Что такое орбита планеты? Может ли планета сойти с орбиты? Что будет, если планета сойдет с орбиты? Чем ближе планета к солнцу тем меньше ее орбита


почему орбиты комет отличаются от орбит планет? / Хабр

Номинальная траектория межзвёздного астероида 1I/Оумуамуа (он же A/2017 U1). Расчёт основан на наблюдениях, начиная с 19 октября 2017 года. Заметьте, как отличаются орбиты планет (вращающихся быстро и по кругу), объектов пояса Койпера (эллиптические, почти копланарные) и орбита этого межзвёздного астероида.

Правильный ответ на вопрос о том, как планеты движутся по орбитам в нашей Солнечной системе, был дан уже несколько сотен лет назад: сначала Кеплером, чьи законы движения их описывали, а затем Ньютоном, чьи законы всемирного тяготения позволяли вывести первые. Но кометы, как происходящие из Солнечной системы, так и залетевшие издалека, не двигаются по тем же самым, почти круговым, эллипсам. Почему так происходит? Наш читатель хочет узнать:

Почему кометы движутся вокруг Солнца по параболическим путям, в отличие от планет, движущихся по эллиптическим орбитам? Откуда у комет берётся энергия на пролёт такого большого расстояния, от облака Оорта до Солнца и обратно? И как межзвёздные кометы и астероиды вылетают из своих планетных систем и посещают другие? На этот вопрос можно ответить, однако существует более общий вопрос: почему вообще объекты двигаются по орбитам именно так?Планеты Солнечной системы вместе с астероидами из пояса астероидов двигаются почти в одной и той же плоскости, по эллиптическим орбитам, близким к круговым. Но за пределами орбиты Нептуна всё становится менее надёжным.

В нашей Солнечной системе есть четыре внутренних скалистых мира, за которыми следует пояс астероидов, газовые гиганты с кучей лун и колец, а потом пояс Койпера. За поясом Койпера есть огромный рассеянный диск, после которого находится сферическое облако Оорта, простирающееся на огромное расстояние: возможно, на один или два световых года, почти на половину расстояния до ближайшей звезды.

Логарифмическая схема Солнечной системы, вплоть до ближайших звёзд, показывает распространение пояса Койпера с астероидами и облака Оорта.

В соответствии с законами гравитации, чтобы находиться на стабильной орбите определённого размера, объекту необходимо двигаться с определённой скоростью. Должен существовать баланс между потенциальной энергией системы (в виде гравитационной потенциальной энергии) и энергией движения (кинетической). Чем глубже вы находитесь в потенциальном гравитационном колодце Солнца (то есть, чем ближе вы к нему), тем меньше у вас энергии, и тем быстрее вам надо двигаться для сохранения стабильной орбиты.

Восемь планет Солнечной системы и Солнце, в масштабе размеров, но не в масштабе диаметров орбит. Из всех планет, видимых невооружённым глазом, сложнее всего увидеть Меркурий

Поэтому средняя скорость движения планет выглядит так:

  • Меркурий: 48 км/с,
  • Венера: 35 км/с,
  • Земля: 30 км/с,
  • Марс: 24 км/с,
  • Юпитер: 13 км/с,
  • Сатурн: 9.7 км/с,
  • Уран: 6.8 км/с,
  • Нептун: 5.4 км/с.
Благодаря обстановке, в которой формировалась Солнечная система – множество небольших масс, сливавшихся вместе, взаимодействовавших друг с другом, производивших множество выбросов массы – сегодняшняя ситуация довольно близка к круговой.

Орбиты планет внутренней Солнечной системы не совсем круговые, но достаточно близко к этому. Больше всего отклоняются от идеала Меркурий и Марс. Кроме того, чем ближе планета к Солнцу, тем быстрее ей надо двигаться.

Но необходимо учитывать и то гравитационное взаимодействие, что происходит позже! Если астероид или объект пояса Койпера проходят рядом с крупной массой вроде Юпитера или Нептуна, гравитационное взаимодействие может дать ему хорошего пинка. Это ощутимо изменит его скорость, добавив несколько км/с практически в любом направлении. И в случае астероида это может означать изменение орбиты с почти круговой до очень эллиптической; хорошим примером такого случая служит путь кометы Энке, которая могла произойти из пояса астероидов.

След кометы Энке, совершающей полный оборот за 3,3 года – чрезвычайно быстрое движение, распределённое по эксцентрическому эллипсу. Энке стала второй периодической кометой, найденной после кометы Галлея.

С другой стороны, если вы находитесь очень далеко, например, в поясе Койпера или в облаке Оорта, мы способны двигаться со скоростями от 4 км/с (внутренняя часть пояса Койпера) до нескольких сотен метров в секунду (для облака Оорта). Гравитационное взаимодействие с крупной планетой вроде Нептуна может поменять вашу орбиту одним из двух способов. Если Нептун забирает у вас энергию, вас вышвыривает во внутреннюю Солнечную систему, и появляется эллипс с долгим периодом, похожий на путь кометы Свифта — Таттла, той, что создала метеорный дождь Персеиды. Это может быть эллипс едва-едва гравитационно связанный с Солнцем, но всё же эллипс.

Орбита кометы Свифта — Таттла, проходящей в опасной близости к пути Земли вокруг Солнца, крайне эллиптическая по сравнению с любой планетарной орбитой. Предполагается, что давным-давно на её орбиту повлияло гравитационное взаимодействие либо с Нептуном, либо с другим массивным объектом, и в результате получилось то, что мы имеем сегодня.

Но если Нептун или любое другое тело (нам всё ещё неизвестно, что находится на краю Солнечной системы) придаёт вам дополнительную кинетическую энергию, оно может изменить вашу орбиту с гравитационно связанной эллиптической на непривязанную гиперболическую. (Параболическая орбита – это непривязанная орбита, находящаяся как раз на границе между эллиптической и гиперболической). Если кто помнит двигавшуюся близко к Солнцу комету ISON от 2013 года, распавшуюся при приближении к светилу, то она как раз была на гиперболической орбите. Обычно кометам, пришедшие с дальних краёв Солнечной системы, недостаёт нескольких километров в секунду до границы между связанной и несвязанной орбитами.

Комета ISON, войдя в Солнечную систему, приобрела хвосты, направленные в сторону от Солнца. Она «задела» Солнце, пройдя на расстоянии всего в 2 млн км, и позже из-за такой близости распалась.

Самый странный факт, кажущийся для большинства людей контринтуитивным, состоит в том, что кометам не нужно много энергии для того, чтобы ворваться во внутреннюю часть Солнечной системы! Если взять объект, находящийся пусть даже в световом годе от Солнца, и просто отпустить его, то за достаточно долгое время он просто упадёт на Солнце. Очень небольшое изменение вектора скорости далёких масс, движущихся по орбите вокруг Солнечной системы, может подтолкнуть их ближе. Такие гравитационные тычки происходят случайно, но мы видим только те объекты, которые начали двигаться быстрее, подошли ближе к Солнцу, выработали «хвосты» и стали достаточно яркими, чтобы их можно было видеть. Так и появляются кометы.

Пояс Койпера – место расположения огромного количества известных объектов Солнечной системы, но в облаке Оорта, более тусклом и расположенном гораздо дальше, объектов гораздо больше, и больше вероятность быть сбитым с обычной орбиты проходящей мимо массой, например, другой звездой. Скорость движения объектов пояса Койпера и облака Оорта относительно Солнца весьма мала.

Большая часть из них либо едва связана, либо немного не связана гравитационно, поэтому A/2017 U1 и стал таким удивительным открытием. В отличие от обычных комет и астероидов он был очень сильно несвязан гравитационно. И если объекты с краёв Солнечной системы движутся со скоростями не более, чем несколько км/с, то этот объект двигался со скоростью более 40 км/с. Он, должно быть, прибыл не из Солнечной системы, поскольку даже у Нептуна не хватило бы массы, чтобы придать ему подобное ускорение!

A/2017 U1 скорее всего происходит из межзвёздного пространства. Ближе всего к Солнцу он подошёл 9 сентября. Перемещаясь со скоростью 44 км/с, комета направляется в сторону от Земли и Солнца, за пределы Солнечной системы.

Что же заставляет комету, астероид, другой объект за пределами Солнечной системы переходить на подобную орбиту? Просто гравитация, и все гравитационные взаимодействия, происходившие за время его существования. Объекты Солнечной системы двигаются по эллиптическим орбитам вокруг Солнца. Но гравитационные взаимодействия могут это изменить, либо меняя форму эллипса, либо превращая его в несвязанную гравитационно гиперболу. В любом случае, мы увидим такой объект, если только его закинет близко к Солнцу – только так мы смогли узнать о существовании всех открытых нами комет.

Хвосты комет не повторяют траекторию движения в точности, а направляются по прямому или изогнутому пути, направленному от Солнца, в зависимости от того, что сдувается с объекта – ионы или пылинки. В любом случае кометы – их хвосты, комы, то, что отражает свет — видны нам только тогда, когда они находятся достаточно близко к Солнцу.

Кометы и астероиды, которых выкидывает из Солнечной системы, пролетают через межзвёздное пространство, и когда-нибудь они пройдут мимо других звёзд. Поскольку относительная скорость движения звёзд по галактике составляет порядка 10-30 км/с, эти межзвёздные камни будут двигаться именно так, что объясняет, почему открытый нами межзвёздный астероид двигался так быстро. Всё объясняет комбинация начальной орбиты, гравитационные взаимодействия и движение нашей Солнечной системы через галактику. Забирая энергию у объекта из пояса астероидов, пояса Койпера или облака Оорта, вы создаёте эллипс, сильнее привязанный к Солнцу. Когда вы придаёте объекту энергетическое ускорение, его может выкинуть наружу.

Сейчас мы считаем, что понимаем, как сформировалось Солнце и Солнечная система, а этот вид – иллюстрация ранних этапов формирования. Сегодня мы имеем только те объекты, что выжили в этом процессе.

Какой вывод можно сделать из этого? Со временем в нашей Солнечной системе остаётся всё меньше объектов, и количество объектов в поясе астероидов, поясе Койпера и облаке Оорта всё время уменьшается. Со временем эти образования становятся всё более разреженными. Кто знает, сколько объектов там было когда-то? Посчитать их невозможно. В Солнечной системе нам остаются доступными только выжившие.

habr.com

Почему некоторые планеты такие большие?

И действительно, почему некоторые планеты, такие как Меркурий крохотные, а другие Юпитер, Сатурн огроменные. Отчего зависит размер планеты? Попробуем порассуждать на эту тему вместе.

"Все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними": Закон всемирного тяготения; сэр Исаак Ньютон.

Соответственно закон притяжения устанавливает силу, с которой Солнце будет пытаться удержать некую планету на своей орбите, разумеется чем ближе планета будет находиться к Солнцу, тем более высокую скорость должна иметь эта планета для того, чтобы удержаться от падения на Солнце.

"Квадраты периодов двух планет соотносятся также, как кубы больших полуосей их орбит": Третий закон. Иоганн Кеплер.

Гармонию расположения небесных тел, их масс, скоростей открых Иоганн Кеплер проанализировав работы по наблюдению за небесными телами астронома Тихо Браге.

Согласно этому закону небесные тела с определенными массами и скоростями не могут занимать произвольное положение и наоборот, если тело находится слишком близко к Солнцу и имеет известную скорость, то оно не может иметь произвольную массу. Этими размышлениями я хотел сказать о том, что то, как расположены планеты в Солнечной системе, это не случайность. Каждая планета удержалась на той орбите, которую определили масса и скорость планеты. К примеру будь Земля легче, но при движении с той же скоростью, с какой она летит вокруг Солнца, она перешла бы на более высокую (дальнюю от Солнца) орбиту. Будь орбитальная скорость Земли меньше чем есть сейчас, то планета приблизилась бы к Солнцу.

"Это ж-ж-ж-ж неспроста" :Винни Пух и все все все. Винни Пух.

Наше Солнце - коварный огненный монстр, который ежесекундно тянет к себе всех и горе тому, кто от него не увернется. Планеты находящиеся рядом с ним слишком близко постоянно получают от него ожоги, и от этого теряют свою массу.

Планеты, которые находятся далеко от Солнца, не только не теряют свою массу, а наоборот приобретают, поскольку то что, притягивается или выдувается Солнцем "перехватывается" дальними планетами, их гравитационными полями. Набирая массу, планеты не могут изменить свою скорость и в результате им приходится переходить на более низкие орбиты. Радует одно, что те изменения что описаны в ответе не происходят быстро. Не одно столетие сменит другое, прежде чем появятся заметные возмущения.

Отвечая на вопрос "Почему...?"

Потому, что они находятся очень далеко от Солнца.

www.bolshoyvopros.ru

Открытие малой планеты за Нептуном поставило под сомнение «девятую планету» (3 фото)

Открытие малой планеты за Нептуном поставило под сомнение «девятую планету» (3 фото)

С тех пор как появилась возможность того, что на орбите Солнца где-то за Нептуном может кружиться большая девятая планета, астрономы были заняты ее поисками. Одна из групп изучает четыре новых движущихся объекта, найденные представителями общественности, чтобы увидеть, могут ли они быть новыми потенциальными открытиями Солнечной системы. Что самое интересное, эти ученые нашли кое-что, что может поставить под сомнение всю перспективу существования девятой планеты.

Одной из таких находок стало открытие малой планеты во внешней Солнечной системе: 2013 SY99. Этот маленький ледяной мир имеет столь отдаленную орбиту, что на один длинный, петлевой переход у него уходит 20 000 лет. Мы обнаружили SY99 при помощи телескопа Канада-Франция-Гавайи в рамках обследования происхождения внешней Солнечной системы. Большая дистанция до SY99 означает, что эта малая планета движется очень медленно по небу. Наши измерения показали, что орбита тела представляет собой очень вытянутый эллипс с ближайшим приближением к Солнцу в 50 астрономических единиц (1 а. е. — это расстояние от Земли до Солнца).

Новая малая планета петляет еще дальше, чем ранее открытые карликовые планеты, такие как Седна и 2013 VP113. Длинная ось ее орбитального эллипса составляет 730 астрономических единиц. Наши наблюдения других телескопов показали, что SY99 — это маленький, красноватый мир диаметром около 250 километров.

SY99 — один из семи известных малых миров, которые находятся на орбите за пределами Нептуна на значительных расстояниях. То, как эти «экстремальные транснептуновые объекты» расположены на своих орбитах, совершенно непонятно: их далекие пути изолированы в пространстве. Самый близкий подход к Солнцу пролегает настолько далеко за Нептуном, что их считают «отделенными» от мощного гравитационного влияния гигантских планет нашей Солнечной системы. Но в самых дальних точках они все еще слишком близки, чтобы их подталкивали медленные потоки самой галактики.

Открытие малой планеты за Нептуном поставило под сомнение «девятую планету» (3 фото)

Высказывалось предположение, что экстремальные транснептуновые объекты могут быть сгруппированы в космосе гравитационным влиянием «девятой планеты», которая вращается намного дальше, чем Нептун. Притяжение этой планеты могло вытащить планеты и отделить их орбиты, постоянно меняя их наклон. Но существование этой планеты еще далеко не доказано.

По сути, ее существование основано на орбитах всего шести объектов, которые очень тусклые и которые сложно найти даже при помощи больших телескопов. Это как смотреть глубоко в океан в поиске определенной рыбы. Рыба у поверхности будет четко видна. Но уже на метровой глубине все становится расплывчатым и неясным. Где-то на самом дне рыбы становятся совершенно невидимыми. Но наличие рыбы у поверхности мешает увидеть рыбу на дне и при этом никак не выдает присутствие последней.

Из этого вытекает, что открытие SY99 не может доказать или опровергнуть существование «девятой планеты». Но компьютерные модели показывают, что Девятая планета будет недружественным соседом для крошечных миров вроде SY99: ее гравитационное влияние сильно изменило бы орбиту такой планеты — полностью выбросив ее из Солнечной системы или вытолкнув ее на орбиту столь сильно наклоненную и отдаленную, что мы ее не увидели бы. SY99 может быть одной из множества малых миров, которые постоянно всасываются и выбрасываются этой планетой.

Альтернативное объяснение

Оказывается, что существуют и другие объяснения. Ученые представили к публикации в Astronomical Journal исследование, в котором затронули такую идею из обычной физики, как диффузия. Это явление часто встречается в обычном мире. Диффузия по сути объясняет случайное движение вещества из области высокой концентрации в область низкой концентрации — как, например, по комнате разливается аромат духов.

Они показали, что определенная форма диффузии может привести к тому, что орбиты малых планет будут изменяться с эллипса в 730 а. е. по длинной оси до эллипса в 2000 а. е. по длинной оси или больше — и обратно. В процессе этого размер каждой орбиты будет меняться на случайную величину. Когда SY99 осуществляет подход на ближайшее расстояние каждые 20 000 лет, Нептун часто находится в другой части своей орбиты на противоположном конце Солнечной системы. Но когда SY99 и Нептун оказываются близки, гравитация Нептуна будет мягко подталкивать SY99, слегка меняя ее скорость. Когда SY99 уходит прочь от Солнца, форма ее следующей орбиты будет другой.

Открытие малой планеты за Нептуном поставило под сомнение «девятую планету» (3 фото)

Длинная ось эллипса SY99 будет меняться, становясь больше или меньше в процессе «случайного блуждания», как его называют физики. Изменение орбиты происходит в истинно астрономических временных масштабах. Она рассеивается в пространстве на протяжении десятков миллионов лет. Длинная ось эллипса SY99 могла измениться на сотни астрономических единиц за всю историю Солнечной системы в 4,5 миллиарда лет.

Несколько других экстремальных транснептуновых объектов с орбитами поменьше тоже демонстрируют диффузию, но уже в меньших масштабах. За одним движутся и другие. Весьма вероятно, что постепенные эффекты диффузии действуют на десятки миллионов крошечных миров, вращающихся на ближнем краю облака Оорта (сферы ледяных объектов на краю Солнечной системы). Это нежное воздействие медленно приводит к тому, что некоторые из них случайно смещают свои орбиты ближе к нам, где мы рассматриваем их как экстремальные транснептуновые объекты.

И все же диффузия не может объяснить удаленную орбиту Седны, ближайшая точка которой находится слишком далеко от Нептуна, чтобы тот мог повлиять на форму ее орбиты. Возможно, Седна заполучила свою орбиту от проходящей звезды давным-давно. Но диффузия могла бы принести экстремальные транснептуновые объекты из внутреннего облака Оорта — без какой-либо нужды в девятой планете. Чтобы узнать это наверняка, нам придется постараться сделать больше открытий в этом далеком регионе ближайшего к нам космоса. В этом нам помогут самые большие наши телескопы.

Другие статьи:

nlo-mir.ru

Самые близкие к Солнцу планеты: описание и особенности

Практически ни для кого не секрет, что вокруг Солнца вращается множество небесных тел, к которым, кроме планет, также относятся их спутники, кометы, астероиды и другие частицы. Современным ученым удалось не просто понаблюдать за ними через телескопы и прочие приспособления, но даже провести исследования их образцов, полученных благодаря применению зондов. Все это сейчас позволяет с уверенностью ответить на многие вопросы про близкие к Солнцу планеты, их спутники и другие небесные тела.близкие к Солнцу планеты

Общее описание планет Солнечной системы

В общей сложности в составе нашей Солнечной системы насчитывается девять планет. Каждая из них отличается своими астрономическими и структурными характеристиками. Аналогично Земле, все они вращаются не только вокруг своей собственной оси, но и вокруг общего небесного светила. Самые близкие к Солнцу планеты — это Меркурий, Венера, Земля и Марс. Их еще принято называть «планетами земной группы». Общими их характеристиками являются сравнительно небольшой размер, преобладание твердых элементов в строении, отсутствие колец, а также малое количество спутников. После них идут планеты группы Юпитера, к которым относится сам Юпитер, а также Сатурн, Уран и Нептун. Им характерна довольно плотная атмосфера, а также легкие компоненты, окружающие ядра. Вокруг каждой из них существуют кольца, состоящие из раздробленных веществ, и вращаются многочисленные спутники. Что касается Плутона, то он постоянно пребывает в темноте, а некоторые из ученых вообще не считают его планетой.

Меркурий

Практически каждый школьник знает о том, какая ближайшая планета к Солнцу. Это Меркурий. По своему размеру из всех представителей системы он находится на восьмом месте. Интересный факт заключается в том, что спутники Сатурна и Юпитера (Титан и Ганимед соответственно) являются более крупными по габаритам. Диаметр Меркурия составляет 4880 километров, а его орбита проходит на расстоянии, которое равняется почти 58 миллионам километров, от Солнца. За всю историю к этой планете летал всего лишь один корабль («Маринер-10» в 1974-1975 годах), поэтому сейчас есть сведения только о 45 процентах ее поверхности. Согласно исследованиям ученых, температурные колебания здесь находятся в диапазоне от 90 до 700 оК.

Самая ближайшая планета к Солнцу чем-то напоминает Луну. Дело в том, что в ней отсутствует тектоническая плита, а на поверхности находится большое количество кратеров и огромных пропастей. По такому параметру, как плотность, Меркурий в системе находится на втором месте после Земли. Магнитное поле у этой планеты слабое. Его мощность по сравнению с Землей является в сто раз меньшей. У Меркурия нет спутников, а увидеть его можно даже невооруженным глазом.

Венера

Второй планетой, если судить по мере отдаления от Солнца, является Венера. В том случае, когда за основу берется такой критерий, как величина, она находится на шестом месте. Диаметр ее составляет более 12 тысяч километров, а орбита проходит в 108 миллионах километров от Солнца. Первым космическим кораблем, который подлетел к Венере, стал в 1962 году «Маринер-2».

По сравнению с Землей Венера вращается очень медленно. В связи с синхронизацией ее орбиты и периода вращения, к нам всегда повернута только одна сторона этой планеты. Очень часто Венеру называют «сестрой Земли», что связано с большой их схожестью. И правда, ее диаметр составляет от нашей планеты 95%, а масса — 80%. Довольно схожими также являются плотность и химический состав. Вместе с этим нельзя не отметить тот факт, что во многих других параметрах существуют радикальные отличия. Есть все основания предполагать, что когда-то на Венере было большое количество воды, которая со временем выкипела, поэтому сейчас она совершенно сухая. Планета не имеет магнитного поля (в связи с медленным вращением), а также спутников. Увидеть ее можно невооруженным глазом, ведь на нашем небе она является самой яркой «звездой».

Земля

Третьей по счёту от Солнца является Земля. Диаметр ее составляет 12 756,3 км, а орбита проходит на расстоянии 149,6 млн км от небесного светила. Как и другие близкие к Солнцу планеты, она имеет историю, насчитывающую примерно 5,5 млрд лет. В системе Земля считается самым плотным небесным телом. Вода покрывает 71% ее площади. Интересной особенностью является то, что только здесь она существует в жидком виде на поверхности. Ученые предполагают, что именно с этим во многом связана устойчивость температуры на нашей планете. Единственным природным спутником Земли является Луна. Кроме нее, на орбиту было выведено множество искусственных тел.

Марс

На четвертом месте по степени отдаления от Солнца и на седьмой позиции по величине находится Марс. Его орбита находится на расстоянии почти 228 млн км от небесного светила, а диаметр равняется 6794 км. Первым кораблем, который к нему летал, стал «Маринер-4» в 1965 году. Как и остальные близкие к Солнцу планеты, Марс может похвастаться довольно оригинальной и интересной местностью. Здесь существует множество кратеров, горных кряжей, плоскостей и холмов. Средняя температура на Марсе составляет около минус 55 градусов. Увидеть его возможно даже невооруженным глазом. Что касается спутников, то у этой планеты их два: Деймос и Фобос, которые вращаются неподалеку от ее поверхности.

fb.ru

За солнцем есть планета неизвестная планета!!!

Существует теория, что на противоположной стороне от Солнца на орбите Земли находится подобное Земле тело – Антиземля.

По орбите Земли (Земля вращается по третьей орбите) вокруг Солнца движутся ДВЕ планеты: Земля и еще какая-то планета. Солнце смотрит на Землю, размер (масса) которой меньше, чем у планеты, находящейся за спиной. Загадочная планета расположена диаметрально противоположно нам, за Солнцем, поэтому мы ее не видим! Очевидно, египтяне старались увековечить информацию, полученную от Неферов, поэтому она сохранилась не только на стенах захоронений Долины царей, но и в космогонии неопифагорейца Филолая, утверждавшего, что на орбите Земли за Солнцем, которое он называл Хестна (центральный огонь), находится подобное Земле тело – Антиземля. Вот некоторые любопытные факты, зафиксированные астрономами: Рано утром 25 января 1672 года директор Парижской обсерватории, Джованни Доменико Кассини (Giovanni Domenico Cassini), обнаружил вблизи Венеры неизвестное серповидное тело, имевшее тень, которая прямо указывала, что тело было крупной планетой, а не звездой. Серповидной была в тот момент и Венера, поэтому вначале, Кассини предположил, что обнаружил именно ее спутник. Размеры тела были очень большими. Он оценил их в четверть диаметра Венеры. 14 лет спустя, 18 августа 1686 года Кассини увидел эту планету снова, о чем оставил запись в своем дневнике. 23 октября 1740 года, незадолго до восхода Солнца загадочную планету заметил член Королевского научного общества и астроном-любитель Джеймс Шорт (James Short). Направив телескоп-рефлектор на Венеру, он увидел весьма близко от нее маленькую «звездочку». Нацелив на нее другой телескоп в 50-60 раз увеличивающий изображение и снабженный микрометром, он определил ее удаление от Венеры, составившее около 10,2°. Венера наблюдалась чрезвычайно отчетливо. Воздух был очень чистым, поэтому Шорт посмотрел на эту «звездочку» при увеличении в 240 раз и, к величайшему удивлению, обнаружил, что она находится в той же фазе, что и Венера. Это значит, что Венеру и загадочную планету освещало наше Солнце, а тень в форме серпа была такой же, как и на видимом диске Венеры. Видимый диаметр планеты равнялся примерно трети диаметра Венеры. Ее свет был не таким ярким или ясным, но с чрезвычайно резкими и четкими очертаниями, в силу того, что она находилась от Солнца значительно дальше Венеры. Линия, проходящая через центр Венеры и планету, образовывала к экватору Венеры угол порядка 18-20°. Шорт наблюдал планету в течение часа, но свечение Солнца нарастало, и он потерял ее примерно в 8.15 утра. Следующее наблюдение было сделано 20 мая 1759 года астрономом Андреасом Майером (Andreas Mayer) из Грейфсвальда (Германия). Небывалый сбой солнечной «динамо-машины», происшедший в конце XVII - начале XVIII столетий (проявившийся также в минимуме Маундера, когда в течение пятидесяти лет пятен на Солнце практически не было), стал причиной орбитальной неустойчивости Антиземли. 1761 год стал годом самых частых ее наблюдений. Несколько дней подряд: 10, 11 и 12 февраля сообщения о наблюдениях планеты (спутника Венеры) поступали от Жозефа Луи Лагранжа (J.L.Lagrange) из Марселя, позднее ставшего директором Берлинской Академии Наук. 3, 4, 7 и 11 марта ее наблюдал, член Лиможского товарищества Жак Монтень (Montaigne). Через месяц - 15, 28 и 29 марта Монбарро из Оксерра (Франция) также увидел в свой телескоп небесное тело, которое счел «спутником Венеры». Восемь наблюдений этого тела в июне, июле, августе было сделано Реднером из Копенгагена. В 1764 году загадочную планету наблюдал – Родкиер (Roedkier). 3 января 1768 года ее наблюдал Кристиан Хорребоу (Christian Horrebow) из Копенгагена. Самое позднее наблюдение было сделано 13 августа 1892 года. Американский астроном Эдуард Эмерсон Барнард (Eduard Emerson Barnard) заметил вблизи Венеры (где не было звезд, с которыми можно было бы связать наблюдение) неизвестный объект седьмой звездной величины. Затем планета ушла за Солнце. По разным оценкам размер наблюдавшейся планеты колебался от четверти до трети размеров Венеры. Если у недоуменного читателя возникла реплика про достижения современной астрономии и космические корабли, бороздящие просторы Солнечной системы, сразу же расставим все на свои места. Очень важное обстоятельство, остающееся вне поля зрения неспециалистов в том, что летящие в космическом пространстве аппараты не «смотрят по сторонам». С целью постоянного уточнения и коррекции орбиты «электронные глаза» космических станций направлены на конкретные космические объекты, используемые для целей ориентации, например, на звезду Канопус. Расстояние от Земли до Антиземли настолько велико, учитывая размеры Солнца и создаваемые им эффекты, что в бескрайних просторах засолнечного пространства может «затеряться» достаточно крупное космическое тело, оставаясь невидимкой длительное время.

Система: Земля – Солнце – Антиземля. 

Невидимый участок орбиты Земли за Солнцем равен 600 диаметрам Земли. Среднее расстояние от Земли до Солнца – 149 600 000 км, соответственно расстояние от Солнца до Антиземли тоже самое, так как она находится на орбите Земли за Солнцем. Экваториальный диаметр Солнца равен 1 392 000 км или 109 диаметрам Земли. Экваториальный диаметр Земли равен – 12 756 км. Если сложить расстояния от Земли до Солнца и от Солнца до Антиземли, учитывая диаметр Солнца, то суммарное расстояние от Земли до Антиземли составит: 300 592 000 км. Поделив это расстояние на диаметр Земли, получим 23564.75.

Теперь смоделируем ситуацию, представив Землю в виде объекта диаметром 1 метр (т.е. в масштабе 1 к 12 756 000), и посмотрим, - как будет выглядеть Антиземля по сравнению с Землей на фотографии. Для этого возьмем 2 глобуса диаметром 1 метр. Если первый глобус Земли расположить сразу перед объективом фотоаппарата, а другой Антиземли отнести на задний план, соблюдая масштаб, соответствующий нашим расчетам, то расстояние между двумя глобусами составит 23 километра 564,75 метра. Очевидно, что при таком удалении глобус Антиземли на полученном кадре будет настолько мал, что просто невиден. Разрешающая способность фотоаппарата и размер кадра будут недостаточны, чтобы на пленке или отпечатке были видны оба глобуса одновременно, тем более, если на середине расстояния между глобусами разместить мощный источник света, имитирующий Солнце размером 109 метров в диаметре! Поэтому, учитывая расстояния, размеры и светимость Солнца, и то, что взор науки направлен вообще в другую сторону, неудивительно, почему Антиземля так и остается незамеченной. Невидимый участок пространства за Солнцем, учитывая солнечную корону, равен десяти диаметрам лунной орбиты или 600 диаметрам Земли. Следовательно, места, куда может спрятаться загадочная планета, более чем достаточно. Американские астронавты, высадившиеся на Луну, не могли увидеть этой планеты, для этого им пришлось бы улететь раз в 10 -15 дальше. Чтобы раз и навсегда убедиться, что мы не одиноки в мироздании, а «братья по разуму» находятся совсем рядом, но не там, где их ищут астрономы, следует сделать фотосъемку соответствующего участка орбиты Земли. Космический телескоп «SOHO», постоянно фотографирующий Солнце, находится близко к Земле, поэтому в принципе не может увидеть планету, находящуюся за Солнцем, если та в очередной раз не изменит положение в результате мощных солнечных магнитных бурь, как это случилось в конце XVII- начале XVIII столетий.

Положение телескопа СОХО относительно Солнца и Антиземли.

Прояснить ситуацию могла бы серия снимков со станций, находящихся на околомарсианской орбите, но ракурс и увеличение должны быть достаточны, иначе открытие опять будет отложено. Тайну Антиземли скрывает не только бездна космического пространства, слепота и безразличие науки к тому, что хранят исторические памятники, но и чьи-то незримые усилия. В связи со всеми вышеизложенными фактами можно предположить, что исчезновение советской автоматической станции «Фобос-1», скорее всего, было связано с тем, что она могла стать несвоевременным «свидетелем». Стартовав 7 июля 1988 года с космодрома Байконур в сторону Марса и, выйдя на расчетную орбиту, в соответствии с программой станция начала производить съемку Солнца. На Землю было передано 140 рентгеновских изображений нашего светила и, если бы «Фобос-1» продолжил съемку дальше, то получил бы снимок, за которым последовало эпохальное открытие. Но в тот 1988 год открытия не должно было случиться, поэтому все информационные агентства мира сообщили о потере связи со станцией «Фобос-1». Ил. 6. Планета Марс и его спутник – Фобос. Справа внизу фотография сигарообразного объекта, рядом со спутником Марса Фобосом, сделанная со станции «Фобос-2». Размер спутника 28х20х18 км из чего можно судить, что сфотографированный объект был огромного размера. Судьба «Фобоса-2», стартовавшего 12 июля 1988 года, была аналогичной, хотя ему удалось достичь окрестностей Марса, вероятно, потому что он не делал снимков Солнца. Однако, 25 марта 1989 года, при сближении со спутником Марса Фобосом, связь с космическим аппаратом прервалась. Последний снимок, переданный на Землю, запечатлел странный, сигарообразный объект, который, очевидно, и отклонил «Фобос-2». Это перечень далеко не всех «странностей», происходящих в нашей Солнечной системе, которые официальная наука предпочитает замалчивать. Судите сами. Рассказывает астрофизик Кирилл Павлович Бутусов. «О наличии планеты за Солнцем и разумного поведения неких сил в связи с ней говорят необычные кометы, о которых накопилось довольно много данных. Это кометы, которые иногда залетают за Солнце, но не вылетают обратно, как будто это космический корабль. Или другой очень интересный пример – комета Ролана Арена 1956 года, которая воспринималась в радиодиапазоне. Ее излучение приняли радиоастрономы. Когда комета Ролана Арена появилась из-за Солнца, в ее хвосте работал передатчик на волне порядка 30 метров. Затем в хвосте кометы заработал передатчик на волне полметра, отделился от кометы и удалился назад за Солнце. Еще один вообще невероятный факт – это кометы, которые пролетали как бы с инспекционной проверкой, облетая по очереди планеты Солнечной системы». Все это более чем любопытно, но не будем отвлекаться от главного и вернемся в прошлое. Появившееся из-за светила серповидное тело и есть та самая 12 планета, которой не хватало для стройной и устойчивой картины строения Солнечной системы, согласующейся, в том числе, и с древними текстами. Кстати, шумеры утверждали, что именно с двенадцатой планеты нашей Солнечной системы на Землю спускались «Боги Неба и Земли». Следует подчеркнуть, что месторасположение этой планеты именно за Солнцем помещает ее в область, благоприятную для жизни, в отличие от планеты Мардук (по Ситчину), период обращения которой – 3600 лет и орбита которой, выходящая далеко за «пояс жизни» и за пределы Солнечной системы делает существование жизни на такой планете невозможным. Согласитесь, такой поворот несколько озадачивает – зато постепенно все начинает становиться на свои места. Поэтому первый вывод из вышесказанного, который мы положим на видное место, о том, что «Источник» знаний древних имел, похоже, инопланетное происхождение!5 Это заставляет в корне пересмотреть отношение к сохранившимся памятникам древности, содержащим, вероятно, бесценную информацию об окружающем нас мире, человеке, действительной истории Земли и наших удивительных предках.

Если у кого-то из читателей возникло чувство, что перед ним фантастический роман, и сама возможность существования глубоких научных представлений у наших далеких предков все еще вызывает сомнение, давайте сделаем короткое отступление и убедимся, что мировоззрение древних, по крайней мере, в своих истоках, было глубоко научно. Для этого отвлечемся от изображения из гробницы Рамсеса VI, содержащего фрагмент «Книги Земли». Справедливости ради стоит подчеркнуть, что название этого фрагмента в переводе классических египтологов звучит так: «Тот Кто Прячет Часы. Персонификация водных часов» или «Фаллическая фигура в водных часах»!? Как Вам? Такой нелепый перевод – результат невероятного образа мышления и некорректного перевода иероглифов.

</lj-embed>

Наличие или отсутствие Антиземли подтверждает теорию об отсутствии понятия бесконечности.

sakov-pavel.livejournal.com

Что такое орбита планеты? Может ли планета сойти с орбиты? Что будет, если планета сойдет с орбиты? - Полезная информация для всех

Знаете ли вы, что такое орбита планеты? География (6 класс) дала нам понятие о строении Солнечной системы, но многие наверняка так и не поняли, что же это такое, для чего она нужна и что будет, если планета изменит свою орбиту.

Понятие орбиты

Итак, что такое орбита планеты? Самое простое определение: орбита - это путь тела вокруг Солнца. Тяготение вынуждает космическое тело двигаться по одному и тому же пути вокруг звезды из года в год, из миллиона лет в следующий миллион. В среднем планеты имеют эллипсоидную орбиту. Чем ближе ее форма приближена к кругу, тем стабильнее погодные условия на планете.

Основные характеристики орбиты – период обращения и радиус. Средний радиус – это средняя величина между минимальным значением диаметра орбиты и максимальным. Период обращения – это тот отрезок времени, который необходим небесному телу для того, чтобы полностью пролететь вокруг звезды.Чем больше расстояние, разделяющее звезду и планету, тем больше будет период обращения, поскольку воздействие гравитации звезды на окраине системы гораздо слабее, чем в ее центре.

Поскольку абсолютно круглой не может быть ни одна орбита, в течение планетарного года планета бывает на различном удалении от звезды. Место, где планета ближе всего расположена к звезде, принято называть периастром. Точка, самая далекая от светила, напротив, именуется апоастром. Для Солнечной системы это перигелий и афелий соответственно.

загрузка...

Элементы орбиты

Что такое орбита планеты, понятно. Что же представляют ее элементы? Существует несколько элементов, которые принято выделять у орбиты. Именно по этим параметрам ученые определяют вид орбиты, характеристики движения планеты и некоторые другие несущественные для обывателя параметры.

  • Эксицентриситет. Это показатель, который помогает понять, насколько вытянута орбита планеты. Чем ниже эксицентриситет, тем более округлую форму имеет орбита, тогда как небесное тело с высоким эксицентриситетом движется вокруг звезды по сильно вытянутому эллипсу. Планеты Солнечной системы имеют крайне низкие эксицентриситеты, что говорит об их практически круглых орбитах. Для комет характерны необычайно высокие эксцентриситеты.
  • Большая полуось. Ее рассчитывают от планеты до усредненной точки на половине пути вдоль орбиты. Это не синоним апастрона, поскольку звезда располагается не в центре орбиты, а в одном из ее фокусов.
  • Наклонение. Для этих расчетов орбита планеты представляет собой некую плоскость. Второй параметр – базовая плоскость, то есть орбита какого-то конкретного тела в звездной системе или же принятая условно. Так в Солнечной системе базовой считают орбиту Земли, ее принято называть эклиптикой. Для планет других звезд таковой принято считать ту плоскость, которая лежит на линии обозревателя с Земли. В нашей системе почти все орбиты расположены в плоскости эклиптики. Однако кометы и некоторые другие тела движутся под высоким углом к ней.

Орбиты солнечной системы

Итак, обращение вокруг звезды – это то, что называют орбитой планеты. В нашей Солнечной системе орбиты всех планет направлены в том же направлении, в котором вращается Солнце. Такое движение объясняют теорией происхождения Вселенной: после Большого взрыва пратоплазма двигалась в одну сторону, вещества с течением времени уплотнялись, но их движение не изменилось.

Вокруг собственной оси планеты движутся аналогично вращению Солнца. Исключением из этого являются лишь Венера и Уран, которые вокруг своей оси вращаются в своем собственном уникальном режиме. Возможно, некогда они подверглись воздействию небесных тел, которые изменили направление их обращения вокруг своей оси.

Плоскость движения в Солнечной системе

Как уже было сказано, орбиты планет в Солнечной системе находятся почти на одной плоскости, близкой к плоскости орбиты Земли. Зная, что такое орбита планеты, можно предположить, что причина, по которой планеты движутся в практически одной плоскости, вероятнее всего, все та же: некогда вещество, из которого теперь состоят все тела в Солнечной системе, было единым облаком и вращалось вокруг своей оси под влиянием внешней гравитации. С течением времени вещество разделилось на то, из которого образовалось Солнце, и то, которое долгое время было пылевым диском, вращающимся вокруг светила. Пыль постепенно образовала планеты, а направление вращения осталось прежним.

Орбиты других планет

На эту тему сложно рассуждать. Дело в том, что мы знаем, что такое орбита планеты, но до недавнего времени мы не знали, существуют ли вообще планеты у других звезд. Лишь недавно, используя новейшую аппаратуру и современные методы наблюдения, ученые смогли вычислить наличие планет у других звезд. Такие планеты называют экзопланетами. Несмотря на невероятную мощность современного оборудования, заснять или увидеть удалось лишь единицы экзопланет, и наблюдение за ними удивило ученых.

Дело в том, что эти немногие планеты словно совсем не знакомы с тем, что такое орбита планеты. География утверждает, что все тела движутся по извечным законам. Но похоже что у других звезд законы нашей системы не действуют. Там приближенными к звезде оказались такие планеты, которые, казалось ученым, могут существовать только на самой окраине системы. И ведут себя эти планеты совсем не так, как им следовало бы себя вести согласно расчетам: они и вращаются не в ту сторону, что их звезда, и орбиты их лежат в различных плоскостях и имеют слишком вытянутые орбиты.

Внезапная остановка планеты

Собственно говоря, внезапная, ни с чем не связанная остановка вращения Земли просто нереальна. Но допустим, что это произошло.

Несмотря на остановку всего тела, его отдельные элементы не смогут также резко остановиться. А значит, магма и ядро продолжат по инерции свое движение. До полной остановки вся начинка земли успеет провернуться не один раз, полностью ломая кору Земли. Это вызовет мгновенный выброс громадного количества лавы, громаднейшие разломы и возникновение вулканов в крайне неожиданных местах. Таким образом, почти моментально на Земле перестанет существовать жизнь.

Кроме того, даже если удастся остановить мгновенно и "начинку", остается еще атмосфера. Она-то продолжит инерционное вращение. А это скорость порядка 500 м/с. Такой "ветерок" сметет с поверхности все живое и неживое, унося вместе с самой атмосферой в Космос.

Постепенная остановка вращения

Если вращение вокруг своей оси прекратится не внезапно, а в течение длительного времени, минимальный шанс уцелеть существует. В результате исчезновения центробежной силы океаны устремятся к полюсам, тогда как суша окажется на экваторе. В этой ситуации сутки будут равняться году, а смена сезонов будет соответствовать и наступлению времени суток: утро – весна, день – лето и т.д. Температурный режим будет гораздо более экстремальным, поскольку ни океаны, ни движение атмосферы не будут его смягчать.

Что будет, если Земля сойдет с орбиты?

Еще одна фантазия: что будет, если планета сойдет с орбиты? Просто переместиться на другую орбиту планета не может. Значит, ей помогло сделать это столкновение с другим небесным телом. В этом случае огромной силы взрыв уничтожит все и всех.

Если же предположить, что планета просто остановилась в пространстве, прекратив движение вокруг Солнца, то произойдет следующее. Под действием притяжения Солнца наша планета направится к нему. Догнать его она не сможет, поскольку Солнце тоже не стоит на одном месте. Но пролетит она достаточно близко от светила, чтобы солнечный ветер уничтожил атмосферу, испарил всю влагу и сжег всю сушу. Пустой сгоревший шарик полетит дальше. Достигнув орбит дальных планет, Земля повлияет на их движение. Оказавшись вблизи планет-гигантов, Земля, скорее всего, будет разорвана на мелкие кусочки.

Таковы сценарии вероятных событий при остановке Земли. Впрочем, ученые на вопрос "может ли планета сойти с орбиты" отвечают однозначно: нет. Она более или менее успешно существовала более 4.5 миллиардов лет, и в обозримом будущем нет ничего, что могло бы ей помешать продержаться еще столько же...

 

belmathematics.by

Что такое орбита планеты? Может ли планета сойти с орбиты? Что будет, если планета сойдет с орбиты?

Знаете ли вы, что такое орбита планеты? География (6 класс) дала нам понятие о строении Солнечной системы, но многие наверняка так и не поняли, что же это такое, для чего она нужна и что будет, если планета изменит свою орбиту.

Понятие орбиты

Итак, что такое орбита планеты? Самое простое определение: орбита - это путь тела вокруг Солнца. Тяготение вынуждает космическое тело двигаться по одному и тому же пути вокруг звезды из года в год, из миллиона лет в следующий миллион. В среднем планеты имеют эллипсоидную орбиту. Чем ближе ее форма приближена к кругу, тем стабильнее погодные условия на планете.

что такое орбита планеты

Основные характеристики орбиты – период обращения и радиус. Средний радиус – это средняя величина между минимальным значением диаметра орбиты и максимальным. Период обращения – это тот отрезок времени, который необходим небесному телу для того, чтобы полностью пролететь вокруг звезды.Чем больше расстояние, разделяющее звезду и планету, тем больше будет период обращения, поскольку воздействие гравитации звезды на окраине системы гораздо слабее, чем в ее центре.

Поскольку абсолютно круглой не может быть ни одна орбита, в течение планетарного года планета бывает на различном удалении от звезды. Место, где планета ближе всего расположена к звезде, принято называть периастром. Точка, самая далекая от светила, напротив, именуется апоастром. Для Солнечной системы это перигелий и афелий соответственно.

Элементы орбиты

Что такое орбита планеты, понятно. Что же представляют ее элементы? Существует несколько элементов, которые принято выделять у орбиты. Именно по этим параметрам ученые определяют вид орбиты, характеристики движения планеты и некоторые другие несущественные для обывателя параметры.

что такое орбита планеты география

  • Эксицентриситет. Это показатель, который помогает понять, насколько вытянута орбита планеты. Чем ниже эксицентриситет, тем более округлую форму имеет орбита, тогда как небесное тело с высоким эксицентриситетом движется вокруг звезды по сильно вытянутому эллипсу. Планеты Солнечной системы имеют крайне низкие эксицентриситеты, что говорит об их практически круглых орбитах. Для комет характерны необычайно высокие эксцентриситеты.
  • Большая полуось. Ее рассчитывают от планеты до усредненной точки на половине пути вдоль орбиты. Это не синоним апастрона, поскольку звезда располагается не в центре орбиты, а в одном из ее фокусов.
  • Наклонение. Для этих расчетов орбита планеты представляет собой некую плоскость. Второй параметр – базовая плоскость, то есть орбита какого-то конкретного тела в звездной системе или же принятая условно. Так в Солнечной системе базовой считают орбиту Земли, ее принято называть эклиптикой. Для планет других звезд таковой принято считать ту плоскость, которая лежит на линии обозревателя с Земли. В нашей системе почти все орбиты расположены в плоскости эклиптики. Однако кометы и некоторые другие тела движутся под высоким углом к ней.

Орбиты солнечной системы

орбита планеты представляет собой

Итак, обращение вокруг звезды – это то, что называют орбитой планеты. В нашей Солнечной системе орбиты всех планет направлены в том же направлении, в котором вращается Солнце. Такое движение объясняют теорией происхождения Вселенной: после Большого взрыва пратоплазма двигалась в одну сторону, вещества с течением времени уплотнялись, но их движение не изменилось.

Вокруг собственной оси планеты движутся аналогично вращению Солнца. Исключением из этого являются лишь Венера и Уран, которые вокруг своей оси вращаются в своем собственном уникальном режиме. Возможно, некогда они подверглись воздействию небесных тел, которые изменили направление их обращения вокруг своей оси.

Плоскость движения в Солнечной системе

Как уже было сказано, орбиты планет в Солнечной системе находятся почти на одной плоскости, близкой к плоскости орбиты Земли. Зная, что такое орбита планеты, можно предположить, что причина, по которой планеты движутся в практически одной плоскости, вероятнее всего, все та же: некогда вещество, из которого теперь состоят все тела в Солнечной системе, было единым облаком и вращалось вокруг своей оси под влиянием внешней гравитации. С течением времени вещество разделилось на то, из которого образовалось Солнце, и то, которое долгое время было пылевым диском, вращающимся вокруг светила. Пыль постепенно образовала планеты, а направление вращения осталось прежним.

что такое орбита планеты география 6 класс

Орбиты других планет

На эту тему сложно рассуждать. Дело в том, что мы знаем, что такое орбита планеты, но до недавнего времени мы не знали, существуют ли вообще планеты у других звезд. Лишь недавно, используя новейшую аппаратуру и современные методы наблюдения, ученые смогли вычислить наличие планет у других звезд. Такие планеты называют экзопланетами. Несмотря на невероятную мощность современного оборудования, заснять или увидеть удалось лишь единицы экзопланет, и наблюдение за ними удивило ученых.

что будет если планета сойдет с орбиты

Дело в том, что эти немногие планеты словно совсем не знакомы с тем, что такое орбита планеты. География утверждает, что все тела движутся по извечным законам. Но похоже что у других звезд законы нашей системы не действуют. Там приближенными к звезде оказались такие планеты, которые, казалось ученым, могут существовать только на самой окраине системы. И ведут себя эти планеты совсем не так, как им следовало бы себя вести согласно расчетам: они и вращаются не в ту сторону, что их звезда, и орбиты их лежат в различных плоскостях и имеют слишком вытянутые орбиты.

Внезапная остановка планеты

Собственно говоря, внезапная, ни с чем не связанная остановка вращения Земли просто нереальна. Но допустим, что это произошло.

Несмотря на остановку всего тела, его отдельные элементы не смогут также резко остановиться. А значит, магма и ядро продолжат по инерции свое движение. До полной остановки вся начинка земли успеет провернуться не один раз, полностью ломая кору Земли. Это вызовет мгновенный выброс громадного количества лавы, громаднейшие разломы и возникновение вулканов в крайне неожиданных местах. Таким образом, почти моментально на Земле перестанет существовать жизнь.

что называют орбитой планеты

Кроме того, даже если удастся остановить мгновенно и "начинку", остается еще атмосфера. Она-то продолжит инерционное вращение. А это скорость порядка 500 м/с. Такой "ветерок" сметет с поверхности все живое и неживое, унося вместе с самой атмосферой в Космос.

Постепенная остановка вращения

Если вращение вокруг своей оси прекратится не внезапно, а в течение длительного времени, минимальный шанс уцелеть существует. В результате исчезновения центробежной силы океаны устремятся к полюсам, тогда как суша окажется на экваторе. В этой ситуации сутки будут равняться году, а смена сезонов будет соответствовать и наступлению времени суток: утро – весна, день – лето и т.д. Температурный режим будет гораздо более экстремальным, поскольку ни океаны, ни движение атмосферы не будут его смягчать.

Что будет, если Земля сойдет с орбиты?

Еще одна фантазия: что будет, если планета сойдет с орбиты? Просто переместиться на другую орбиту планета не может. Значит, ей помогло сделать это столкновение с другим небесным телом. В этом случае огромной силы взрыв уничтожит все и всех.

Если же предположить, что планета просто остановилась в пространстве, прекратив движение вокруг Солнца, то произойдет следующее. Под действием притяжения Солнца наша планета направится к нему. Догнать его она не сможет, поскольку Солнце тоже не стоит на одном месте. Но пролетит она достаточно близко от светила, чтобы солнечный ветер уничтожил атмосферу, испарил всю влагу и сжег всю сушу. Пустой сгоревший шарик полетит дальше. Достигнув орбит дальных планет, Земля повлияет на их движение. Оказавшись вблизи планет-гигантов, Земля, скорее всего, будет разорвана на мелкие кусочки.

может ли планета сойти с орбиты

Таковы сценарии вероятных событий при остановке Земли. Впрочем, ученые на вопрос "может ли планета сойти с орбиты" отвечают однозначно: нет. Она более или менее успешно существовала более 4.5 миллиардов лет, и в обозримом будущем нет ничего, что могло бы ей помешать продержаться еще столько же...

fb.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики