свой». Чем более «свой», тем выше доверие, тем лучше коммуникация. Процесс становления «своим» и называется подстройкой. Подстройка – вполне естественный элемент человеческого (и не только) поведения. Люди практически не могут общаться, если они не подстроены. А чем подстрока лучше, тем лучше общение, успешнее достигается понимание. Задача подстройки – максимально точно совпасть с состоянием другого человека, при этом состояние собеседника Вы определили в процессе калибровки (см. выше). Состояние – нечто внутреннее, что так или иначе проявляется внешними признаками: модуляциями голоса, ритмом дыхания, позой, скоростью и стилем речи. Для того, чтобы под человека хорошо подстроиться, нужно сесть в похожую позу (подстройка по позе), дышать с ним в одном ритме (подстройка по дыханию), говорить похожим голосом (подстройка по голосу) и тому подобное. В психологических тренингах ипользуется упражнение, называемое «Спор». Оно довольно простое. Люди объединяются в пары, и их просят найти тему, в которой они друг с другом не согласны. После того, как тема найдена, нужно ее обсуждать, находясь при этом все время в одинаковых позах. Получается довольно забавно – те, кто честно находятся в одинаковых (подстроенных) позах, обычно очень быстро находят что-то общее в своих мнениях. А те пары, которые увлеклись спором, очень быстро стараются отстроиться друг от друга. Потом следует обратное задание – выбрать темы, в которых собеседники совершенно согласны друг с другом, и обсуждать их в отстроенных (разных) позах. Результат оказывается прямо противоположным: те, кто сидят в отстроенных позах, очень быстро находят, о чем можно поспорить. А те, кто более увлечен обсуждением, постепенно садятся в похожие позы. 3. Ведение.После того, как Вы подстроились, наступает очень интересное состояние (его иногда называют раппортом) – если Вы начинаете менять собственное поведение, Ваш собеседник «идет» за Вами. Вы меняете позу – он тоже ее меняет. Вы сменили тему, он с удовольствием ее обсуждает. Стали более веселым – он тоже повеселел. Когда Вы хорошо подстроены, то Вы в достаточной степени стали своим, к Вам высока степень доверия со стороны другого человека (или других), Вы находитесь в раппорте. Если при этом Вы будете менять свое поведение, Ваш партнер последует за Вами. Вы поднимаете руку, и он тоже. Вы меняете дыхание, и он вслед за Вами. А в более широком смысле – это возможность направлять человека в нужную сторону, вести как вербально, так и невербально. Состояние ведения так же естественно при общении, как и процесс подстройки. Успешность исполнения роли ведущего или ведомого определяется изначально темпераментом, но осознание этого механизма в процессе коммуникации может помочь Вам сменить при необходимости одну роль на другую для достижения наилучшего результата, причем не всегда роль ведущего будет предпочтительной. Проиллюстрировать эффективное взаимодействие для достижения общей цели можно на примере братьев наших меньших. Стая лебедей способна лететь так долго в одном ритме, потому что они подстроены. Их ведущий создает воздушную волну, а все остальные на ней катятся, как на серфинге. Когда один лебедь устает, другой становится ведущим. Лебеди ведут (и ведутся) для достижения общей цели. Использование Я-высказывания для эффективной коммуникации. Описанная выше стратегия успешного коммуникатора дает механизм направления межличностного взаимодействия в нужное Вам русло в ситуации спокойного конструктивного общения. Однако, иногда люди сталкиваются с проблемами в общении, вырастающими из непонимания друг друга, неумения донести до партнера свои мысли и чувства.
В стрессовой ситуации мы часто не можем слышать, что происходит с другим человеком, пока не почувствуем того, что сами услышаны и поняты. Но если мы ощущаем, что нас на самом деле услышали и поняли, поняли то, что мы хотим или в чём нуждаемся - то мы расслабляемся и можем услышать наконец, что же важно для нашего собеседника. Как этого добиться? Психологи предлагают применять для облегчения взаимопонимания так называемое Я-высказывание. При формулировке Я-высказывания необходимо:
Когда мы озвучиваем свои желания, потребности, стремления и тд - важно пытаться озвучивать их в позитивном, нежели негативном ключе. Например, Вы можете сказать "Я хочу жить в доме, в котором грязная одежда не разбросана на полу" и это при небольшом мысленном усилии приводит к выводу - "Жить в доме, в котором чисто и прибрано". Но согласитесь, как по разному это ощущается, когда желания озвучены в позитивном ключе.Еще один пример. Женщина говорила своему мужу: "Мне не нравится то, что ты проводишь так много времени на работе". Подумав, что жене не нравитcя его трудоголизм, муж на следующей неделе вступил в команду по боулингу. Но это не сделало его жену счастливее. Потому что она на самом деле хотела, чтобы он больше проводил времени с ней. Итак, если мы будем более точными при озвучивании своих желаний, мы скорее получим то, что мы на самом деле ожидаем получить. Заключение. Эффективное общение — это не просто передача информации. Важно не только уметь говорить, но еще уметь слушать, слышать и понимать, о чем говорит собеседник. Большинство людей применяют те или иные принципы эффективной коммуникации хотя бы на интуитивном уровне. Понимание и сознательное использование психологических аспектов общения может помочь нам строить отношения с окружающими наилучшим образом. При этом следует помнить, что самый главный принцип эффективной коммуникации — это действительно искренне стараться быть услышанным и понятым теми людьми, которым надо донести информацию. Использованные материалы:
|
nsportal.ru
Проект по информатике Компьютер внутри нас
Актуальность Тема очень актуальна в современном обществе, когда человек проводит большую половину дня, работая с компьютером. Конечно, мы все понимаем, что от компьютера нам никуда не деться, но при этом осознаём весь тот вред, который он нам причиняет. Внутри каждого человека имеется определенный механизм биологического типа, работа которого напоминает устройство ПК. Все процессы, протекающие в организме, являются взаимосвязанными, и поэтому все они при нормальных условиях могут подстраиваться друг под друга определенным образом. Но иногда случаются сбои систем, и тогда нам требуется помощь специалистов - врачей и программистов. Эндокринологи, диетологи, ортопеды, дантисты, так же, как и другие врачи, способны перепрограммировать организм таким образом, что процессы различных органов и систем будут протекать с полной логичностью происходящего, не нанося никаких неудобств и не становясь причиной тревожностей. ГипотезаЕсли человечество будет заинтересовано в развитии компьютеров, то в дальнейшем возможно такое, что в конечном итоге жизнедеятельности людей, будет искусственно продлена жизнь путем внедрения чипов и определенных механизмов, способных активировать нервные окончания либо провоцировать выплески определенной частоты, заставляющей приходить в движение наше тело, несмотря на такую, казалось бы естественную процедуру, как «завершение работы».Каждый день мы выключаем компьютер дома, а потом вновь включаем. Так почему бы и не попробовать шагнуть навстречу развитию в целях перенятия этой обычной процедуры на организм человека? ЦельВыяснить, может ли компьютер заменить человека в ближайшем будущем. Задачи1) Получить представление об информационных процессах и особенностях их протекания в природе, компьютере, организме человека.2) Проанализировать и сравнить протекание информационных процессов в организме человека и в окружающей его действительности.3) Сделать вывод.
weburok.com
Презентация к индивидуальному проекту на тему: Компьютер внутри нас
Приложенные файлы
schoolfiles.net
Два компьютера внутри человека - Блог
И есть второй компьютер, которым мы почти не можем управлять – суперкомпьютер, который используется для решения реально важных и сложность задач: управление зрением, слухом, осязанием, равновесием, пищеварением, кровообращением, сердечным ритмом, давлением, нервами, дыханием, обменом веществ, прочими жизненно важными, смертельно важными процессами.Сложность этих задач бесконечно больше наших мелких повседневных задачек типа теорем или статей.
И этот второй компьютер соответственно мощнее в бесконечное число раз, он может легко решать такие задачи, как мгновенный расчёт траектории снежка, который мы кидаем на бегу или биохимическая борьба с утренним похмельем.
Поэтому наши игрушечные задачи типа доказать теорему или написать статью он может решать за доли секунды – но у нас нет доступа в этот машинный зал с этой ерундой. Машинное время никто не даст – оно занято повседневным выживанием организма.
Как его получить?
Есть несколько способов. Скажем, отец мой говорил мне, что он выработал для себя очень простой способ: он решал задачу, не вставая из-за стола от зари до темна и думая о ней сутками. Просто, говорил он, если организм поймёт, что я сдохну, если не докажу эту теорему, то он в определённый момент повышает приоритет задаче, переводит её в ранг задач выживания, даёт окошко в суперкомпьютере, а там – щёлк! и она мгновенно решается.
Я пробовал этот метод, он очень мучительный. Я, как второе поколение, более расслабленное, выработал свой способ – непрерывно думать о задаче, чтобы она превратилась в невроз. Забывать о ней, вспоминать, но чувствовать дискомфорт, чтоб резидент в голове сидел непрерывно. Тогда тоже происходит этот щелчок. Спутать щелчок с чем-то другим трудно. Но это тоже мучительно, создавать такую одержимость, впрочем, я лично по-другому не могу.
Есть люди, которые думают, что пролезть в этот машинный зал они смогут с заднего хода, обманув охрану – с помощью трансов (“медитаций”), алкоголя, конопли и других веществ. Я некоторых таких маркетологов и пиарщиков знаю – они, как нужен креатив, решают “дунуть”. Коллективно или индивидуально. Кончается это выжиганием – потом и дунуть не помогает, и уже отличить реальное решение от иллюзии креатива они уже не могут.
Они даже когда хотят написать на форуме, сначала считают правильным дунуть как следует, так что тут иногда можно видеть результат – “креативные тексты” с какими-то безумными “сказками”, аналогиями, запутанной логикой, стихами без рифмы и т.п. Впрочем, некоторых так прёт и без конопли, просто от собственной дури.
В общем, моя простая мысль в том, что некоторые вещи без сверхусилия и сверхупёртости сделать нельзя – ни в спорте, ни в математике, ни в искусстве.
alexandrblohin.livejournal.com
Компьютер может жить … внутри человека
Молекулярный компьютер, который использует ферменты для произведения подсчетов, создали израильские ученые. Итамар Виллнер, сконструировавший молекулярный калькулятор со своими коллегами в Еврейском университете Иерусалима, считает, что компьютеры, работающие на ферментах, когда-нибудь можно будет вживлять в человеческий организм и использовать, например, для регулирования выброса лекарств в систему метаболизма.
Ученые создали свой компьютер, используя два фермента – глюкозу дегидрогеназу (glucose dehydrogenase, GDH) и пероксидаз из хрена (horseradish peroxidase, HRP) – для запуска двух взаимосвязанных химических реакций. Два химических компонента – перекись водорода и глюкоза – использовались как вводимые значения (А и В). Присутствие каждого из химических веществ соответствовало 1 в двоичном коде, а отсутствие – 0 в двоичном коде. Химический результат ферментной реакции определялся оптически.
Ферментный компьютер использовали для проведения двух фундаментальных логических вычислений, известных как AND (где A и B должны быть равными единице) и XOR (где A и B должны иметь разные значения). Добавление еще двух ферментов – глюкозооксидазы (glucose oxidase) и каталазы (catalase) – связало две логические операции, дав возможность сложить двоичные числа, используя логические функции.
Ферменты уже используют при вычислениях, применяя специально закодированную ДНК. Такие ДНК-компьютеры потенциально способны превзойти по скорости и мощности кремниевые компьютеры, поскольку могут осуществлять множество параллельных вычислений и помещать огромное количество компонентов в крошечное пространство.
Но Виллнер говорит, что ферментный компьютер создан не ради скорости: для вычисления ему может потребоваться несколько минут. Скорее всего, он будет встраиваться в биосенсорное оборудование и использоваться для мониторинга и корректировки реакции пациента на определенные дозировки препарата, передает «Newsru.com».
"Это компьютер, который можно интегрировать в человеческий организм, – рассказал Виллнер New Scientist. – Нам кажется, что ферментный компьютер можно использовать для вычисления пути метаболизма".
Мартин Амос из Университета Эксетера, Британия, тоже считает такие устройства очень перспективными. "Разработка простых приборов вроде счетчиков необходима для успешного создания биомолекулярных компьютеров, – сказал он.
"Если такие счетчики встроить в живые клетки, мы можем представить себе, что они играют роль приложений, например, "умной" доставки лекарств, когда терапевтический агент создается там, где возникает проблема, – говорит Амос. – Счетчики также обеспечивают биологический "предохранительный клапан", не дающий клеткам бесконтрольно разрастаться"
Спасибо за Вашу активность, Ваш вопрос будет рассмотрен модераторами в ближайшее время
for-ua.com
По теме «Информация и информационные технологии»:
По теме «Устройств и функционирование ЭВМ»:
|
schooll-7.narod.ru