Теория Большого Взрыва. Большой взрыв что такое


Теория Большого Взрыва | Астрономия и космонавтика сегодня

Большой Взрыв

Ответ на вопрос «Что такое Большой Взрыв?» может быть получен в ходе долгой дискуссии, поскольку занимает не мало времени. Я же попытаюсь объяснить эту теорию вкратце и по существу. Итак, теория «Большого Взрыва» постулирует, что наша Вселенная внезапно возникла приблизительно 13,7 миллиардов лет назад (из ничего появилось все). И происшедшее тогда до сих пор влияет на то, как и каким образом все во Вселенной взаимодействует друг с другом. Рассмотрим ключевые моменты теории.

Что было до Большого Взрыва?

Теория Большого Взрыва включает очень интересное понятие — сингулярность. Держу пари, это заставляет вас задаться вопросом: что это такое — сингулярность? Астрономы, физики и другие ученые также задаются этим вопросом. Сингулярности, как полагают, есть в ядрах черных дыр. Черная дыра — это область интенсивного гравитационного давления. Это давление, в соответствии с теорией, настолько интенсивно, что вещество сжимается, пока у него не появляется бесконечная плотность. Эту бесконечную плотность и называют сингулярностью. Наша Вселенная, как предполагают, началась как одна из этих бесконечно маленьких, бесконечно горячих и бесконечно плотных сингулярностей. Однако мы еще не подошли к самому Большому Взрыву. Большой Взрыв — это момент, в котором эта сингулярность внезапно «взорвалась» и начала расширяться и создала нашу Вселенную.

Теория «Большого Взрыва» казалось бы подразумевает, что время и пространство существовали прежде, чем возникла наша Вселенная. Однако Стивен Хокинг, Джордж Эллис и Роджер Пенроз (и др.) развивали в конце 1960-х теорию, которая пыталась объяснить, что время и пространство не существовали до расширения сингулярности. Другими словами, ни время, ни пространство не существовали, пока не существовала Вселенная.

Что произошло после Большого Взрыва?

Момент Большого Взрыва — это момент начала времени. После Большого Взрыва, но задолго до первой секунды (10-43 секунды), космос переживает сверхбыстрое инфляционное расширение, увеличившись в 1050 раз за долю секунды.

Затем расширение замедляется, но первая секунда еще не наступила (еще только 10-32 секунды). В этот момент Вселенная представляет собой кипящий «бульон» (с температурой 1027 °C) из электронов, кварков и других элементарных частиц.

Быстрое остывание космоса (до 1013 °C) позволяет кваркам объединяться в протоны и нейтроны. Тем не менее первая секунда еще не наступила (еще только 10-6 секунды).

На 3 минуте, слишком горячие для объединения в атомы, заряженные электроны и протоны препятствуют испусканию света. Вселенная представляет собой сверхгорячий туман (108 °C).

Через 300 000 лет Вселенная остывает до 10 000 °C, электроны с протонами и нейтронами образуют атомы, в основном водорода и гелия.

Спустя 1 млрд. лет после Большого Взрыва, когда температура Вселенной достигла -200 °C, водород и гелий формируют гигантские «облака», которые впоследствии станут галактиками. Появляются первые звезды.

В течении последующего времени галактики объединяются в скопления. Первые звезды умирают, выбрасывая в космос тяжелые элементы, которые в итоге образуют новые звезды и планеты.

Большой Взрыв все еще движет пределы нашей Вселенной — она продолжает расширяться и охлаждаться по сей день. Но то, что случилось в Большом Взрыве, который позволил нашей планете в конечном счете сформироваться — все еще тайна.

starmission.ru

Теория большого взрыва - Интересные статьи

Большой взрыв

Большой Взрыв. Так называется теория, вернее одна из теорий, возникновения или, если угодно, сотворения Вселенной. Название, пожалуй, слишком несерьезное для столь устрашающего и вызывающего благоговейный трепет события. В особенности устрашающего, если когда – нибудь вы задавали себе очень трудные вопросы о мироздании.

Например, если Вселенная — это все то, что есть, то каким образом это началось? И что было до этого? Если пространство не бесконечно, то что за пределами его? И в чем собственно должно помещаться это нечто? Как можно понять слово «бесконечно»?

Эти вещи трудны для понимания. Более того, когда об этом начинаешь задумываться, охватывает жуткое ощущение чего-то величественно – ужасного. Но вопросы о мироздании — это одни из самых главных вопросов, которые задает себе человечество на протяжение своей истории.

Что послужило началом существования Вселенной?

Большинство ученых убеждено, что начало существованию Вселенной положено грандиозным большим взрывом вещества, который произошел около 15 миллиардов лет назад. Многие годы большинство ученых разделяло гипотезу о том, что начало Вселенной было положено грандиозным взрывом, который ученые шутливо окрестили «Большой Взрыв». По их мнению, вся материя и все пространство, которое сейчас представлено миллиардами и миллионами галактик и звезд, 15 миллиардов лет назад умещалось в мизерном пространстве размером не превышающем нескольких слов в этом предложении.

Как образовывалась Вселенная?

Ученые полагают, что 15 миллиардов лет назад этот маленький объем взорвался мельчайшими, меньшими чем атомы, частицами, положив начало существованию Вселенной. Первоначально она представляла собой туманность из мелких частиц. Позже при соединении этих частиц образовались атомы. Из атомов же сформировались звездные галактики. Со времени этого Большого Взрыва Вселенная продолжает расширяться, как раздуваемый воздушный шар.

Сомнения в теории Большого Взрыва

Но за последние несколько лет ученые, занимающиеся изучением структуры Вселенной, совершили несколько неожиданных открытий. Некоторые из них ставят под сомнение теорию Большого Взрыва.  Что поделаешь, наш мир не всегда соответствует нашим удобным представлениям о нем.

Распределение вещества при взрыве

Одна проблема заключается в том способе, которым материя распределена по Вселенной. Когда взрывается какой-либо предмет, то его содержимое разлетается равномерно во всех направлениях. Другими словами, если материя в начале была спрессована в малом объеме, а затем взорвалась, то вещество должно было равномерно распределиться по пространству Вселенной.

Реальность, однако, сильно отличается от ожидаемых представлений. Мы живем в весьма неравномерно заполненной Вселенной. При взгляде в космос взору предстают отдельные удаленные друг от друга сгустки материи. Громадные галактики разбросаны там и сям по космическому пространству. Между галактиками простираются огромные участки ничем не заполненной пустоты. На более высоком уровне галактики сгруппированы в гроздья — кластеры, а эти последние — в мега кластеры. Как бы то ни было ученые до сих пор не пришли к согласию в вопросе о том, как и почему образовались именно такие структуры. К тому же со всем недавно возникла новая еще более серьезная проблема.

Интересный факт: согласно теории Большого Взрыва: Вселенная когда-то была собрана в объеме, не превышающем по размеру нескольких слов в этом предложении.

Цепи галактик

Используя последние достижения техники, в том числе телескопы, выведенные на высокую околоземную орбиту, ученым удалось обнаружить в космосе еще более загадочные структуры — длинные цепи галактик. Это еще одно противоречие в красивой теории о ровном распределении материи во Вселенной в результате Большого Взрыва.

Чтобы решить эти головоломки, ученые пытаются видоизменить теорию Большого Взрыва, приспособив ее к новым фактам. Наилучший способ таков. Сила тяготения заставляет части материи группироваться, скапливаться вместе, при этом небольшие скопления имеют склонность постоянно увеличиваться в размерах, образуя огромные облака, напоминающие по форме слоеный пирог. Его слои состоят из газов водорода и гелия. Под действием гравитации облака притягиваются друг к другу и образуются первичные скопления звезд — галактики. После этого отдельные облака-галактики под действием опять-таки сил притяжения формируют кластеры (гроздья галактик).

Теория Устойчивого Состояния

Некоторые ученые вовсе не отказались от теории Большого Взрыва. Они работают над возрождением более ранних теорий творения, таких, как теория Устойчивого Состояния. Главный постулат этой теории гласит, что Вселенная была всегда и пребудет вечно. Согласно этой модели, начала Вселенной не было, и конца тоже не будет. С течением времени материя вечно воссоздается, формируя новые звездные галактики.

Интересные статьи:

Рейтинг: 4.7/5. Из 42 голосов.

Please wait...

www.voprosy-kak-i-pochemu.ru

Что такое большой взрыв

Сериал с аналогичным названием смотрят миллионы телезрителей по всему миру, однако о том, что же это, в сущности, такое – Большой взрыв, мало кто размышляет, ведь далеко не всем близка физика и астрономия. Между тем, это главная космологическая теория, объясняющая происхождение Вселенной.

Теория Большого взрыва – звучит одновременно и романтично, и пугающе, и тривиально, и научно. Что же такое этот самый Большой взрыв? Как он произошел и как повлиял на появление и становление Вселенной, и чем, в конце концов, заслужил такую популярность?Герой Джареда Лето, Немо, в фильме «Господин Никто» размышляет на эту тему: «Что было до Большого взрыва? Дело в том, что не было никакого «до». До Большого взрыва время не существовало. Рождение времени – результат расширения Вселенной». Человеческому уму довольно трудно представить себе, что время могло не существовать, что могло не существовать вообще ничего, и постоянно в голове вертится вопрос: «Хотя бы пустота была?». Но дело в том, что по теории Большого взрыва не было даже пустоты. До Большого взрыва Вселенная находилась в так называемом сингулярном состоянии, то есть имела бесконечную плотность и температуру. Около 13,7 миллиардов лет назад произошел тот самый взрыв, после которого Вселенная начала расширяться с невероятной скоростью. Настолько быстро, что из чистой энергии начали зарождаться первые субатомные частицы, которые через много тысяч лет превратились в первые атомы – мельчайшие составные частицы материи. Основные постулаты теории Большого взрыва сформулировал бельгиец Жорж Леметр. Как ни странно, Леметр был одновременно и ученым, и священником. В основу теории Большого взрыва легла теория относительности, которая позволила представить развитие Вселенной с самого первого момента времени, однако предположить, как именно развивалась Вселенная на начальных этапах, все-таки пока не удается.Согласно теории, Вселенная и сейчас продолжает постоянно расширяться с огромной скоростью, но в один момент расширится настолько, что превратится в огромную черную дыру, и тогда Вселенная снова вернется к сингулярному состоянию.С помощью теории Большого взрыва ученые выявили удивительный парадокс – Вселенную принято считать бесконечной, и, тем не менее, она конечна. С другой стороны, учеными уже было доказано, что любая бесконечность все равно конечна. А значит, рано или поздно Вселенная вновь исчезнет. Впрочем, это произойдет лишь в том случае, если средняя плотность вещества Вселенной превышает критическую, рассчитанную в теории. Только вот рассчитать саму среднюю плотность рассчитать невозможно. Был ли Большой взрыв на самом деле? Если был, как именно он произошел, и как развивалась наша Вселенная? Ждет ли ее конец, или она будет существовать вечно? И действительно ли Вселенная бесконечна? Теория дает вопросов куда больше, чем ответов, тем не менее, на ней во многом базируется современная наука. Впрочем, нет в мире ничего более абстрактного, чем точные науки, которые и позволяют человеку развиваться и познавать мир вокруг него.

completerepair.ru

БОЛЬШОЙ ВЗРЫВ это что такое БОЛЬШОЙ ВЗРЫВ: определение — Философия.НЭС

Большой взрыв

, согласно современным космогоничес ким представлениям, состояние расширяющейся Вселенной в прошлом (около 13-18 млрд лет назад), когда вся Вселенная составляла некоторую небольшую космологическую сингулярную (особую по физическим свойствам) область и по каким-то (неизвестным пока) причинам взорвалась. Образовавшееся вещество, составляющее ныне все вещество Вселенной, в первые несколько сот секунд стало разлетаться (расширяться) с колоссальной скоростью, что наблюдается согласно открытию Хаббла до сих пор. Наблюдаемым свидетельством происшедшего «большого взрыва» является предсказанное Гамовым реликтовое излучение, а также определенные концентрации водорода, гелия, некоторых других легких элементов и неоднородности в распределении галактик.

Оцените определение:

Источник: Начала современного естествознания: тезаурус

БОЛЬШОЙ ВЗРЫВ

сингулярность пространства — времени, приведшая к возникновению 13,7 миллиардов лет назад и последующей эволюции нашей Вселенной. Согласно стандартной космологической модели, Вселенная возникла как результат этой сингулярности. Теоретическим обоснованием этой теории явилось решение нестационарных уравнений относительности, полученное в 1922 г. А.А. Фридманом. В пользу этой теории свидетельствуют два экспериментальных факта. Во—первых, это открытие разбега-ния далеких галактик, сделанное в 1929 г. на основании регистрации красного смещения в спектрах их излучений. Во—вторых, это открытие реликтового фонового излучения с температурой 3,5° К, равномерно заполняющего космос. Это открытие было сделано в 1964 г. А. Пензисом и Р. Вильсоном. В 1948 г. Г. Гамов теоретически показал, что если на ранних стадиях после Большого взрыва Вселенная была очень горячей, то впоследствии в процессе ее расширения свободный фотонный газ должен был охладиться примерно до 5" К, что и наблюдалось в экспериментах. Согласно современным космологическим теориям возникновение Вселенной явилось следствием фазового перехода квантового вакуума. Ее первоначальные размеры соответствовали планковским масштабам — 10-33 см., 10-43 см. А. Гут, С. Хокинг, А.Д. Линде показали, что в промежуток времени от 10-34 сек. до 10-32 сек. Вселенная испытывала стадию сверхбыстрого, или инфляционного, расширения, когда ее размеры увеличились в 1030 раз. В процессе расширения Вселенной началось формирование элементарных частиц, а ко времени порядка 100 миллионов лет — звезд и галактик. (См. эволюция, космос, космология).

Л.В. Лесков

Оцените определение:

Источник: Философия науки: Словарь основных терминов

terme.ru

Большой Взрыв — Циклопедия

Расширение Вселенной, которое продолжается и сегодня Discovery. Вселенная - Большой Взрыв (Universe - Big Bang)
Гордон - Диалоги (№ 109). Происхождение Вселенной Гордон - Диалоги (№ 202). Модель Вселенной

Большой взрыв — гипотетическое начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Согласно моделям Большого взрыва, Вселенная была изначально очень горячей и плотной и быстро расширялась. Это расширение вызвало охлаждение Вселенной, и на сегодня она продолжает расширяться. На основе наилучших имеющихся измерений по состоянию на 2010 год, первоначальное состояние Вселенной существовало около 13,7 миллиардов лет назад[1], когда и произошел Большой взрыв[2]. Теория наиболее полно и точно объясняет научные данные и наблюдения[3].

Жорж Леметр предложил то, что сегодня известно как теория Большого Взрыва о происхождении Вселенной, он назвал ее «гипотезой первобытного атома». Теория опирается на общую теорию относительности Альберта Эйнштейна и на упрощенные допущения, как то однородность и изотропии пространства. Основные уравнения были сформулированы Александром Фридманом. В 1929 году Эдвин Хаббл обнаружил, что расстояние до галактики, как правило, пропорционально её красному смещению. Эта идея изначально была предложена Леметром в 1927 году. Наблюдениями Хаббла было выявлено, что все галактики имеют тенденцию на отдаление от нашей Галактики, причем, чем дальше находится галактика, тем больше скорость удаления[4].

Если расстояние между галактиками возрастает сегодня, тогда все должно было быть ближе друг к другу в прошлом. По этой идее в прошлом существовали крайние значения плотности и температуры[5]. Чтобы проверить эту теорию были построены большие ускорители частиц, которые должны были восстановить данные условия. В результате теория была частично подтверждена. Без каких-либо доказательств связанных с ранним моментом расширения, теория Большого Взрыва не может и не предусматривает какого-либо объяснения для таких начальных условий, а, скорее, она описывает и объясняет общую эволюцию Вселенной с того момента. Наблюдаемое богатство легких элементов в космосе точно соответствует расчетным прогнозам на формирование этих элементов в результате ядерных процессов при быстром росте и охлаждении Вселенной после первых минут взрыва, что логично и количественно соответствует нуклеосинтезу после Большого Взрыва.

Важным доказательством Большого Взрыва является его «эхо» — реликтовое излучение.

[править] Теоретические положения и импликации

Экстраполяция астрономических наблюдений в прошлое указывает на то, что Вселенная расширился из начального состояния, в котором вся материя и энергия должны огромную температуру и плотность. Физики не имеют единого взгляда на то, что именно предшествовало начальном состоянию. Одной из возможных гипотез является гравитационная сингулярность.

Термин «большой взрыв» в узком смысле употребляется для обозначения момента во времени, когда началось расширение известного нам Вселенной, — по подсчетам это произошло около 13,7 миллиарда лет назад. В более широком смысле «большим взрывом» называют космологическую парадигму, объясняет как расширение Вселенной, так и состав и образования первоначальной материи с помощью нуклеосинтеза.

Одним из последствий «большого взрыва» является то, что условия сегодняшнего Вселенной отличаются от условий в прошлом и будущем. На основании этой модели, в 1948 году Джордж Гамов качественно спрогнозировал существования космической микроволновой фоновой радиации, которую вскоре (в шестидесятых годах XX-го века) было обнаружено и которая стала подтверждением теории «Большого взрыва» в противовес теории стационарного вселенной.

Объясняя немало результатов астрономических наблюдений, теория «большого взрыва» не дает ответы на все вопросы, связанные с эволюцией Вселенной: она заготовка — и, безусловно, будет развиваться в дальнейшем.

[править] Развитие событий

Панорамное изображение неба в инфракрасном диапазоне показывает распределение галактик за пределами Млечного Пути. Галактики обозначены цветом в соответствии с их красного смещения.

Современные представления о сценарии событий после «большого взрыва» такие. О начальном состоянии Вселенной в момент Большого взрыва нельзя сказать ничего. Очевидно Вселенная занимал чрезвычайно малый объем, в котором не действовали никакие или известные нам физические законы: они не действуют по критическим порогом, который известен как Комптоновская длина волны объекта. Поэтому события, которые инициировали взрыв остаются неизвестными. За 10−43 с Вселенная преодолела свою Комптоновскую длину волны, после чего начали действовать обычные законы физики. Из-за чрезвычайного сжатия температура была чрезвычайно большой. Примерно после 10−43 с (время Планка) после зарождения начинается Планковская эпоха: в это время гравитация отделилась от других полей. Промежуток времени между 10−43 и 10−36 c называют эпохой великого объединения. В конце этой эпохи в состоянии Вселенной произошел фазовый переход, приведший к следующей инфляционной эпохе — времени чрезвычайно быстрого экспоненциального расширения. Это было обусловлено появлением четырех сил, действующих в современной Вселенной — притяжение, электромагнитной, а также слабой и сильной взаимодействия на субатомном уровне. В жестких условиях Большого взрыва эти силы были одной сверхсилой. Гравитация сразу выделилась, но все три другие оставались связаны, пока Вселенной не исполнилось 10−35 с. После этого все силы начали действовать самостоятельно.

После инфляции (примерно 10−34 с), в течение которой Вселенная расширился крайней мере в 1026 раз, он состоял из кварк-глюонной плазмы. Где-то в промежутке времени до 10−34 с произошел процесс, который называют бариогенезисом — нарушение симметрии, в результате которого в мире вокруг нас больше частиц, чем античастиц. Инфляция закончила свое действие, когда вселенной было 10−12 с. Она была очень однородный, а расширение привело к падению температуры практически до −273° C.

Дальнейшее расширение до времен порядка 10−11 с повлекло переход материи в состояние, о котором можно говорить уверенно, поскольку он изучается физикой высоких энергий. В настоящее время примерно через 10−6 c в охлажденной при расширении кварк-глюонной плазмы начали образовываться барионы — протоны и нейтроны. Энергии этих частиц уже не хватало для рождения пар, поэтому началась массовая аннигиляция — уцелела только одна частица на 1010, античастицы исчезли совсем.

Менее чем за 1 секунду Большой взрыв и инфляция образовали все вещество Вселенной 1050 т. В результате распада X-бозонов образовывались электроны и нейтрино. через 1 секунду после взрыва температура во вселенной достигала 1010° C и кварки слились в протоны и нейтроны. В следующие 3 минуты начали образовываться химические элементы. После падения температуры до 109° C создались условия для существования стабильных ядер. протоны и нейтроны сталкиваясь образовывали ядра гелия и легкого металла лития и тяжелых изотопов водорода. Пока протоны и нейтроны НЕ разлетелись далеко, Вселенная напоминал ядро огромной звезды, в которой происходил синтез элементов.

Через несколько минут после взрыва начался первичный нуклеосинтез с образованием более тяжелых богатонуклонных ядер. Нейтральные атомы стали образовываться примерно через 400 тыс. лет. Этот процесс сопровождался образованием реликтового излучения, поскольку в плазме электромагнитное поле неотрывно связано с заряженными частицами, а при образовании нейтральных частиц оно отделяется. Постепенно в однородном газе нейтрального вещества начали образовываться газовые туманности, а еще позже — галактики и отдельные звезды.

Есть несколько сценариев эволюции Вселенной в будущем в зависимости от её параметров, в частности плотности. Проблема предсказания будущего осложняется тем, что результаты наблюдений последних десятилетий не совсем укладываются в стандартную модель Большого взрыва. Объяснение этих явлений, в частности плоской формы Вселенной, ускорение его расширения и т. п., можно дать, введя дополнительные параметры в теорию, предположив, что во Вселенной, кроме обычной материи частиц и античастиц, существует так называемая темная материя, к тому же ее даже больше, чем обычной, а также, что существует так называемая темная энергия.

До сих модификаций считалось, что при достаточной плотности вещества во Вселенной расширение прекратится, и он начнет сжиматься и разогреваться — процесс двинется в обратном направлении. При недостаточной плотности Вселенная будет продолжать расширяться со все меньшей скоростью.

cyclowiki.org

Большого взрыва теория - это... Что такое Большого взрыва теория?

Большо́й взрыв (от англ. Big Bang) — гипотетическое начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Современные представления теории Большого взрыва

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,73 ± 0,12 млрд [1] лет назад из некоторого начального «сингулярного» состояния с температурой примерно 1032 K (Планковская температура) и плотностью около 1093 г/см3 (Планковская плотность), и с тех пор непрерывно расширяется и охлаждается. Ранняя Вселенная представляла собой однородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Начальное состояние Вселенной

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит при использовании общей теории относительности и некоторых других альтернативных теорий гравитации к бесконечной плотности и температуре в конечный момент времени в прошлом. Более того, теория не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (лишь потому, что Большой взрыв радикально изменил законы Вселенной: при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва), а размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью и сигнализирует о недостаточности описания Вселенной классической общей теорией относительности. Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» (или «сотворением») Вселенной. Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана в числе прочих теорем о сингулярностях Р. Пенроузом и С. Хокингом в конце 1960-ых годов. Её существование является одним из стимулов построения альтернативных теорий гравитации.

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

История открытия Большого взрыва

  • 13,73 ± 0,12 млрд лет назад произошел Большой взрыв.
  • 1916 — вышла в свет работа физика Альберта Эйнштейна «Основы общей теории относительности», которой он завершил создание релятивистской теории гравитации.
  • 1917 — Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Λ. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок; уже в наше время выяснилось, что Λ-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе «Об эйнштейновской теории гравитации и её астрономических следствиях».
  • 1922 — советский математик и геофизик Ал. Ал. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как решение Фридмана). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс — Большой взрыв.
  • 1923 — немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.
  • 1924 — К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием.
  • 1925 — К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что «не существует зависимости лучевых скоростей от расстояния от Солнца». Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.
  • 1927 — опубликована статья Леметра «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии — это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.
  • 1929 — 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся «Связь между расстоянием и лучевой скоростью внегалактических туманностей». Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.
  • 1948 — выходит работа Г. А. Гамова о «горячей вселенной», построенная на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется — только сильно охлаждённым — и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К.
  • 1955 — Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ излучение с температурой около 3K.[2]
  • 1964 — американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру: она оказалась равной 3 К! Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.
  • 2003 — спутник Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ΛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя — 4 %, тёмная материя — 23 %, тёмная энергия — 73 %).
  • 2009 — запущен спутник Планк, который с еще более высокой точностью измерит анизотропию реликтового излучения.

История термина

Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».

На русский язык Big Bang можно перевести и как «Большой хлопок», что, вероятно, точнее соответствует уничижительному смыслу, который вложил в него Хойл. Однако после того, как его лекции были опубликованы, термин стал широко употребляться.

Критика теории Большого взрыва

Некоторые противники теории Большого взрыва считают, что Вселенная стационарна, то есть не эволюционирует, и не имеет ни начала, ни конца во времени. Сторонники такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям, например, наблюдаемой зависимости продолжительности вспышек сверхновых от расстояния до них.

Существует также точка зрения о том, что законы Большого Взрыва действуют лишь в наблюдаемой нами части Вселенной (Метагалактике).

Кроме того, ТБВ не дает удовлетворительного ответа на вопрос о причинах возникновения сингулярности, или материи/энергии для её возникновения, обычно просто постулируя её безначальность.

См. также

Примечания

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Теория. Что такое «Большой взрыв»?

Астрономы употребляют термин «Большой взрыв» в двух взаимосвязанных значениях. С одной стороны этим термином называют само событие, ознаменовавшее зарождение Вселенной около 15 миллиардов лет назад; с другой — весь сценарий ее развития с последующим расширением и остыванием.

Концепция Большого взрыва появилась с открытием в 1920-е годы закона Хаббла. Этот закон описывает простой формулой результаты наблюдений, согласно которым видимая Вселенная расширяется и галактики удаляются друг от друга. Нетрудно, следовательно, мысленно «прокрутить пленку назад» и представить, что в исходный момент, миллиарды лет назад, Вселенная пребывала в сверхплотном состоянии. Такая картина динамики развития Вселенной подтверждается двумя важными фактами.

Вселенная в рентгеновских лучахВселенная в рентгеновских лучах

Космический микроволновой фон

В 1964 году американские физики Арно Пензиас и Роберт Уилсон обнаружили, что Вселенная наполнена электромагнитным излучением в микроволновом диапазоне частот. Последовавшие измерения показали, что это характерное классическое излучение черного тела, свойственное объектам с температурой около –270°С (3 К), т. е. всего на три градуса выше абсолютного нуля.

Простая аналогия поможет вам интерпретировать этот результат. Представьте, что вы сидите у камина и смотрите на угли. Пока огонь горит ярко, угли кажутся желтыми. По мере затухания пламени угли тускнеют до оранжевого цвета, затем до темно-красного. Когда огонь почти затух, угли перестают испускать видимое излучение, однако, поднеся к ним руку, вы почувствуете жар, что означает, что угли продолжают излучать энергию, но уже в инфракрасном диапазоне частот. Чем холоднее объект, тем ниже излучаемые им частоты и больше длина волн. По сути, Пензиас и Уилсон определили температуру «космических углей» Вселенной после того, как она остывала на протяжении 15 миллиардов лет: ее фоновое излучение оказалось в диапазоне микроволновых радиочастот.

Исторически это открытие и предопределило выбор в пользу космологической теории Большого взрыва. Другие модели Вселенной (например, теория стационарной Вселенной) позволяют объяснить факт расширения Вселенной, но не наличие космического микроволнового фона.

Крупномасштабная структура Вселенной как она выглядит в инфракрасных лучахКрупномасштабная структура Вселенной как она выглядит в инфракрасных лучах.
Изобилие легких элементов

Ранняя Вселенная была очень горячей. Даже если протоны и нейтроны при столкновении объединялись и формировали более тяжелые ядра, время их существования было ничтожным, потому что уже при следующем столкновении с еще одной тяжелой и быстрой частицей ядро снова распадалось на элементарные компоненты. Выходит, что с момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла настолько, чтобы энергия соударений несколько смягчилась и элементарные частицы начали образовывать устойчивые ядра. В истории ранней Вселенной это ознаменовало открытие окна возможностей для образования ядер легких элементов. Все ядра, образовывавшиеся в первые три минуты, неизбежно распадались; в дальнейшем начали появляться устойчивые ядра.

Однако это первичное образование ядер (так называемый нуклеосинтез) на ранней стадии расширения Вселенной продолжался очень недолго. Вскоре после первых трех минут частицы разлетелись так далеко друг от друга, что столкновения между ними стали крайне редкими, и это ознаменовало закрытие окна синтеза ядер. В этот краткий период первичного нуклеосинтеза в результате соударений протонов и нейтронов образовались дейтерий (тяжелый изотоп водорода с одним протоном и одним нейтроном в ядре), гелий-3 (два протона и нейтрон), гелий-4 (два протона и два нейтрона) и, в незначительном количестве, литий-7 (три протона и четыре нейтрона). Все более тяжелые элементы образуются позже — при формировании звезд

Теория Большого взрыва позволяет определить температуру ранней Вселенной и частоту соударений частиц в ней. Как следствие, мы можем рассчитать соотношение числа различных ядер легких элементов на первичной стадии развития Вселенной. Сравнив эти прогнозы с реально наблюдаемым соотношением легких элементов (с поправкой на их образование в звездах), мы обнаруживаем впечатляющее соответствие между теорией и наблюдениями. По моему мнению, это лучшее подтверждение гипотезы Большого взрыва.

Космологическая сингулярностьСогласно теории Большого взрыва, Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии, называемом космологической сингулярностью

Помимо двух приведенных выше доказательств (микроволновой фон и соотношение легких элементов) недавние работы показали, что сплав космологии Большого взрыва и современной теории элементарных частиц разрешает многие кардинальные вопросы устройства Вселенной. Конечно, проблемы остаются: мы не можем объяснить саму первопричину возникновения Вселенной; не ясно нам и то, действовали ли в момент ее зарождения нынешние физические законы. Но убедительных аргументов в пользу теории Большого взрыва на сегодняшний день накоплено более чем достаточно.

http://elementy.ru

Похожие записи

astrofishki.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики