Новости высоких технологий. Молекулярные машины


Молекулярные машины

Нобелевская премия 2016 года в области химии присуждена Жан-­Пьеру Саважу, Фрейзеру Стоддарту и Бернарду Феринге «за проектирование и синтез молекулярных машин». Разработанные ими устройства, размеры которых в тысячи раз меньше толщины человеческого волоса, действительно состоят из отдельных деталей, каждой из которых является молекула. Молекулярный мотор, молекулярный лифт и даже способная перемещаться машина­-молекула с четырьмя колесами — звучит как фантастика, но все это реальные достижения, удостоенные высочайшей научной награды. Конечно же об этих крошечных механизмах стоит рассказать подробнее.

Интересно, что эру молекулярных машин предсказал тот же человек, который за четверть века до этого в своей ставшей классикой лекции «Там, внизу, полно места!» предрек расцвет нанотехнологий, — лауреат Нобелевской премии по физике 1965 года Ричард Филлипс Фейнман. В публичной лекции 1984 года Фейнман сказал, что рано или поздно появятся миниатюрные машины с подвижными элементами размерами в одну или несколько молекул, подобные жгутикам бактерий, но созданные в лаборатории гигантскими руками человека. Фейнман считал, что способные к совершению механической работы синтетические молекулярные системы появятся в 2010—2020 годах. Как видим, это предсказание блестяще подтвердилось.

Цепи и узлыФейнман мог и не знать, что первые шаги к созданию молекулярных машин были сделаны еще за год до его предсказания. В 1983 году Жан­-Пьер Саваж, работавший тогда в Университете Луи Пастера над диссертацией под руководством Жан­Мари Лена, разработал практически выполнимый метод синтеза первого класса молекул без химических связей — катенанов. Жан­Мари Лен, наставник Саважа и один из отцов-­основателей супрамолекулярной химии, получит Нобелевскую премию по химии в 1987 году «за разработку и применение молекул со структурно­специфическими взаимодействиями с высокой селективностью».Катенаны — это системы из двух и более макроциклических соединений, сцепленных как звенья цепи, однако не образующих при этом химической связи друг с другом (само название «катенан» происходит от латинского слова catena — цепь). Конечно, Саваж не первым получил катенаны — цепочку, состоящую из двух переплетенных макроциклов, впервые синтезировали еще в 1964 году. Однако до работ Саважа получение молекулярных цепей было скорее любопытным курьезом органического синтеза — замыкание макроциклов и образование катенанов происходило случайным образом, и их выходы не превышали 2—3%. Саваж впервые предложил методологию направленного синтеза катенанов, даже в первых экспериментах увеличив их выход до 42%.Как это часто бывает в химии (и в других науках тоже), метод направленного синтеза появился благодаря счастливой случайности. Работа Саважа была связана с фотохимией и разработкой молекулярных комплексов, способных поглощать энергию солнечного света и использовать ее для инициирования химических реакций. Построив модель одного из таких комплексов, отличающихся фотохимической активностью, Саваж неожиданно понял, что этот комплекс похож на катенан — две молекулы, закрученные вокруг находящегося в центре иона меди.Это существенно изменило направление его исследований. Используя фотохимически активный комплекс с медью в качестве модели, Саваж и его коллеги синтезировали циклическую молекулу и молекулу в форме серпа, после чего обе молекулы присоединили к иону меди за счет координационной связи (рис. 1). Ион меди был не только «якорем», он выступал и в роли шаблона, предопределяющего форму. На следующем этапе синтеза серповидная молекула взаимодействовала с третьим строительным блоком, образуя второй макроцикл, который замыкался вокруг первого, и получались два первых звена молекулярной цепи, механически связанных друг с другом. На заключительном этапе удаляли выполнивший свою работу ион меди.

Рис. 1 . Синтез катенанов методом Саважа

Данный метод сделал возможным направленные исследования в области топологической химии — ионы металлов использовали в качестве строительных лесов для синтеза структур все более и более сложных, от длинных молекулярных цепей до молекулярных узлов причудливой формы.Вскоре Саваж и другой лауреат Нобелевской премии по химии 2016 года Фрейзер Стоддарт (в настоящее время  профессор Северо-­Западного университета США) стали признанными экспертами в области топологической химии. Они получили молекулярные версии многих известных в макромире узлов: трилистный узел (символ, встречающийся в кельтских орнаментах, скандинавских ритуальных изображениях, в христианстве он символизирует Святую Троицу — рис. 2а), кольца Борромео (изображение с герба итальянской семьи Борромео, которое можно встретить и на скандинавских ювелирных изделиях, и на христианских фресках, — рис. 2б), узел Соломона (рис. 2в). К лондонской Олимпиаде 2012 года Стоддарт синтезировал пятизвенный катенан, который в честь пяти олимпийских колец назвал олимпиаданом (рис. 2г).

Рис. 2. Системы механически связанных макроциклических молекул (пояснения в тексте)

Конечно, все это вязание молекулярных узлов было привлекательным с точки зрения химической эстетики. Однако вовсе не усложнение структур катенанов принесло их создателям Нобелевскую премию.

Вал на осиВторой лауреат, Фрейзер Стоддарт, вписал себя в историю химии XXI века не только и не столько умением завязывать молекулярные узлы: как и его коллега Саваж, он оптимизировал методы синтеза и первым смог получать препаративные выходы другого типа молекул без химической связи — ротаксанов.Ротаксаны — класс соединений, состоящих из молекулы гантелевидной формы и надетого на эту «гантель» макроцикла. Стоддарт тоже не был первооткрывателем ротаксанов — впервые их получили Иан Гаррисон и Шуэн Гаррисон еще в 1967 году. Но как и в случае их близких родственников катенанов, до работ Стоддарта ротаксаны синтезировали, уповая на удачу, которая не позволяла получать эти молекулы с выходом более пары процентов.В 1991 году исследователи из группы Стоддарта впервые осуществили направленный синтез ротаксана (рис. 3). Строительными блоками для синтеза стали молекула с положительно заряженными фрагментами, которой предстояло замкнуться в цикл, и ось ротаксана — длинный стержень, уже имеющий на концах фрагменты, которые должны препятствовать «соскальзыванию» макроцикла. Ось ротаксана, в свою очередь, была модифицирована фрагментами, несущими отрицательный заряд, — это позволяло оси ротаксана и заготовке для макроцикла, встретившись в реакционной смеси, образовать ионный мостик между разноименно заряженными фрагментами, что облегчало вдевание оси ротаксана в заготовку макроцикла. На следующем этапе синтеза исследователи замыкали макроцикл и получали ротаксан, опять же с выходом в десятки процентов.

Рис. 3. Синтез ротаксана

В первом ротаксане Стоддарта макроцикл мог свободно перемещаться вдоль оси. Однако, разработав принцип синтеза, он смог получить системы, в которых движение макроцикла удавалось регулировать за счет внешних воздействий (изменение кислотности среды, в которой растворен ротаксан, присутствие в ней определенных типов химических веществ или просто изменения температуры). Первая молекулярная машина на основе ротаксана, в которой макроцикл занимал строго определенные положения, реагируя на изменения окружающей среды, появилась в 1994 году. С этого момента в стенах лаборатории было синтезировано немало молекулярных машин, среди которых молекулярный лифт, способный подниматься на высоту 0,7 нм (рис. 4, «Science» 2004, 303, 5665, 1845—1849), и искусственные мышцы из ротаксанов, сил которых хватало на сгибание тонкой фольги из золота. Сила, которую создает макроцикл одного ротаксана при перемещении, — около 30 пиконьютонов, в то время как сила сокращения одной молекулы мышечного белка миозина колеблется от 5 до 60 пиконьютонов, так что синтетические молекулярные машины вполне конкурентоспособны по сравнению со своими аналогами, созданными эволюцией живых существ.

Рис. 4. Ротаксановый лифт°

В сотрудничестве с другими исследователями Стоддарт разработал состоящую из ротаксанов схему памяти емкостью 20 килобайт. Конечно, объемы молекулярных чипов для памяти еще не могут конкурировать с объемами существующих компьютерных чипов, к тому же их устойчивость (а следовательно, и сохранность записанной на них информации) оставляет желать много лучшего, но апологеты молекулярной электроники напоминают, что были в истории науки и техники времена, когда полупроводниковые схемы не могли составлять конкуренцию теплой ламповой технике.

МоторМолекулярные машины, созданные Стоддартом и Саважем (в соавторстве и по отдельности), хорошо справлялись с одним типом движения составляющих их элементов — поступательным. Чтобы добавить разнообразия в мир молекулярных машин, исследователям хотелось получить молекулярные моторы, элементы которых могли бы непрерывно вращаться в одном направлении. В 1990-­е годы многие ученые, воодушевленные успехами Саважа и Стоддарта, пытались создать молекулярную машину с вращающимися деталями из отдельных молекул, но большинство потерпело неудачу — молекулы не вращались вообще либо меняли направление вращения случайным образом. Первым, кому удалось решить эту задачу, был голландский химик Бернард Феринга — третий лауреат Нобелевской премии по химии 2016 года.Молекулярную машину, созданную Ферингой, можно сравнить с двумя уменьшенными копиями лопаток ротора. Эта молекула состоит из двух плоских молекулярных фрагментов, соединенных двойной связью (рис. 5). С каждой из молекулярных лопаток была связана метильная группа, выполняющая ту же задачу, что элементы храпового механизма, — они заставляли детали макромеханизмов вращаться лишь в одном направлении. При облучении системы импульсом ультрафиолета один из роторов проворачивался на 180° вокруг центральной оси — двойной связи, а метильный «храповик» не давал молекуле провернуться обратно. Следующий импульс ультрафиолета обеспечивает следующий поворот на 180°, и так далее.

Рис. 5. Машина Бернарда Феринги: молекулярный ротор вращается под действием УФ-­излучения

Самый первый молекулярный мотор не отличался высокой скоростью, но после череды постоянных оптимизаций и модернизаций Феринге с коллегами удалось добиться от него скорости вращения 12 миллионов оборотов в секунду. В 2011 году его же исследовательская группа соорудила четырехколесный молекулярный автомобиль, в котором на молекулярной раме располагалось четыре молекулы, игравшие роль колес. Когда они начинали вращаться, молекулярный автомобиль поступательно двигался по поверхности (см. рис. на заставке).В другом изящном эксперименте исследователи из группы Феринги показали, как с помощью молекулярных моторов раскрутить стеклянный цилиндр длиной в 28 микрометров (в 10 000 раз больше молекулярных моторов). Химики внедрили молекулярные моторы в жидкие кристаллы, причем модифицировали только 1% от всех макромолекул в их составе. Тем не менее активация работы молекулярных моторов заставляла двигаться все жидкие кристаллы. Стеклянный цилиндр, помещенный на их поверхность, вращался в том же направлении, что молекулярные моторы.Работы Жан­-Пьера Саважа, Фрейзера Стоддарта и Бернарда Феринги не только вдохновили химиков всего мира на создание новых молекулярных машин и механизмов, но и снабдили их необходимым для этого инструментом. Одна из самых интересных молекулярных машин (ее разработали уже не нобелевские лауреаты этого года) — робот на основе ротаксанов, способный захватывать и связывать друг с другом аминокислоты, имитируя синтез белка на рибосоме.

В чем заслуга?Важное достижение Саважа, Стоддарта и Феринги состоит в том, что всем троим удалось получить молекулярные системы, выведенные из состояния равновесия. Химические системы, с которыми приходится иметь дело в лаборатории, стремятся к положению устойчивого химического равновесия, другими словами — к наиболее выгодному с точки зрения потенциальной энергии состоянию. Химические же системы, лежащие в основе процессов, которые протекают в живой ткани, работают именно в неравновесном режиме. Пока организм жив, он извлекает энергию из пищи, и эта энергия заставляет биологические молекулярные машины выходить из устойчивого равновесия, увеличивая свою потенциальную энергию. Для возвращения в равновесное состояние им приходится совершать механическую работу — и так до тех пор, пока происходит обмен веществ, то есть организм сохраняет жизнеспособность.

Как и молекулярные машины живых организмов, системы, созданные Саважем, Стоддартом и Ферингой, могут выполнять множество задач, и это открывает химикам дверь, ведущую в новую страну интересных идей. Как было сказано в официальном объявлении Нобелевского комитета от 5 октября 2016 года, ситуация с готовностью молекулярных машин к практическому применению в настоящее время напоминает ситуацию с созданием первых прототипов электродвигателей в век угля и пара — 20—30­-е годы XIX века. Естествоиспытатели тех времен рассматривали их как бесполезные, хотя и весьма интересные установки, крутящие колеса и поднимающие грузы в лабораториях; никто и не подозревал, что настанет время, когда, говоря словами более поздней песни, «нам электричество пахать и сеять будет». Как считают многие химики, физики и биологи, нынешняя Нобелевская премия по химии — это триумф фундаментальной, академической науки, и ожидание компьютера на молекулярных чипах или механизма, приводимого в движение молекулярными машинами, может надолго затянуться.Более оптимистично настроенные эксперты говорят, что вручение премии Саважу, Стоддарту и Феринге вполне может ускорить этот процесс. Они приводят в пример ситуацию с Нобелевской премией по физике 2010 года, которая была присуждена за получение двумерной аллотропной модификации углерода — графена, в то время интересного, но непонятно для чего нужного материала. Однако премия Гейма и Новоселова резко увеличила интерес к графену и его аналогам, вовлекла множество людей в работу, что и привело в итоге к созданию в 2013 году европейской десятилетней программы по изучению графена и связанных с ним технологий с ежемесячным бюджетом в 54 миллиона евро. Есть надежда, что Нобелевская премия 2016 года привлечет к делу создания молекулярных машин и новых исследователей, и новые инвестиции. Так это или не так, покажет время.Вместе с тем не следует забывать, что помимо пользы и эффектов, связанных с практической значимостью молекулярных машин, есть еще и то, что называется «научная значимость», а она заметна уже сегодня. Некоторые закономерности, выявленные при изучении движения и выполнения работы синтетическими молекулярными машинами, позволяют глубже понять принципы молекулярных машин, созданных эволюцией. Появляется возможность посмотреть под новым углом на молекулярную биологию, на неравновесные процессы с участием большого числа атомов и молекул. В любом случае каждая Нобелевская премия по химии — научное событие года, а нынешняя привлекательна еще и тем, что она отметила успехи наиболее важных разделов химии XXI века — химии синтетической и химии супрамолекулярной.

Курамшин А.И.

Белок, который ходит

Нобелевская премия, говорите? За молекулярное устройство, которое перемещается по плоской поверхности? Одноклеточные организмы тихо посмеиваются, крутя жгутиками, покачивая ресничками и ложноножками. Да и каждый из нас, многоклеточных, — такая сложная машина, сделанная из машин, сделанных из еще меньших, но все еще сложных машинок, какая Декарту не могла присниться. Молекулярные моторы (это не метафора, а официальный термин) отвечают за транспорт ионов через мембрану, транспорт пузырьков­-везикул, органелл и хромосом внутри клетки, шевеления тех же ресничек и мышечные сокращения. Одни осуществляют движение по кругу (утверждение, что «природа не изобрела колеса», неверно: вращающихся наноколесиков у природы хватает), другие — линейное, туда и обратно. А третьи практикуют бипедальное движение. Кроме шуток, наши клетки густо населены двуногими шагающими наноботами.Всем известна роль актин­миозинового комплекса в мышечном сокращении. Мышечные клетки заполнены миофибриллами, а те состоят из белковых нитей — филаментов, актиновых и миозиновых; еще иногда вспоминают эластичный белок титин, фиксирующий концы миозиновых филаментов. В клетках скелетной мускулатуры филаменты аккуратно уложены в саркомеры — группы сократительных единиц, имеющих одинаковую длину (почему под микроскопом и видна характерная для скелетных мышц поперечная полосатость).Миозин похож на две клюшки для гольфа, ручки которых скручены в одну спираль, а головки цепляют актиновые филаменты и сдвигают их относительно миозиновых, тем самым сокращая мышцу. Каждая головка развивает усилия в считаные пиконьютоны, но в миозиновом филаменте сотни молекул миозина, в мышечном волокне много миофибрилл, а в мышце много волокон, так что суммарное усилие может быть значительным. Цикл повторяется, пока в цитоплазме есть ионы кальция и АТФ.

На электронной микрофотографии миофибриллы хорошо видны саркомеры, состоящие из актиновых и миозиновых филаментов. Реакцию, которая обеспечивает сокращение мышцы, можно разделить на четыре этапа. 1. Головка миозина связывает молекулу АТФ, при этом разрывается связь между актином и миозином. Теперь миозин может взаимодействовать с новой актиновой субъединицей — сделать «шаг» вдоль нити. (Это взаимодействие пройдет до конца лишь в том случае, если нервный импульс повысит концентрацию ионов кальция в мышечном волокне.) 2. Миозин гидролизует АТФ до АДФ и фосфата и прочно связывается с актином. 3. Фосфат высвобождается, головка миозина сгибается, актиновые филаменты перемещаются относительно миозиновых. 4. Миозин высвобождает АДФ, но сам останется прочно привязанным к актину до появления новой молекулы АТФ.Но миозины присутствуют не только в мышечных волокнах: в семействе миозинов 18 классов. Мышечные миозины (класс II) перебирают лапками по актину, как гусеница по травинке. Миозин V и похож на римскую пятерку или букву «лямбда»: короткий хвостик и две головки, или, скорее, две ноги, широко шагающие по актиновой нити (длина шага целых 36 нм) — а эти нити пронизывают каждую клетку, образуя цитоскелет. К хвостику могут прицепляться везикулы, РНК, митохондрии, и миозин их тащит куда надо.Сотрудники физического факультета токийского Университета Васэда в 2007 году приклеили к одной из «ног» миозина тубулиновую микротрубочку с флуоресцентной меткой, чтобы понаблюдать за прогулкой в реальном времени. С тех пор было сделано не одно подобное исследование, и ролики с анимированной реконструкцией гуляющих белков — не только миозина V, но и других, например кинезина, идущего по тубулину, — собирают сотни тысяч просмотров. Конечно, все понимают, что белок не наделен разумом и характером, что это просто биомашинка, но, глядя, как он шлепает вперед с апломбом и грацией диснеевского гнома, да еще тащит за собой огромный мешок везикулы, — невозможно не улыбнуться.

Прогулка миозина V по актиновой нити

Гуляющие белки в рисованных видеороликах так загребают ногами не смеха ради. Наиболее правдоподобные модели — именно те, где походка у них как у сильно пьяного или стукнутого по голове героя мультика. Когда та нога, что сзади, отрывается от актина, передняя наклоняется вперед под острым углом (на это расходуется энергия АТФ). А свободную ногу забрасывает вперед броуновское движение. Действием инерции и силы тяжести для белков в растворе можно пренебречь, а вот тепловое движение молекул учитывать необходимо. Оно и определяет изящество походки.

Автор этой заметки не стремится умалить заслуги лауреатов 2016 года. Если у кого­-то (тем более у самой эволюции!) результаты лучше наших, это не повод для огорчения, а новая цель. Кто знает, может быть, моторчик и машинка Бена Феринги — лишь первый шаг, а в конце пути — роботы, состоящие из маленьких механизмов, такие же сложные, как мы сами.

Видеоролики с гуляющими белками

Кинезин 

Реальные видеокадры можно посмотреть в приложениях к статье «Video imaging of walking myosin V by high­speed atomic force microscopy» (Kodera et al, «Nature», 2010, 468, 7320, 72—76, doi:10.1038/nature09450).

 

Котина Е.

 

Источник - «ХиЖ», 2016, №11 .

 

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

cosmos.mirtesen.ru

Какими будут молекулярные машины будущего?

Молекулярные машины — это наноразмерные сборщики (наноассемблеры), которые выстраивают себя и свое окружение в более сложные структуры. Входя в разряд нанотехнологий в умах простых обывателей, эти устройства очень многообещающие — но на их счет часто заблуждаются. Давайте отделим научные факты от научной фантастики. Понятия, которые лежат в основе этой формы нанотехнологий, существуют уже достаточно долго, чтобы просочиться в современную науку. Первым о идее «синтеза через прямую манипуляцию атомами» заговорил Ричард Фейнман. С тех пор ученые очень много размышляли о том, как сложить атомы и молекулы в нечто большее, чем простые строительные кирпичики.

Самым известным считается подход к производству снизу-вверх Эрика Дрекслера, изложенный в его книге «Машины творения» 1986 года. В книге он изложил идею наноразмерного «ассемблера», который мог бы создавать копии себя или других молекулярных объектов с атомным управлением; он также мог бы создавать более крупные и сложные структуры. Такая себе микроскопическая сборочная линия, стройматериалы из самых простейших ингредиентов. К моменту появления первых нанотехнологий в середине восьмидесятых они казались сошедшими со страниц научной фантастики.

Утопая в «серой слизи»

Тогда даже Дрекслер признал, что за наностроительной площадкой нужен строгий надзор.

«Представьте себе такой репликатор, плавающий в бутылке химических веществ и делающий копии самого себя, — объяснял он в «Машинах творения». — Первый репликатор создаст копию в одну тысячную долю секунды, два репликатора произведут еще два в долю секунды, четыре построят четыре, восемь построят восемь. Через десять часов будет не тридцать шесть новых репликаторов, а более 68 миллиардов. Меньше чем через день они будут весить тонну; через два дня они будут весить с Землю; еще через четыре часа они превзойдут Солнце по массе и все планеты вместе взятые — если бутылка химикатов не иссякнет задолго до этого».

Эта безжалостная эффективность, утверждает Дрекслер, сделает некоторых нанороботов существенно превосходящими природные органические существа, по крайней мере в эволюционном смысле. Всеядные бактерии будут существенно превосходить настоящих, перерабатывая биосферу на пыль — или «серую слизь» — всего за несколько дней. Гипотетический сценарий конца света, когда наноботы захватывают мир и превращают нас в аморфную слизь, скептики выдвигают в противовес заманчивым обещаниям нанотехнологов. Впрочем, прошло тридцать лет, а мы все еще здесь, и хотя у некоторых из нас могли появиться серые пятна на лице, мы пока не стали побочным продуктом развития молекулярных машин.

Строительные блоки

Правда в том, что последние тридцать лет ученые старательно пытались создать структуры молекулярных размеров, которые могут управлять собой и собирать сами себя, двигаться и даже работать совместно. Это не так-то просто, разумеется, — строительство на таком молекулярном уровне требует атомарной точности — но, к счастью, физика и химия продвинули это до точки, когда такой фокус стал возможным. И есть богатый пул молекулярных машин, некоторые из которых были созданы под вдохновением от природы, а некоторые по принципам механической инженерии, но которые демонстрируют это.

Большая часть успеха была достигнута с применением молекул ДНК. В этом случае ДНК используется не для передачи генетической информации, а является строительным материалом сама по себе. Ее четыре основания — аденин, цитозин, гуанин и тимин — связываются сильнее или слабее в зависимости от того, как устроены пары в двойной спирали ДНК, что позволяет ученым тонко настраивать совместные связи.

«Мы можем напрямую соединять молекулы, используя спаривание оснований Уотсона-Крика. Межмолекулярные взаимодействия с использованием липких концов имеют четко определенную геометрию, — объясняет профессор Нед Симан, нанотехнолог из Отделения химии Нью-Йоркского университета, которого считают основателем поля нанотехнологий в ДНК. — ДНК как Lego».

Основные строительные блоки жизни уже обладают функциями, необходимыми для сложения, объединения, роста и строительства — и они идеально подходят для строительства объектов в наномасштабах. Создавая цепи ДНК с тщательным контролем последовательностей оснований, можно связывать индивидуальные цепи и создавать экзотические структуры. Геометрия сначала выстраивается на компьютерах, чтобы понять, какие требуются молекулы, а затем синтезируется нужная ДНК — как набор Lego.

Нет необходимости в сборке

В отличие от Lego, при соединении в растворе ДНК может образовывать структуры без вмешательства. Взаимодействия между цепочками контролируются последовательностью оснований: некоторые места связываются приоритетно, некоторые нет, и в результате получается пресловутая самосборка. Если предположения об ассемблерах Дрекслера в 80-х годах казались фантастикой, сегодня нельзя отрицать факт, что молекулы, которые могут самостоятельно собираться в новые комплексные структуры, по сути воплощают это.

Лаборатория Симана имеет богатую историю создания самособирающихся сложных объектов: например, кристаллов, из простой лужи молекул ДНК. Его лаборатория создала двухмерные и трехмерные кристаллы, а также широкое разнообразие геометрических форм с использованием этих техник. Есть и много других ученых, работающих в этой области. Профессор Эндрю Терберфильд из Оксфордского университета, к примеру, использует молекулы ДНК для создания отдельных тетраэдров. Смешивая четыре разных типа ДНК, каждый из которых настроен для соединения заранее обозначенными способами, его ученые смогли создать тетраэдр с 7-нанометровыми гранями. Их можно использовать, чтобы блокировать белки внутри структуры, а затем выпускать в нужных местах в процессе лечения пациента — своего рода самособирающаяся и самоактивирующаяся система доставки на молекулярном уровне.

Твой ход, молекула

Забавные наноинженерные молекулы не только собираются сами — они еще и двигаются. Ряд научно-исследовательских групп создали молекулы, которые могут ходить, подобно людям или животным. Синтезируемые из ДНК, они могут двигаться прямо вдоль дорожки, правда, до недавнего времени было трудно понять, «прыгают» или «плывут» путешественники в новое место — потому что шаги в нанометр длиной сложно зарегистрировать, используя обычные методы. К счастью, ученые из Отделения химии Оксфордского университета пропитали ходоков мышьяком и смогли проследить движение по тонкому следу — раз и навсегда доказав, что ходоки делают то, что и должны были делать.

Механическая инженерия имеет большое влияние на наностроительство — отсюда и название «молекулярные машины». Двигатели, к примеру, которые в реальной жизни кажутся нам громоздкими и шумными, тоже получили молекулярное воплощение. Первый молекулярный двигатель был создан в 2012 году; самый быстрый из серии появился в прошлом году. Самый маленький просто крутит атом серы на поверхности чистой меди, разгоняясь до 7200 оборотов в минуту. Самый быстрый, сделанный из трех молекулярных компонентов, может разгоняться до 18 000 оборотов в минуту — почти как реактивный двигатель.

Возможно, наиболее полным примером молекулярной машины пока можно назвать наномашину, разработанную командой голландских исследователей. Собранная из длинного центрального тела с поворотными лопастями на каждом из четырех углов, машина разгоняется импульсом электронов, которые крутят лопасти, поворачивается на четверть и таким образом продвигается. Поворот нарушает положение молекул, поэтому всей конструкции нужно повернуться в другую сторону, тоже на четверть, чтобы достичь баланса. Машина движется при импульсе электронов каждые полповорота. Необходимо 10 импульсов, чтобы транспорт проехал 6 нанометров, но это молекулярный автомобиль, дайте ему отдохнуть.

Альтернативная энергетика

Все это поднимает легко забываемую проблему: на чем будут работать эти молекулярные машины? Основная задача на сегодняшний день в этой сфере — создание синтетических нанодвигателей, говорит доктор Вэй Гао из Отделения электротехники и компьютерных наук в Калифорнийском университете в Беркли. «Новые нанодвигатели, которые могли бы двигаться внутри живых существ, особенно в кровотоке, остаются на повестке дня».

Двигатели и автомобили, описанные выше, обычно используют поток электронов для питания — который поставляется туннельным электронным микроскопом. Но это не самый лучший источник энергии для применения за пределами лаборатории и, конечно, не внутри человеческого тела, поэтому Гао и ему подобные ученые разрабатывают альтернативу. Не так давно они создали новый тип полимерной трубки в 20 микрометров длиной, покрытой цинком. Когда она оказывается в кислотной среде, например в желудке, цинк реагирует с ней, образуя пузырьки водорода, что в свою очередь толкает транспорт вперед вместе с его полезным грузом в виде лекарств.

Это довольно грубая и не особо качественная форма движения, никто не спорит, но она доказывает, что молекулярные структуры могут использовать свое окружение для создания энергии, необходимой для их питания. «Синтетические нанодвигатели требуют внешних источников химического топлива, что может значительно помешать их практическому применению», — объясняет Гао. — «Цинковые нанодвигатели — это первый пример нанодвигателей, которые могут использовать естественную среду в качестве источника питания. В дополнение к этому мы разработали биоразлагаемые магнезиевые нанодвигатели, которые могут использовать в качестве топлива воду в присутствии ионов хлора. Возможно, нанодвигатели будущего будут двигаться самостоятельно, используя биологические жидкости вроде крови».

Сведите все до кучи

Очевидно, в наномасштабах таким технологиям нет равных. У нас есть самособирающиеся структуры, складывающиеся формы, которые могут собирать и выпускать груз, хитрые ходоки, молекулярные двигатели, транспорт, который их использует, и даже, может быть, топливо для всего этого. Вы также можете добавить им немного мозгов — вроде светодиодов в одну молекулу и простых компьютеров на основе ДНК — и в один прекрасный день они станут больше, чем просто механическими системами.

Какой прогноз ожидает наноразмерная сборочная линия Дрекслера? «Мы уже показали это», — объясняет Симан, и в этом не получится усомниться. Несколько лет назад Симан в лаборатории показал первую молекулярную сборочную линию. Четыре наноробота из ДНК шли по специально подготовленной поверхности, поднимая частицы золота и взаимодействия с ними, собираясь по мере движения в один из восьми конечных разных продуктов. Правда, конечным результатом была связка одной из восьми разных сочетаний ДНК и золотых частиц, но для доказательства концепции вполне сгодится.

Прогресс с тех пор не сбавляет темпы. Другие сборочные линии были созданы, но вместо того, чтобы пересобирать ДНК, они собирают воедино мелкие молекулы в более крупные и сложные структуры, которым можно найти новые применения. Молекулярные машины используются в лабораториях по всему миру, собирая и настраивая другие молекулы, создавая более мощные структуры, которые можно использовать для других целей.

От вымысла к реальности

Подводя итоги, можно отметить, что мы уже почти на месте. Но вместо того, чтобы получить безымянный рой наноботов, собирающих «серую слизь», в реальности молекулярное строительство более тонкое, структурированное и скромное. Потому, возможно, нет ничего удивительного в том, что сам Дрекслер немного поправил собственную гипотезу о будущем нанотехнологий. В книге 2013 года «Полное изобилие» он пишет о «микроблоках». Они, по его мнению, будут такими матрешками в мире молекулярной сборки, когда каскад тысяч крошечных роботизированных клеток будет создавать объекты на молекулярном уровне, пока не вырастет полноразмерный робот. Первые намеки на это мы наблюдаем на примере работы 3D-принтеров, которые, по сути, собирают объекты на молекулярном уровне.

Конечно, у этой растущей сложности появятся и свои проблемы — но, учитывая расстояние, которое мы прошли, эти препятствия не должны рассматриваться как непреодолимые. «Сама жизнь была бы невозможна без множества молекулярных машин в наших телах, которые работают в сложных условиях и с крайне небольшим количеством энергии, но выполняют сложнейшие задачи, борются с вирусами, движут мышцами, — объясняет профессор Чарльз Сайкс из Отделения химии Университета Тафтса. — Многие удивительные вещи возможны, это доказала природа. Единственное ограничение, как всегда, — это деньги». И с ним соглашаются все академики.

hi-news.ru

Молекулярные машины: за что дали Нобелевскую премию по химии -2016

Нобелевскую премию по химии в 2016 году вручили за проектирование и синтез молекулярных машин. Что это такое и как это работает, рассказывает «ПМ».

Все живое можно представить как мир молекулярных машин. Казалось бы, в микромире очень много случайного, стохастического движения. И тем не менее молекулы движутся, зацепляются друг за друга подобиями шестерней, сообщают друг другу движение, причем выполняют все эти действия с большой точностью.

Соваж и молекулярные замки

Еще в начале восьмидесятых французский химик Жан-Пьер Соваж решил выяснить, как работают молекулы с точки зрения механики, какие механизмы приводят их в движение. В 1985 году он описал устройство и механику молекулярных узлов, состоящих из макрогетероциклических молекул.

Предметом его изучения стали «молекулы-замки» — катенаны. Они состоят из двух и более кольцевых молекул. В экспериментах Соваж использовал криптанды — сложные циклические молекулы, содержащие в цикле атомы, отличные от атомов углерода. Находясь рядом с криптандами, разветвленные молекулы катенанов выстраивались так, чтобы замкнуть кольцо вокруг фрагмента криптанда. В результате получались конструкции, напоминающие два звена цепи. Эти конструкции положили начала координационной химии; будущее было за созданием таких молекул, которые не только организовывались в предсказуемые пространственные структуры, но и двигались в их пределах.

Стоддарт и молекулярные челноки

Фрейзеру Стоддарту из Северо-западного Университета в Ивастоне (США), пошедшему по стопам Саважа, удалось собрать из молекул относительно простое устройство, на основе которого работают многие современные молекулярные механизмы. Устройство предстваляло собой соединение из класса ротаксатанов.

Молекула ротаксана выглядит как муфта, которая движется вдоль оси, концы которой увенчаны крупными навершиями. Эти навершия не дают муфте соскочить. На противоположных концах оси находятся группы атомов, которые способны связываться с «муфтой». Стоддарт установил, что «муфта» может перемещаться от одной такой группы к другой. Эта молекула и стала первым молекулярным челноком. В 1994 году Стоддарт изменил устройство своего шаттла: теперь на концах «оси» находились не одинаковые, а разные группы атомов. Изменяя кислотность раствора, в котором плавали молекулярные перевозчики, можно было управлять активностью каждой из них и целенаправленно заставлять муфту двигаться.

Машины Стоддарта строились на двух принципах, которые унаследовали все следующие поколения молекулярных машин. Первый из них гласит, что связь между подвижными частями машины или подвижной и не подвижной не должна иметь ковалентную природу. Ковалентные связи слишком сильные для того, чтобы их можно было легко разрывать и снова создавать. Вместо этого для движущихся частей машин используется электростатическое притяжение между частями молекул, имеющих полярные электрические моменты.

Второй принцип заключается в том, что «шаттлам» не должен быть нужен внешний источник энергии. Они получают энергию от броуновских столкновений с другими молекулами в растворе.

Свой механизм Стоддарт использовал для создания устройства хранения информации на основе сотен челноков. Пойманные в ловушку между кремниевым слоем и титановыми электродами, ротаксаны с помощью электричества перемещают «муфту» вперед и назад — получаются своеобразные молекулярные «счеты» 13 мкм длиной, способны хранить 160000 бит информации и настолько малы, что 100 гигабит с их помощью может поместиться на 1 квадратном сантиметре. Это сравнимо с технологиями записи данных, которые используются в современных жестких дисках.

Ферринга и молекулярные двигатели

В 1999 году наука о молекулярных машинах сделала еще один гигантский скачок вперед. На основе челноков Стоддарта голландский ученый Бен Феринга создал первый в истории молекулярный мотор. Он представлял собой одну крупную молекулу, содержаю два одинаковых блока, соединенных двойной углерод-углеродной связью. Пока связь была цела, система находилась в равновесии, но ее легко можно было привести в движение лучом света, который способен частично разрушить двойную связь C-C. Когда связь нарушается, блоки начинают вращаться друг относительно друга. Особенно важно было то, что геометрия блоков позволяла им вращаться только в одном направлении. Пока работал источник энергии — света или тепла — мотор продолжал крутиться.

Ферринга пошел дальше и на основе своего мотора построил четырехколесный «наноавтомобиль» (!), способный «ехать» в заданном направлении под действием света.

Самым удивительным свойством молекулярных машин оказалось то, что они, как и их аналоги из макромира, способны перемещать объекты крупнее себя. Молекулярный моторчик Ферринги способен увезти на себе стеклянную чешуйку, масса которой в 10 000 раз превышает массу молекулы.

Как было отмечено сегодня во время объявления имен лауреатов Нобелевской премии, молекулярные механизмы во многом остаются игрушкой ума, не находя практического применения: их слишком сложно построить и еще сложнее заставить работать. Но фундаментальные открытия, стоящие за кажущейся простотой их конструкции, уже применяются в реальной технике.

Главная область применения молекулярных механизмов — адресная доставка лекарств. В июле 2015 года команда американских ученых разработала управляемое светом вещество — аналог известного лекарства от рака, комбретастина А-3. Комбретастин печально известен тем, что наряду с опухолями атакует и здоровые ткани. Залог его правильной работы — точная доставка к раковым клеткам. Управляемую светом молекулу, в которой азот-азотная связь рвется и заставляет молекулярные «педали» вращаться только под действием синего света, можно направлять в нужное врачам место площадью всего около 100 мкм2.

www.popmech.ru

Машина из пробирки

Сегодня в Стокгольме объявили лауреатов Нобелевской премии по химии 2016 года. Ими стали Жан-Пьер Соваж, Фрейзер Стоддарт и Бернард Феринга — люди, которых можно назвать пионерами одной из самых интересных областей химии: молекулярных машин и топологических молекул. Мы разобрались в том, как можно завязать молекулу в узел, сделать из нее поршень или построить на ее основе линию по сборке других молекул.

Концепция молекулярного автомобиля, использующего четыре ротора для движения

Francis Villatoro / Youtube

Начнем, пожалуй, с краткой биографии лауреатов — например, интересно отметить, что один из них ни много ни мало рыцарь-бакалавр.

Первый из лауреатов, Жан-Пьер Соваж — 71-летний французский химик, получивший докторскую степень в Университете Страсбурга в 1971 году. Его исследования относились к области координационной химии — так, в рамках работы над диссертацией ученый участвовал в первом синтезе криптандов. Это необычные молекулы, содержащие внутри себя полости, которые хорошо подходят для того, чтобы в них можно было поместить ион металла или другую молекулу. Сейчас Жан-Пьер — сотрудник Института супрамолекулярной инженерии при Национальном центре научных исследований Франции, а также является почетным профессором Университета Страсбурга.

Сэр Джеймс Фрейзер Стоддарт родился в 1942 году в Эдинбурге. Докторскую степень химик получил в 1966 году, в Университете Эдинбурга, а в 1996 году королева Елизавета II посвятила ученого в рыцари-бакалавры. Кстати, Стоддарт — пятый обладатель Нобелевской премии по химии, получивший рыцарское звание до присуждения ему награды шведской Королевской академии наук. Компанию ему составили Гарольд Крото, Норман Хиншельвуд, Роберт Робинсон и Уильям Рамзай. Сейчас Стоддарт руководит группой механостереохимии в Северо-западном университете (США).

Бернард Лукас Феринга — голландец, самый молодой из лауреатов этого года, ему «всего» 65 лет. Докторскую степень химик получил в 1978 году за работы по асимметрическому окислению фенолов. Последнее приводило к «склеиванию» двух молекул — такой результат отдаленно напоминает первые молекулярные роторы, которые и принесли ученому Нобелевскую премию.

Официальная формулировка премии звучит так: «За проектирование и синтез молекулярных машин». Вместе с тем, работы ученых берут свое начало немного в другой области, имеющей дело с топологически связанными молекулами.

Традиционная химическая связь выглядит как пружинка, связывающая два атома в молекуле. Такая связь позволяет молекуле быть отчасти гибкой и даже допускает вращение некоторых ее фрагментов. К примеру, если взять молекулу воды h3O, то окажется, что связи в ней колеблются. Вместе с тем, химические связи мешают частям молекулы свободно перемещаться друг относительно друга.

Многие крупные молекулы можно представить себе в виде цепочек, состоящих из атомов — с различными ответвлениями и зацикливаниями. Представим себе две таких цепочки, лежащие рядом, но не связанные между собой. Теперь завернем обе цепочки в кольца — при этом проденем одну из цепочек через другую. В результате мы получили неразделимую пару цепочек. Они связаны между собой не химической связью, а геометрически — не разорвав одно из колец, их не удастся расцепить. Такую связь химики назвали механической, или топологической.

Представить себе такие молекулы довольно легко, но их синтез оказался непростой задачей. Одним из подходов к их получению был «статистический» синтез. Представьте себе, что на концах каждой из цепочек находятся магниты. Возьмем очень много таких цепочек, положим в коробку и потрясем. Если после этого аккуратно разобрать получившийся комок, не размыкая магнитов, то можно будет найти несколько «правильно» соединившихся цепочек. Очевидно, что выход таких синтезов очень мал — надежно подтвердить образование катенанов, или сомкнутых пар колец, было невозможно.

В 1960-х годах немецкий химик Готтфрид Шилл нашел способ увеличить вероятность «правильного» смыкания цепочек. Для этого химик заранее замыкал одну из цепочек в кольцо и «приклеивал» к нему середину другой цепочки (тоже с группами-магнитами). После того как магниты сцеплялись, группа Шилла убирала «клей», позволяя цепочкам свободно двигаться относительно друг друга. Так впервые были получены катенаны, состоявшие из пары и тройки сомкнутых колец.

Темплатный синтез

Johan Jarnestad / The Royal Swedish Academy of Sciences

Этот подход к синтезу был достаточно сложным, и использовать его для получения заметных количеств катенанов было неудобно. В 1983 году один из нынешних лауреатов, Жан-Пьер Соваж, разработал сходный, но гораздо более практичный метод синтеза катенанов, которым химики пользуются до сих пор. Он получил название темплатный («созданный по шаблону»).

Соваж взял за основу цепочки, на которых, как бусины, располагались атомы с большой электроотрицательностью — кислород и азот. Такие цепочки могут связываться с положительно заряженными катионами металлов, занимая вокруг них строго заданное пространственное положение.

В первой работе, описывающей темплатный метод, группа Жан-Пьера связала одну такую замкнутую цепочку (кольцо) с катионом меди. Размер цепочки был достаточно велик, чтобы она могла полностью окружить медь — около катиона осталось немного места для еще одной молекулы. Поместив в раствор еще одно органическое вещество (производную фенантролина), которое можно представить себе как половину будущего кольца катенана, химики получили заготовку для целевой молекулы. В отличие от подхода Шилла, геометрия этой заготовки решала самую сложную задачу синтеза катенанов — фрагмент второго кольца уже был продет сквозь кольцо исходной цепочки. Добавив к получившейся заготовке вторую половину кольца и убрав из молекулы катион меди, Соваж получил катенан, состоявший из двух геометрически сцепленных колец. При этом его метод обеспечивал высокий выход катенанов из исходных молекул.

Молекулярные «мышцы»

Johan Jarnestad / The Royal Swedish Academy of Sciences

Темплатный метод позволил химикам легко модифицировать структуру катенана — подобно цепям, состоящим из звеньев-колец, химики получали катенаны с тремя, четырьмя, и пятью кольцами. Интересно, что последний результат принадлежит сэру Фрейзеру Стоддарту. Аналогичным образом химики научились получать молекулярные узлы и другие нетривиальные объекты.

Топологические структуры: трехлистник (или простой узел), кольцо Борромео, соломонов узел

Johan Jarnestad / The Royal Swedish Academy of Sciences

Помимо синтеза второго важного класса топологических соединений, ротаксанов, Стоддарт продемонстрировал важное для молекулярных машин явление, трансляционную изомерию. Ротаксаны представляют собой цепочку, на которую надето кольцо небольшого диаметра. Для того чтобы кольцо не могло слететь с цепочки, на ее концах находятся специальные большие группы атомов, стопоры.

Трансляционная изомерия ротаксанов заключалась в том, что кольцо могло перемещаться вдоль цепи, находясь в одном из нескольких устойчивых положений. В 1994 году Стоддарт и Соваж независимо показали, что этой изомерией можно управлять. Для этого было достаточно поместить положительно заряженное кольцо на цепочку, содержавшую два возможных центра связывания. Добавляя окислители или восстановители, ученые увеличивали «желание» кольца оказаться на одном из этих центров связывания. В результате на ротаксанах Стоддарта кольца «прыгали» то в одном, то в другом направлении, наподобие поршня, а кольца катенанов Соважа начали вращаться друг относительно друга. Так в мире химии появились первые молекулярные машины.

Движение кольца на ротаксане и вращение кольца в катенане

NobelPrize.org

Говоря о сходстве микроскопических молекулярных машин с привычными нам устройствами следует иметь ввиду принципиальную разницу в механике их работы. В отличие от обычных, макроскопических машин, молекулы почти не имеют инерции и не способны сохранять импульс движения — слишком мала их масса. Они могут отталкиваться, притягиваться и совершать значительную даже в больших масштабах работу. Однако все это происходит без сохранения и передачи кинетической энергии — того, что составляет суть работы привычных трансмиссий, маховиков, маятников и т. д. Движение частей молекулярных машин неинерционно, поэтому они всегда совершают работу пошагово: от одного положения к другому. Это отличает любые молекулярные машины, как искусственные, так как и природные: жгутики бактерий, рибосомы, пары актина и миозина в мышцах, АТФ-синтетазы и так далее.

Помимо химических методов управления, ученые нашли способ запускать и останавливать вращение с помощью света, электричества и тепла. В 2000 году группа Саважа показала необычный гибрид между катенаном и ротаксаном — искусственную мышцу, способную сокращаться и растягиваться. Не отстававшая от нее группа Стоддарта к 2004 году разработала еще более хитрый механизм — молекулярный лифт. Для ротаксанов и катенанов было предложено множество разных применений, от переключателей в наноэлектронике и средств для хранения информации до молекулярных моторов.

Молекулярный лифт

Johan Jarnestad / The Royal Swedish Academy of Sciences

Идея создания молекулярных машин пришла затем и в «мир» обычных, не топологически связанных молекул. За ней стояла очень простая идея: даже если ничего не делать с органическими молекулами, содержащими традиционную одинарную ковалентную связь, они будут очень быстро вращаться вокруг нее. Минус такого вращения — неконтролируемость, нельзя заранее сказать, в какую сторону повернется молекула относительно конкретной связи в следующий момент.

Именно здесь сыграл ключевую роль Бернард Феринга. Химик отказался от идеи вращения вокруг одинарной связи и использовал вместо нее двойную, в норме не допускающую вращения вокруг себя. Она устроена таким образом, что попытка повернуть вокруг нее один из фрагментов молекулы непременно разорвет связь. Тем не менее, этот оборот возможен при внешнем воздействии, например при облучении ультрафиолетом.

Молекулярный ротор. Каждый акт поворота связан с поглощением кванта света

Johan Jarnestad / The Royal Swedish Academy of Sciences

Феринга использовал молекулы, в которых на разных концах двойной связи находились довольно объемные, мешающие друг другу, группы атомов — лопасти. Свет заставлял их поворачиваться друг относительно друга, частично сталкивая между собой и заставляя молекулу деформироваться и «доворачивать» лопасти до следующего удобного положения, используя для этого тепло окружающей среды. Следующий поглощенный квант света вынуждал молекулу продолжать поворачиваться в ту же сторону и вновь «доводить» лопасти до удобного положения. Повороты в обратную сторону при этом были гораздо более энергетически затратными для молекулы. Благодаря аккуратной проработке структуры молекулы, химики получили мотор, вращавшийся в строго определенном направлении. К 2014 году ученым удалось зафиксировать рекордные скорости — около 12 миллионов оборотов в секунду.

Молекулярные моторы удалось впоследствии использовать для вращения макроскопических тел, размеры которых в тысячи раз превышают размер самих «машин». Для этого надо просто закрепить одну из лопастей на наночастице золота или стеклянной бусине. В 2011 году группа Бернарда Феринга показала концепт молекулярного «автомобиля», состоящего из четырех моторов, вращающихся под действием электрических импульсов.

Молекулярный «автомобиль»

Johan Jarnestad / The Royal Swedish Academy of Sciences

Как отмечает пресс-релиз нобелевского комитета, сейчас молекулярные моторы находятся на том же уровне развития, что и электрические моторы в 1830-х годах. Ученые разрабатывают различные вращающиеся и движущиеся механизмы, не представляя себе, где их будут использовать десятки лет спустя. Сегодня мы ездим на работу на электричках, троллейбусах или даже электромобилях, используем стиральные машины и фены. На что может быть похоже будущее с молекулярными машинами?

Один из интересных объектов, уже созданных химиками, — искусственная рибосома, способная синтезировать олигопептиды (грубо говоря, очень короткие белки). Она представляет собой ротаксан, кольцо которого, перемещаясь вдоль цепи, собирает аминокислоты и объединяет их в пептид. Сейчас такая молекулярная машина еще не в состоянии обойти человека в скорости синтеза — квинтиллион таких машин может синтезировать миллиграммовые количества вещества, тратя по 12 часов на присоединение каждого нового аминокислотного остатка. Для сравнения, природные рибосомы за одну секунду наращивают цепь длиной 15-20 аминокислотных остатков.

Тем не менее, благодаря молекулярным машинам фабрики, создающие сложные вещества путем практически поатомной сборки, уже не кажутся абсолютной научной фантастикой. О том, какими будут молекулярные машины через 100 лет, можно только догадываться.

Владимир Королёв

nplus1.ru

Молекулярные машины

Молекулярные машины белковые молекулы или, чаще, макромолекулярные комплексы, образованные с участием

белков, которые способны осуществлять направленные движения. Работа таких машин обеспечивает перемещение клеточных структур и органелл (например, расхождение хромосом при клеточном делении), изменение формы клеток, активное перемещение клеток, активный транспорт через мембрану против градиента концентрации, мышечные сокращения, перемещение полимераз вдоль матрицы при синтезе биополимеров подобное. Все это требует энергии, источником которой также АТР (или другие нуклеозидтрифосфаты).

Вообще машина? это устройство для преобразования той или иной формы энергии в движение. Обычная механическая машина превращает любую энергию в механическую, условием сбережения механической энергии при этом является высокая инерция (масса) частей машины и определенная их жесткие взаимная ориентация. Точнее, конструкция машины вызывает движения ее частей только по определенным заданным траекториям.

Молекулярная машина, в отличие от макроскопической механической машины, во-первых, маленькая, т.е. подвергается тепловому движению своих собственных частей и внешних молекул, что делает невозможным сбережения механической энергии. Во-вторых, она построена из полимеров, а это значит, что ее частям присуща конформационная подвижность.

Однако вследствие того, что молекула белка имеет определенную достаточно жесткую пространственную организацию, конструкция молекулярной машины допускает не любые, а определенным образом направлены в пространстве движения ее частей. Именно эти особенности молекулярной машины и используемые для ее работы. Основные принципы этой работы:

• Конформационная подвижность молекулярной машины обес-слышит ей возможность существовать в нескольких структурных состояниях (двух-трех), которые различаются главным образом на уровне пространственного расположения крупных структурных блоков? доменов или субъединиц.• Структурные состояния имеют разную сродство к определенным лигандов. Взаимодействия с лигандами (факторами) фиксируют определенные состояния.

• Химические реакции, катализируемой машиной, приводят д озамины лигандов, а соответственно? и до перехода в другое структурное состояние.

• Движущей силой для перемещения блоков является тепловое движение: блоки движутся хаотично (хотя и в соответствии с конструкцией машины) связывание лигандов и замена их вследствие реакций катализируют эти движения в определенных направлениях.

• Результатом структурных перестроек является перемещение структурных блоков в пространстве и / или изменение характера взаимодействия машины со своим окружением? движение или всей машины, или относительное движение ее частей.

worldofscience.ru

Молекулярные машины

Молекулярные машины.

Обычно курс биологии строится от изучения простого, составных частей, к все более сложному. Сначала изучают химический состав клеток; потом ДНК, РНК, белок; затем строение клетки.

Но начать мы решили с чего-то более близкого к человеку с физическим образованием. Честно говоря, когда я изучала биологию, эта тема меня просто поразила, она мне показалось одной из наиболее интересных. Поэтому я решила вас не томить, не откладывать такую интересную тему на потом, а начать наш курс с рассмотрения работы молекулярных машин. Сегодня мы рассмотрим некоторые молекулярные машины. Первая из них называется АТФ-синтаза. Она занимается в митохондриях синтезом аденозинтрифосфорной кислоты (АТФ). Напомню, что АТФ – это молекула, которая обеспечивает клетку энергией (рис. 5).

Для нас сейчас важно, зато молекула аденозинтрифосфорной кислоты содержит так называемую макроэргическую связь. Реакция синтеза представлена на схеме.

АДФ+Ф ==> АТФ +h3O

Из аденозиндифосфата и фосфата получается АТФ, при этом образуется так называемая макроэргическая связь, и на ее образование затрачивается 30,6 кДж/моль (7,3 ккал/моль). АТФ обеспечивает энергией большинство происходящих в клетке процессов, так как при гидролизе макроэргической связи запасенная в ней энергия освобождается.

Как же синтезируется эта молекула, то есть, как образуется макроэргическая связь между фосфатами? Это было одно время загадкой. Существовало предположение о том, что есть какое-то вещество Х, химический посредник, осуществляет связь между процессами, дающими энергию, то есть окислением питательных веществ до СО2 и Н2О, и каким –то образом энергия окисления (в своем роде медленное "горение" внутри организма) переходит в энергию макроэргической связи в молекуле АТФ. Это предположение о наличии химического посредника, которого никто найти не мог, называлось гипотезой химического сопряжения (рис. 6).

Но в 1961 г. английский ученый Питер Митчелл предложил другое объяснение – хемиосмотическую гипотезу (подробнее мы о ней будем говорить позже), которая заключается в том, что вода, которая образуется в процессе окисления, образуется не в виде молекулы воды, а виде протона H+ и иона гидроксила OH–. Энергия, получаемая при окислении, идет на то, чтобы продукты реакции – протон и гидроксил – разделить в пространстве. Протон выбрасывается из митохондрий через внутреннюю мембрану в межмембранное пространство (сам по себе протон не может проникнуть через мембрану митохондрии, эта мембрана непроницаема для заряженных частиц), и гидроксогруппы, которая остается внутри митохондрии.

В результате возникает разница концентраций ионов водорода (∆рН – то есть кислотности среды) и разница потенциала: положительные заряды снаружи митохондриальной мембраны, а отрицательный внутри. Напомним, что у митохондрий 2 мембраны, причем внешняя в энергетических процессах такой важной роли, как внутренняя, не играет. То есть энергия, полученная при окислении, запасена в виде электрохимической энергии. Электрический потенциал на мембране митохондрий достигает 200 милливольт, а толщина мембраны не превышает 10 нм.

Питер Митчелл первый высказал предположение о том, что химические реакции в клетке пространственно упорядочены, и продукты реакции распределяются асимметрично: протон в одну сторону, гидроксил в другую. За счет этого появляется электрохимический потенциал на мембране (обозначается Δμн). Он состоит из химической (∆рН – разница в концентрации протонов) и электрической (Δφ – разница в величине заряда) компоненты Δμн=∆рН + Δφ. Электрохимический потенциал на мембране митохондрий – универсальная форма запасания энергии клеткой.

Протоны могут перекачиваться через мембрану и при фотосинтезе в хлоропластах или в клетках фотосинтезирующих бактерий (Рис. 8).

На рисунке представлена довольно простая система бактериального фотосинтеза, сопряженного с синтезом АТФ на примере галобактерий. Галобактерии живут в Мертвом море. Море настолько соленое, что соль выпадает в осадок, но в таких экстремальных условиях галобактерии прекрасно себя чувствуют. Галобактерии используют фотосинтез для получения энергии. Белок бактериородопсин под действием света выкачивает протоны изнутри бактериальной клетки наружу, и на мембране снаружи избыток протонов, и, соответственно, образуется положительный заряд. То есть в данном случае электрохимический потенциал на мембране бактерии возникает не за счет окисления веществ в процессе дыхания, а за счет работы, связанной со световой энергией.

Если протон "падает" сквозь мембрану внутрь митохондрии, при этом его потенциальная энергия уменьшается, так как он "падает" в электрическом поле от положительного заряда к отрицательному, и вдобавок по градиенту концентрации. Эта энергия используется для синтеза АТФ. И далее пойдет речь о том, как это происходит.

Синтезом АТФ занимается молекулярная машина, которая называется АТФ-синтаза. Она состоит из двух частей. Первая погружена в мембрану называется F0 (см. рисунок). Она представляет собой протонный канал, то есть это дыра в мембране, по которой протон может попасть внутрь митохондрии, но попадает он внутрь с потерей энергии, которую улавливает вторая часть молекулярной машины, которая называется F1. Эта часть АТФ-синтазы торчит внутрь митохондрии и использует энергию "падающих" через F0 протонов для того, чтобы аденозиндифосфат соединился с фосфатом посредством макроэргической связи и образовал молекулу АТФ.

Рассмотрим, как АТФ-синтаза синтезирует АТФ. Оказывается, что прежде всего совершается работа механическая, так как для осуществления синтеза АТФ в АТФ-синтазе крутится белковая структура. Как устроена АТФ-синтаза?

Она состоит из двух частей – статора (на рисунке 9 помечено синим цветом), и ротора (обозначен красным). Статор состоит из трех альфа субъединиц и трех бета субъединиц – они занимаются химической частью работы: синтезом АТФ из АДФ и фосфата. В собранном состоянии все вместе эти субъединицы по форме напоминают слега приплюснутый шар 8 нм в высоту и 10 нм в диаметре.

К ним примыкает дельта субъединица, и все вместе эта система образует F1 субъединицу молекулярной машины. Здесь же есть опора, которая «якорит» всю систему в мембране. Как известно, мембрана сделана из фосфолипидов (на рисунке показаны желтым). Гидрофильные "головки" фосфолипидов обращены в водную поверхность, а гидрофобные "хвосты" погружены внутрь мембраны, и именно они препятствуют перемещению заряженных частиц через мембрану. Вращающаяся часть машины, ротор, состоит из гамма и эпсилон субъединиц. Эта конструкция погружена в структуру, сделанную из одинаковых белков, они обозначаются буквой с. Статор держится в мембране, а ротор крутится. И энергия протона используется на то, чтобы прокрутить ротор этой машины.

Молекулярная машина работает в обе стороны (так же как и катализаторы, которые проводят реакцию как в прямую, так и в обратную стороны). Если течет протонный ток с наружной мембраны внутрь, то синтезируется АТФ; если же протонного потенциала нет, но подать с внутренней стороны АТФ, то машина начнет «выкачивать» протоны, создавая протонный потенциал. При этом ротор также вращается.

Для того, чтобы доказать, что в АТФ синтазе вращается часть машины, F1 фрагмент перевернули, «пришили» к неподвижной подложке, а к гамма-субъединице навесили искусственным образом нить актина (длинный белок, который можно было увидеть в микроскоп, так как он был мечен флуоресцентной меткой). Затем подали к этой системе энергию в виде АТФ, и оказалось, что при наличии АТФ гамма субъединица начала крутиться. Все это сняли на пленку. Было видно, как крутится флуоресцентная метка на актиновом хвостике, и было показано, что действительно происходит вращение во время работы этой молекулярной машины (рис. 10).

Теперь разберем, как же крутится этот ротор; как работает электромотор в мембране клеток, как у бактерий, так и у митохондрий высших организмов. Если вы вспомните временную ось возникновения жизни, то увидите, что возникнуть этот мотор должен был более трех миллиардов лет назад.

Как же используется протонный ток, чтобы крутить мотор? Оказалось, что в статоре имеется протонный канал, т.е. такой белок, который образует проход для протона. Но этот канал не сплошной. Если бы был канал, который пронизывал всю мембрану насквозь, то из-за разницы потенциалов все протоны потекли бы внутрь митохондрии, и произошла бы деэнергетизация мембраны, т.е. она бы разрядилась. Но канал устроен очень хитро. Он состоит из двух половинок (полу-каналов), которые, к тому же, смещены одна относительно другой (рис. 1).

Структура этой машины такова, что протон проваливается через полуканал с наружной стороны митохондриальной мембраны, но попасть внутрь митохондрии он не может. Сваливается протон на подставленную ему аминокислоту ротора и эту аминокислоту протонирует, то есть на аминокислоте появляется дополнительный положительный заряд. Затем, когда протонированная аминокислота на вращающемся роторе доедет до следующей половинки канала, ведущей уже внутрь митохондрии (а внутри протонов мало и, кроме того, там протон поджидают отрицательно заряженные ионы), то протон наконец "падает" внутрь и аминокислота освобождается от положительного заряда. Заряды в роторе и статоре расположены таким образом, что протонирование – депротонирование приводит к повороту машины. Таким образом, протон в два приема проваливается внутрь митохондрии, и за счет этого мотор проворачивается.

За объяснение ферментативного механизма, лежащего в основе синтеза АТФ, два исследователя получили Нобелевскую премию: Пол Д. Бойер, США и Джон Э. Уолкер, Великобритания (Нобелевская премия 1997 года).

Было рассказано, как мотор крутится, но не было объяснено, почему синтезируется АТФ. Сейчас подробно мы на этом останавливаться не будем, но вкратце, объяснить это можно следующим образом. Представим АТФ в таком виде: АТФ=АДФ~Ф. Собственно, почему при разрыве этой связи выделяется большое количество энергии? При разрыве образуется отрицательно заряженный фосфат, который гидратируется (покрывается «шубой» из молекул воды). Как вы помните, вода – это диполь (кислород имеет частично отрицательный заряд, а два водорода - положительный). И за счет гидратирования эта энергия и получается. Но если синтез АТФ идет в той среде, где воды нет, т.е. в гидрофобной среде, то макроэргической эта реакция не является. Показано, что когда происходит образование ковалентной связи между фосфатными группами молекул АДФ и Ф, ферменту практически не требуется энергии. Реакции синтеза и гидролиза ATP в каталитическом центре фермента активно идут при отсутствии внешнего источника энергии. Условия, в которых находятся молекулы АДФ и Ф в каталитическом центре, существенно отличаются от условий протекания реакции в водной среде, благодаря чему образование молекулы АТФ в активном центре фермента может происходить энергетически "бесплатно". Энергия "падающих" протонов тратится потом на то, чтобы «выпихнуть» вон АТФ, отцепить его от каталитической субъединицы.

Таким образом, за счет электрохимического потенциала на внутренней мембране митохондрий внутри клетки или митохондрий совершается механическая работа, сопряженная с химическим синтезом.

На рисунке виден срез митохондрии (рис. 12). Внутри содержится матрикс и выросты (складки) – кристы, на которых и расположена АТФ-синтаза. Зачем нужны складки? Чтобы увеличить площадь поверхности. Количество складок внутри митохондрий зависит от того, насколько интенсивно ей приходится работать, сколько энергии нужно клетке. Митохондрии в клетках печени имеют гораздо меньше крист, чем, например, в клетках сердца.

В хлоропластах происходит точно такой же процесс синтеза АТФ, также работает АТФ-синтаза, как и в митохондриях, но источником протонного потенциала является уловленная энергия света. Там тоже есть складки, они называются тилакоидами. Только в хлоропластах все как бы вывернуто наизнанку. То есть протоны за счет энергии света накапливаются снаружи этих образований.

Двигатель бактерий

Перейдем к работе следующего молекулярного мотора – жгутика у бактерии.

Известно, что не все, но некоторые бактерии могут двигаться. Для того, чтобы двигаться, они вертят хвостом, т.е. жгутиком. Если жгутиков несколько, то во время вращения они сплетаются в единый жгут, и вращаются, двигая бактерию, примерно как лопасти у катера (рис. 13).

Жгутик очень маленький, в световой микроскоп его трудно увидеть. Для того, чтобы проверить, действительно ли жгутик вращается при движении бактерии, бактериальную клетку за жгутик прикрепили к стеклу (рис. 14). В раствор добавили вещество, которое она любит, например, сахар, и она начала вертеться, потому что она явно хотела добраться до сахара, если не добавляли, то она вела себя более спокойно.

Для того, чтобы жгутик вращался, в его основании находится так называемое базальное тело, которое представляет собой электромотор (рис. 15). Его задача заключается в том, чтобы крутить жгутик. На рисунке изображена мембрана бактериальной клетки (желтая), и части мотора статор (синий) и ротор (зеленый). К ротору прикручен жгутик. Пока неизвестно, как именно передается движение, но в этой молекулярной машине есть свои подшипники, своя молекулярная смазка, и есть белок, в котором, также как и в АТФ-синтазе, имеются два протонных полуканала, смещенных друг относительно друга. И принцип вращения такой же: зарядка-перезарядка группы COOH в аминокислотах. Число протонов, которые должны «провалиться» в канал за время одной прокрутки жгутика,- порядка тысячи; остальные параметры приведены ниже

Вот микрофотография жгутика и молекулярного мотора в основании этого жгутика.

В лекции использованы рисунки из Соросовского образовательного журнала.

Список литературы

Соросовский образовательный журнал journal.issep.rssi.ru

Скулачев В.П. Законы биоэнергетики// СОЖ 1997, №1, с. 9-14.

Скулачев В.П. Электродвигатель бактерий. // СОЖ 1998, №9, с. 2-7.

Виноградов А.Д. Преобразование энергии в митохондриях // СОЖ 1999, №9, с. 11-19.

Тихонов А.Н.Молекулярные преобразователи энергии.// СОЖ. 1997, № 7, с. 10-17.

Тихонов А.Н. Молекулярные моторы. Часть 1. Вращающиеся моторы живой клетки // СОЖ. 1999, №6, с. 8-16

В.П.Скулачев Рассказы о биоэнергетике. Серия "Эврика". М. 1982.

Уайт А., Хендлер Ф., Смит Р. и др. Основы биохимии. М.: Мир, 1981.

Скулачев В.П. Аккумуляция энергии в клетке. М.: Наука, 1969.

Скулачев В.П. Мембранные преобразователи энергии. М.: Высш. шк., 1989.

Скулачев В.П. Энергетика биологических мембран. М.: Наука, 1989.

Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. 2-е изд. М.: Мир, 1994. Т. 1.

Николс Д.Д. Биоэнергетика: Введение в хемиосмотическую теорию. М.: Мир, 1985.

Для подготовки данной работы были использованы материалы с сайта http://bio.fizteh.ru

www.coolreferat.com

Молекулярные машины » Человек. Земля. Вселенная.

Тем, что людей выращивают в пробирках, уже никого не удивить. Но таким же способом можно создать искусственный интеллект, компьютер, который будет не считать, как это происходит теперь, а мыслить образами, как обычный человеческий мозг. Об интеллекте в колбе и молекулярных машинах рассказала член-корреспондент РАН, главный научный сотрудник Института общей и неорганической химии им. Н. С. Курнакова РАН Юлия Горбунова.

Оказывается, молекулярные машины похожи на обычные, только очень-очень маленькие: в 100 раз меньше микрона. И хоть сесть в такую машинку не получится, двигаться и перевозить грузы она может не хуже любого авто. В природе таких машин множество.

Живая клетка — совокупность молекулярных машин, которые выполняют различную работу: копируют генетические тексты, преобразуют химическую или тепловую энергию в движение, перемещают субклеточные структуры внутри клетки и т.п. Однако набор функций при этом ограничен определенными природными «лекалами». Ученые сумели создать молекулярные машины со специальными, заданными им функциями для решения поставленных задач.

— Какие это задачи? Что человечество может получить от создания молекулярных машин?

Миниатюризация электроники дошла сегодня до своего предела. В нашем телефоне есть все: и компьютер, и фотоаппарат, и сам телефон. Миниатюризировать больше устройство становится сложно, дошло уже до молекулярного и атомарного уровня. Поэтому сейчас стоит задача получения нового качества, принципиально новой возможности управления молекулами.

Молекулярные машины, за которые была дана в 2016 году Нобелевская премия по химии, показывают, как можно с помощью химии, физики управлять молекулой, чтобы она совершала какие-то умные действия. Это, например, создание так называемых самозалечивающихся материалов: вы поцарапали автомобиль, посветили светом, и за счет того, что молекулы под действием света начинают совершать движение, ваша царапина на машине «заживает». Или, например, настраиваемая медицина: вы ввели препарат, который в одной из своих химических форм неактивен, затем посветили светом и активизировали его точечно в нужном месте, и работать он будет только в этом месте, пока горит лазер.

— Такие машины уже есть?

— На сегодняшний день мы не можем сказать, что мы это видим. В отличие от молекулярной электроники, которой мы пользуемся каждый день, но которая 100 лет назад никому не была известна.

В отличие от этого, молекулярные машины сейчас находятся на том уровне, на котором развивалась наша сегодняшняя техника лет 60−100 назад. Но перспективы управления веществами на таком уровне — заставить их работать и сделать умными материалами. Управлять, например, смачиваемостью поверхности.

Есть огромное направление получения гидрофобных (несмачиваемых) поверхностей. Это важно, начиная от бытовых вещей, чтобы пятна не оставались на одежде, заканчивая обледенением проводов, что приводит к большим потерям. Такие направления работают, материалы создаются, но с помощью молекулярных устройств можно этими материалами управлять. Например, сделать некое покрытие, которое при облучении или ином воздействии будет регулировать этот процесс — смачиваемость

— В нашем сознании машина — это видимый объект, который движется, которым можно управлять, а молекулярная машина реально существует?

— Да, она существует. Это направление стало возможным, когда физики изобрели микроскопы, например, сканирующий туннельный микроскоп, который позволяет видеть на этом мелком уровне и управлять молекулами. В 2011 году АВМ сделал даже такой мультик, который называется «Мальчик и его атом». Когда иглой такого сканирующего микроскопа управляют СО (окисью углерода) на медной поверхности. И из этих атомов сделан целый мультик. 

Одновременное развитие химии, физики, техники привело к тому, что это становится возможным. Молекулярные машины отличаются от молекулярных переключателей, например, сенсоров, которые переключаются при определенном воздействии, тем, что они начинают двигаться. Это действительно машины, там есть механическое движение.

— Большие перспективы этого направления видят в вычислительной электронике, в частности, говорят о таком явлении, как интеллект в колбе. Означает ли это, что компьютер сможет не только считать, но и воспринимать какие-то образы? Насколько это близкая перспектива?

— Это немного другое. Интеллект в колбе — то, к чему применимо слово дизайн. Мы строим молекулу заранее так, чтобы она могла осуществлять какое-то действие. С точки зрения информатики это направление развивается в плане увеличения объема записываемой памяти на сантиметре-миллиметре какого-то устройства. Это приведет к тому, что огромное количество информации, то, что Вы называете образом, будет храниться на молекулярном уровне. Сейчас развивается хемоинформатика (химическая, молекулярная информатика), которая занимается созданием программ, способных обрабатывать большой объем информации и в дальнейшем носить предсказательный характер. Скажем, чтобы получить новое лекарство, надо перепробовать сотни различных соединений. Это очень дорого. Лучше вкладывать деньги в предсказательные программы, чтобы компьютер предсказал молекулу, а химики ее синтезировали и проверили. Это интеллектуальный синтез — синтез веществ с использованием опыта, который был заранее до нас накоплен.

«Молекулярный мускул», «молекулярный турникет» — это не фигура речи. Это, как стало ясно из сообщения Юлии Горбуновой на заседании президиума РАН 14.02.2017, реальные движущиеся механические устройства, имеющие наноразмеры, увидеть которые невооруженным глазом невозможно. Что не означает, что их нет или невозможно создать. 

Перспективы использования таких машин широки — от создания «умных» материалов до адресной доставки лекарств, настраиваемой медицины и молекулярных роботов. В Институте общей и неорганической химии им. Н. С. Курнакова РАН уже создана молекулярная машина — это настоящий наноавтомобиль с четырьмя колесами! По силам, отмечают ученые, создать и тепловой молекулярный двигатель.

источник

logos.ru.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики