Из чего состоит каждая планета Солнечной системы? Из чего состоит планета


Как устроены планеты — Naked Science

Восемь планет нашей Солнечной системы принято разделять на внутренние (Меркурий, Венера, Земля, Марс), расположенные ближе к звезде, и внешние (Юпитер, Сатурн, Уран, Нептун). Отличаются они не только расстоянием до Солнца, но и рядом других характеристик. Внутренние планеты ? плотные и каменистые, небольших размеров; внешние ? газовые гиганты. У внутренних совсем немного естественных спутников, или нет вовсе; у внешних их десятки, а у Сатурна есть еще и кольца.

 

Сравнительные размеры планет (слева направо: Меркурий, Венера, Земля, Марс)

©NASA

 

Базовая «анатомия» внутренних планет Солнечной системы проста: все они состоят из коры, мантии и ядра. Кроме того, у некоторых ядро разделяется на внутреннее и внешнее. Например, как устроена Земля? Твердая кора покрывает полурасплавленную мантию, а в центре находится «двухслойное» ядро ? жидкое внешнее и твердое внутреннее. Кстати, именно наличие жидкого металлического ядра создает на планете глобальное магнитное поле. На Марсе, к примеру, все немного иначе: твердая кора, твердая мантия, твердое ядро ? он напоминает цельный бильярдный шар, и никакого магнитного поля у него нет.

 

Газовые гиганты ? Сатурн и Юпитер ? сложены совершенно иначе. Из самого названия этого типа планет понятно, что они представляют собой огромные шары газа, не имеющие твердой поверхности. Если б кому-нибудь довелось спускаться на одну из таких планет, он падал бы и падал к ее центру, где расположено небольшое твердое ядро. На Уране и Нептуне аммиак, метан и другие знакомые нам газы могут существовать лишь в твердой форме, поэтому две дальние планеты представляют собой огромные шары из льда и твердых фрагментов ? ледяные гиганты. Впрочем, давайте рассмотрим их все по порядку, одну за другой.

 

Меркурий: громадное ядро

 

Ближайшая к Солнцу планета ? одна из самых плотных в нашем списке: будучи чуть меньше спутника Сатурна Титана, она более чем вдвое тяжелее его. Плотнее Меркурия только Земля, но Земля достаточно велика для того, чтобы ее уплотняла еще и собственная гравитация, а если б этот эффект не проявлялся, то Меркурий был бы чемпионом.

 

Здесь царит тяжелое железо-никелевое ядро. Оно исключительно велико для планеты таких размеров ? по некоторым предположениям, ядро может занимать основную часть объема Меркурия и иметь радиус около 1800-1900 км, примерно с Луну. Зато окружающие его кремниевые мантия и кора сравнительно тонки, не более 500-600 км в толщину. Судя по тому, что планета вращается слегка неравномерно (как сырое яйцо), ядро ее расплавлено и создает на планете глобальное магнитное поле.

 

Происхождение большого, плотного, исключительно богатого железом ядра Меркурия остается загадкой. Возможно, некогда Меркурий был в несколько раз крупнее, и ядро его не было чем-то аномальным, но в результате столкновения с неизвестным телом от него «отвалился» изрядный кусок коры и мантии. К сожалению, подтвердить эту теорию пока не удается.

 

1. Кора, толщина — 100-300 км. 2. Мантия, толщина — 600 км. 3. Ядро, радиус — 1800 км.

©Joel Holdsworth

 

Венера: толстая кора

 

Самая беспокойная и горячая планета Солнечной системы. Ее чрезвычайно плотная и бурная атмосфера состоит из углекислого газа, метана и сероводорода, который выбрасывают многочисленные активные вулканы. Поверхность Венеры на 90% покрыта базальтовой лавой, здесь имеются обширные возвышенности на манер земных материков ? жаль, что вода в жидком виде здесь существовать не может, вся она давно испарилась.

 

Внутреннее строение Венеры изучено плохо. Считается, что ее толстая силикатная кора уходит в глубину на несколько десятков километров. Судя по некоторым данным, 300-500 млн лет назад планета полностью обновила кору в результате катастрофических масштабов вулканизма. Предположено, что тепло, которое вырабатывается в недрах планеты из-за радиоактивного распада, не может на Венере «стравливаться» постепенно, как на Земле, посредством тектоники плит. Тектоники плит здесь нет, и энергия эта накапливается подолгу, и время от времени «прорывается» такими глобальными вулканическими «бурями».

 

Под корой Венеры начинается 3000-километровый слой расплавленной мантии неустановленного состава. А раз Венера относится к тому же типу планет, что и Земля, у нее предполагается и наличие железо-никелевого ядра диаметром около 3000 км. С другой стороны, наблюдения не обнаружили у Венеры собственного магнитного поля. Это может означать, что заряженные частицы в ядре не двигаются, и оно находится в твердом состоянии.

 

Возможное внутреннее строение Венеры

©Wikimedia/ Vzb83

 

Земля: всё идеально

 

Наша любимая родная планета изучена, конечно, лучше всех, в том числе и геологически. Если двигаться от ее поверхности в глубину, твердая кора будет тянуться до примерно 40 км. Резко отличаются континентальная и океаническая кора: толщина первой может доходить до 70 км, а второй ? практически не бывает более 10 км. Первая содержит немало вулканических пород, вторая покрыта толстым слоем осадочных.

 

Кора, как потрескавшаяся сухая грязь, разделена на литосферные плиты, двигающиеся относительно друг друга. Судя по современным данным, тектоника плит ? уникальное в Солнечной системе явление, которое обеспечивает постоянное и некатастрофическое, в целом спокойное обновление ее поверхности. Очень удобно для всех!

 

Ниже начинаются слои мантии: верхняя (40-400 км), нижняя (до 2700 км). На мантию приходится львиная доля массы планеты ? почти 70%. По объему мантия еще внушительнее: если не считать атмосферу, она занимает около 83% нашей планеты. Состав мантии, скорее всего, напоминает состав каменистых метеоритов, она богата кремнием, железом, кислородом, магнием. Несмотря на постоянное перемешивание, не стоит считать мантию жидкой в привычном понимании этого слова. Из-за огромного давления почти все ее вещество находится в кристаллическом состоянии.

 

Наконец, мы попадем в железо-никелевое ядро: расплавленное внешнее (на глубине до 5100 км) и твердое внутреннее (вплоть до 6400 км). На ядро приходится почти 30% массы Земли, а конвекция жидкого металла во внешнем ядре создает на планете глобальное магнитное поле.

 

Общая структура планеты Земля

©Wikimedia/ Jeremy Kemp

 

Марс: застывшие плиты

 

Хотя сам Марс заметно меньше Земли, интересно, что площадь его поверхности примерно равна площади земной суши. Но перепады высот здесь куда заметнее: на Красной планете расположены самые высокие в Солнечной системе горы. Местный Эверест ? Олимпус Монс ? поднимается на высоту 24 км, а громадные горные хребты выше 10 км могут тянуться на тысячи километров.

 

Покрытая базальтовыми породами кора планеты в северном полушарии имеет толщину около 35 км, а в южном ? аж до 130 км. Считается, что некогда на Марсе также существовало движение литосферных плит, однако с какого-то момента они остановились. Из-за этого вулканические точки перестали менять свое расположение, и вулканы стали расти и расти сотни миллионов лет, создавая исключительно могучие горные вершины.

 

Средняя плотность планеты довольно невелика ? видимо, из-за небольших размеров ядра и наличия в нем немалого (до 20%) количества легких элементов ? скажем, серы. Судя по имеющимся данным, ядро Марса имеет радиус около 1500-1700 км и остается жидким лишь частично, а значит ? способно создавать на планете лишь очень слабое магнитное поле.

 

Сравнение строения Марса и других планет земной группы

©NASA

 

Юпитер: сила тяжести и легкие газы

 

Сегодня не существует технических возможностей исследовать строение Юпитера: слишком уж велика эта планета, слишком сильна ее гравитация, слишком плотна и неспокойна атмосфера. Впрочем, где здесь кончается атмосфера и начинается сама планета, сказать трудно: этот газовый гигант, по сути, не имеет никаких четких внутренних границ.

 

По существующим теориям, в центре Юпитера имеется твердое ядро по массе в 10-15 раз больше Земли и в полтора раза крупнее ее по размерам. Впрочем, на фоне планеты-великана (масса Юпитера больше массы всех остальных планет Солнечной системы вместе взятых) эта величина совсем незначительна. Вообще же Юпитер состоит на 90% из обычного водорода, а на оставшиеся 10% ? из гелия, с некоторым количеством простых углеводородов, азота, серы, кислорода. Но не стоит думать, что из-за этого структура газового гиганта «проста».

 

При колоссальном давлении и температуре водород (а по некоторым данным, и гелий) здесь должен существовать, в основном, в необычной металлической форме ? этот слой, возможно, тянется на глубину в 40-50 тыс. км. Здесь электрон отрывается от протона и начинает вести себя свободно, как в металлах. Такой жидкий металлический водород, естественно, является отличным проводником и создает на планете исключительно мощное магнитное поле.

 

Модель внутренней структуры Юпитера

©NASA

 

Сатурн: саморазогревающаяся система

 

Несмотря на все внешние различия, отсутствие знаменитого Красного пятна и наличие еще более знаменитых колец, Сатурн очень похож на соседний Юпитер. Он состоит из водорода на 75%, и на 25% из гелия, со следовым количеством воды, метана, аммиака и твердых веществ, в основном сосредоточенных в горячем ядре. Как и на Юпитере, здесь имеется толстый слой металлического водорода, создающий мощное магнитное поле.

 

Пожалуй, главным отличием двух газовых гигантов являются теплые недра Сатурна: процессы в глубине поставляют планете уже больше энергии, чем солнечное излучение ? он излучает в 2,5 раза больше энергии сам, чем получает от Солнца.

 

Этих процессов, видимо, два (отметим, что и на Юпитере они также работают, просто на Сатурне имеют большее значение) ? радиоактивный распад и механизм Кельвина ? Гельмгольца. Работу этого механизма можно представить  довольно легко: планета охлаждается, давление в ней падает,  и она немного сжимается, а сжатие создает дополнительное тепло. Впрочем, нельзя исключать и наличие других эффектов, создающих энергию в недрах Сатурна.

 

Внутреннее строение Сатурна

©Wikimedia

 

Уран: лед и камень

 

А вот на Уране внутреннего тепла явно недостаточно, причем настолько, что это до сих пор требует специального объяснения и озадачивает ученых. Даже Нептун, на Уран очень похожий, излучает тепло в разы больше, Уран же мало того, что получает от Солнца совсем немного, так и отдает порядка 1% этой энергии. Это самая холодная планета Солнечной системы, температура здесь может падать до 50 Кельвин.

 

Считается, что основная масса Урана приходится на смесь льдов ? водного, метанового и аммиачного. Вдесятеро меньше по массе здесь водорода с гелием, и еще меньше твердых пород, скорее всего, сосредоточенных в сравнительно небольшом каменном ядре. Основная доля приходится на ледяную мантию. Правда, этот лед ? не совсем та субстанция, к которой мы привыкли, он текуч и плотен.

 

Это означает, что у ледяного гиганта тоже нет никакой твердой поверхности: газообразная, состоящая из водорода и гелия атмосфера без явной границы переходит в жидкие верхние слои самой планеты.

 

Внутреннее строение Урана  

©Wikimedia/ FrancescoA

 

Нептун: алмазный дождь

 

Как и у Урана, у Нептуна атмосфера особенно заметна, она составляет 10-20% всей массы планеты и простирается на 10-20% расстояния до ядра в ее центре. Состоит она из водорода, гелия и метана, который придает планете голубоватый цвет. Опускаясь сквозь нее вглубь, мы заметим, как атмосфера постепенно уплотняется, медленно переходя в жидкую и горячую электропроводящую мантию.

 

Мантия Нептуна в десяток раз тяжелее всей нашей Земли и богата аммиаком, водой, метаном. Она действительно горяча ? температура может достигать тысяч градусов ? но традиционно вещество это называют ледяным, а Нептун, как и Уран, относят к ледяным гигантам.

 

Существует гипотеза, согласно которой ближе к ядру давление и температура достигают такой величины, что метан «рассыпается» и «спрессовывается» в кристаллы алмазов, которые на глубине ниже 7000 км образуют океан «алмазной жидкости», который проливается «дождями» на ядро планеты. Железо-никелевое ядро Нептуна богато силикатами и лишь немногим больше земного, хотя давление в центральных областях гиганта намного выше.

 

1. Верхняя атмосфера, верхние облака 2. Атмосфера, состоящая из водорода, гелия и метана 3. Мантия, состоящая из воды, аммиака и метанового льда 4. Железо-никелевое ядро  

©NASA

 

naked-science.ru

Какое внутреннее строение планеты Земля

Только в двадцатом столетии ученые начали изучать что Земля — это целое физическое тело. Совокупность различных процессов, происходящие в оболочках Земли, действие притяжения Луны и Солнца, химический состав минералов, слагающих земную кору.

Так появилась наука геофизика, разделы которой исследуют внутренне строение Земли различными методами. Ответ на вопрос какое строение Земли — крупнейшее достижение XX века.

Например, данные полученные при помощи гравиметрии, позволили скорректировать понятие о том, что Земля — это шар и позволили выяснить, что она имеет форму геоида, а также строение глубинных слоев мантии, изучить упругие деформации.

Сейсмология — наука о землетрясениях, позволила создать сейсмическую модель строения планеты. Свой меньший, но не менее важный вклад внесли и другие науки: учение о магнетизме, электрометрия, радиометрия и многие другие.

Изучение таких огромных и сложных геологических систем планеты прямыми методами невозможно, поэтому ученые стали применять моделирование.

Из чего состоит Земля

В соответствии с классическим геологическим учением о строении нашей планеты, она состоит из таких основных геосфер: земная кора, мантия и ядро, которые в свою очередь делятся на еще на несколько слоев.

строение Земли

Вещества, содержащиеся в этих геосферах, имеют различные физические свойства, находятся в различном агрегатном состоянии и обладают отличным друг от друга минералогическим составом.

Внешний, относительно тонкий слой поверхности Земли называют корой. При помощи сейсмического метода было показано, что этот слой имеет толщину от 5 до 70 км в зависимости от того, где этот участок находится. Земная кора обычно толще на суше и тоньше под поверхностью океана.

Человек ещё не научился закапываться так глубоко, поэтому приходится пользоваться тем, что нам предоставляет природа. Действие землетрясений (а также подземных взрывов, имитирующих землетрясение), смещают пласты пород и образуются сейсмические волны, которые люди научились использовать для того, чтобы изучить из чего состоит планета Земля без необходимости бурить скважины.

Поэтому сейсмический метод до сих пор является самым удобным и совершенным, но он не раскрывает всех тайн.

Необходимо изучать и химический состав планеты. Полученные знания, прежде всего, базируются на изучении излившихся лав, которые в большинстве своем имеют базальтовый состав. Ведь сейсмологический метод позволяет узнать только о плотности вещества, но не о его происхождении и характеристиках.

таблица внутренних слоев Земли

Следующий, гораздо более экзотический поставщик информации – метеориты, они состоят из первичного вещества, из которого возникла и наша планета, что дает возможность предполагать и строить гипотезы.

Но все же, основные знания были получены с использованием сейсмологического метода — исследование скачкообразных изменений при изучении скоростей сейсмоволн, позволило предположить, что происходит постепенное уплотнение вещества планеты и разбить множество границ внутри Земли.

Соответственно, полученные знания вылились в различные модели, которые будоражили ученых двадцатого века и продолжают совершенствоваться в нашем веке. В 1909 году геофизик Андрей Мохоровичич, открыл слой, резко разделяющий земную кору и мантию, названный границей Мохо, с этого и началось детальное изучение строение Земли.

В 1936 году были доказано существование твердого, внутреннего ядра, так как ядро имеющее свойство жидкости не пропускает поперечные волны, а внутренние пропускает. Затем Буллен и Джеффрис создали общую модель Земли, которая в дальнейшем претерпевала некоторые изменения и дополнения.

планета Земля в разрезе

Эта модель вводит удобное разделение на зоны, каждая из которых отображает различные свойства (и их изменения) земных недр. Дальнейшие работы опиравшиеся на методы механики, остановились, на первый план вышла физика высоких давлений.

В 1960 году вводится понятие астеносфера — это пластичный слой, начинающийся с глубины примерно 70 км, по которому перемещаются литосферные плиты, там скорость продольных сейсмоволн скачкообразно падает, но после, постепенно она начинает расти.

Изучение строения центра планеты — ядра

Вещество составляющее мантию уплотняется, а скорости колебаний растут — возникает фазовый переход. Таких переходов несколько, и после каждого плотность возрастает до достижения границы внешнего ядра, располагающейся на глубине 2900 км, где происходит последний скачок.

Ядро открыли 1936 году, изучение показало, что оно не является однородной массой вещества, а разделяется на жидкое и твердое на расстоянии около 5156 км.

По последним данным, внешнее ядро находится в жидкой форме и является подвижными потоками расплавов тяжелых металлов — никеля железа, с которыми связано наличие магнитного поля планеты.

из чего состоит ядро Земли

Жидкое горячее внешние ядро влияет на вышележащую более холодную мантию, и возникающая разность температур порождает в некоторых местах восходящие потоки мантии — плюмы, которые поднимаются до земной коры и изливаются на поверхность. Огромное давление в центре Земли, делает внутренне ядро твердым. Оно образовалось, когда железоникелевые сплавы (более тяжёлые) «тонули» в мантии, уходя к центру планеты во время ее формирования, кроме них там присутствуют и другие элементы: сера, кремний, кислород.

Вопрос «из чего состоит ядро Земли?» до сегодняшнего дня остается предметом жаркий споров геологов. С развитием мощности и чувствительности современных методов изучения они уйдут в прошлое, но доподлинно известно следующее, что все «сферы», слагающие внутренние слои, могут колебаться, а значит структура Земли — не монолитный массив, в ней каждый слой испытывает давление другого и всё взаимосвязано.

Подводя итог, можно сказать, что вопрос общего внутреннего строения планеты изучен достаточно подробно, а точное строение и состав веществ, слагающих каждый слой в отдельности, установлены при помощи косвенных признаков и требуют более глубоких исследований.

vsesravnenie.ru

Как устроены планеты

От поверхности к ядру: восемь путешествий по недрам планет Солнечной системы.

Восемь планет нашей Солнечной системы принято разделять на внутренние (Меркурий, Венера, Земля, Марс), расположенные ближе к звезде, и внешние (Юпитер, Сатурн, Уран, Нептун). Отличаются они не только расстоянием до Солнца, но и рядом других характеристик. Внутренние планеты − плотные и каменистые, небольших размеров; внешние − газовые гиганты. У внутренних совсем немного естественных спутников, или нет вовсе; у внешних их десятки, а у Сатурна есть еще и кольца. Сравнительные размеры планет (слева направо: Меркурий, Венера, Земля, Марс)©NASA

Базовая «анатомия» внутренних планет Солнечной системы проста: все они состоят из коры, мантии и ядра. Кроме того, у некоторых ядро разделяется на внутреннее и внешнее. Например, как устроена Земля? Твердая кора покрывает полурасплавленную мантию, а в центре находится «двухслойное» ядро − жидкое внешнее и твердое внутреннее. Кстати, именно наличие жидкого металлического ядра создает на планете глобальное магнитное поле. На Марсе, к примеру, все немного иначе: твердая кора, твердая мантия, твердое ядро − он напоминает цельный бильярдный шар, и никакого магнитного поля у него нет.

Газовые гиганты − Сатурн и Юпитер − сложены совершенно иначе. Из самого названия этого типа планет понятно, что они представляют собой огромные шары газа, не имеющие твердой поверхности. Если б кому-нибудь довелось спускаться на одну из таких планет, он падал бы и падал к ее центру, где расположено небольшое твердое ядро. На Уране и Нептуне аммиак, метан и другие знакомые нам газы могут существовать лишь в твердой форме, поэтому две дальние планеты представляют собой огромные шары из льда и твердых фрагментов − ледяные гиганты. Впрочем, давайте рассмотрим их все по порядку, одну за другой.

Меркурий: громадное ядро

Ближайшая к Солнцу планета − одна из самых плотных в нашем списке: будучи чуть меньше спутника Сатурна Титана, она более чем вдвое тяжелее его. Плотнее Меркурия только Земля, но Земля достаточно велика для того, чтобы ее уплотняла еще и собственная гравитация, а если б этот эффект не проявлялся, то Меркурий был бы чемпионом.

Здесь царит тяжелое железо-никелевое ядро. Оно исключительно велико для планеты таких размеров − по некоторым предположениям, ядро может занимать основную часть объема Меркурия и иметь радиус около 1800-1900 км, примерно с Луну. Зато окружающие его кремниевые мантия и кора сравнительно тонки, не более 500-600 км в толщину. Судя по тому, что планета вращается слегка неравномерно (как сырое яйцо), ядро ее расплавлено и создает на планете глобальное магнитное поле.

Происхождение большого, плотного, исключительно богатого железом ядра Меркурия остается загадкой. Возможно, некогда Меркурий был в несколько раз крупнее, и ядро его не было чем-то аномальным, но в результате столкновения с неизвестным телом от него «отвалился» изрядный кусок коры и мантии. К сожалению, подтвердить эту теорию пока не удается.

1. Кора, толщина — 100-300 км. 2. Мантия, толщина — 600 км. 3. Ядро, радиус — 1800 км.©Joel Holdsworth

Венера: толстая кора

Самая беспокойная и горячая планета Солнечной системы. Ее чрезвычайно плотная и бурная атмосфера состоит из углекислого газа, метана и сероводорода, который выбрасывают многочисленные активные вулканы. Поверхность Венеры на 90% покрыта базальтовой лавой, здесь имеются обширные возвышенности на манер земных материков − жаль, что вода в жидком виде здесь существовать не может, вся она давно испарилась.

Внутреннее строение Венеры изучено плохо. Считается, что ее толстая силикатная кора уходит в глубину на несколько десятков километров. Судя по некоторым данным, 300-500 млн лет назад планета полностью обновила кору в результате катастрофических масштабов вулканизма. Предположено, что тепло, которое вырабатывается в недрах планеты из-за радиоактивного распада, не может на Венере «стравливаться» постепенно, как на Земле, посредством тектоники плит. Тектоники плит здесь нет, и энергия эта накапливается подолгу, и время от времени «прорывается» такими глобальными вулканическими «бурями».

Под корой Венеры начинается 3000-километровый слой расплавленной мантии неустановленного состава. А раз Венера относится к тому же типу планет, что и Земля, у нее предполагается и наличие железо-никелевого ядра диаметром около 3000 км. С другой стороны, наблюдения не обнаружили у Венеры собственного магнитного поля. Это может означать, что заряженные частицы в ядре не двигаются, и оно находится в твердом состоянии.

Возможное внутреннее строение Венеры©Wikimedia/ Vzb83

Земля: всё идеально

Наша любимая родная планета изучена, конечно, лучше всех, в том числе и геологически. Если двигаться от ее поверхности в глубину, твердая кора будет тянуться до примерно 40 км. Резко отличаются континентальная и океаническая кора: толщина первой может доходить до 70 км, а второй − практически не бывает более 10 км. Первая содержит немало вулканических пород, вторая покрыта толстым слоем осадочных.

Кора, как потрескавшаяся сухая грязь, разделена на литосферные плиты, двигающиеся относительно друг друга. Судя по современным данным, тектоника плит − уникальное в Солнечной системе явление, которое обеспечивает постоянное и некатастрофическое, в целом спокойное обновление ее поверхности. Очень удобно для всех!

Ниже начинаются слои мантии: верхняя (40-400 км), нижняя (до 2700 км). На мантию приходится львиная доля массы планеты − почти 70%. По объему мантия еще внушительнее: если не считать атмосферу, она занимает около 83% нашей планеты. Состав мантии, скорее всего, напоминает состав каменистых метеоритов, она богата кремнием, железом, кислородом, магнием. Несмотря на постоянное перемешивание, не стоит считать мантию жидкой в привычном понимании этого слова. Из-за огромного давления почти все ее вещество находится в кристаллическом состоянии.

Наконец, мы попадем в железо-никелевое ядро: расплавленное внешнее (на глубине до 5100 км) и твердое внутреннее (вплоть до 6400 км). На ядро приходится почти 30% массы Земли, а конвекция жидкого металла во внешнем ядре создает на планете глобальное магнитное поле.

Общая структура планеты Земля©Wikimedia/ Jeremy Kemp

Марс: застывшие плиты

Хотя сам Марс заметно меньше Земли, интересно, что площадь его поверхности примерно равна площади земной суши. Но перепады высот здесь куда заметнее: на Красной планете расположены самые высокие в Солнечной системе горы. Местный Эверест − Олимпус Монс − поднимается на высоту 24 км, а громадные горные хребты выше 10 км могут тянуться на тысячи километров.

Покрытая базальтовыми породами кора планеты в северном полушарии имеет толщину около 35 км, а в южном − аж до 130 км. Считается, что некогда на Марсе также существовало движение литосферных плит, однако с какого-то момента они остановились. Из-за этого вулканические точки перестали менять свое расположение, и вулканы стали расти и расти сотни миллионов лет, создавая исключительно могучие горные вершины.

Средняя плотность планеты довольно невелика − видимо, из-за небольших размеров ядра и наличия в нем немалого (до 20%) количества легких элементов − скажем, серы. Судя по имеющимся данным, ядро Марса имеет радиус около 1500-1700 км и остается жидким лишь частично, а значит − способно создавать на планете лишь очень слабое магнитное поле.

Сравнение строения Марса и других планет земной группы©NASA

Юпитер: сила тяжести и легкие газы

Сегодня не существует технических возможностей исследовать строение Юпитера: слишком уж велика эта планета, слишком сильна ее гравитация, слишком плотна и неспокойна атмосфера. Впрочем, где здесь кончается атмосфера и начинается сама планета, сказать трудно: этот газовый гигант, по сути, не имеет никаких четких внутренних границ.

По существующим теориям, в центре Юпитера имеется твердое ядро по массе в 10-15 раз больше Земли и в полтора раза крупнее ее по размерам. Впрочем, на фоне планеты-великана (масса Юпитера больше массы всех остальных планет Солнечной системы вместе взятых) эта величина совсем незначительна. Вообще же Юпитер состоит на 90% из обычного водорода, а на оставшиеся 10% − из гелия, с некоторым количеством простых углеводородов, азота, серы, кислорода. Но не стоит думать, что из-за этого структура газового гиганта «проста».

При колоссальном давлении и температуре водород (а по некоторым данным, и гелий) здесь должен существовать, в основном, в необычной металлической форме − этот слой, возможно, тянется на глубину в 40-50 тыс. км. Здесь электрон отрывается от протона и начинает вести себя свободно, как в металлах. Такой жидкий металлический водород, естественно, является отличным проводником и создает на планете исключительно мощное магнитное поле.

Модель внутренней структуры Юпитера©NASA

Сатурн: саморазогревающаяся система

Несмотря на все внешние различия, отсутствие знаменитого Красного пятна и наличие еще более знаменитых колец, Сатурн очень похож на соседний Юпитер. Он состоит из водорода на 75%, и на 25% из гелия, со следовым количеством воды, метана, аммиака и твердых веществ, в основном сосредоточенных в горячем ядре. Как и на Юпитере, здесь имеется толстый слой металлического водорода, создающий мощное магнитное поле.

Пожалуй, главным отличием двух газовых гигантов являются теплые недра Сатурна: процессы в глубине поставляют планете уже больше энергии, чем солнечное излучение − он излучает в 2,5 раза больше энергии сам, чем получает от Солнца.

Этих процессов, видимо, два (отметим, что и на Юпитере они также работают, просто на Сатурне имеют большее значение) − радиоактивный распад и механизм Кельвина − Гельмгольца. Работу этого механизма можно представить довольно легко: планета охлаждается, давление в ней падает, и она немного сжимается, а сжатие создает дополнительное тепло. Впрочем, нельзя исключать и наличие других эффектов, создающих энергию в недрах Сатурна.

Внутреннее строение Сатурна©Wikimedia

Уран: лед и камень

А вот на Уране внутреннего тепла явно недостаточно, причем настолько, что это до сих пор требует специального объяснения и озадачивает ученых. Даже Нептун, на Уран очень похожий, излучает тепло в разы больше, Уран же мало того, что получает от Солнца совсем немного, так и отдает порядка 1% этой энергии. Это самая холодная планета Солнечной системы, температура здесь может падать до 50 Кельвин.

Считается, что основная масса Урана приходится на смесь льдов − водного, метанового и аммиачного. Вдесятеро меньше по массе здесь водорода с гелием, и еще меньше твердых пород, скорее всего, сосредоточенных в сравнительно небольшом каменном ядре. Основная доля приходится на ледяную мантию. Правда, этот лед − не совсем та субстанция, к которой мы привыкли, он текуч и плотен.

Это означает, что у ледяного гиганта тоже нет никакой твердой поверхности: газообразная, состоящая из водорода и гелия атмосфера без явной границы переходит в жидкие верхние слои самой планеты.

Внутреннее строение Урана©Wikimedia/ FrancescoA

Нептун: алмазный дождь

Как и у Урана, у Нептуна атмосфера особенно заметна, она составляет 10-20% всей массы планеты и простирается на 10-20% расстояния до ядра в ее центре. Состоит она из водорода, гелия и метана, который придает планете голубоватый цвет. Опускаясь сквозь нее вглубь, мы заметим, как атмосфера постепенно уплотняется, медленно переходя в жидкую и горячую электропроводящую мантию.

Мантия Нептуна в десяток раз тяжелее всей нашей Земли и богата аммиаком, водой, метаном. Она действительно горяча − температура может достигать тысяч градусов − но традиционно вещество это называют ледяным, а Нептун, как и Уран, относят к ледяным гигантам.

Существует гипотеза, согласно которой ближе к ядру давление и температура достигают такой величины, что метан «рассыпается» и «спрессовывается» в кристаллы алмазов, которые на глубине ниже 7000 км образуют океан «алмазной жидкости», который проливается «дождями» на ядро планеты. Железо-никелевое ядро Нептуна богато силикатами и лишь немногим больше земного, хотя давление в центральных областях гиганта намного выше.

1. Верхняя атмосфера, верхние облака2. Атмосфера, состоящая из водорода, гелия и метана3. Мантия, состоящая из воды, аммиака и метанового льда4. Железо-никелевое ядро©NASA

interesno.cc

Из чего состоит наша планета?

Из чего состоит наша планета?

Из чего состоит наша планета?

Конечно, уже очень давно известно, что наша планета не является единственной во всем космическом пространстве. Одна только Солнечная система насчитывает восемь планет, что уж говорить про другие системы и галактики. Пока учеными доказано, что разумная жизнь есть только на Земле.

Но ведь космос очень мало изведан людьми, и точно утверждать об этом не может никто. Большинство планет просто не приспособлено для жизни из-за их особенностей. А задумывался ли кто-нибудь о том, из чего же состоит наша планета и что находится под землей, по которой мы ходим?

Прежде всего, наша планета Земля состоит из слоев, которые называет концентрическими. Земная кора составляет верхний слой. Толщина ее неравномерна. В горной местности на материках она составляет примерно 70-90 километров, а, например, в районах океана она сильно сужается и составляет около 7-10 километров. Земная кора состоит из определенных пород, основными из которых являются кремний, железо, алюминий и щелочные металлы. Еще одна кора называется континентальной, и состоит она из двух слоев: верхнего (гранитного) и нижнего (базальтового). Континентальная кора включает в себя такие породы, возраст которых может превышать 3 миллиарда лет. Еще одна кора, океаническая, имеет всего один слой. Он включает в себя породы, называемые базальтами. Сюда входят магний, железо, натрий, кальций. Возраст этой коры равен приблизительно 100-150 миллионам лет, что, конечно, гораздо меньше возраста самой Земли.

Биохимик из Америки Франк Кларк высчитал, что более 47 % земной коры составляет кислород, то есть именно тот газ, который нужен нам для жизни. А если говорить о химических элементах, то многие из них присутствует в составе Земли, однако в весьма незначительных количествах.

Далее за земной корой следует мантия, которая занимает большую часть Земли, а если быть точнее, то ее 82 %. Мантию от земной коры отделяет слой, который называется поверхность Мохоровичича. Сама мантия состоит из двух слоев: верхнего и нижнего. Земная кора вместе с верхним слоем мантии составляют твердую оболочку нашей планеты, называемую литосферой. Прямо под ней расположена астеносфера, которая состоит из пород, находящихся в состоянии частичной расплавленности.

В самых недрах земного шара находится ядро, которое состоит из внешнего слоя (жидкого) и нижнего слоя (твердого). Расплавленные железо и никель составляют основу внешнего слоя. Внутренний слой также включает в себя этот сплав, который, однако, является твердым, даже несмотря на огромной высоты температуру. А связано это с тем, что давление в самом центре Земли очень большое, и эти породы просто не могут быть жидкими.

Безусловно, наша планета имеет уникальное строение уже много миллиардов лет. Благодаря ее уникальным свойствам мы имеем возможность жить на ней, постоянно изучать ее и открывать что-то новое. И хотелось бы верить, что планета будет оставаться такой же на протяжении еще огромного количества времени для того, чтобы через много миллиардов лет наши потомки смогли бы так же, как и мы восхищаться чудесами нашей Земли.

Поделиться новостью в соцсетях Врожденная дисплазия тазобедренного сустава у ребенка « Предыдущая запись Лесная завирушка (Prunella modularis) Следующая запись »

mei-sonnen.ru

Из чего состоит Девятая планета? – Журнал "Все о Космосе"

23:14 12/04/2016

👁 207

Экзопланета планета - сирота

Самое интересное в астрономии — это, конечно, вглядываться в неизвестное и открывать что-то новое в глубокой бездне космоса. И когда намеки на «что-то новое» появляются у нас на космическом пороге, глобальное волнение уже не скрыть, оно дрожью проносится по всему миру, заглядывая во все щели. Мы говорим о пресловутой «девятой планете»: гипотетическом мире, который, как полагают, оказывает гравитационное влияние на внешнюю Солнечную систему, а точнее на замороженные поля астероидов далеко за пределами орбиты Плутона.

В январе астрономы Калтеха Майк Браун и Константин Батыгин объявили об открытии: у группы объектов в поясе Койпера — за орбитой Плутона — обнаружили странную орбиту. Пояс Койпера и странности, вообще, часто идут плечом к плечу, но в этом случае движение небольших объектов намекало на другой таинственный объект, который может гравитационно стягивать эти объекты, рождая странную синхронность.Поиск планет во внешней Солнечной системе — дело непростое. Хотя у нас есть очень мощные обсерватории, которые могут видеть мельчайшие детали в галактиках в миллионах световых лет от Земли, и телескопы, которые могут точно определять движение крошечных астероидов, прорывающихся через внутреннюю Солнечную систему, внешняя Солнечная система остается по большей части загадочным и неисследованным регионом местного космоса. Если планета скромных размеров будет вращаться достаточно далеко от Солнца, она будет слишком малой и слишком холодной, чтобы ее могли заметить обсерватории. А если ее не смогут выявить в рамках обследования неба, мощные телескопы не будут знать, куда целиться. Эти далекие планеты будут не больше чем точками в океане звезд. В конце концов, космос очень большой, и планетарные открытия требуют сочетания мастерства, точных инструментов и даже удачи.

Девятая планета

Состав девятой планеты по мнению Мордасини и Линдера, сверху вниз: атмосфера — H/He; газовый слой — H/He; льды — h30; силикатная мантия — MgSiO3; железное ядро — Fe

В случае с девятой планетой, ее пока не наблюдали напрямую; как с открытием Нептуна в 1846 году, именно движение других объектов Солнечной системы может указывать на присутствие чего-то крупного в этой области. Теперь астрономы проявляют особую изобретательность и изучают траекторию движения космического аппарата «Новые горизонты» в надежде увидеть любые неучтенные отклонения от запланированного пути через пояс Койпера, которые также могли бы указать на гравитацию Девятой планеты.

В то же время ученые из Университета Берна в Швейцарии решили пойти еще дальше и попытаться определить рамки того, насколько большой и «теплой» может быть планета. Их исследование было опубликовано в журнале Astronomy & Astrophysics.

По моделям Брауна и Батыгина, Девятая планета должна иметь высокую эллиптическую орбиту, и подходить не ближе чем на 200 а. е. (200 расстояний от Земли до Солнца, в 4 раза дальше, чем расстояние от Солнца до Плутона) и не дальше чем на 1200 а. е. Короче говоря, этот мир далеко за границей нашей «классической» Солнечной системы и даже дальше самого далекого объекта Солнечной системы, известного на сегодняшний день, карликовой планеты Эрида (она находится в 100 а. е.). Эрида тоже была обнаружена Брауном в 2005 году, и это открытие впоследствии привело к понижению Плутона в ранге.

После того как планету не нашли на инфракрасных обзорах, астрономы Берна Кристоф Мордасини и аспирант Эстер Линдер намереваются расшифровать дополнительные характеристики Девятой планеты с помощью известных планетарных моделей эволюции, которые применяются к планетам, вращающимся у других звезд — экзопланет.Браун и Батыгин оценили массу Девятой планеты, исходя из гравитационного влияния, которое она, по идее, оказывает. Планета должна быть массивнее Земли в 10 раз, что делает ее этаким «мини-Ураном» — местом с твердым ядром и холодным плотным слоем газа.

При том что Девятая планета пока не показывалась на инфракрасных обзорах (вроде “WISE” НАСА), ученые уже определили верхний предел физического размера Девятой планеты и узнали ее приблизительную массу, удаленность от Солнца и возможную модель планетообразования. На основе этих данных Мордасини и Линдер сформировали представление о температуре и размере планеты.

По их подсчетам, Девятая планета должна иметь радиус в 3,7 земного и температуру верхних слоев атмосферы в -226 градусов по Цельсию. Эти цифры были выведены, исходя из предположительной орбиты Девятой планеты вокруг нашего Солнца и возраста Солнечной системы; гипотетический мир должен был образоваться в протопланетарном диске нашего Солнца, который начал конденсироваться в планеты порядка 4,6 миллиарда лет назад.

На таком большом расстоянии от Солнца для нас может стать неожиданностью, что Девятая планета, конечно, холодная, но все еще теплее, чем предсказывалось по одному только нагреву солнечным светом. По мере формирования планеты, энергия их ядер может поддерживать недра расплавленными миллиарды лет. Это тепло медленно рассеивается и может наблюдаться с помощью высокочувствительных инфракрасных телескопов.

Температура девятой планеты в 47 кельвинов (-226 градусов по Цельсию) означает, что «излучение планеты преобладает над остыванием ядра, в противном случае температура составила бы всего 10 кельвинов», пишет Линдер. «Ее внутренняя сила примерно в 1000 больше поглощаемой». Это означает, что отраженный солнечный свет будет ничтожным по сравнению с внутренним нагревом, который производит этот мир, что делает его инфракрасный сигнал гораздо более мощным, чем если бы мы искали отраженный солнечный свет в оптическом диапазоне длин волн. Это очевидно для астрономов, которые ищут ледяные объекты далеко от Солнца, но в случае с Девятой планетой, которая может быть самым горячим объектом на задворках Солнечной системы, сложно называть «теплым» что-то с температурой в 47 градусов выше абсолютного нуля. «Тепло» это относительный термин.

Отталкиваясь от немногих подсказок о природе Девятой планеты, интересно посмотреть, как этот гипотетический мир будет обретать форму. «С нашим исследованием предполагаемая планета 9 перестает быть просто точечной массой, она приобретает форму, физические свойства», говорит Мордасини.

В настоящее время астрономы используют наблюдения и модели Брауна и Батыгина, чтобы отследить возможное местоположение Девятой планеты, но с инфракрасными данными, которые нам пока доступны, вычленить мир будет весьма трудно.Как же выглядит Девятая планета? Возможно, нам придется подождать, пока не будет построен Большой синоптический обзорный телескоп возле Серро Тололо в Чили. Только тогда мы сможем доказать, что этот мир точно существует, и поймем, действительно ли это небольшая газообразная планета или что-то совершенно другое. Между тем теоретические исследования вроде этих помогают нам не только отследить местоположение Девятой планеты, но и открывают для нас дразнящую возможность посмотреть на то, как выглядит Девятая планета и из чего состоит.

И все же в основе этого исследования лежит гипотетическая планета, которая сформировалась из протопланетарного диска нашего Солнца, подобно другим нашим планетам. Но остается возможность того, что Девятая планета была захвачена из другой звездной системы (такой сценарий мог бы объяснить высокий эксцентриситет предсказанной орбиты). До тех пор, пока мы фактически не увидим эту планету, мы не сможем точно понять, родилась она в нашей Солнечной системе или нет.По материалам Hi-news

Журнал "Все о Космосе" рекомендует:

aboutspacejornal.net

Из чего состоит каждая планета Солнечной системы?

Главная причина того, что все планеты неодинаковы  – это различный состав веществ, из которых состоит каждая из них, даже несмотря на то, что все они являются частью Вселенной и что все они   вращаются происходит вокруг Солнца. Число сведений о составе планет весьма  незначительно, хотя с каждым 10-летием информации на эту тему  благодаря космическим  исследованиям становится больше. Итак,поподробнее о составе каждой из планет.

Меркурий: является небольшим горным миром. На этой планете имеется пара затемненных участков и куча кратеров, но там нет атмосферы и воды. 

Венера: является шаром белого цвета с туманными пятнами. Планета практически полностью окутана слоем белых облаков, которые состоят не из водяного пара, а из паров соляной кислоты. Под ними находится атмосфера Венеры, в основном  состоящая из углекислого газа, непригодного для дыхания. Она поглощает солнечное тепло, как одеяло, и  потому температура на поверхности Венеры достигает примерно 500 градусов Цельсия, и из-за этого на ней отсутствует  жидкая вода. 

Марс, или по -другому  «Красная планета» , назван так из-за цвета его пустынь. Габаритами Марс в 2 раза меньше Земли и имеет очень тонкий слой атмосферы,  состоящего  из углекислого газа, в котором образуются облака. На Марсе не было обнаружено каких-либо  определенных признаков жизни. Скорей всего, главная причина этого  в том, что там суровый холод. 

Юпитер выглядит как желтый шар с цветными полосами облаков, которые огибают  его по окружности, и огромным красным пятном, четко просматривающимся на фоне облаков. Юпитер  представляет из себя   жидкий шар,  состоящий в основном  из водорода и гелия, который становится плотней к центру планеты. 

В составе планеты Сатурн главным образом входит  жидкий водород . Эта планета   имеет вокруг себя пару ярких колец, которые состоят из кучи мелких частиц,  двигающихся по своим орбитам вокруг нее.

 Уран , как и Сатурн, окружен кольцами, которые только намного темнее. 

Нептун – планета зеленого цвета, но весьма тусклая. 

Плутон - самая маленькая планета Солнечной системы. Орбита у него  эллипсовидной формы, и именно из-за этого он периодически подходит к Солнцу поближе, чем Нептун. 

Изучение космоса с помощью спутников и автоматических станций помогает исследователям узнать побольше о каждом элементе  Солнечной системы.

crazy.casa

Солнечная система - состав, строение, исследование

Космическое пространство > Солнечная система

Солнечная Система представляет собой совокупность неких соседей в космосе, существующих в определенных пределах. В эту необыкновенную систему небесных тел входят: звезда, 8 планет, 140 лун и множество других объектов, таких так астероиды, кометы, а также планеты-карлики. В самом центре Солнечной Системы расположена средняя по величине и возрасту желтая звезда, которую мы называем Солнцем. Вокруг нее, уже около пяти миллиардов лет, в вечном танце кружат 8 планет, а также — другие вращающиеся тела. Размеры планет варьируются от маленьких каменных миров до гигантов, состоящих из газа и льда. Вокруг таких планет вращается множество лун, размером от скалистых астероидов до состоявшихся планет с собственной атмосферой.

Состав Солнечной системы

Солнце

Солнце — источник энергии нашей планеты. Сильное гравитационное поле Солнца удерживает планеты на своих местах. От энергии солнца зависит погодные условия и климат на планетах, а также биологическая жизнь на Земле. Без Солнца жизнь на Земле была бы невозможна.

Планеты земной группы

Солнечная система поделена на две части — внутренняя и внешняя области. Планеты земной группы располагаются во внутренней области (Меркурий, Венера, Земля и Марс).
Покинув красную планету с её лунами позади, мы обнаруживаем перед собой странное скопление небольших планетообразных объектов, именуемых Поясом астероидов Солнечной системы.

Пояс астероидов

Газовые гиганты

Газовые гиганты Юпитер и Сатурн, а также ледяные гиганты Уран и Нептун находятся во внешней области. Две области разделены между собой Поясом астероидов. Планеты земной группы состоят из силикатной коры, мантии и металлического ядра. Планеты внешней области состоят преимущественно из водорода и гелия.

Кометы

Карликовые планеты

Пояс Койпера и Облако Оорта

За пределами Солнечной системы

За Нептуном расположены два региона — пояс Койпера и облако Оорта. Пояс Койпера состоит из карликовых планет и множества мелких небесных тел. На значительном отдалении от пояса Койпера расположено облако Оорта — обитель ледяных комет. Ученые располагают незначительной информацией о данных регионах, однако, они надеются, что в 2015 году, когда спутник NASA достигнет Плутона, наука обильно пополнится новой информацией.

Другие объекты Солнечной системы

Кометы — космические снежки, состоящие из замороженных газов, скал и пыли и размером примерно с небольшой город. Когда орбита кометы приносит ее близко к Солнцу, она нагревается и извергает пыль и газ, вследствие чего она становится ярче, чем большинство планет.
Карликовые планеты вращаются вокруг Солнца, как и восемь больших планет. Но в отличие от планет, карликовые планеты не в состоянии очистить свой орбитальный путь. Карликовая планета намного меньше, чем планеты (меньше, чем даже спутник Земли Луна). Наиболее известной из карликовых планет является Плутон.
Пояс Койпера — это дискообразная область ледяных объектов за орбитой Нептуна – в миллиардах километрах от нашего Солнца. Плутон и Эрида являются самыми известными из этих ледяных миров. Там могут быть еще сотни ледяных карликов. Пояс Койпера и еще более далекое Облако Оорта, как полагают, являются домом для комет, вращающихся вокруг Солнца.
Наша звезда и ее планеты – лишь крошечная часть галактики Млечный Путь. За пределами Солнечной системы лежит огромное пространство, которое представляет собой огромный город из звезд, настолько большой, что потребовалось бы 100000 лет, чтобы пересечь его со скоростью света. Все звезды в ночном небе, в том числе наше Солнце — лишь некоторые из жителей этой галактики. Помимо нашей собственной галактики, существует огромное количество других галактик

Строение Солнечной системы

В настоящий момент мы знаем, что Солнечная система состоит из Солнца, восьми планет и их лун, а также астероидов, комет, карликовых небесных тел, пояса Койпера и облака Оорта. Восемь планет, за исключением Урана, движутся вокруг солнца в одинаковом направлении и той же плоскости, называемой эклиптической плоскостью.

Порядок расположения планет Солнечной системы (слева-направо): Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун

История исследования Солнечной системы

На протяжении многих веков люди взирали на ночное небо и размышляли над таинственными огнями, пытаясь хотя бы частично понять суть происходящего. Вскоре люди заметили, что некоторые огни передвигаются по небу по определенным траекториям. Данные огни были названы планетами, что с греческого языка переводится как скиталец. На момент появления в научном сообществе понятия «планета», ученые считали, что земля является центром вселенной, поэтому планеты представлялись как божественные посланники, странствующие по небесным просторам. Многие планеты получили божественные имена — Меркурий, Марс, Венера, Юпитер, Сатурн.

После того, как дремучее средневековье сменилось эпохой возрождения, научные парадигмы претерпели значительные изменения. Люди начали постепенно приходить к осознанию того, что все-таки планеты движутся вокруг солнца, а не вокруг земли. Огромный вклад в астрономию данного периода был сделан такими учеными как Галилео, Коперник и Кеплер.

С изобретением телескопа ученые осознали, что наша Солнечная система имеет гораздо более сложно строение, чем предполагалось ранее. Вскоре были обнаружены луны Юпитера, а также кольца Сатурна. Так началась новая эра в исследовании космоса.

Вооружившись телескопами, ученые продолжали исследование космоса. В конечном итоге, после длительных исследований были обнаружены Уран, Нептун и девятая планета солнечной системы Плутон. Позже благодаря более совершенным технологиям были открыты луны Марса, Юпитера и Сатурна. Уже в начале 20-го века человечество было способно детально разглядеть планеты солнечной системы. Значительным событием в мире астрономии была отправка телескопов в открытый космос. Благодаря программе «Вояджер», стартовавшей в 1977 году была получена обширная информация о планетах нашей Солнечной системы. В конце 20 века планета Плутон была причислена к разряду карликовых планет. Таким образом, наша Солнечная система стала состоять из восьми планет вместо девяти.

Полезные статьи:

Образование Солнечной системы

Факты о Солнечной системе

o-kosmose.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики