Корпускулярно-волновой дуализм микрообъектов. Квантово-механическое описание процессов в микромире. Волны де Бройля и волновая функция. Квантовая механика описывает процессы происходящие в микромире


6.4. Структуры микромира Квантово-механическая концепция описания микромира

При переходе к исследованию микромира обнаружилось, что физическая реальность едина и нет пропасти между веществом и полем.

Перейдя к изучению микрочастиц, ученые столкнулись с парадоксальной с точки зрения классической науки ситуацией: одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства.

В конце XIX в. немецкий физик М. Планк в процессе исследования теплового излучения, пришел к выводу, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях – квантах.

Энергия квантов определяется через число колебаний соответствующего вида излучения и универсальную естественную константу, которую М. Планк ввел в науку под символом: ħ.

E= ħ·ν

Введение кванта не создало настоящей квантовой теории, как неоднократно подчеркивал М. Планк, но все же 14 декабря 1900 г., в день опубликования формулы, был заложен ее фундамент. Поэтому в истории физики этот день считается днем рождения квантовой физики.

А. Эйнштейн. В 1905 г. перенес идеи М.Планка о квантованного поглощения и отдачи энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете как о потоке быстро движущихся квантов.

Такая гипотеза была чрезвычайно смелой, и вначале в ее правильность поверили немногие, применив гипотезу Планка к свету, он пришел к выводу, что света имеет корпускулярную структуру.

Квантовая теория света, или фотонная теория А Эйнштейна,

Свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, поэтому свет имеет прерывную структуру.

Свет может рассматриваться как поток неделимых энергетических зерен, световых квантов, или фотонов.

Такая формулировка позволила полностью объяснить фотоэлектрический эффект (за эту работу Эйнштейн в 1922 г. получил Нобелевскую премию по физике) через 10 лет получила подтверждение в экспериментах американского физика Р.Э. Милликена.

ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ (Был открыт Герцем в 1887) –  явление испускания электронов веществом под действием света.

Возникла парадоксальная ситуация: обнаружилось, что свет ведет себя не только как волна, но и как поток корпускул.

Развивая представления М. Планка и А. Эйнштейна, французский физик Луи де Броль в 1924 г. выдвинул идею о волновых свойствах материи, он утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам.

Согласно де Бройлю, любому телу с массой m, движущемуся со скоростью V соответствует волна:

В 1926 г. австрийский физик Э. Шредингер нашел математическое уравнение, определяющее поведение волн материи, так называемое уравнение Шредингера.

Английский физик П. Дирак обобщил его.

Экспериментально гипотеза Луи де Бройля была подтверждена в 1927 г. американскими физиками К. Дэвиссоном и Л. Джер-мером, которые обнаруженили дифракцию электронов. Этот факт стал наиболее убедительным свидетельством существования волновых свойств материи.

Признание корпускулярно-волнового дуализма в современной физике стало всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.

Окончательное формирование квантовой механики как последовательной теории произошло благодаря работам немецкого физика В. Гейзенберга, установившего принцип неопределенности и датского физика Н. Бора, сформулировавшего принцип дополнительности, на основании которых описывается поведение микрообъектов.

Суть соотношения неопределенностей В. Гейзенберга заключается в следующем. Допустим, ставится задача определить состояние движущейся частицы. Если бы можно было воспользоваться законами классической механики, то ситуация была бы простой: следовало лишь определить координаты частицы и ее импульс (количество движения). Но законы классической механики для микрочастиц применяться не могут: невозможно не только практически, но и вообще с одинаковой точностью установить место и величину движения микрочастицы. Только одно из этих двух свойств можно определить точно. В своей книге «Физика атомного ядра» В. Гейзенберг раскрывает содержание соотношения неопределенностей. Он пишет, что никогда нельзя одновременно точно знать оба параметра — координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И наоборот, при точном измерении скорости нельзя определить место расположения частицы.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Чтобы лучше оценить создавшееся положение, нужно иметь в виду, что мы, люди, живем в макромире и в принципе не можем построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения микрочастицы, например, при рассеивании электронов. При экспериментах, направленных на точное определение места, напротив, используется волновое объяснение, в частности, при прохождении электронов через тонкие пластинки или при наблюдении отклонения лучей.

Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин «канонически связанных», т.е. положения и величины движения частицы.

Принцип дополнительности, которому Н. Бор дал следующую формулировку: «Понятия частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего».

Противоречия корпускулярно-волновых свойств микрообъектов являются результатом неконтролируемого взаимодействия микрообъектов и макроприборов. Имеется два класса приборов: в одних квантовые объекты ведут себя как волны, в других — подобно частицам. В экспериментах мы наблюдаем не реальность как таковую, а лишь квантовое явление, включающее результат взаимодействия прибора с микрообъектом. М. Борн образно заметил, что волны и частицы — это «проекции» физической реальности на экспериментальную ситуацию.

Ученый, исследующий микромир, превращается, таким образом, из наблюдателя в действующее лицо, поскольку физическая реальность зависит от прибора, т.е. в конечном счете от произвола наблюдателя. Поэтому Н. Бор и считал, что физик познает не саму реальность, а лишь собственный контакт с ней.

Существенной чертой квантовой механики является вероятностный характер предсказаний поведения микрообъектов, которое описывается при помощи волновой функции Э. Шредингера. Волновая функция определяет параметры будущего состояния микрообъекта с той или иной степенью вероятности. Это означает, что при проведении одинаковых опытов с одинаковыми объектами каждый раз будут получаться разные результаты. Однако некоторые значения будут более вероятными, чем другие, т.е. будет известно лишь вероятностное распределение значений.

14

studfiles.net

§ 6.4. Концепции микромира и квантовая механика

Сущность квантовой механики и границы ее применимости

Для описания явлений микромира обычно привлекают квантовую механику (иногда ее еще называют волновой механикой). Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Например, квантовая механика позволила объяснить температурную зависимость теплоемкостей газов и твердых тел и вычислить их значения, определить строение и понять многие свойства твердых тел (металлов, диэлектриков, полупроводников), последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу астрофизических объектов - белых карликов, нейтронных звезд, выяснить механизм протекания термоядерных реакций на Солнце и звездах. В некоторых эффектах (например, Джозефсона) законы квантовой механики проявляются непосредственно в поведении макроскопических объектов.

Ряд крупнейших технических достижений XX в. основан по сути на специфических законах квантовой механики. Например, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления термоядерных реакций в земных условиях, наблюдаются в ряде явлений в металлах и полупроводниках и т.д. Теория квантово-механического излучения составляет фундамент квантовой электроники. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (магнитных, полупроводниковых, сверхпроводящих и др.).

Для классической механики и теории относительности характерно описание частиц путем задания их положения в пространстве координат и скоростей и зависимости этих величин от времени. Такому описанию соответствует движение частиц по вполне определенным траекториям. Однако это описание не всегда справедливо, особенно для частиц с очень малой массой (микрочастиц). В таких случаях используют законы квантовой механики.

Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности. Мы будем рассматривать в основном сущность нерелятивистской квантовой механики вполне законченной и логически непротиворечивой теории, которая позволяет количественно решать в принципе любую физическую задачу в области своей компетентности. Разработка релятивистской квантовой механики еще не доведена до такого уровня. Например, если в нерелятивистской области можно считать, что движение определяется силами, действующими мгновенно на расстоянии, то в релятивистской области это допущение несправедливо. Поскольку, согласно теории относительности, взаимодействие передается с конечной скоростью, должен существовать физический агент, переносящий взаимодействие. Таким агентом считается физическое поле. Поэтому можно сказать, что трудности создания релятивистской теории по существу связаны с построением теории поля.

Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной - постоянной Планка (или кванта действия). Если в условиях конкретной задачи физическая величина, имеющая размерность действия, значительно больше постоянной Планка, то применима классическая механика или теория относительности. Формально это условие и является критерием выбора физической теории для описания картины мира.

История становления квантовой теории

Разработка квантовой механики относится к началу XX в., когда были обнаружены две, казалось бы, не связанные между собой группы явлений (установление на опыте двойственной природы света - дуализма света и невозможность объяснить на основе имевшихся представлений существование устойчивых атомов и их оптические спектры), свидетельствующих о неприменимости механики Ньютона и классической электродинамики к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели к открытию законов квантовой механики.

Впервые представления о кванте ввел в 1900 г. М. Планк в работе, посвященной теории теплового излучения тел. Существовавшая в то время теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, а именно тепловое равновесие между излучением и веществом не может быть достигнуто, так как вся энергия должна перейти в излучение. Планк разрешил это противоречие, предположив, что свет испускается не непрерывно, как следует из классической теории излучения, а дискретными порциями энергии - квантами, причем величина кванта энергии зависит от частоты света.

Эта работа Планка стимулировала развитие квантовой механики в двух взаимосвязанных направлениях, завершившееся в 1927 г. окончательной формулировкой квантовой механики в двух ее формах. Первое направление связано с именем А. Эйнштейна, который предложил теорию фотоэффекта (1905). Развивая идею Планка, А. Эйнштейн предположил, что свет квантами не только испускается и поглощается, но и распространяется, т.е. дискретность присуща самому свету: свет состоит из отдельных порций — световых квантов (фотонов).

В 1922 г. А. Комптон экспериментально показал, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Таким образом, было доказано, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света — огибании светом различных препятствий) свет обладает и корпускулярными свойствами: он состоит как бы из частиц — фотонов. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо считать, что свет имеет волновую природу, а объяснение других предполагало его корпускулярную природу.

В 1924 г. Л. де Бройль, пытаясь найти объяснение постулированным в 1913 г. Н. Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице независимо от ее природы следует поставить в соответствие волну, длина которой связана с импульсом частицы, при этом не только фотоны, но и все «обыкновенные частицы» (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в дифракции частиц. В 1927 г. К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов.

В 1926 г. Э. Шрёдингер предложил уравнение, описывающее поведение таких «волн» во внешних силовых полях, - возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерелятивистской квантовой механики. В 1928 г. П. Дирак сформулировал релятивистское уравнение, которое описывает движение электрона во внешнем силовом поле и стало одним из основных уравнений релятивистской квантовой механики.

Второе направление развития (также являющееся обобщением гипотезы Планка) начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел. Дело в том, что электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (физических систем, совершающих колебания), а испускание или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что испускание и поглощение электромагнитного излучения веществом происходят квантами с энергией Tiv (h - постоянная Планка, v — частота света), можно объяснить так: осциллятор поля не может обладать произвольной энергией, он может иметь только дискретные уровни энергии, разность между которыми равна tiv. Эйнштейн, обобщая идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы, утверждал, что если тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов с квантованной энергией, т.е. разность соседних уровней энергии равна ħv, где v - частота колебаний атомов. Теория Эйнштейна, уточненная П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твердых тел.

В 1913 г. Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе представлений классической электродинамики приводило к парадоксальному результату — невозможности существования стабильных атомов. Дело в том, что, согласно этим представлениям, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию, а радиус его орбиты должен непрерывно уменьшаться, и через время 10-8 с электрон должен упасть на ядро. Однако атомы не только существуют, но и весьма устойчивы.

Объясняя устойчивость атомов, Бор предположил, что из всех орбит, допускаемых классической механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определенным условиям квантования, а именно величина действия для классической орбиты должна быть кратной постоянной Планка. Бор постулировал, что электрон, совершая допускаемое условиями квантования орбит движение (т.е. находясь на определенном уровне энергии), не испускает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т.е. с одного уровня энергии на другой, с меньшей энергией; при этом рождается квант света. В результате этого возникает линейчатый спектр атома. Бор получил формулу для частот спектра, линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул. Существование уровней энергии в атомах было подтверждено опытами Франка - Герца (1913-1914).

Таким образом, Бор, используя квант, постоянную Планка, отражающую дуализм света, показал, что эта величина определяет также движение электронов в атоме. Этот факт позднее был объяснен на основе универсальности корпускулярно-волнового дуализма, в соответствии с которым понятия частицы и волны, с одной стороны, дополняют друг друга, а с другой - противоречат друг другу. Он связан также со способами изучения явлений микромира. Существуют два типа приборов: в одних квантовые объекты ведут себя как волны, в других — как частицы, поэтому экспериментально можно наблюдать квантовые явления, на которые налагается взаимодействие приборов с микрообъектом, а не реальность как таковую.

Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счет нарушения логической цельности теории: одновременно использовались классическая механика и чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение связи между атомами, приводящей к образованию молекулы, не могла ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой, и т.п.

Дальнейшая разработка вопросов теории атома привела к пониманию, что движение электронов в атоме нельзя описывать в терминах классической механики (как движение по определенной траектории или орбите), поскольку движение электрона между уровнями не подчиняется законам, определяющим поведение электронов в атоме. Была необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1925 г. В. Гейзенберг построил формальную схему, где вместо координат и скоростей электрона фигурировали абстрактные алгебраические величины - матрицы. Связь матриц с наблюдаемыми величинами (уровнями энергии и интенсивностями квантов, переходов) описывалась простыми непротиворечивыми правилами. Развитие М. Борном и П. Иорданом работы Гейзенберга привело к возникновению матричной механики. Уравнение Шрёдингера позволило показать математическую эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 г. Борн дал вероятностную интерпретацию волн де Бройля.

Большую роль в создании квантовой механики сыграли работы П. Дирака, который заложил основы квантовой электродинамики и квантовой теории гравитации, разработал квантовую статистику (статистика Ферми - Дирака), релятивистскую теорию движения электрона, предсказал позитрон и т.д. Окончательное формирование квантовой механики как последовательной теории с ясными физическими основами и стройным математическим аппаратом произошло в результате работы Гейзенберга (1927), который сформулировал соотношение неопределенностей - важнейшее соотношение, отражающее физический смысл уравнений квантовой механики.

Детальный анализ спектров атомов привел к представлению о том, что электрону кроме заряда и массы должна быть приписана еще одна внутренняя характеристика - спин — собственно момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого. Важную роль сыграл открытый В. Паули (1925) принцип запрета, согласно которому в квантовой системе две (или более) тождественные частицы с полуцелым спином не могут одновременно находиться в одном и том же состоянии. Этот принцип имеет фундаментальное значение в теории атома, молекулы, ядра, твердого тела.

В течение короткого времени квантовую механику с успехом применили для создания теории атомных спектров, строения молекул, химической связи, периодической системы элементов, металлической проводимости и ферромагнетизма. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской квантовой механикой.

Современные представления об элементарных частицах и атомах

В настоящее время достаточно много известно об атомарном строении вещества и элементарных частицах — мельчайших известных частицах физической материи [7, 16, 23, 24, 28]. Поскольку элементарные частицы способны к взаимным превращениям, это не позволяет рассматривать их, так же как и атом, в качестве простейших, неизменных «кирпичиков мироздания». Число элементарных частиц очень велико. Всего открыто более 350 элементарных частиц, из которых стабильны лишь фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы (каждая элементарная частица, за исключением абсолютно нейтральных, имеет свою античастицу). Остальные элементарные частицы самопроизвольно распадаются за время от 103 с (свободный нейтрон) до 10-22- 10-24 с (резонансы).

Элементарные частицы классифицируются по типам фундаментальных взаимодействий, в которых они участвуют, и на основе законов сохранения ряда физических величин следующим образом:

◊ группа лептонов - частицы со спином 1/2, не участвующие в сильном взаимодействии и обладающие сохраняющейся внутренней характеристикой - лептонным зарядом;

◊ адроны — элементарные частицы, участвующие во всех фундаментальных взаимодействиях, включая сильное; характерным для адронов сильным взаимодействиям свойственно максимальное число сохраняющихся величин (законов сохранения). Адроны делятся на барионы и мезоны. По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из трех кварков; мезоны - из кварка и антикварка;

◊ отдельную «группу» составляет фотон.

При столкновениях элементарных частиц происходят всевозможные превращения их друг в друга (включая рождение многих дополнительных частиц), не запрещаемые законами сохранения.

Атомом называют часть вещества микроскопических размеров и массы, мельчайшую частицу химического элемента, сохраняющую его свойства. Атомы состоят из элементарных частиц и имеют сложную внутреннюю структуру. В центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Вокруг ядра движутся электроны, образующие электронные оболочки, размеры которых (10-8 см) определяют размеры атома. Ядро атома состоит из протонов и нейтронов. Число электронов в атоме равно числу протонов в ядре (заряд всех электронов атома равен заряду ядра), число протонов равно порядковому номеру элемента в Периодической таблице элементов. Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами. Химические свойства атомов определяются в основном числом электронов во внешней оболочке. Соединяясь химически, атомы образуют молекулы.

Внутренняя энергия атома может принимать лишь определенные (дискретные) значения, соответствующие устойчивым состояниям атома, и изменяется только скачкообразно путем квантового перехода. Поглощая порцию энергии, атом переходит в возбужденное состояние (на более высокий уровень энергии). Испуская фотон, атом может перейти из возбужденного состояния в состояние с меньшей энергией (на более низкий уровень энергии). Уровень, соответствующий минимальной энергии атома, называется основным, остальные - возбужденными. Квантовые переходы обусловливают атомные спектры поглощения и испускания, индивидуальные для атомов всех химических элементов.

Нуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами. Чтобы удалить нуклон из ядра, надо совершить большую работу, т.е. сообщить ядру значительную энергию. По закону сохранения энергии, энергия связи ядра (энергия, необходимая для полного расщепления ядра на отдельные нуклоны) равна энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика по сравнению с энергией связи электронов с атомным ядром. Определить энергию связи ядра можно, зная массу ядра и массы протонов и нейтронов, из которых оно состоит. Согласно эффекту дефекта массы, масса покоя ядра всегда меньше суммы масс покоя входящих в него нуклонов. Энергия связи ядер вычисляется с помощью известного соотношения Эйнштейна E = т/с2, где т - суммарная масса свободных нуклонов минус масса ядра - дефект массы.

Важную информацию о свойствах ядер дает знание удельной энергии связи ядра (энергии связи, приходящейся на один нуклон). С увеличением массового числа - числа нуклонов в ядре — удельная энергия связи, начиная с гелия, сначала слабо растет, достигает максимума у железа (массовое число 56), после чего плавно снижается. Наиболее устойчивы ядра, обладающие самой большой удельной энергией связи, — железо и близкие к нему химические элементы Периодической системы элементов.

Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер. И те, и другие реакции сопровождаются выделением энергии. В тяжелых ядрах наряду с большими силами электрического отталкивания, стремящимися разорвать ядро на части, действуют значительные ядерные силы, которые удерживают ядро от распада. Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Когда силы отталкивания внутри ядра начинают преобладать над силами притяжения, ядро разрывается на две части. Под действием сил кулоновского отталкивания осколки ядра разлетаются со скоростью, равной 1/30 скорости света, испускается излучение высокой частоты.

Не все ядра способны к делению. Наиболее легко делится изотоп урана 235U, составляющий всего 1/140 от более распространенного изотопа 238U. При каждом акте деления ядра испускаются 2-3 нейтрона, которые в свою очередь могут вызывать деление других ядер - начинается ядерная цепная реакция. Она сопровождается выделением огромного количества энергии. Так, при полном делении ядер, находящихся в 1 г урана, выделяется энергия, эквивалентная получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер реализуется в ядерных реакторах, неуправляемая - в атомной бомбе. Выделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций, протекающих лишь при очень высоких температурах. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы. Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. В этом отношении наиболее перспективна реакция слияния ядер атома дейтерия и трития.

studfiles.net

Квантовая механика - механика микромира

⇐ ПредыдущаяСтр 27 из 33Следующая ⇒

Квантовая теория света, разрешив противоречия, связанные с тепловым излучением, обострила вопрос о природе света. Физики были вынуждены признать и корпускулярные, и волновые свойства. Волновой природой объяснялись одни явления (например, интерференция, дифракция), корпускулярными – другие (комптоновское рассеяние, фотоэффект). По остроумному замечанию Уильяма Брэгга, каждый физик вынужден по понедельникам, средам и пятницам считать свет состоящим из частиц, а в остальные дни недели – из волн.

Пытаясь "объединить точку зрения волновой теории с точкой зрения корпускулярной", французский физик Луи де Бройль (1892 – 1987) выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Луи де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи обладают и корпускулярными, и волновыми свойствами. Корпускулярными параметрами частицы являются ее энергия и импульс , волновыми – частота и длина волны . Следуя теории относительности, Луи де Бройль связывает с массой покоя энергию волнового процесса

,

так что

,

отсюда импульс

.

Таким образом, по теории Луи де Бройля выходило, что любая частица, обладающая массой покоя и, соответственно, импульсом , порождает волновой процесс с длиной волны

,

где v – скорость частицы.

Свою теорию Луи де Бройль изложил в трех статьях, опубликованных в 1923 г. Эти статьи стали основой докторской диссертации, защищенной Луи де Бройлем в 1924 г. В 1925 г. Эйнштейн, советуя М. Борну прочесть эту диссертацию, сказал: "Прочитайте ее! Хотя и кажется, что ее писал сумасшедший, написана она солидно". В 1929 г. за открытие волновых свойств электронов Луи де Бройль стал лауреатом Нобелевской премии. Вскоре после первых публикаций гипотеза де Бройля получила экспериментальное подтверждение. В 1927 г. американские физики К. Дэвиссон (1881-1958) и Л. Джермер (1896 – 1971) обнаружили дифракцию электронов при прохождении через естественную дифракционную решетку – кристалл никеля. По дифракционной картине была вычислена длина волны, соответствующая формуле де Бройля. В то же время Джордж Паджет Томсон (1892 – 1975), сын Дж. Дж. Томпсона, провел независимые исследования по дифракции быстрых электронов при их прохождении через металлическую фольгу толщиной порядка 1 мкм. Аналогичные опыты провел в СССР в 1932 г. П.С. Тартаковский. Эксперименты Томпсона и Тартаковского также подтвердили гипотезу де Бройля.

Дифракционные явления были обнаружены и для нейтронов, протонов, атомных и молекулярных пучков, что окончательно доказало наличие волновых свойств у микрочастиц. На основе этих свойств были разработаны новые методы исследования структуры веществ, в частности, электронно-оптические методы.

Формула де Бройля для длины волны объясняет, почему разрешающая способность электронных микроскопов выше, чем оптических. Действительно, предельное разрешение микроскопа определяется явлением дифракции, то есть это разрешение не может быть выше предела, определяемого размером дифракционного кружка, что в угловой мере составляет

,

где – длина волны используемого излучения, – диаметр апертуры, на которой происходит дифракция. В электронном микроскопе скорость электронов составляет около 108 м/с, тогда по формуле де Бройля 0,7·10-5 мкм, то есть на 5 порядков меньше длины волны видимого излучения с длиной волны в диапазоне (0,4 - 0,76) мкм. Если увеличение наиболее мощных оптических микроскопов составляет примерно 1000 крат, то для электронных микроскопов достигнуты значения 105 - 106 крат. Такое увеличение позволяет видеть молекулы и атомы вещества. В электронных микроскопах пучки электронов формируются электрическими и магнитными полями, действующими на эти пучки аналогично тому, как линзы действуют на свет. Электрические и магнитные поля создают "линзы" для электронных пучков.

Теория де Бройля коренным образом изменила представление о свойствах микрообъектов, которые по этой теории нельзя считать ни частицей, ни волной. Современная трактовка корпускулярно-волнового дуализма может быть выражена словами академика А. Фока (1898 – 1974): "Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна – частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно".

При описании поведения микрочастицы, таким образом, необходимы и корпускулярные, и волновые параметры, но приписывать микрочастицам все свойства частиц и все свойства волн нельзя. К примеру, в классической механике движение частицы описывается координатами и траекторией. Микрочастица, обладая волновыми свойствами, не имеет траектории, а поэтому и координаты ее неопределенны. С другой стороны, понятие "длина волны в данной точке" не имеет физического смысла, а поскольку импульс выражается через длину волны, то импульс также оказывается неопределенным. Таким образом, если точно определить координату микрочастицы, импульс будет полностью неопределен (волна в точке не существует), если же определить импульс, то полностью неопределенной оказывается координата (волна не имеет траектории). Учитывая волновые свойства микрочастиц и связанные с этими свойствами ограничения, В. Гейзенберг в 1927 г. сформулировал соотношение неопределенностей, по которому микрочастица не может иметь одновременно определенную координату и соответствующую проекцию импульса на оси координат при этом неопределенности этих величин удовлетворяют условиям:

то есть произведение неопределенности координат на соответствующую проекцию импульса не может быть меньше значения постоянной Планка. Из этих соотношений видно, что как только уменьшается неопределенность координат, неопределенность импульса возрастает, например, при .

Невозможность одновременно точного определения координаты и импульса частиц указывает по сути дела границы применения понятий классической механики к микрочастицам. С учетом того, что , выразим соотношение неопределенностей в виде

Отсюда следует, что чем больше масса частицы, тем меньше неопределенность . Для микроскопических тел волновые свойства вообще не сказываются, их координата и импульс могут быть измерены достаточно точно, к ним применимы законы классической механики. Эти законы применимы, например, к пылинке массой 10-12 кг и диаметром 1 мкм. Даже для электрона, движущегося со скоростью 108 м/с координата может быть указана с неопределенностью в тысячные доли миллиметра. Но для электрона, движущегося в атоме по круговой орбите радиусом порядка 0,5·10-10 м со скоростью v = 2,3·106 м/с, неопределенность скорости больше самой скорости, поэтому нельзя говорить о движении электрона по определенной траектории, то есть пользоваться законами классической механики.

Соотношение неопределенностей может быть записано для энергии и времени в виде:

где – неопределенность энергии некоторого состояния системы, – промежуток времени, в течение которого это состояние существует. Отсюда следует, что при излучении фотона частота излучения будет иметь разброс , поскольку .

Измеряя ширину спектральных линий можно, таким образом, оценить время существования атома в возбужденном состоянии.

Ограниченность применения законов классической механики к микромиру диктовала необходимость создания новой механики - механики микромира. Ее создание началось с формулировки Планком квантовой гипотезы (теории квант). Усилиями австрийского физика Э. Шредингера (1887 – 1961), немецкого физика Гейзенберга и английского физика П. Дирака (1902 – 1984) было создано новое направление в теоретической физике, получившее название квантовой механики, предметом которой является описание движения и взаимодействия микрочастиц с учетом их волновых свойств. Важнейшей отличительной особенностью квантовой механики является необходимость вероятностного подхода к описанию микрочастиц. Для описания вероятностного состояния микрообъекта была введена так называемая волновая функция . Ее физический смысл заключается в следующем: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля), определяет вероятность нахождения частицы в момент времени в области с координатами , то есть физический смысл имеет не сама – функция, а квадрат ее модуля, , который называют интенсивность волн де Бройля.

Вероятность нахождения частицы в объеме равна

откуда имеет смысл плотность вероятности.

Вероятность найти частицу в объеме в момент равна

= = .

Э. Шредингер сформулировал уравнение, ставшее основным уравнением квантовой механики. Оно записано относительно волновой функции ( - функции) и описывает движение микрочастиц в силовых полях. Из него вытекают наблюдаемые волновые свойства микрочастиц. Это уравнение играет в квантовой механике ту же роль, что и уравнение Ньютона в классической механике и уравнение Максвелла в электродинамике. Как и уравнения Ньютона и Максвелла, уравнение Шредингера не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытами, что придает ему характер закона природы.

Поскольку в теории Шредингера описываются волновые свойства частиц, ее назвали волновой механикой. В волновой механике - функция является физической абстракций, и как бы в противовес такому подходу Вернер Гейзенберг выдвинул свою концепцию. Он считал, что при построении физической теории нужно исключать все величины, которые недоступны опыту. В своей теории, которая является, как выяснилось, другим математическим вариантом квантовой механики, Гейзенберг попытался выработать основы механики микромира, построенной на связях между принципиально наблюдаемыми величинами. Гейзенбергом, Борном и Иорданом был создан матричный математический аппарат квантовой механики. Матричная механика Гейзенберга приводила к тем же результатам, что и волновая механика Шредингера. В своей работе 1926 г. Шредингер доказал фактическую тождественность волновой и матричной механик, несмотря на существенное различие математических методов и понятий. С тех пор волновую и матричную механики объединили понятием квантовая механика.

В квантовой механике дискретные значения энергии, постулированные Бором, являются следствием самой теории, вытекают из решения уравнения Шредингера. Но квантовая механика отказывается от классического понятия орбиты электрона. По квантовым представлениям электрон при своем движении как бы "размазан" по всему объему и создает электронное облако, плотность которого характеризуется волновой функцией. Размер, форма и ориентация электронного облака описываются так называемыми квантовыми числами. Кроме того, для характеристики электрона американские физики Д. Уленбек (1900 – 1974) и С. Гаудсмит (1902 – 1979) предложили использовать собственный механический момент импульса, не связанный с движением электрона в пространстве. Таким образом, для полного описания квантового состояния электрона в атоме используются 4 квантовых числа (главное, орбитальное, магнитное и спиновое). Квантовые числа могут принимать следующие значения:

главное n (n=1,2,3…)

орбитальное l (l =0,1,2…,n-1)

магнитное mi (mi=-l,…,-1,0,+1,…,+l)

магнитное спиновое ms (ms = + ).

Еще в своей теории Н. Бор пытался объяснить систему элементов Менделеева. Он предположил, что замкнутые конфигурации атомов более устойчивы, поэтому электронные оболочки заполняются последовательно: после заполнения одной начинает заполняться следующая. Это предположение привело в 1925 году швейцарского физика Вольфганга Паули (1900-1958) к принципу запрета, по которому в каждом квантовом состоянии может находиться только один электрон. Другими словами, в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел n, l, mi, ms.

Принцип Паули, определяющий систематику заполнения электронных оболочек атомов, объясняет периодическую систему элементов Менделеева. Электронные оболочки обозначаются заглавными буквами латинского алфавита K, L, M, N, O… Наибольшее количество электронов равно 2n2 (n- главное квантовое число). Поэтому в слое K может находиться не более двух электронов, в слое L – не более восьми, в слое M – не более восемнадцати и т.д. Каждый последующий элемент в таблице Менделеева образован из предыдущего добавлением к ядру одного протона и прибавлением электрона в электронной оболочке. Химические и физические свойства элементов определяются внешними (валентными) электронами в атомах. Периодичность в химических свойствах элементов объясняется квантовой механикой повторяемостью в структуре внешних оболочек атомов родственных элементов, то есть элементов, состоящих в одной группе таблицы. Так во внешней оболочке щелочных металлов (Li, Na, K, Rb, Cs, Fr) находится лишь один электрон, а энертные газы имеют заполненные внешние оболочки из восьми электронов.

Отталкиваясь от принципа Паули, Дирак разработал квантовую теорию вакуума. По Дираку вакуум представляет собой "море электронов", плотность которых бесконечна, а энергия отрицательна. Такая структура не влияет на электромагнитные процессы, проходящие в ней, поэтому этот фон недоступен для наблюдения. Однако, при возмущении вакуума рождается электрон, а в море отрицательных электронов образуется "дырка". Развитие идей Дирака показало, что вакуум представляет собой сложную квантовую структуру, из которой может родиться пара "частица - античастица". Теория Дирака предугадывала существование античастиц электронов. Эти частицы были получены экспериментально и названы позитронами. В 1947 году экспериментально доказаны (Поликарп Каш, Уиллис Лэмб, США), что в вакууме непрерывно рождаются и уничтожаются пары "электрон - позитрон". После создания ускорителей частиц было установлено, что при столкновении нуклонов в вакууме возникают различные частицы. Микроструктура вакуума является одним из объектов пристального внимания современной физики.

Квантовая механика к настоящему времени выступает как одна из самых плодотворных теорий. Без нее невозможно понять многие актуальные проблемы строения вещества, его взаимодействия с излучением. Квантовая механика широко применяется в ядерной физике, химии, космологии, биологии и многих отраслях науки и техники.

Философские уроки микромира

Проникновение вглубь микромира не только во многом изменило картину мира, но и дало науке новые принципы познания. Общефилосовское значение имеют рожденные квантовой механикой принципы запрета, соответствия и дополнительности.

В сжатом виде принцип дополнительности был изложен его автором Н. Бором в докладе на Международном конгрессе физиков в Комо в 1927 году следующим образом: "В своем докладе я высказал тогда точку зрения, которую кратко можно охарактеризовать словом "дополнительность". Для этого решающим является признание следующего основного положения: как бы далеко не выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий… Для полного описания квантово-механических явлений необходимо применить два взаимоисключающих ("дополнительных") понятия, совокупность которых дает полную информацию об этих явлениях как целостных".

Паули даже предложил называть квантовую механику "теорией дополнительности", и не без оснований. Из-за соотношения неопределенностей корпускулярные и волновые свойства никогда не предстают экспериментатору одновременно, поэтому соответствующие модели частиц не входят в противоречие. Квантовый объект – это не частица, не волна и не даже то и другое одновременно. Это нечто третье, для выражения свойств которого требуется наблюдать и измерять как волновые его свойства, так и корпускулярные. В одних условиях измерительная процедура выявляет корпускулярные свойства, в других – волновые, но каждый раз для выражения тех и других свойств используются взаимоисключающие классические понятия. При исследовании заряда и массы квантовых объектов используется отклонение их траектории под воздействием электромагнитного поля. Волновые свойства в этом случае не рассматриваются. Квантовый объект предстает перед исследователем как частица. При исследовании волновых свойств квантовых объектов используется дифракция, дающая зависимость отклонения траектории от длины волны. Квантовый объект в этом случае является волной. Таким образом, квантовый объект может являться исследователю то частицей, то волной, но никогда тем и другим одновременно, а полученные при его исследовании параметры дополняют друг друга, а не исключают.

Принцип дополнительности, как общий принцип познания, предполагает, что сложное явление природы для своего описания может требовать двух и более взаимоисключающих понятий, дополняющих друг друга. Но этот принцип применим не только в естествознании. Примером может быть наука и религия, как формы духовной культуры. Наука в своих методах призвана ничего не принимать на веру, искать во всем доказательств. Религия, напротив, требует веры в Бога, доказать существование которого какими-либо научными методами нельзя. Науку и религию можно рассматривать как дополняющие друг друга формы духовной культуры.

Мы уже отмечали, что классическая механика может рассматриваться как предельный случай теории относительности и квантовой механики. В этом проявляется принцип соответствия, сформулированный Бором в 1913 году для квантовых объектов, и ставший впоследствии общим методологическим принципом. По этому принципу законы, установленные новыми научными теориями только тогда могут рассматриваться как истинные, когда они не отвергают предыдущие теории, справедливость которых достоверно установлена, а включают их как частные случаи. Математический аппарат старой теории при определенных допущениях должен переходить в математический аппарат новой. Этот принцип в настоящее время широко используется в научных исследованиях как критерий достоверности полученных результатов. Новые научные результаты должны согласовываться с ранее установленными фактами.

Принцип Паули также может быть возведен в ранг общенаучного принцип, запрещающего те или иные явления (хотя бы в рамках существующих теорий). Так, невозможно превысить скорость света, построить вечный двигатель, преодолеть соотношение неопределенностей и так далее.

Одним из важнейших методологических результатов развития квантовой механики можно считать осознание того, что миром управляют вероятностные законы. Понятие вероятности после создания квантовой механики прочно вошло в науку XX века.

Читайте также:

lektsia.com

§ 6.4. Концепции микромира и квантовая механика

Сущность квантовой механики и границы ее применимости

Для описания явлений микромира обычно привлекают квантовую механику (иногда ее еще называют волновой механикой). Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Например, квантовая механика позволила объяснить температурную зависимость теплоемкостей газов и твердых тел и вычислить их значения, определить строение и понять многие свойства твердых тел (металлов, диэлектриков, полупроводников), последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу астрофизических объектов - белых карликов, нейтронных звезд, выяснить механизм протекания термоядерных реакций на Солнце и звездах. В некоторых эффектах (например, Джозефсона) законы квантовой механики проявляются непосредственно в поведении макроскопических объектов.

Ряд крупнейших технических достижений XX в. основан по сути на специфических законах квантовой механики. Например, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления термоядерных реакций в земных условиях, наблюдаются в ряде явлений в металлах и полупроводниках и т.д. Теория квантово-механического излучения составляет фундамент квантовой электроники. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (магнитных, полупроводниковых, сверхпроводящих и др.).

Для классической механики и теории относительности характерно описание частиц путем задания их положения в пространстве координат и скоростей и зависимости этих величин от времени. Такому описанию соответствует движение частиц по вполне определенным траекториям. Однако это описание не всегда справедливо, особенно для частиц с очень малой массой (микрочастиц). В таких случаях используют законы квантовой механики.

Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности. Мы будем рассматривать в основном сущность нерелятивистской квантовой механики вполне законченной и логически непротиворечивой теории, которая позволяет количественно решать в принципе любую физическую задачу в области своей компетентности. Разработка релятивистской квантовой механики еще не доведена до такого уровня. Например, если в нерелятивистской области можно считать, что движение определяется силами, действующими мгновенно на расстоянии, то в релятивистской области это допущение несправедливо. Поскольку, согласно теории относительности, взаимодействие передается с конечной скоростью, должен существовать физический агент, переносящий взаимодействие. Таким агентом считается физическое поле. Поэтому можно сказать, что трудности создания релятивистской теории по существу связаны с построением теории поля.

Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной - постоянной Планка (или кванта действия). Если в условиях конкретной задачи физическая величина, имеющая размерность действия, значительно больше постоянной Планка, то применима классическая механика или теория относительности. Формально это условие и является критерием выбора физической теории для описания картины мира.

История становления квантовой теории

Разработка квантовой механики относится к началу XX в., когда были обнаружены две, казалось бы, не связанные между собой группы явлений (установление на опыте двойственной природы света - дуализма света и невозможность объяснить на основе имевшихся представлений существование устойчивых атомов и их оптические спектры), свидетельствующих о неприменимости механики Ньютона и классической электродинамики к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели к открытию законов квантовой механики.

Впервые представления о кванте ввел в 1900 г. М. Планк в работе, посвященной теории теплового излучения тел. Существовавшая в то время теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, а именно тепловое равновесие между излучением и веществом не может быть достигнуто, так как вся энергия должна перейти в излучение. Планк разрешил это противоречие, предположив, что свет испускается не непрерывно, как следует из классической теории излучения, а дискретными порциями энергии - квантами, причем величина кванта энергии зависит от частоты света.

Эта работа Планка стимулировала развитие квантовой механики в двух взаимосвязанных направлениях, завершившееся в 1927 г. окончательной формулировкой квантовой механики в двух ее формах. Первое направление связано с именем А. Эйнштейна, который предложил теорию фотоэффекта (1905). Развивая идею Планка, А. Эйнштейн предположил, что свет квантами не только испускается и поглощается, но и распространяется, т.е. дискретность присуща самому свету: свет состоит из отдельных порций — световых квантов (фотонов).

В 1922 г. А. Комптон экспериментально показал, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Таким образом, было доказано, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света — огибании светом различных препятствий) свет обладает и корпускулярными свойствами: он состоит как бы из частиц — фотонов. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо считать, что свет имеет волновую природу, а объяснение других предполагало его корпускулярную природу.

В 1924 г. Л. де Бройль, пытаясь найти объяснение постулированным в 1913 г. Н. Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице независимо от ее природы следует поставить в соответствие волну, длина которой связана с импульсом частицы, при этом не только фотоны, но и все «обыкновенные частицы» (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в дифракции частиц. В 1927 г. К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов.

В 1926 г. Э. Шрёдингер предложил уравнение, описывающее поведение таких «волн» во внешних силовых полях, - возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерелятивистской квантовой механики. В 1928 г. П. Дирак сформулировал релятивистское уравнение, которое описывает движение электрона во внешнем силовом поле и стало одним из основных уравнений релятивистской квантовой механики.

Второе направление развития (также являющееся обобщением гипотезы Планка) начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел. Дело в том, что электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (физических систем, совершающих колебания), а испускание или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что испускание и поглощение электромагнитного излучения веществом происходят квантами с энергией Tiv (h - постоянная Планка, v — частота света), можно объяснить так: осциллятор поля не может обладать произвольной энергией, он может иметь только дискретные уровни энергии, разность между которыми равна tiv. Эйнштейн, обобщая идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы, утверждал, что если тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов с квантованной энергией, т.е. разность соседних уровней энергии равна ħv, где v - частота колебаний атомов. Теория Эйнштейна, уточненная П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твердых тел.

В 1913 г. Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе представлений классической электродинамики приводило к парадоксальному результату — невозможности существования стабильных атомов. Дело в том, что, согласно этим представлениям, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию, а радиус его орбиты должен непрерывно уменьшаться, и через время 10-8 с электрон должен упасть на ядро. Однако атомы не только существуют, но и весьма устойчивы.

Объясняя устойчивость атомов, Бор предположил, что из всех орбит, допускаемых классической механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определенным условиям квантования, а именно величина действия для классической орбиты должна быть кратной постоянной Планка. Бор постулировал, что электрон, совершая допускаемое условиями квантования орбит движение (т.е. находясь на определенном уровне энергии), не испускает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т.е. с одного уровня энергии на другой, с меньшей энергией; при этом рождается квант света. В результате этого возникает линейчатый спектр атома. Бор получил формулу для частот спектра, линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул. Существование уровней энергии в атомах было подтверждено опытами Франка - Герца (1913-1914).

Таким образом, Бор, используя квант, постоянную Планка, отражающую дуализм света, показал, что эта величина определяет также движение электронов в атоме. Этот факт позднее был объяснен на основе универсальности корпускулярно-волнового дуализма, в соответствии с которым понятия частицы и волны, с одной стороны, дополняют друг друга, а с другой - противоречат друг другу. Он связан также со способами изучения явлений микромира. Существуют два типа приборов: в одних квантовые объекты ведут себя как волны, в других — как частицы, поэтому экспериментально можно наблюдать квантовые явления, на которые налагается взаимодействие приборов с микрообъектом, а не реальность как таковую.

Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счет нарушения логической цельности теории: одновременно использовались классическая механика и чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение связи между атомами, приводящей к образованию молекулы, не могла ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой, и т.п.

Дальнейшая разработка вопросов теории атома привела к пониманию, что движение электронов в атоме нельзя описывать в терминах классической механики (как движение по определенной траектории или орбите), поскольку движение электрона между уровнями не подчиняется законам, определяющим поведение электронов в атоме. Была необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1925 г. В. Гейзенберг построил формальную схему, где вместо координат и скоростей электрона фигурировали абстрактные алгебраические величины - матрицы. Связь матриц с наблюдаемыми величинами (уровнями энергии и интенсивностями квантов, переходов) описывалась простыми непротиворечивыми правилами. Развитие М. Борном и П. Иорданом работы Гейзенберга привело к возникновению матричной механики. Уравнение Шрёдингера позволило показать математическую эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 г. Борн дал вероятностную интерпретацию волн де Бройля.

Большую роль в создании квантовой механики сыграли работы П. Дирака, который заложил основы квантовой электродинамики и квантовой теории гравитации, разработал квантовую статистику (статистика Ферми - Дирака), релятивистскую теорию движения электрона, предсказал позитрон и т.д. Окончательное формирование квантовой механики как последовательной теории с ясными физическими основами и стройным математическим аппаратом произошло в результате работы Гейзенберга (1927), который сформулировал соотношение неопределенностей - важнейшее соотношение, отражающее физический смысл уравнений квантовой механики.

Детальный анализ спектров атомов привел к представлению о том, что электрону кроме заряда и массы должна быть приписана еще одна внутренняя характеристика - спин — собственно момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого. Важную роль сыграл открытый В. Паули (1925) принцип запрета, согласно которому в квантовой системе две (или более) тождественные частицы с полуцелым спином не могут одновременно находиться в одном и том же состоянии. Этот принцип имеет фундаментальное значение в теории атома, молекулы, ядра, твердого тела.

В течение короткого времени квантовую механику с успехом применили для создания теории атомных спектров, строения молекул, химической связи, периодической системы элементов, металлической проводимости и ферромагнетизма. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской квантовой механикой.

Современные представления об элементарных частицах и атомах

В настоящее время достаточно много известно об атомарном строении вещества и элементарных частицах — мельчайших известных частицах физической материи [7, 16, 23, 24, 28]. Поскольку элементарные частицы способны к взаимным превращениям, это не позволяет рассматривать их, так же как и атом, в качестве простейших, неизменных «кирпичиков мироздания». Число элементарных частиц очень велико. Всего открыто более 350 элементарных частиц, из которых стабильны лишь фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы (каждая элементарная частица, за исключением абсолютно нейтральных, имеет свою античастицу). Остальные элементарные частицы самопроизвольно распадаются за время от 103 с (свободный нейтрон) до 10-22- 10-24 с (резонансы).

Элементарные частицы классифицируются по типам фундаментальных взаимодействий, в которых они участвуют, и на основе законов сохранения ряда физических величин следующим образом:

◊ группа лептонов - частицы со спином 1/2, не участвующие в сильном взаимодействии и обладающие сохраняющейся внутренней характеристикой - лептонным зарядом;

◊ адроны — элементарные частицы, участвующие во всех фундаментальных взаимодействиях, включая сильное; характерным для адронов сильным взаимодействиям свойственно максимальное число сохраняющихся величин (законов сохранения). Адроны делятся на барионы и мезоны. По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из трех кварков; мезоны - из кварка и антикварка;

◊ отдельную «группу» составляет фотон.

При столкновениях элементарных частиц происходят всевозможные превращения их друг в друга (включая рождение многих дополнительных частиц), не запрещаемые законами сохранения.

Атомом называют часть вещества микроскопических размеров и массы, мельчайшую частицу химического элемента, сохраняющую его свойства. Атомы состоят из элементарных частиц и имеют сложную внутреннюю структуру. В центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Вокруг ядра движутся электроны, образующие электронные оболочки, размеры которых (10-8 см) определяют размеры атома. Ядро атома состоит из протонов и нейтронов. Число электронов в атоме равно числу протонов в ядре (заряд всех электронов атома равен заряду ядра), число протонов равно порядковому номеру элемента в Периодической таблице элементов. Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами. Химические свойства атомов определяются в основном числом электронов во внешней оболочке. Соединяясь химически, атомы образуют молекулы.

Внутренняя энергия атома может принимать лишь определенные (дискретные) значения, соответствующие устойчивым состояниям атома, и изменяется только скачкообразно путем квантового перехода. Поглощая порцию энергии, атом переходит в возбужденное состояние (на более высокий уровень энергии). Испуская фотон, атом может перейти из возбужденного состояния в состояние с меньшей энергией (на более низкий уровень энергии). Уровень, соответствующий минимальной энергии атома, называется основным, остальные - возбужденными. Квантовые переходы обусловливают атомные спектры поглощения и испускания, индивидуальные для атомов всех химических элементов.

Нуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами. Чтобы удалить нуклон из ядра, надо совершить большую работу, т.е. сообщить ядру значительную энергию. По закону сохранения энергии, энергия связи ядра (энергия, необходимая для полного расщепления ядра на отдельные нуклоны) равна энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика по сравнению с энергией связи электронов с атомным ядром. Определить энергию связи ядра можно, зная массу ядра и массы протонов и нейтронов, из которых оно состоит. Согласно эффекту дефекта массы, масса покоя ядра всегда меньше суммы масс покоя входящих в него нуклонов. Энергия связи ядер вычисляется с помощью известного соотношения Эйнштейна E = т/с2, где т - суммарная масса свободных нуклонов минус масса ядра - дефект массы.

Важную информацию о свойствах ядер дает знание удельной энергии связи ядра (энергии связи, приходящейся на один нуклон). С увеличением массового числа - числа нуклонов в ядре — удельная энергия связи, начиная с гелия, сначала слабо растет, достигает максимума у железа (массовое число 56), после чего плавно снижается. Наиболее устойчивы ядра, обладающие самой большой удельной энергией связи, — железо и близкие к нему химические элементы Периодической системы элементов.

Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер. И те, и другие реакции сопровождаются выделением энергии. В тяжелых ядрах наряду с большими силами электрического отталкивания, стремящимися разорвать ядро на части, действуют значительные ядерные силы, которые удерживают ядро от распада. Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Когда силы отталкивания внутри ядра начинают преобладать над силами притяжения, ядро разрывается на две части. Под действием сил кулоновского отталкивания осколки ядра разлетаются со скоростью, равной 1/30 скорости света, испускается излучение высокой частоты.

Не все ядра способны к делению. Наиболее легко делится изотоп урана 235U, составляющий всего 1/140 от более распространенного изотопа 238U. При каждом акте деления ядра испускаются 2-3 нейтрона, которые в свою очередь могут вызывать деление других ядер - начинается ядерная цепная реакция. Она сопровождается выделением огромного количества энергии. Так, при полном делении ядер, находящихся в 1 г урана, выделяется энергия, эквивалентная получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер реализуется в ядерных реакторах, неуправляемая - в атомной бомбе. Выделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций, протекающих лишь при очень высоких температурах. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы. Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. В этом отношении наиболее перспективна реакция слияния ядер атома дейтерия и трития.

studfiles.net

Корпускулярно-волновой дуализм микрообъектов. Квантово-механическое описание процессов в микромире. Волны де Бройля и волновая функция.

Французский ученый Луи де Бройль (1892-1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают волновыми свойствами. Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики – энергия и импульс, а с другой – волновые характеристики – частота и длина волны.

Эта формула справедлива для любой частицы с импульсом р.

Впоследствии дифракционные явления были обнаружены для нейтронов, атомных и молекулярных пучков Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать их движение в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой формуле де Бройля.

Наличие волновых свойств микрочастиц – универсальное явление, общее свойство материи. Но волновые свойства макроскопических тел не обнаружены экспериментально, поэтому макроскопические тела проявляют только одну сторону своих свойств – корпускулярную.

Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микрообъектам присущи и корпускулярные, и волновые свойства : для них существуют потенциальные возможности проявить себя в зависимости от внешних условий либо в виде волны, либо в виде частицы.

После создания квантовой механики возникли новые проблемы, в частности проблема, связанная с пониманием физической природы волн де Бройля. Дифракционная картина для микрочастиц – это проявление статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая. Необходимость вероятностного подхода к описании микрочастиц – важная отличительная особенность квантовой теории. Борн в 1926 предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой ф-ции имеет статистический, вероятностный характер: квадрат модуля волновой ф-ции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном ограниченно объеме. В квантовой механике состояния микрочастиц описывается с помощью волновой ф-ции, которая является основным носителем информации об их корпускулярных и волновых свойствах.

№35

Соотношение неопределенностей в квантовой теории. Постоянная Планка. Вероятностный характер микропроцессов.

Согласно двойственный корпускулярно-волновой природе частиц вещества, для описания свойств микрочастиц используются либо волновые, либо корпускулярные представления. Приписать им все свойства частиц и все свойства волн нельзя. Возникает необходимость введения некоторых ограничений в применении к объектам микромира понятий классической механики.

В классической механики всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координата и импульс. Но микрочастицы отличаются от классических, нельзя говорить о движении микрочастицы по определенной траектории и об одновременных точных значениях ее координаты и импульса. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 к выводу: объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой, и импульсом. Согласно соотношению неопределенностей Гейзенберга, микрочастица(микрообъект) НЕ МОЖЕТ ИМЕТЬ ОДНОВРЕМЕННО КООРДИНАТУ X И ОПРЕДЕЛЕННЫЙ ИМПУЛЬС р, причем неопределенности этих величин удовлетворяют условию:

То есть произведение неопределенностей координаты и импульса не может быть меньше постоянной Планка. Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам. Соотношение неопределенностей позволяет оценить, в какой мере можно применять понятия классической механики к микрочастицам. Соотношение неопределенностей, не давая возможности точно определить координаты и импульсы (скорости) частиц, устанавливает границу познаваемости мира и существования микрообъектов вне пространства и времени.

После создания квантовой механики возникли новые проблемы, в частности проблема, связанная с пониманием физической природы волн де Бройля. Дифракционная картина для микрочастиц – это проявление статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая. Необходимость вероятностного подхода к описании микрочастиц – важная отличительная особенность квантовой теории. Борн в 1926 предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой ф-ции имеет статистический, вероятностный характер: квадрат модуля волновой ф-ции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном ограниченно объеме. В квантовой механике состояния микрочастиц описывается с помощью волновой ф-ции, которая является основным носителем информации об их корпускулярных и волновых свойствах.

№36

studfiles.net

Сущность квантово-механической концепции описания микромира

План работы

Введение.... 3

Вопрос № 1: «Изложите сущность квантово-механической концепции описания микромира»..... 4

Вопрос № 2: «Объясните взгляды М. Планка, Луи Де Бройля, Э.Шредингера, В. Гейзенберга, Н. Бора и др. на природу микромира».................................................................................................. 6

Вопрос № 3: «Особенности волновой генетики»........................................................................... 10

Заключение 12

Список использованных источников.............................................................................................. 13

Изучение объектов микромира в нашей жизни, как раньше, так и в настоящее время, играют не маловажную роль. С давних пор людей интересовали вопросы, на которые они не могли дать адекватные ответы, например, самый маленький объект на Земле до XIX в. считался атом, пока не началось более детальное и «смелое» исследование, которое доказало, что в состав атома входят намного меньшие по размерам частицы-электроны. Поэтому считаю изучение данной темы актуальной и в наше время, так как приборы совершенствуются и возможно когда-нибудь ученые докажут что есть объекты намного меньшие размеров электрона.

Главной целью этой работы я считаю изучение природы микромира, расширения понятия Микромир и применение явлений в квантовой физике.

Главной задачей является отслеживание путей открытия различных объектов и понятие их основных критериев, доказательств на которых основывались ученые, выдвигая гипотезы на всеобщее обсуждение.

В конце XIX начале XX вв. физика вышла на уровень исследования микромира, для описания которого концептуальные построения классической физики оказались непригодными. В результате научных открытий были опровергнуты представления об атомах как о последних неделимых структурных элементах материи. История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона — отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Опыты английского физика Э. Резерфорда с альфа-частицами привели его к выводу о том, что в атомах существуют ядра — положительно заряженные микрочастицы, размер которых (10-12 см) очень мал по сравнению с размерами атомов (10-8 см).

По причине несовершенства наших измерительных приборов в атомной физике были получены необычные экспериментальные результаты. На этой основе была построена специальная математическая теория – квантовая механика, способствующая расчету полученных экспериментальных результатов, а также предсказанию новых.

Появление квантовой механики в начале ХХ века стимулировало огромный поток дискуссий по поводу природы микрочастиц и силовых полей.

Явления, которые наблюдались в микромире, были столь необычными, что микрочастицам был приписан особый статус квантовых явлений, в корне отличающихся от явлений, происходящих в привычной для всех классической физике. Одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства.

В 1900г. Появилась работа немецкого физика Макса Планка, он пришел к выводу, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых пропорциях – квантах. Такое представление противоречило классическому мировоззрению.

Можно описать поведение микрообъектов благодаря работам немецкого физика В. Гейзенберга установившего принцип неопределенности (Невозможно знать одновременно точно координаты и импульс частицы, их можно определить только с некоторой степенью вероятности.), и датского физика Н. Бора сформулировавшего принцип дополнительности (Волновые и корпускулярные описания микрообъекта не исключают, а дополняют друг друга и только вместе дают полное описание объекта.).

Но, несмотря на успехи квантовой механики, в настоящий момент она едва ли может претендовать на полноту и универсальность описания физических явлений.

Изучая микрочастицы, ученые столкнулись с парадоксальной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые; так и корпускулярные свойства.

Первый шаг в этом направлении был сделан немецким физиком Максом Планком. В 1900 г. После продолжительных попыток создать теорию, которая удовлетворительно объясняла бы экспериментальные данные, Планку удалось вывести формулу, которая замечательно согласовывалась с данными эксперимента. Свои исследования Планк посвящал в основном вопросам термодинамики. Известность он приобрел после объяснения представления о квантовой природе излучения.[2] Однако для вывода своей формулы ему пришлось ввести радикальное понятие, идущее вразрез со всеми установленными принципами. В процессе работы по исследованию теплового излучения, которую М. Планк назвал самой тяжелой в своей жизни, он пришел к ошеломляющему выводу о том, что в процессах изучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях – квантах.

Применяя новую квантовую теорию М. Планка к проблеме строения атома, Нильс Бор предположил, что электроны обладают некоторыми разрешенными устойчивыми орбитами, на которых они не излучают энергию. Только в случае, когда электрон переходит с одной орбиты на другую, он приобретает или теряет энергию, причем величина, на которую изменяется энергия, точно равна энергетической разности между двумя орбитами. Идея, что частицы могут обладать лишь определенными орбитами, была революционной, поскольку, согласно классической теории, их орбиты могли располагаться на любом расстоянии от ядра, подобно тому как планеты могли бы в принципе вращаться по любым орбитам вокруг Солнца.

Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента (например, нагретого газа, состоящего из атомов водорода) проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Бора, каждая яркая цветная линия (т.е. каждая отдельная длина волны) соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Бор вывел формулу для частот линий в спектре водорода, в которой содержалась постоянная Планка. Частота, умноженная на постоянную Планка, равна разности энергий между начальной и конечной орбитами, между которыми совершают переход электроны.[4] Теория Бора, опубликованная в 1913 г., принесла ему известность; его модель атома стала известна как атом Бора. Усилия Бора были направлены на то, чтобы сохранить за обоими наглядными представлениями, корпускулярным и волновым, одинаковое право на существование, причем он пытался доказать, что хотя эти представления, возможно, исключают друг друга, однако они лишь вместе делают возможным полное описание процессов в атоме.

Поскольку свойства электрона в стационарном состоянии атома описываются с помощью кванта, Луи Де Бройль предположил, что объекты – такие как электроны и фотоны совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы и не как волны, а как совершенно особые образования, проявляя и волновые и корпускулярные свойства в зависимости от обстоятельств.

Соотношение де Бройля позволило объяснить одну из величайших загадок зарождающейся квантовой механики. Когда Нильс Бор предложил свою модель атома, она включала концепцию разрешенных орбит электронов вокруг ядра, по которым они могли сколь угодно долго вращаться без потери энергии. С помощью соотношения де Бройля можно проиллюстрировать это понятие. Если считать электрон частицей, то, чтобы электрон оставался на своей орбите, у него должна быть одна и та же скорость (или, вернее, импульс) на любом расстоянии от ядра.

Если же считать электрон волной, то, чтобы он вписался в орбиту заданного радиуса, надо, чтобы длина окружности этой орбиты была равна целому числу длины его волны. Иными словами, окружность орбиты электрона может равняться только одной, двум, трем (и так далее) длинам его волн. В случае нецелого числа длин волны электрон просто не попадет на нужную орбиту.

Главный же физический смысл соотношения де Бройля в том, что всегда можно определить разрешенные импульсы (в корпускулярном представлении) или длины волн (в волновом представлении) электронов на орбитах. Для большинства орбит, однако, соотношение де Бройля показывает, что электрон (рассматриваемый как частица) с конкретным импульсом не может иметь соответствующую длину волны (в волновом представлении) такую, что он впишется в эту орбиту. И наоборот, электрон, рассматриваемый как волна определенной длины, далеко не всегда будет иметь соответствующий импульс, который позволит электрону оставаться на орбите (в корпускулярном представлении). Иными словами, для большинства орбит с конкретным радиусом либо волновое, либо корпускулярное описание покажет, что электрон не может находиться на этом расстоянии от ядра.[5]

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Эрвин Шредингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Э. Шредингером в 1925 г., закончилась неудачей. Скорости электронов в теории Шредингера были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

mirznanii.com

Корпускулярно-волновой дуализм микрообъектов. Квантово-механическое описание процессов в микромире. Волны де Ьроиля и волновая" функция.

Французский ученый Луи де Бройль (1892-1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают волновыми свойствами. Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия и импульс, а с другой - волновые характеристики - частота и длина волны.

Эта формула справедлива для любой частицы с импульсом р.

Впоследствии дифракционные явления были обнаружены для нейтронов, атомных и молекулярных пучков Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать их движение в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой формуле де Бройля.

Наличие волновых свойств микрочастиц - универсальное явление, общее свойство материи. Но волновые свойства макроскопических тел не обнаружены экспериментально, поэтому макроскопические тела проявляют только одну сторону своих свойств - корпускулярную.

Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микрообъектам присущи и корпускулярные, и волновые свойства : для них существуют потенциальные возможности проявить себя в зависимости от внешних условий либо в виде волны, либо в виде частицы.

После создания квантовой механики возникли новые проблемы, в частности проблема, связанная с пониманием физической природы волн де Бройля. Дифракционная картина для микрочастиц - это проявление статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая. Необходимость вероятностного подхода к описании микрочастиц - важная отличительная особенность квантовой теории. Борн в 1926 предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой ф-ции имеет, статестический вероятностный характер: квадрат модуля волной ф-ции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения в данный момент времени в определенном ограниченно объеме. В квантовой механике состояния микрочастиц описываются с помощью волновой ф-ции, которая является основным носителем информации об их корпускулярных и волновых свойствах.

№28

Атомные ядра и нуклоны. Изотопы. Дефект массы и энергия связи ядер. Деление ядер и термоядерный синтез. Цепная реакция.

Согласно протонно-нейтронной модели атомные ядра состоят из элементарных частиц двух видов: протонов и неитронов. Протоны -это элеменарные частицы, которые являются ядрами атомов легчайшего элемента - водорода. Число протонов в ядре равно порядковому номеру элемента в таблице Менделеева и обозначается Z. Протон имеет положительный электрический заряд, по абсолютному значению равный элементарному электрическому заряду. Протон имеет конечные размеры порядка 10-13 см, хотя его нельзя представить как твердый шарик, скорее он напоминает облако с размытой границей, состоящее из рождающихся и аннигулирующих виртуальных частиц. Нейтроны электрически нейтрален т е его заряд равен 0. Нейтрон устойчив только в составе стабильных атомных ядер, свободный нейтрон распадается на электрон, протон и электронное антинейтрино. В веществе в свободном виде нейтроны существуют еще меньше времени вследствие сильного поглощения их ядрами. Общее название протона и нейтрона - нуклон. В ядре нуклоны связаны силами особого рода - ядерными. Проведенные измерения показали, что размеры ядер атомов всех элементов порядка Ю-15 - Ю-14 м, что в десятки тысяч раз меньше размеров атома.

Изотопы - разновидности атомов одного и того же химического элемента, отличающиеся числом нейтронов всоставе ядра. Химически простые

природные вещества являются смесью изотопов.

Мааса ядра определяется массой входящих в его состав нейтронов и протонов. Поскольку любое ядро состоит из Z протонов и N нейтронов N=A-Z где А - массовое число нуклонов в ядре, то на первый взгляд масса ядра должна просто равняться сумме масс протонов и нейтронов. Однако, как показывают результаты измерений, реальная масса всегда меньше такой суммы. Их разность получила название дефекта массы Дт.

Минимальная энергия ДЕ„ , которую нужно затратить для разделения атомного ядра на составляющие его нуклоны, называется энергией связи ядра Эта энергия расходуется на совершение работы против действия ядерных сил притяжения между нуклонами. На основании закона сохранения энергии можно утверждать, что при образовании ядра из отдельных нуклонов выделяется энергия, равная энергии связи. Энергия связи очень

велика С энергией связи непосредственно связано происхождение дефекта массы. Ее, = Дтс .

Деление атомных ядер - это особый процесс, характерный только для самых тяжелых ядер, начиная от тория и далее в сторону больших Z. Этот процесс может происходить под действием различных частиц (в основном нейтронов) и носит характер ядерной реакции. Но может происходить спонтанно и носить характер особого вида радиоактивного распада. Суть процесса деления состоит в раскалывании тяжелого ядра на два осколка с примерно равными зарядами и массами. Чтобы деление произошло, ядро должно деформироваться, вытянуться, что требует первоначальных затрат энегрии Эту энергию оно получает при захвате какой-то частицы. Другой способ - чем тяжелее ядро, тем меньше период спонтанного деления.

Так как между атомными ядрами на малых расстояниях действуют ядерные силы притяжения, при сближении двух ядер возможно их слияние, т е синтез более тяжелого ядра. Ядра должны обладать достаточной кинетической энергией, чтобы преодолеть электростатическое отталкивание. В природе реакции синтеза происходят в очень горячем веществе: в недрах звезд. Ядерный синтез, происходящий в разогретом веществе, называется термоядерным. Особенность термоядерных реакций как источника энергии - очень большое ее выделение на единицу массы реагирующих веществ

- в 10 млн раз больше, чем в химических реакциях.

Цепная реакция была открыта в 1939 году: выяснилось, что при попадании в ядро одного нейтрона оно делится на две-три части. Было также обнаружено что при делении ядер урана, кроме осколков, вылетают также 2-3 свободных нейтрона. При благоприятных условиях они могут попасть в другие ядра урана и вызвать их деление. Необходимое условие для осуществления цепной реакции - наличие большого кол-ва урана-235, так как для пазпушения ядер изотопа урана-238 энергия нейтронов недостаточна.

№22

Тепловое (равновесное) излучение электромагнитных волн. Гипотеза Планка. Двойственная природа света и ее проявлений.

В 1887 году Герц при освещении цинковой пластины, соединенной со стержнем электрометра, обнаружил явление фотоэлектрического эффекта. С поверхности металлической пластины под действием света вырываются отрицательные электрические заряды. Измерение заряды и массы частиц, вырываемых светом, показало, что эти частицы - электроны. Явление испускания электронов веществом под действием электромагнитного излучения называется фотоэффектом. Количественные закономерности фотоэффекта были установлены в 1888-1889 Столетовым : 1)сила тока насыщения прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела;

^максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и нее зависит от интенсивности светового излучения;' 3)если частота света меньше некоторой определенной для данного вещества минимальной частоты, то фотоэффект не наблюдается (красная граница фотоэффекта). Объяснения основных законов фотоэффекта были даны в 1905 Эйнштейном на основании квантовых представлений. Электромагнитная теория Максвелла не смогла объяснить процессы испускания и поглощения света, фотоэлектрического эффекта. Теория Лоренца в свою очередь не смогла объяснить многие явления, связанные с взаимодействием света с веществом, в частности вопрос о распределении энергии но длинам волн при тепловом излучении абсолютно черного тела.

Перечисленные затруднения и противоречия были преодолены благодаря смелой гипотезы, высказанной в 1900 немецким физиком Планком, согласно которой излучение света происходит не непрерывно, а дискретно, то есть определенными порциями (квантами), энергия которых определяется частотой : E=hv, где h - постоянная Планка. Теория Планка не нуждается в понятии об эфире, она объясняет тепловое излучение абсолютно черного тела.

Эйнштейн в 1905 создал квантовую теорию света: не только излучение света, но и его распространение происходят в виде потока световых квантов-фотонов.

Все многообразие изученных свойств и законов распространения света, его взаимодействия с веществом показывает, что свет имеет сложную природу : он представляет собой единство противоположных свойств —корпускулярного (квантового) и волнового(электромагнитного). Длительный путь развития привел к современным представлениям о двойственной корпускулярно - волновой природе света. Свет представляет собой единство дискретности и непрерывности, что находится в полном соответствии с выводами материалистической диалектики.

studfiles.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики