Квантовая передача информации станет надежнее. Квантовая связь это


Прорыв в области квантовой связи » Военное обозрение

В современных информационных сетях данные передаются в виде потока вспышек света по оптическому волокну: если вспышка есть – единичка, если нет – нолик. Но такая передача информации небезопасна, потому как эти вспышки можно вполне легко «подсмотреть», используя специальную технику, при этом, ни получатель, ни отправитель не будет знать о том, что сообщение было перехвачено.

В случае использования квантовой связи фотоны передают определенными группами, а ноли и единицы записываются особым образом. В том случае, если кто-либо захочет перехватить письмо, он это возможно сделает, но это, во-первых, не останется незамеченным, а во-вторых, вряд ли он прочтет это послание.

Впервые такой алгоритм был придуман американским физиком Чарльзом Беннетом и канадским криптологом Жилем Брассаром в 1984 году. Через пять лет алгоритм был реализован в условиях лаборатории – криптофотоны передавались по воздуху на расстояние в тридцать сантиметров. Однако что касается промышленного использования, то первые решения появились лишь в 2002-2004 годах. Но до настоящего момента они являются весьма дорогим удовольствием, стоимость которого оценивается в сотни тысяч долларов. Физически подслушать канал квантовой связи невозможно, поскольку это противоречит законам квантовой механики.

Вместе с тем, существует большая проблема, связанная с объединением квантовых каналов в единую сеть, поскольку квантовость нарушается в сетевых узлах. В настоящее время Европейский Союз принялся за реализацию весьма амбициозного проекта глобальной квантовой сети, которая носит название SECOQC, но в ней криптофотоны будут переконвертироваться в биты и передаваться по доверенным узлам сети. Пока квантовую связь можно использовать только между двумя объектами, причем расстояние между ними не должно превышать 200 километров, потому как на большие расстояния единичные фотоны просто не смогут долетать. Более того, чем больше расстояние – тем меньше скорость передачи данных, вплоть до нескольких сотен бит в секунду времени.

Все существующие на сегодня установки, использующие квантовую связь, ограничиваются передачей ключей шифрования, поэтому очень часто квантовая связь носит название «квантовое крипто». После того, как объекты получают необходимые ключи, они шифруют информацию и передают ее по сети. Но при этом ключи для шифрования должны очень часто меняться, поскольку скорость соединения остается весьма медленной.

Возникает вопрос: если существует такое большое количество проблем с квантовой связью, почему нельзя использовать открытые шифровальные программы типа PGP и обходиться без квантов? Ответ прост: дело в том, что несмотря на все удобство систем с открытым ключом, надежность их гарантировать не может никто. В это же время, среди закрытых программ существуют такие, которые даже теоретически взломать невозможно, но при этом нужно заранее обеспечить все стороны нужными ключами, а в современных компьютерных системах эту проблему решить практически невозможно. Но ее можно решить при помощи квантовой связи: убедиться в том, что ключ никто не перехватил, помогает физика, а недоступность зашифрованных с его помощью данных – математика.

Вместе с тем, стоит упомянуть и о том, что понятие «безусловной защищенности» не совсем верное. Да, мощная компьютерная техника не поможет добраться до засекреченной информации, зато есть другие способы, например, побочные каналы утечки данных, технические ошибки, или же «троянские атаки».

Энтузиазм физиков передался промышленникам, бизнесменам, государственным структурам. Молодым компаниям, которым еще не удалось толком продать первые квантовые «черные ящики», предлагают многомиллионное финансирование на проведение дальнейших исследований. Очень серьезно идеи квантовой связи стали продвигаться и в общественном сознании. Первыми в этом плане стали швейцарцы, которые продемонстрировали преимущества квантовой коммуникации в ходе парламентских выборов 2007 года. И хотя реально польза от нее была небольшая, зато пиар получился просто великолепный, потому как население Швейцарии очень ответственно относится к избирательному процессу. Поэтому для них важна правильность подсчета голосов. А связь квантовой коммуникации и защиты результатов выборов – это хорошо продуманный рекламный ход, который обратил внимание не только на квантовую связь, но и на развитие швейцарской науки.

Развитие квантовой связи продолжается весьма интенсивно. И вот в мае текущего года появилась информация о том, что китайским физикам удалось передать фотоны на рекордное расстояние, равное 97 километрам, по открытому воздуху. Передача запутанных фотонов осуществлялась при помощи лазера, мощность которого была равна 1,3 Ватта. Опыты проводились над озером, расположенным на высоте 4 тысяч метров над уровнем моря. Основная проблема в процессе передачи фотонов на такое значительно расстояние была связана с уширением луча, поэтому ученые использовали дополнительный направляющий лазер, при помощи которого подстраивались приемник и передатчик. Кроме того, фотоны терялись не только из-за уширения луча, но и по причине несовершенства оптики и турбулентности воздуха.

Как бы там ни было, в ходе 4-часового эксперимента на расстояние 97 километров удалось передать порядка 1100 запутанных фотонов. Но, по словам ученных, потери фотонов совсем незначительны, поэтому вполне можно предполагать, что в ближайшем будущем квантовая связь может быть осуществлена между коммуникационным спутником и наземной станцией.

Отметим, что ученые и раньше проводили исследования по передаче запутанных фотонов, но дальность передачи не была большой – порядка километра. Причина тому – взаимодействие частиц со средой распространения, и, как результат, потеря квантовых свойств. Как видим, передача по воздуху оказалась более эффективной.

Спустя несколько дней после проведения китайского эксперимента появилась информация о том, что европейским ученым удалось побить рекорд китайских ученых, передав запутанные фотоны на расстояние, равное 143 километрам. Как утверждают его авторы, эксперимент длился более года. Причина тому – плохие погодные условия. Известно, что опыты проводились в Атлантическом океане между островами Тенерифе и Ла Пальма. Как и в предыдущих исследованиях, передача информации была осуществлена двумя каналами – обычным и квантовым.

В настоящее время становится очевидным, что достижение китайских физиков оказались более удачными. Ученым впервые удалось использовать квантовую связь между базовой наземной станцией и летящим на значительной высоте самолетом.

На борту самолета Do228, летящего на высоте 20 километров со скоростью 300 километров в час, находились приемник и источник (инфракрасный лазер) фотонов. Базовая станция использовала оптическую систему, в структуре которой находилась система зеркал с приводами высокой точности, для определения направления и положения самолета. После того, как были точно установлены все координаты самолета, а также оптическая система приемника, станционное оборудование могло определять поляризацию фотонов и использовать данную информацию для расшифровки квантовых данных.

Сеанс связи длился примерно 10 минут. Однако не вся передаваемая информация шифровалась при помощи квантовой криптографии. Квантовым методом передавались только ключи шифрования, менявшийся через определенное количество килобайт информации (около 10 Кбайт), которая передавалась обычным методом. Использованный метод передачи ключей называется квантовым распределением ключей, в нем для кодирования единиц и нолей используется разная поляризация фотонов.

Необходимо также отметить, что частота возникновения ошибок во время сеанса не превысила 5 процентов, что можно считать большим успехом в области квантовой связи.

Таким образом, можно говорить о том, что ученым удалось вплотную приблизиться к созданию спутниковой системы квантовой связи. При этом, существует предположение, что для организации такой связи потребуется даже меньше усилий, поскольку погодные условия имеют большое влияние у земной поверхности, но в вертикальном направлении они не должны быть столь значимы.

По мнению экспертов, если эксперименты завершатся удачно, квантовую спутниковую связь можно будет применить для организации информационной защищенной сети между посольствами тех государств, у которых данная технология уже существует.

В то же время, существует определенное число ученых, которые считают, что наряду со способностью обеспечить мощную защиту передаваемой информации, квантовая связь не способна решить целый ряд других, не менее важных проблем. Так, по словам Барта Пренеля, профессора Католического университета в Левене, существуют следующие проблемы. Во-первых, отправитель, использующий квантовую связь, должен быть уверен в том, что на другом конце находится вполне конкретный получатель. Поэтому необходимо выдать обеим сторонам секретный код. Но если это возможно для небольших, хорошо продуманных и организованных узлов, то в массовом использовании квантовую коммуникацию использовать нельзя. Во-вторых, квантовая криптография не дает возможности подписывать документы. В-третьих, квантовая криптография не может гарантировать защиту информацию, которая уже хранится. Ведь в современных информационных системах главное – не защита передаваемой информации, а защита конечных узлов, где эта информация будет храниться.

Поэтому с точки зрения коммерческого использования квантовая криптография еще некоторое время не будет жизнеспособной.

Использованы материалы:http://www.dailytechinfo.org/infotech/4016-vpervye-realizovana-kvantovaya-svyaz-mezhdu-letyaschim-samoletom-i-nazemnoy-stanciey.htmlhttp://cybersecurity.ru/it/159210.html/http://rus.ruvr.ru/2012_05_21/75468427/http://ru.wikipedia.org/wiki/%CA%E2%E0%ED%F2%EE%E2%E0%FF_%E7%E0%EF%F3%F2%E0%ED%ED%EE%F1%F2%FC

topwar.ru

Квантовый интернет - что это, как работает? Преимущества. Квантовая сеть

Последние исследования, реализованные европейскими и российскими учёными, показали, что перемещение квантовой и классической информации может удачно сосуществовать в границах одних и тех же оптоволоконных линий трансляции данных. Это даёт возможность в будущем для постепенного перехода от привычного интернета, к сети на основе парадоксов элементарных частиц, сети квантового интернета.

Ускоряемся в исследованиях

В компьютерной индустрии назревает переворот. Физики из Пенсильванского университета заявили, что через четыре года обычные кремниевые микросхемы достигнут своего предела. Уменьшать их дальше будет не возможно, поэтому обычным компьютерам осталось жить не долго.

квантовый интернет что это

На их смену придут принципиально новые технологии, квантовые компьютеры. Вместо микросхем будут находиться элементарные частицы. Благодаря этому возможно резко уменьшить размеры и повысить производительность. Пока эти прототипы работают не быстрее слабого компьютера, но это всего лишь вопрос времени. В свою очередь, используя мощнейший потенциал, удастся более быстро решить проблемы и сложности при внедрении принципиально нового, квантового интернета.

Загадки квантового интернета

Как работает квантовый интернет? Что это такое и в чем его суть? Отличие в том, что он базируется на законах квантовой механики. Она была воспринята учёными как горячая, резкая область, которая может быть применена для описания явлений, до конца не понятых. Одним из них считается фотоэлектрический эффект.

Парадоксы квантовой физики на службе у человечества

На сегодня понятно: в наше ближайшее будущее войдёт такое явление, как квантовый интернет. Что это может нам принести или как это будет? Возможно, это будет очередной скачек, подобный внедрению полупроводниковых транзисторов в прошлом.

Принцип его основан на свойстве суперпозиции и квантовой запутанности. Он не имеет определённого спина и при измерении одной, вторая показывает противоположный. Для более полного понимания это означает, что каждая элементарная частица, несущая информацию, невидимо связана с её «запутанной» парой. Причём расстояние между ними не играет ни какой роли, информация передаётся мгновенно.

Используя эти аномальные законы, открываются огромные возможности в скорости и конфиденциальности передачи данных. Перехватить информацию, отправленную таким путём, оставшись незамеченным, невозможно: любое чтение оставляет следы, либо уничтожает исходную информацию.

Скорость быстрее мысли

Что касается последних данных по измерению скорости передачи данных, то они поражают наше воображение. Она превышает скорость света в десять тысяч раз. Но, скорее всего, учёные в будущем обнаружат, что скорость передачи сигнала намного выше определённой ранее, таков квантовый интернет. Что это значит? Что нам может это дать? Возможно, передачу сигналов на ранее немыслимые расстояния в космосе и новые открытия.

Новые технологии в фотонах

В технологии превращения фотонов в носитель информации российские учёные нашли применение искусственно выращенных кристаллов, а именно алмазов.квантовая сеть интернет Оказывается, когда свет проходит через кристаллы, он приобретает свойство жидкости и начинает формировать капли, вихри, волны. Его можно направлять по каким-либо каналам. В общем, ведёт себя, как жидкость. В том числе он может распространяться с очень медленной скоростью или даже остановиться.

Это очень интересно с одной стороны и очень важно, поскольку это позволяет манипулировать со светом и делать, что угодно, в том числе, получить такое явление, как квантовая сеть интернет. Это позволяет его использовать в качестве агента передачи информации. Сейчас главным ее носителем является электрический заряд. Но это несовершенный объект. Поэтому любое движение или ускорение электрического заряда приводит к потерям энергии, которая уходит в окружающую среду и нагревает процессор и элементы микросхем.

Интернет сам по себе стоит уже человечеству более 5% производимой им энергии. Поэтому замена электрона фотонами в идеальном варианте приведёт к сокращению потерь колоссального количества энергии. Соответственно, себестоимость самого интернета упадет.

Квантовый интернет в России

Работы в России по квантовому интернету уникальны. Не смотря на малое финансирование и всяческие препоны, учёные провели достаточно экспериментов и добились в этой области фактически лидирующего положения.в россии запустили первую квантовую интернет сеть В результате удалось создать уникальный, высокого уровня институт. Он сочетает в себе экспериментальные и теоретические группы, а также прикладные исследования. Этот институт финансируется частично «Газпромбанком», частично государством в разных формах. В любом случае, это тот пример, которому должна следовать российская наука, не останавливаясь ни перед чем.

Покоряем новые территории

На нынешнем этапе развития квантового интернета можно назвать только технологии защиты данных с помощью квантовой криптографии. Подобные сети на сегодня представляют собой достаточно простые соединения точка—точка. Учёные стремятся создавать совместные решения, на основании которых объединяются различные каналы и способы шифрования.

Если проследить за реализацией идеи, то результаты российских исследователей окажутся более существенными. Один из примеров - это детектор однофотонного излучателя, разрабатываемого в Курчатовском институте.скорость квантового интернета

Для существования такого открытия, как квантовая сеть интернет, учёным необходимо решить сложности совмещения особого оснащения для квантовой передачи данных и существующих на сегодня телекоммуникационных сетей.

Основные вопросы лежат в решении коммутации и усилении сигнала. Если отправить информацию на основе кванта, по стандартному оптоволокну, то он не пройдёт через регенератор. Поэтому один из вариантов решения это превращение сигнала в электрический и затем возврат в исходное положение.

На сегодня предел равен трёмстам километрам. Это дистанция, на которой необходимо производить регенерацию оптического сигнала. Также нужен прототип квантового коммутатора. Общий объем наличия проблемных задач может быть решён только в пределах десяти лет. Тем не менее, в учёных кругах утверждают о возможности «оседлать» квантовый интернет. Что это может принести и чем помочь? На сегодня нет однозначного ответа, но решение вопроса о внедрении и доведении подобных технологий к рядовому жителю, однозначно повысит его качество жизни и безопасность.

Новая эпоха наступает

Китай на сегодня поставил амбициозный проект, сделать передачу по квантовой сети на 1200 километров, используя спутник.квантовый интернет в россии На данный момент достигнута дистанция максимум сто километров. Учёные разработали, как уберечь сигнал от воздействия метеорологических условий. Впрочем, эта сенсация скорее связана не с телепортацией, которая увеличивается с каждым годом, а с квантовой криптографией, другими словами, новой системой шифрования данных.

Квантовый код нет возможности взломать, точнее при его взломе информация пропадает. В эпоху кибервойн это означает неуязвимость. Квантовой криптографией давно пользуются те, кто ищет гарантии безопасности. Как, например, несколько лет тому назад швейцарские банки начали обмениваться данными о своих клиентах через квантовую сеть. На сегодня они ограничены расстоянием несколько десятков километров. Такую же систему готовится внедрять Российский квантовый центр, а также освоить передачу квантового сигнала через космический спутник.

Внедрение и реализация

А в это время в Петербурге между двумя зданиями университета в России запустили первую квантовую интернет сеть.квантовая сеть Информация передаётся, используя законы квантовой физики. В эту область сейчас инвестируют самые умные корпорации и правительства. Будущая технология передачи информации внедряется на базе существующей. Оптоволоконный кабель, привычный компьютер, но новый роутер и генератор фотонов.

Существование нового интернета начинается с лазера, где находится источник одиночных фотонов. Они обладают хорошим свойством для того, чтобы передавать информацию защищённым путём. Одиночный фотон нельзя разделить. Ключ формируется таким образом, что чтение не возможно. Чтобы превратить фотон в носитель информации, система меняет его состояние, фазу колебания импульсной волны. Сегодня уровень развития квантовой технологии сопоставим с тем, как выглядела мобильная связь тридцать лет назад, ещё пройдёт пять-десять лет и кванты фотона смогут нам подарить безопасный информационный интернет.

Квантовый интернет в Казани

В Татарстане запустили квантовую интернет сеть, её экспериментальный участок находится в Казани. Эта программа является важным достижением в развитии квантовой связи в России. Как утверждают учёные, она абсолютно неуязвима для хакерских атак.

Сегодня защита нашей интернет сети основана на шифровании математических алгоритмов, но даже самый сложный код можно взломать. Чем мощнее вычислительные способности у хакеров, тем проще и быстрее просчитать алгоритм шифрования.

Описываемая в статье технология станет новой структурой сетевой безопасности. Квантовый интернет в Казани будет объединён в четыре узла на расстоянии 30-40 километров друг от друга. Стоимость комплектации между двумя точками составляет около ста тысяч долларов. На экспериментальном участке сеть показала скорость квантового интернета 117кб/c с дистанцией два с половиной километра. Этот результат на порядок выше, чем в европейских испытаниях. В сети показатель потерь передачи квантовых бит в оптическом канале составил двадцать дБ. Это эквивалентно длине линии сто километров.квантовый интернет в татарстане Стоит заметить, что в данном проекте задействована действующая линия телекоммуникационной сети инфраструктуры «Таттелеком».

Сеть соединит города

В 2017 году предполагается начать проект по внедрению новой технологии. Квантовый интернет в Татарстане позволит соединить офисы в различных городах. Это одно из главнейших заданий, которые ставит перед собой Казанский квантовый центр КНИТУ-КАИ и его руководитель. Наблюдая за их успехами, без сомнений верится, что так оно и будет.

fb.ru

Квантовая криптография | Журнал Популярная Механика

Максимальная длина канала связи, позволяющего использовать метод квантовой криптографии, составляет всего лишь чуть больше сотни километров. Ученые из Российского квантового центра разработали способ значительно увеличить эту дистанцию.

Илья Ферапонтов

29 мая 2018 15:00

Представьте себе, что прежде чем отправить электронное письмо приятелю, вы должны достать карту, измерить расстояние до города, где он живет, и если окажется, что это расстояние больше, чем 100 км, вы со вздохом берете карандаш и бумагу и беретесь за обычное «бумажное» письмо — электронная почта дальше, чем на 100 км, не ходит.

Абсурдная ситуация? Но именно так сейчас обстоят дела с передачей квантовых данных по оптоволоконным линиям связи — рекордная дальность передачи здесь до сих пор лишь немного превышает сотню километров, а устойчивая работа на нормальных, не рекордных линиях вообще ограничивается 40 км. Это означает, например, что линию квантовой коммуникации можно организовать внутри Москвы, а вот о передаче данных в Петербург пока нечего и думать. Каковы же перспективы квантовой криптографии в области дальней связи?

Вскрытие на слух

Первый успешный эксперимент по квантовой передаче данных был проведен Беннетом и Жилем Брассаром в конце октября 1989 года, когда защищенная квантовая связь была установлена на расстоянии 32,5 см. Установка меняла поляризацию фотонов, но при этом блок питания шумел по‑разному в зависимости от того, какой была поляризация. Таким образом, окружающие могли свободно различать нули и единицы на слух. Как пишет Брассар, «наш прототип был защищен от любого подслушивающего, который оказался бы глухим». В октябре 2007 года методы квантовой криптографии были впервые применены в широкомасштабном проекте. Система квантовой защищенной связи, разработанная швейцарской компанией Id Quantique, использовалась для передачи данных о результатах голосования на парламентских выборах в швейцарском кантоне Женева. Таким образом, голоса швейцарцев были защищены как никакая другая информация.

Банкноты и блокноты

История квантовой криптографии началась еще в конце 1960-х годов, когда студент Колумбийского университета Стивен Визнер изложил своему бывшему сокурснику Чарльзу Беннету идею квантовых банкнот, которые в принципе нельзя подделать, поскольку это исключают законы природы. Суть идеи состояла в том, чтобы поместить на каждую банкноту несколько квантовых объектов. Это могут быть, например, ловушки с фотонами, каждый из которых поляризован под определенным углом в одном из двух базисов — либо под углом 0 и 90, либо 45 и 135 градусов. Серийный номер напечатан на банкноте, но соответствующая номеру комбинация поляризаций и базисов (фильтров, с помощью которых фотону придается или измеряется его поляризация) при этом известна только банку. Чтобы подделать такую банкноту, фальшивомонетчик должен измерить поляризацию каждого фотона, но он не знает, в каком базисе поляризован каждый из них. Если он ошибется с базисом, то поляризация фотона изменится, и поддельная банкнота будет с неверной поляризацией. Квантовые деньги до сих пор не появились, поскольку пока не удалось создать достаточно надежных ловушек для фотонов. Однако тогда же Визнер предложил использовать тот же самый принцип для защиты информации, и эта технология сейчас уже близка к реализации.

Первый протокол Первый протокол Первый протокол квантового распределения ключей был создан Жилем Брассаром и Чарльзом Беннетом в 1984 году и получил название BB84. Для передачи данных используются фотоны, поляризованные в четырех разных направлениях, в двух базисах — под углом 0 и 90 градусов (обозначается знаком +) либо 45 и 135 градусов (x). Отправитель сообщения A (традиционно его называют «Алиса») поляризует каждый фотон в случайно выбранном базисе, а затем отправляет его получателю B — «Бобу». Боб измеряет каждый фотон, тоже в случайно выбранном базисе. После этого Алиса по открытому каналу сообщает Бобу последовательность своих базисов, и Боб отбрасывает неправильные (не совпавшие) базисы и сообщает Алисе, какие данные «не прошли». При этом сами значения, полученные в результате измерений, они по открытому каналу не обсуждают. Если шпион (его обычно называют «Евой», от английского eavesdropping — подслушивание) захочет перехватить секретный ключ, он должен будет измерять поляризацию фотонов. Поскольку он не знает базиса, он должен будет определять его случайным образом. Если базис будет определен неправильно, то Ева не получит верных данных, а кроме того, изменит поляризацию фотона. Появившиеся ошибки сразу обнаружат и Алиса, и Боб.

Идеи Визнера, однако, были признаны далеко не сразу. Еще в начале 1970-х годов Визнер отправил свою статью о квантовой криптографии в журнал IEEE Transactions on Information Theory, но редакторам и рецензентам язык статьи показался слишком сложным. Лишь в 1983 году эта статья увидела свет в журнале ACM Newsletter Sigact News, и именно она стала первой в истории публикацией об основах квантовой криптографии.

Первоначально Визнер и Беннет рассматривали вариант передачи зашифрованных сообщений с помощью квантовых «носителей», при этом подслушивание портило бы сообщение и не давало возможности его прочесть. Затем они пришли к улучшенному варианту — использованию квантовых каналов для передачи одноразовых «шифроблокнотов» — шифровальных ключей.

Закрытый конверт

Квантовые системы связи основаны на использовании квантовых свойств носителей информации. Если в обычных телекоммуникационных сетях данные кодируются в амплитуде и частоте излучения или электрических колебаний, то в квантовых — в амплитуде электромагнитного поля или в поляризации фотонов. Разумеется, потребуется значительно более дорогая и сложная аппаратура, но эти ухищрения оправданны: дело в том, что передача информации по квантовым каналам обеспечивает стопроцентную защиту от «прослушки». Согласно законам квантовой механики измерение свойств того или иного квантового объекта, например измерение поляризации фотона, неминуемо меняет его состояние. Получатель увидит, что состояние фотонов изменилось, и предотвратить это нельзя в принципе — таковы фундаментальные законы природы. Это можно описать такой аналогией: представьте себе, что вы пересылаете письмо в закрытом конверте. Если кто-то откроет письмо и прочитает его, цвет бумаги изменится, и получатель неминуемо поймет, что послание читал кто-то третий.

Самая ценная информация — это шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, в принципе невозможно. Остается организовать защищенную передачу ключей, а это как раз и обеспечивают квантовые линии связи. Однако пока дистанция передачи данных для таких линий слишком коротка: из-за тепловых шумов, потерь, дефектов в оптоволокне фотоны не «выживают» на больших расстояниях.

Самая ценная информация — шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, невозможно.

Квантовые ключи

Множество исследовательских групп по всему миру разрабатывают устройства «восстановления» квантовых данных — так называемые квантовые повторители, которые способны «оживлять» фотоны. Группа исследователей из Российского квантового центра под руководством профессора Александра Львовского нашла способ восстанавливать свойства фотонов и подтвердила в эксперименте работоспособность этого метода. Ученые занимались изучением феномена квантовой запутанности, при котором состояния двух или нескольких объектов — атомов, фотонов, ионов — оказываются связаны. Если состояние одного из пары запутанных фотонов измерить, то состояние второго немедленно станет определенным, причем состояния их обоих будут связаны однозначно — например, если один фотон окажется поляризован вертикально, то второй — горизонтально и наоборот.

www.popmech.ru

КАНАЛ СВЯЗИ КВАНТОВЫЙ - это... Что такое КАНАЛ СВЯЗИ КВАНТОВЫЙ?

- система передачи (преобразования) информации, использующая в качестве носителя сообщений квантово-механич. объект.

В отличие от классического сообщения, описываемого распределением вероятностей на пространстве сигналов X, квантовое сообщение представляется оператором плотности (состоянием) в гильбертовом пространстве Н, соответствующем данному квантово-механич. объекту. Всякий канал связи можно рассматривать как аффинное (сохраняющее выпуклые комбинации) отображение (выпуклого) множества сообщений на входе в множество сообщений на выходе. В частности, квантовое кодирований есть аффинное отображение Смнржества S(X)распределений вероятностей на пространстве входных сигналов Xв е(H), множество всех операторов плотности в Н. Собственно К. с. к. есть аффинное отображение Lиз е(Н). в е(H'), где Н, Н' - гильбертовы пространства, описывающие соответственно вход и выход канала. Квантовое декодирование есть аффинное отображение Dиз е(H') в S(Y), где Y- пространство сигналов на выходе. Передача сообщений, как и в классической теории информации, описывается схемой

Важной задачей является нахождение оптимального способа передачи сообщения по заданному квантовому каналу L. При фиксированном Lусловное распределение сигнала на выходе относительно сигнала на входе является функцией Pc,D(dy|x )кодирования С и декодирования D. Задается некоторый функционал Q{PC, D(dy|x)}и требуется найти экстремум этого функционала по Си D. Наиболее изучен случай, когда Стакже фиксированно и нужно найти оптимальное D. Тогда схема (1) сводится к более простой:

Чтобы задать кодирование, достаточно указать образы r х распределений, сосредоточенных в точках Декодирование удобно описывать Y-измерением, к-рое определяется как мера М(dy )на Yсо значениями в множестве неотрицательных эрмитовых операторов в Н, причем M(Y)равно единичному оператору. Взаимно однозначное соответствие между декодированием и измерениями задается формулой

так что условное распределение сигнала на выходе схемы (2) относительно сигнала на входе есть

Р(dy|x) = TrrxM(dy).

В случае конечных X, Y для оптимальности измерения {М (у)}необходимо, чтобы оператор

где

был эрмитов и удовлетворял условию

Если Q- аффинная функция (как в случае бейесовского риска), то для оптимальности (в смысле минимума (?) необходимо и достаточно, чтобы оператор кроме (3), удовлетворял условию Аналогичные условия имеют место для достаточно произвольных X, У.

Существует параллель между квантовыми измерениями и решающими процедурами в классической теории статистич. решений, причем детерминированным процедурам соответствуют простые измерения, определяемые проекторнозначными мерами M(dy). Однако, в отличие от классич. статистики, где оптимальная процедура, как правило, сводится к детерминированной, в квантовом случае уже для бейесовской задачи с конечным числом решений оптимальное измерение, вообще говоря, не может быть выбрано простым. Геометрически это объясняется тем, что оптимум достигается на крайних точках выпуклого множества всех измерений, а в квантовом случае класс простых измерений содержится в множестве крайних точек, не совпадая с ним.

Как и в классич. теории статистич. решений, возможно ограничение класса измерений требованиями инвариантности или несмещенности. Известны квантовые аналоги неравенства Рао - Крамера, дающие нижнюю границу для среднеквадратичной погрешности измерения. В приложениях теории много внимания уделяется бозонным гауссовским каналам связи, для к-рых в ряде случаев дано явное описание оптимальных измерений.

Лит.:[1] Helstrom С. W., Quantum detectiv and estimation theory, N. Y., 1976; [2] Xолево А. С, Исследования по общей теории статистических решений, М , 1976; [3] его же, "Repts Math. Phys.", 1977, v. 12, p. 273-78.

Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.

dic.academic.ru

КВАНТОВАЯ СВЯЗЬ • Большая российская энциклопедия

КВА́НТОВАЯ СВЯЗЬ, со­во­куп­ность ме­то­дов для пе­ре­да­чи кван­то­вой ин­фор­ма­ции, т. е. ин­фор­ма­ции, за­ко­ди­ро­ван­ной в кван­то­вых со­стоя­ни­ях (КС), из од­ной про­стран­ст­вен­ной точ­ки в дру­гую. Но­си­те­ля­ми кван­то­вой ин­фор­ма­ции яв­ля­ют­ся кван­то­вые сис­те­мы, ко­то­рые мо­гут на­хо­дить­ся в разл. кван­то­вых со­стоя­ни­ях.

Об­мен ин­фор­ма­ци­ей ме­ж­ду уда­лён­ны­ми поль­зо­ва­те­ля­ми про­ис­хо­дит с учё­том ти­па КС, ко­то­рые, в от­ли­чие от клас­сич. со­стоя­ний, мо­гут быть не­ор­то­го­наль­ны­ми и пе­ре­пу­тан­ны­ми (сцепленными). Ко­ди­ро­ва­ние клас­сич. ин­фор­ма­ции в не­ор­то­го­наль­ные КС да­ёт воз­мож­ность со­про­во­ж­дать ка­ж­дое со­об­ще­ние соб­ст­вен­ным сек­рет­ным клю­чом, т. е. раз­ре­шить од­ну из осн. про­блем клас­сич. крип­то­гра­фии – без­ус­лов­но сек­рет­ное рас­пре­де­ле­ние клю­чей. Свой­ст­во пе­ре­пу­тан­но­сти КС по­зво­ля­ет обес­пе­чить дос­тав­ку двух иден­тич­ных по­сле­до­ва­тель­но­стей би­тов двум уда­лён­ным поль­зо­ва­те­лям с га­ран­ти­ей, что ин­фор­ма­ция, со­дер­жа­щая­ся в них, не­до­ступ­на треть­ей сто­ро­не. И в пер­вом, и во вто­ром слу­чае аб­со­лют­ная сек­рет­ность пе­ре­да­вае­мых дан­ных обес­пе­чи­ва­ет­ся не вы­чис­ли­тель­ны­ми и тех­нич. воз­мож­но­стя­ми ле­ги­тим­ных поль­зо­ва­те­лей и по­тен­ци­аль­но­го пе­ре­хват­чи­ка, а за­ко­на­ми при­ро­ды, ос­но­ван­ны­ми на ли­ней­но­сти и уни­тар­но­сти кван­то­вых пре­об­ра­зо­ва­ний и на не­оп­ре­де­лён­но­стей со­от­но­ше­ни­ях (см. Кван­то­вая крип­то­гра­фия).

Наи­бо­лее под­хо­дя­щи­ми кван­то­вы­ми сис­те­ма­ми, ис­поль­зуе­мы­ми для пе­ре­да­чи КС на боль­шие рас­стоя­ния, яв­ля­ют­ся фо­то­ны. Они рас­про­стра­ня­ют­ся со ско­ро­стью све­та, по­зво­ля­ют ко­ди­ро­вать ин­фор­ма­цию в час­тот­ных, фа­зо­вых, ам­пли­туд­ных, по­ля­ри­за­ци­он­ных и вре­мен­ны́х пе­ре­мен­ных. К то­му же ис­поль­зо­ва­ние фо­то­нов как но­си­те­лей ин­фор­ма­ции по­зво­ля­ет при­ме­нять ряд тех­но­ло­гич. до­сти­же­ний в об­лас­ти клас­сич. те­ле­ком­му­ни­ка­ций – оп­тич. во­ло­кон­ные ли­нии свя­зи, все­воз­мож­ные мо­ду­ля­то­ры и пре­об­ра­зо­ва­те­ли оп­тич. сиг­на­лов.

Со­стоя­ния фо­то­нов, в ко­то­рых ко­ди­ру­ет­ся ин­фор­ма­ция, вы­би­ра­ют­ся из чис­ла сте­пе­ней сво­бо­ды элек­тро­маг­нит­но­го по­ля, ко­то­рые мо­гут быть не­пре­рыв­ны­ми и дис­крет­ны­ми. Не­пре­рыв­ны­ми сте­пе­ня­ми сво­бо­ды об­ла­да­ют кван­то­вые сис­те­мы с боль­шой (в пре­де­ле – бес­ко­неч­ной) раз­мер­но­стью гиль­бер­то­ва про­стран­ст­ва, напр. квад­ра­тур­ные ам­пли­ту­ды к.-л. мо­ды кван­то­ван­но­го элек­тро­маг­нит­но­го по­ля или кол­лек­тив­ные со­стоя­ния ан­самб­ля атом­ных сис­тем. Пе­ре­пу­тан­ные со­стоя­ния сис­тем с не­пре­рыв­ны­ми пе­ре­мен­ны­ми реа­ли­зу­ют­ся за счёт ис­поль­зо­ва­ния сжа­тых со­стоя­ний све­та, при­чём сжа­тие квад­ра­тур­ных кван­то­вых флук­туа­ций про­ис­хо­дит в ре­зуль­та­те не­ли­ней­ных оп­тич. про­цес­сов.

Для сис­тем с дис­крет­ны­ми пе­ре­мен­ны­ми раз­мер­ность гиль­бер­то­ва про­стран­ст­ва ко­неч­на. Про­стей­шей сис­те­мой та­ко­го ти­па яв­ля­ет­ся двух­уров­не­вая сис­те­ма, ко­то­рая мо­жет быть реа­ли­зо­ва­на, напр., на по­ля­ри­за­ци­он­ных сте­пе­нях сво­бо­ды фо­то­на. В со­стоя­ни­ях двух­уров­не­вой сис­те­мы фи­зи­че­ски реа­ли­зу­ет­ся кван­то­вый бит ин­фор­ма­ции, на­зы­вае­мый ку­би­том (q-бит, qubit, от англ. quantum bit). Про­то­ко­лы кван­то­вой свя­зи на ос­но­ве ку­би­тов (под про­то­ко­ла­ми по­ни­мают по­сле­до­ва­тель­ность дей­ст­вий, при­во­дя­щих к ре­ше­нию за­да­чи) яв­ля­ют­ся наи­бо­лее раз­ра­бо­тан­ны­ми.

Лю­бая сис­те­ма К. с. со­сто­ит из ис­точ­ни­ка кван­то­вых со­стоя­ний, сре­ды, в ко­то­рой рас­про­стра­ня­ют­ся эти со­стоя­ния (ка­на­ла свя­зи), и де­тек­то­ров, из­ме­ряю­щих КС. Для ге­не­ра­ции КС на отд. фо­то­нах в осн. ис­поль­зу­ют силь­но ос­лаб­лен­ные ла­зер­ные им­пуль­сы. Ес­ли ис­ход­ное ла­зер­ное из­лу­че­ние име­ет пу­ас­со­нов­скую ста­ти­сти­ку, то, вво­дя за­дан­ное ос­лаб­ле­ние, мож­но рас­счи­тать ср. чис­ло фо­то­нов в им­пуль­се, а так­же до­лю ва­ку­ум­ной, од­но­фо­тон­ной, двух­фо­тон­ной и др. ком­по­нент. В совр. сис­те­мах кван­то­вой крип­то­гра­фии при­ня­то ис­поль­зо­вать ср. чис­ло фо­то­нов на уров­не 0,1, т. е. ко­гда в ка­ж­дом де­ся­том им­пуль­се при­сут­ст­ву­ет при­мер­но один фо­тон. Не­из­беж­ное ста­ти­стич. при­сут­ст­вие мно­го­фо­тон­ных ком­по­нент ог­ра­ни­чи­ва­ет сек­рет­ность пе­ре­да­вае­мых дан­ных.

Пе­ре­пу­тан­ные со­стоя­ния пар фо­то­нов ге­не­ри­ру­ют­ся в про­цес­се спон­тан­но­го па­ра­мет­рич. рас­сея­ния (СПР) све­та. В за­ви­си­мо­сти от ре­жи­ма СПР пе­ре­пу­ты­ва­ние про­ис­хо­дит ме­ж­ду раз­ны­ми сте­пе­ня­ми сво­бо­ды фо­то­нов. Раз­ли­ча­ют про­ст­ран­ст­вен­но-по­ля­ри­за­ци­он­ные, час­тот­но-по­ля­ри­за­ци­он­ные, вре­мя-энер­ге­ти­че­ские и др. ти­пы пе­ре­пу­тан­ных со­стоя­ний. В про­цес­се вы­ну­ж­ден­но­го па­ра­мет­рич. рас­сея­ния ге­не­ри­ру­ют­ся сжа­тые со­стоя­ния све­та – ана­лог пе­ре­пу­тан­ных со­сто­я­ний при боль­ших ин­тен­сив­но­стях из­лу­че­ния.

Сре­да, в ко­то­рой рас­про­стра­ня­ют­ся КС, пред­став­ля­ет со­бой во­ло­кон­но-оп­тич. ли­нии свя­зи или от­кры­тое про­ст­ран­ст­во. Стан­дарт­ные во­ло­кон­но-оп­тич. ли­нии свя­зи из­го­тав­ли­ва­ют­ся из плав­ле­но­го квар­ца и име­ют ми­ним. по­те­ри на дли­нах волн 1,3 мкм и 1,55 мкм. Ес­ли ка­на­лом свя­зи яв­ля­ет­ся от­кры­тое про­стран­ст­во, то ми­ним. по­те­ри про­ис­хо­дят на дли­не вол­ны 0,8 мкм и в об­лас­ти 4–10 мкм. Имен­но на этих дли­нах волн ге­не­ри­ру­ют­ся оп­тич. КС в за­ви­си­мо­сти от ти­па ли­нии свя­зи.

Для из­ме­ре­ния КС ис­поль­зу­ют­ся в осн. ла­вин­ные фо­то­дио­ды. В диа­па­зо­не 1,3–1,55 мкм это дио­ды на ос­но­ве по­лу­про­вод­ни­ко­вых струк­тур ти­па InGаAs/InP с кван­то­вой эф­фек­тив­но­стью ок. 10%. В диа­па­зо­не 0,8 мкм ис­поль­зу­ют­ся крем­ние­вые ла­вин­ные фо­то­дио­ды с кван­то­вой эф­фек­тив­но­стью ок. 50%. Раз­ра­ба­ты­ва­ют­ся др. ти­пы де­тек­то­ров, напр. на ос­но­ве сверх­про­во­дя­щих струк­тур. В бу­ду­щем для за­пи­си, хра­не­ния и об­ра­бот­ки кван­то­вой ин­фор­ма­ции пред­по­ла­га­ет­ся ис­поль­зо­вать кван­то­вые ин­тер­фей­сы и кван­то­вую па­мять.

К. с. раз­ли­ча­ют по чис­лу кван­то­вых си­с­тем, во­вле­чён­ных в ко­ди­ро­ва­ние кван­то­вой ин­фор­ма­ции. При од­но­фо­тон­ной К. с. ин­фор­ма­ция ко­ди­ру­ет­ся в со­стоя­ни­ях еди­нич­ных фо­то­нов. При двух­фо­тон­ной К. с. для дис­тан­ци­он­но­го при­готов­ле­ния нуж­но­го со­стоя­ния ис­поль­зу­ет­ся пе­ре­пу­ты­ва­ние па­ры фо­то­нов. Трёх­фо­тон­ная К. с. при­ме­ня­ет­ся для пе­ре­да­чи од­но­фо­тон­но­го КС без не­по­сред­ст­вен­ной свя­зи ме­ж­ду дву­мя про­стран­ст­вен­но-вре­менны́ми точ­ка­ми за счёт кван­то­вой те­ле­пор­та­ции. Кван­то­вая те­ле­пор­та­ция – спо­соб пе­ре­да­чи про­из­воль­ных (за­ра­нее не­из­вест­ных) кван­то­вых со­стоя­ний из од­ной точ­ки в дру­гую, ис­поль­зуя пе­ре­пу­тан­ные со­стоя­ния, рас­пре­де­лён­ные ме­ж­ду эти­ми дву­мя точ­ка­ми, и об­мен клас­сич. дан­ны­ми ме­ж­ду ни­ми. При те­ле­пор­та­ции од­но­го ку­би­та ис­поль­зу­ют два би­та клас­сич. ин­фор­ма­ции. Че­ты­рёх­фо­тон­ная К. с. при­ме­ня­ет­ся для те­ле­пор­та­ции пе­ре­пу­ты­ва­ния или кван­то­во­го об­ме­на пе­ре­пу­ты­ва­ни­ем. Этот тип К. с. очень ва­жен для соз­да­ния кван­то­вых ретранс­ля­то­ров и кван­то­вых по­вто­ри­те­лей (ретранс­ля­тор+кван­то­вая па­мять). Раз­ви­тие К. с. пер­спек­тив­но че­рез низ­ко­ор­би­таль­ные спут­ни­ки.

Рас­стоя­ние, на ко­то­ром га­ран­ти­ру­ет­ся аб­со­лют­но сек­рет­ная пе­ре­да­ча ин­фор­ма­ции, ог­ра­ни­чи­ва­ет­ся на­ли­чи­ем тем­но­вых от­счё­тов де­тек­то­ров, не­иде­аль­но­стью ис­точ­ни­ков од­но­фо­тон­ных со­стоя­ний, по­те­ря­ми в ли­ни­ях свя­зи. Ско­рость пе­ре­да­чи ог­ра­ни­че­на час­тот­ной по­ло­сой ис­поль­зуе­мых элек­трон­ных ком­по­нен­тов, бы­ст­ро­дей­ст­ви­ем и па­ра­зит­ны­ми эф­фек­та­ми в де­тек­то­рах. Для уст­ра­не­ния этих не­дос­тат­ков ис­поль­зу­ют­ся бо­лее ка­че­ст­вен­ные обо­ру­до­ва­ние, ма­те­риа­лы и но­вей­шие тех­но­ло­гии, а так­же раз­ра­ба­ты­ва­ют­ся но­вые про­то­ко­лы. Напр., в кван­то­вой крип­то­гра­фии пред­ла­га­ет­ся ис­поль­зо­вать не ку­би­ты, а сис­те­мы с бо­лее высо­кой раз­мер­но­стью – ку­ди­ты. Наи­бо­лее важ­ные про­то­ко­лы К. с.: кван­то­вая те­ле­пор­та­ция, об­мен пе­ре­пу­ты­ва­ни­ем (те­ле­пор­та­ция пе­ре­пу­ты­ва­ния), кван­то­вая плот­ная ко­ди­ров­ка, кван­то­вое ис­прав­ле­ние оши­бок, кван­то­вая крип­то­гра­фия и др.

bigenc.ru

Квантовая связь: перспективы / СоХабр

(с) New quantum dot could make quantum communications possible

Телеграф «убил» голубиную почту. Радио вытеснило проводной телеграф. Радио, конечно, никуда не исчезло, но появились другие технологии передачи данных – проводные и беспроводные. Поколения стандартов связи сменяют друг друга очень быстро: 10 лет назад мобильный интернет был роскошью, а теперь мы ждем появления 5G. В скором будущем нам понадобятся принципиально новые технологии, которые будут превосходить современные не меньше, чем радиотелеграф — голубей.

Что это может быть и как оно повлияет на всю мобильную связь — под катом. Виртуальная реальность, обмен данными в умном городе с помощью интернета вещей, получение информации со спутников и из поселений, расположенных на других планетах Солнечной системы, и защита всего этого потока — такие задачи нельзя решить одним только новым стандартом связи.

Квантовая запутанность

(с) New Experiment Allow Us To “See” Quantum Entanglement With The Naked Eye. На самом деле мы не можем увидеть квантовую запутанность, но красивая визуализация помогает понять суть явления.

Один из основных вариантов ожидающей нас эволюции связи — использование квантовых эффектов. Эта технология не исключит, но может дополнить традиционные виды связи (хотя нельзя сходу отвергнуть идею, что сеть на основе квантовой запутанности, теоретически, может вытеснить остальные виды связи).

Квантовая запутанность — это явление связи квантовых характеристик. Связь может сохраняться, даже если частицы расходятся на большое расстояние, так как, измеряя квантовые характеристики одной из связанных частиц, мы автоматически узнаем характеристики и второй. Первый протокол квантовой криптографии появился ещё в 1984 году. С тех пор создано множество как экспериментальных, так и коммерческих систем, основанных на явлениях квантового мира.

(с) Chinese Academy of Sciences

Сегодня квантовая связь используется, например, в банковской сфере, где требуется соблюдение особых условий безопасности. Компании Id Quantique, MagiQ, Smart Quantum уже предлагают готовые криптосистемы. Квантовые технологии для обеспечения безопасности можно сравнить с ядерным оружием — это почти абсолютная защита, подразумевающая, правда, серьезные затраты на реализацию. Если с помощью квантовой запутанности передать ключ шифрования, то его перехват не даст злоумышленникам никакой ценной информации — на выходе они получат просто другой набор цифр, потому что состояние системы, в которую вмешивается внешний наблюдатель, меняется.

Создать глобальную совершенную систему шифрования до недавнего времени не удавалось — уже через несколько десятков километров передаваемый сигнал затухал. Предпринимали много попыток увеличить это расстояние. В этом году Китай запустил спутник QSS (Quantum experiments at Space Scale), который должен реализовать схемы квантового распределения ключа на расстоянии более 7000 километров.

Спутник будет генерировать два запутанных фотона и отправлять на Землю. Если всё пройдет удачно, то распределение ключа при помощи запутанных частиц станет началом эры квантовой связи. Десятки таких спутников смогли бы стать основой не только нового квантового интернета на Земле, но и квантовой связи в космосе: для будущих поселений на Луне и Марсе и для дальней космической связи со спутниками, направляющимися за пределы Солнечной системы.

Квантовая телепортация

Устройство для квантового распределения ключа в лабораторных условиях, Российский квантовый центр.

При квантовой телепортации никакого материального переноса объекта из пункта А в пункт Б не происходит — происходит передача «информации», а не вещества или энергии. Телепортация используется для квантовых коммуникаций, например для передачи секретной информации. Надо понимать, что это не информация в привычном нам виде. Упрощая модель квантовой телепортации, можно сказать, что она позволит генерировать последовательность случайных чисел на обоих концах канала, то есть мы сможем создать шифроблокнот, который нельзя перехватить. В обозримом будущем это единственное, что можно сделать с помощью квантовой телепортации.

Впервые в мире телепортация фотона состоялась в 1997 году. Спустя два десятилетия телепортация по оптоволоконным сетям стала возможна на десятки километров (в рамках Европейской программы в области квантовой криптографии рекорд составил 144 километра). Теоретически, уже сейчас в городе можно построить квантовую сеть. Однако есть существенная разница между лабораторными и реальными условиями. Оптоволоконный кабель подвергается перепадам температур, из-за чего меняется коэффициент преломления. Из-за воздействия солнца может сдвинуться фаза фотона, что в определенных протоколах приведёт к ошибке.

Казанский Квантовый Центр, лаборатория квантовой криптографии.

Эксперименты ведутся по всему миру, в том числе и в России. Несколько лет назад появилась первая в стране линия квантовой связи. Она связала два корпуса университета ИТМО в Санкт-Петербурге. В 2016 году ученые из Казанского квантового центра КНИТУ-КАИ и университета ИТМО запустили первую в стране многоузловую квантовую сеть, добившись скорости генерирования просеянных квантовых последовательностей в 117 кбит/c на линии протяжённостью 2,5 километра.

В текущем году появилась и первая коммерческая линия связи — Российский квантовый центр связал офисы «Газпромбанка» на расстоянии 30 километров.

Осенью физики лаборатории квантовых оптических технологий МГУ и Фонд перспективных исследований испытали автоматическую систему квантовой коммуникации на расстоянии 32 километра, между Ногинском и Павловским Посадом.

С учётом темпов создания проектов в области квантовых вычислений и передачи данных, через 5-10 лет (по мнению самих физиков) технология квантовой коммуникации окончательно выйдет из лабораторий и станет такой же привычной, как мобильная связь.

Возможные недостатки

(с) Is Quantum Communication Possible

В последние годы всё чаще обсуждают вопрос информационной безопасности в сфере квантовой связи. Раньше считалось, что с помощью квантовой криптографии можно передавать информацию таким образом, что её нельзя перехватить ни при каких обстоятельствах. Оказалось, что абсолютно надежных систем не существует: физики из Швеции продемонстрировали, что при некоторых условиях квантовые системы связи можно взломать благодаря некоторым особенностям в подготовке квантового шифра. Кроме того, физики из Калифорнийского университета предложили метод слабых квантовых измерений, который фактически нарушает принцип наблюдателя и позволяет вычислить состояние квантовой системы по косвенным данным.

Впрочем, наличие уязвимостей — это не повод отказываться от самой идеи квантовой связи. Гонка между злоумышленниками и разработчиками (учеными) продолжится на принципиально новом уровне: с использованием оборудования с высокими вычислительными мощностями. Такое оснащение по силам далеко не каждому хакеру. Кроме того, квантовые эффекты, возможно, позволят ускорить передачу данных. С помощью запутанных фотонов можно передавать почти вдвое больше информации в единицу времени, если их дополнительно кодировать с помощью направления поляризации.

Квантовая связь — не панацея, но пока она остается одним из самых перспективных направлений развития глобальных коммуникаций.

sohabr.net

Квантовая передача информации станет надежнее

Российский и чешско-словацкий физики предложили метод сохранения квантовой запутанности фотонов при прохождении усилителя или передаче на большое расстояние.

Квантовая запутанность или сцепленность частиц – явление связи их квантовых характеристик. Она может возникать при рождении частиц в одном событии или их взаимодействии. Эта  связь может сохраняться, даже если частицы расходятся на большое расстояние, что позволяет передавать с их помощью информацию. Дело в том, что если измерить квантовые характеристики одной из связанных частиц, то автоматически становятся известны и характеристики второй. Эффект не имеет аналогов в классической физике. Он был экспериментально доказан в 1970 – 80-х годах, и его активно изучают в последние несколько десятилетий. В перспективе он может стать основой целого ряда информационных технологий будущего.

Рисунок Д. Белла в рукописи его статьи 1980 года. Слева по-французски написано «Носки г-на Бертлмана и природа реальности». Над левой ногой написано: «розовый», над правой ногой: «не розовый».

Установка для исследования квантовой телепортации в Токийском университете.

Визуализация процесса квантовой телепортации кубитов. Слева передатчик, справа приемник, между которыми с помощью запутанных фотонов передается информация о квантовом состоянии кубитов.

Забавную житейскую аналогию этого явления придумал один из его исследователей, физик-теоретик Джон Белл. Его коллега Рейнгольд Бертлман страдал рассеянностью и часто приходил на работу в носках разного цвета. Предсказать эти цвета было невозможно, но Белл шутил, что достаточно увидеть розовый носок на левой ноге Бертлмана, чтобы сделать вывод, что на правой ноге у него носок другого цвета, даже не видя его.

Одна из проблем практического использования явления квантовой запутанности заключается в нарушении связи при  взаимодействии частиц с окружающим миром. Такое может произойти при усилении сигнала или при его передаче на большое расстояние. Эти два фактора могут действовать и вместе, поскольку для передачи сигнала на большое расстояние его надо усиливать. Поэтому фотоны после прохождения через многие километры оптоволокна в большинстве случаев перестают быть квантово запутанными и превращаются в обычные, не связанные между собой кванты света. Чтобы избежать разрушения связи в экспериментах по квантовым вычислениям, приходится использовать охлаждение до близких к абсолютному нулю температур.

Физики Сергей Филиппов (МФТИ и Российский квантовый центр в Сколково) и Марио Зиман (Масариков университет в Брно, Чехия, и Физический институт в Братиславе, Словакия) нашли способ сохранить квантовую запутанность фотонов при прохождении через усилитель или, напротив, при передаче на большое расстояние. Подробности опубликованы в статье (см. также препринт) для журнала Physical Review A.

Суть их предложения заключается в том, что для передачи сигналов определенного вида необходимо, чтобы «волновая функция частиц в координатном представлении не должна иметь вид гауссова волнового пакета». В этом случае вероятность разрушения квантовой запутанности становится намного ниже.

Волновая функция – одно из базовых понятий квантовой механики. Она используется для описания состояния квантовой системы. В частности, явление квантовой запутанности описывается на основе представлений об общем состоянии связанных частиц с определенной волновой функцией. В соответствии с копенгагенской интерпретацией квантовой механики физический смысл волновой функции квантового объекта в координатном представлении заключается в том, что квадрат ее модуля определяет вероятность обнаружить объект в данной точке. С ее помощью можно также получить информацию об импульсе, энергии или еще какой-либо физической величине объекта.

Гауссова функция — одна из важнейших математических функций, нашедшая применение не только в физике, но и во многих других науках вплоть до социологии и экономики, имеющих дело с вероятностными событиями и использующих статистические методы. Очень многие процессы в природе приводят к этой функции при математической обработке результатов наблюдений. Ее график выглядит как колоколообразная кривая.  

Обычные фотоны, которые используются сейчас в большинстве экспериментов по квантовому запутыванию, тоже описываются гауссовой функцией: вероятность найти фотон в той или иной точке в зависимости от координат точки имеет колоколообразный гауссов вид. Как показали авторы работы, в этом случае переслать запутанность далеко не получится, даже если сигнал очень мощный.

Использование фотонов, волновая функция которых имеет иную, негауссову, форму, должна существенно повысить число доходящих до адресата запутанных фотонных пар. Однако это не означает, что сигнал можно будет передать через сколь угодно непрозрачную среду или на сколь угодно большое расстояние, – если соотношение сигнал/шум падает ниже некоторого критического порога, то эффект квантовой запутанности исчезает в любом случае.

Физики уже научились создавать запутанные фотоны, разнесенные на несколько сотен километров, и нашли им несколько очень перспективных применений. Например, для создания квантового компьютера. Это направление представляется многообещающим благодаря высокому быстродействию и низкому энергопотреблению фотонных устройств.

Другое направление – квантовая криптография, позволяющая создать линии связи, в которых всегда можно обнаружить «прослушивание». Она основана на том, что любое наблюдение за объектом есть воздействие на него. А воздействие на квантовый объект всегда меняет его состояние. Это означает, что попытка перехватить сообщение должна привести к разрушению спутанности, о чем сразу станет известно получателю.

Кроме того, квантовая запутанность позволяет реализовать так называемую квантовую телепортацию. Ее не надо путать с телепортацией (переносом в пространстве) предметов и людей из фантастических фильмов. В случае квантовой телепортации на расстояние передается не сам объект, а информация о его квантовом состоянии. Все дело в том, что все квантовые объекты (фотоны, элементарные частицы), а вместе с ними и атомы одного вида являются абсолютно одинаковыми. Поэтому, если атом в точке приема приобретает квантовое состояние, идентичное атому в точке передачи, то это эквивалентно созданию копии атома в точке приема. Если бы существовала возможность переноса квантового состояния всех атомов предмета, то в месте приема возникла бы его идеальная копия. С целью передачи информации можно телепортировать кубиты – наименьшие элементы для хранения информации в квантовом компьютере.

По материалам сайта МФТИ

www.nkj.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики