“Откуда мы знаем, что все состоит из атомов?”в закладки. Состоит человек из атомов


Факты о теле: От атомов до созвездия Андромеды

PanARMENIAN.Net - - Атомы, из которых состоят наши тела, по большей части - пустота. Ядро, которое составляет большую часть вещества атома, настолько меньше всей структуры, что его можно сравнить с мухой в соборе.

Атомы, из которых состоит материя, никогда не касаются друг друга. Чем ближе они друг к другу, тем больше сила отталкивания между электрическими зарядами их компонентов. Все равно, что пытаться соединить два сильных магнита одной стороной. Подобное явление происходит даже тогда, когда объекты касаются друг друга. Когда вы сидите на стуле – вы не касаетесь его. Вы парите на небольшой высоте над ним, поддерживаемые силой отталкивания атомов. Возраст любого атома вашего тела – миллиарды лет.

- Все, что мы ощущаем, создано из молекул. Самая большая в природе молекула находится в нашем теле. Ею является первая хромосома. В настоящий момент самая большая известная молекула - это ДНК первой хромосомы человека. Она содержит примерно 10.000.000.000 атомов, при том, что геном человека - не самый большой. Это позволяет ей хранить большое количество генов.

- Каждый человек провел около получаса в состоянии одноклеточного организма. Ваша жизнь началась с яйца.

- Самая большая клетка организма - человеческая яйцеклетка, достигающая в диаметре около 0.2 мм – 0.5 мм. Ее можно увидеть невооруженным глазом. Самая маленькая – сперматозоид.

- Яйцеклетка, из которой вы развились, была сформирована в вашей матери, когда она была еще эмбрионом. Образование яйцеклетки и половины вашей ДНК, которую вы получили от матери, можно считать первым моментом вашего существования. Причем это случилось еще до того, как родилась ваша мать.

- В отличие от других клеток, которые содержат полный набор ДНК человека, половые клетки - яйцеклетка и сперматозоид, содержат только половину ДНК, необходимую для создания нового организма.

- У человека примерно столько же волос на теле, сколько у шимпанзе, но волоски настолько тонки, что они почти невидимы.

- Женщины рождаются с лучшими рецепторами, чем мужчины. Исследования показали, что женщины более способны правильно определить запах и вкус.

- Ваши глаза всегда одного размера от рождения и до смерти, а нос и уши никогда не перестают расти.

- Самая сильная мышца в организме человека — язык.

- Челюстная кость - одна из самых прочных в теле.

- Чтобы сделать всего один шага человек задействует 200 мышц.

- Во время чихания все процессы в организме человека останавливаются.

- За сутки тело человека может выработать столько тепла, сколько хватило бы для закипания 30 л холодной воды.

- Более 20 лет каждый из нас проводит во сне.

- Если оценивать по количеству клеток, в нас больше бактериальной жизни, чем нас самих. Тело человека состоит приблизительно из 10 триллионов клеток, но клеток бактерий в теле в 10 раз больше. Большинство бактерий, проживающих вне, наносят никакого вреда, а некоторые даже полезны.

- Эксперты определили, что человеческий глаз может различить 10 миллионов разных цветов.

- Если бы глаз человека был камерой, у него было бы 576 мегапикселей.Глаза за время прочтения 300 страниц «проходят» дистанцию в один километр.

- Если в ночном ясном небе вы сумеете разглядеть созвездие Андромеды (ближайшая к Млечному Пути галактика), это значит, что вы видите настолько далеко, насколько возможно без использования технологий. Расстояние до нее составляет 2.5 миллиона световых лет. Фотоны, которые вы увидите, начали свое путешествие 2.5 миллиона лет назад. Таким образом вы совершаете путешествие в прошлое.

www.panarmenian.net

Человек на 97% состоит из звездного вещества, – ученые — Naked Science

Тезис о том, что человек и все земные объекты состоят из космического вещества, совсем не нов. Об этом, в частности, говорил известный американский астроном и популяризатор науки Карл Саган. Однако сейчас астрономы из США смогли более точно выяснить происхождение атомов человека. Новые результаты, полученные в рамках масштабного проекта Слоановский цифровой обзор неба (SDSS), были представлены на встрече Американского астрономического общества.

 

Большая часть самых важных химических элементов, лежащих в основе жизни на Земле, появилась в недрах светил. Ученые даже придумали специальную аббревиатуру – CHNOPS, включающую углерод (C), водород (H), азот (N), кислород (O), фосфор (P) и серу (S). Сейчас, используя SDSS, астрономы измерили концентрацию этих элементов в 150 тыс. светил нашей Галактики. Это было сделано при помощи анализа спектров светил. Расщепив свет далекой звезды в спектрографе и проанализировав линии отдельных элементов в полученном спектре, ученые смогли выяснить содержание тех или иных атомов в недрах звезды.

 

Задача была выполнена при помощи спектрографа APOGEE, который установлен на телескопе Apache Point. Оказалось, что человек на 97% состоит из вещества, которое появилось в недрах светил. Исследование также является чрезвычайно важным для понимания природы Млечного Пути. Так, ученые пришли к выводу, что внутренние области нашей родной Галактики имеют больше тяжелых элементов. Это обусловлено тем, что там находятся более старые светила, которые в ходе своей эволюции наработали больше тяжелых элементов, чем более молодые звезды внешних частей Галактики. 

 

Новые данные также позволили ученым лучше понять то, откуда на нашей планете появился тот или иной химический элемент. Так, астрономы выделили шесть основных процессов: нуклеосинтез при Большом взрыве, взрывы массивных звезд, слияние нейтронных звезд, смерть маломассивных звезд, ядерные реакции под действием космических лучей и взрывы белых карликов.

 

©Jennifer Johnson

 

Напомним, недавно другая группа исследователей пришла к выводу, что самые далекие звезды Млечного Пути могут быть «гостями» из другой галактики. 

naked-science.ru

физик Дмитрий Побединский отвечает на 7 жизненных вопросов — T&P

Каждую неделю «Теории и практики» публикуют фрагменты из научпоп-изданий, которые попали в этом году в длинный список премии «Просветитель». В книге «Чердак. Только физика, только хардкор!» физик и видеоблогер Дмитрий Побединский объясняет, как все устроено, и отвечает на вопросы, которые многих ставят в тупик. Как нас отражает зеркало; что внутри человека; почему ток может убить; как так вышло, что небо голубое, и каким образом разгоняют тучи — T&P выбрали несколько насущных.

Почему зеркало меняет левую и правую стороны, а верх и низ — нет?

«Чердак. Только физика, только хардкор!»

Обычное плоское зеркало среди всех направлений выделяет именно вертикальное. И дело не в том, что у нас два глаза, ведь когда вы смотрите одним глазом в зеркало, эффект тот же. Дело не в фундаментальном устройстве нашего мира. Дело даже не в зеркале, оно же просто отражает объекты перед ним! Все намного проще. Вы, возможно, удивитесь, но виной всему гравитация.

В нашем мозгу есть прочное понимание того, где верх, а где низ, так как мы всю свою жизнь, с рождения, ощущаем гравитацию. Для нашего сознания есть выделенное направление, вертикальное. И когда человек пытается сравнить себя со своим отражением, что он делает? Он мысленно перемещает себя за зеркало, при этом сохраняя свою ориентацию относительно вертикальной оси. Ведь у отражения гравитация должна действовать так же. Поэтому левая и правая стороны меняются, а верх и низ — нет.

Но можно мысленно передвинуть себя за зеркало по-другому, вращая вокруг горизонтальной оси. Тогда поменяются местами верх и низ, а лево и право останутся на своих местах. Так что все зависит только от нашего восприятия, а само зеркало тут ни при чем.

Почему животные симметричны?

Приблизительно 75000 человек на Земле обладают зеркальным расположением внутренних органов — сердце у них располагается справа, а печень слева. Это называется транспозицией внутренних органов, объясняется разными факторами, не передается по наследству и никак не мешает жизни этих людей.

Как видите, природа может запросто отразить нас, словно в зеркале, и ничего особо не поменяется. Ну, а внешне и отражать ничего не надо, ведь люди, как и почти все остальные животные, обладают практически идеальной внешней зеркальной симметрией. Ее еще называют билатеральной.

Но зачем нужна эта симметрия? Действительно, у высших животных все органы обладают узкой специализацией: руки, ноги, голова, хвост — все они выполняют разные функции. Отсюда понятно, что верхняя и нижняя, передняя и задняя части туловища должны отличаться. Однако, несмотря на все это, левая и правая стороны тела абсолютно идентичны, как будто природа забыла придумать, с чем будет лучше справляться левая сторона, а с чем — правая. Или дело в другом?

Эволюция симметрии

Ответ довольно прост. Билатеральная симметрия — это, можно сказать, рудимент, особенность, которая передалась нам от наших предков, но при этом не мешала дальнейшей эволюции и осталась, хотя особо сильно мы в ней не нуждаемся.

Давайте перенесемся на 4 миллиарда лет назад. На заре возникновения жизни на Земле, когда все живые организмы были еще одноклеточными, самой идеальной формой для них был шар. Это диктовалось тем, что взаимодействовать с окружающей средой им приходилось во всех направлениях, ни одно из которых особо не выделялось, отсюда и такая форма. То есть тела были сферически симметричны: как их ни поворачивай, они похожи сами на себя. К тому же шар, при заданном объеме, обладает минимальной площадью поверхности, что достаточно экономно и практично.

Но в процессе эволюции организмы усложнялись и увеличивали свою массу. И вот тут вступила в действие гравитация! Из-за нее у живых существ появилась асимметрия по направлению верх—низ. Сверху теперь располагались преимущественно органы чувств, рот. Внизу — средства передвижения. Но осталась симметрия по окружности — радиальная. Можно было вращать тело вокруг вертикальной оси, и ничего не менялось.

Следующий виток эволюции начался, когда организмы поняли, что неплохо было бы перемещаться. Например, чтобы есть друг друга. Тогда появились хищники и жертвы. Тем и другим понадобились скорость и внимание: одним — чтобы догонять, другим — чтобы убегать. Так и появилась асимметрия по направлению перед—зад. Спереди расположились органы восприятия, мозги, рот — в общем, самое важное. Сзади — все остальное.

А вот симметрию между левой и правой сторонами эволюция не затронула. Эта симметрия эволюции никак не мешала, наоборот, она дублировала некоторые органы, и это было даже полезно. Например, два уха нужно, чтобы по задержке сигнала определять, откуда пришел звук. Два глаза необходимо для бинокулярного, объемного зрения. Даже ноздрей нужно две! Хотя, казалось бы, мы можем обойтись и одной. Дело в том, что почти всегда воздух через одну ноздрю движется медленней, чем через другую. Благодаря этому мы можем почувствовать запахи, которым для восприятия нами требуется немного больше времени, чем обычно. Таким образом, две ноздри расширяют диапазон доступных нам ароматов.

Что касается асимметрии внутренних органов, то она появилась из-за их чрезмерного усложнения. Заметьте, это проявляется только в пищеварительной системе — вы только представьте, что вы едите! Для переваривания всего этого нужен целый парк органов! И это чудо, что они хоть как-то поместились в организме, пусть даже несимметрично. И в кровеносной системе то же: сердце смещено из-за возникновения второго круга кровообращения. Если посмотреть на животных попроще (червяков, насекомых, рыб), то мы увидим, что у них внутренние органы абсолютно симметричны.

Другие виды симметрии

Кстати, и другие виды симметрии в природе тоже продиктованы взаимодействием с окружающей средой.

Существует, например, радиальная симметрия, когда тело, повернутое вокруг определенной оси на некий угол, повторяет само себя. Такой симметрией обладают морские звезды, большинство цветов, деревья. Как правило, продиктована она тем же — специализацией по одному направлению (верх—низ), так как по остальным направлениям взаимодействие с окружающей средой абсолютно одинаково. Цветы, которые растут просто вверх, радиально симметричны, а растущие вбок (орхидея, львиный зев) теряют симметрию перед—зад и становятся только зеркально симметричны. Листья, как правило, растут вбок, им радиальная симметрия не нужна, поэтому они симметричны только зеркально.

Конечно, здесь бывают исключения. Но, как говорит великий Шерлок Холмс, это исключения, но только подтверждающие правило! Например, манящий краб, камбала.

Раз мы говорим о симметрии, надо обсудить пчелиные соты. Они кажутся парадоксальным явлением, каким-то чудом природы. Действительно, как пчелам интуитивно удается создать такие стройные ряды одинаковых шестиугольников? Человек не может нормально шестиугольник нарисовать, а тут пчелы! Да и почему соты шестиугольные, а не квадратные, например?

Соты необходимы для хранения меда, яиц, куколок. Их нужно много, они должны быть одинаковы и просты. Существует не так много фигур, которыми можно замостить некую площадь без зазоров, а именно три: треугольник, квадрат и шестиугольник. И вот тут кроется главный секрет. Если взять три этих фигуры одинаковой площади, то наименьший периметр будет у шестиугольника! Значит, при построении именно шестиугольных сот строительного материала на них будет уходить максимально мало. Так что шестиугольность сот — результат хладнокровной оптимизации, достигнутый в процессе эволюции.

А как обстоят дела с симметрией в неживой природе? Возьмем снежинки. Это тот же самый снег, маленький кусочек льда, но какой удивительной формы, и каждый раз неповторимой! Снежинка образуется так. На начальном этапе молекулы воды соединяются друг с другом по три штуки и образуют шестиугольник. Потом на края шестиугольника начинают нарастать еще слои льда, причем со всех сторон одинаково. Правда, этот процесс роста идет с разной скоростью, то быстрее, то медленее. Поэтому и снежинки всегда получаются разными и двух абсолютно одинаковых вы не найдете.

Да и вообще, в неживой природе практически всегда так: если есть симметрия, то, скорей всего, из-за симметричности кристаллической решетки.

Человек на 90% состоит из пустоты?

Из чего состоит человек? Конечно, он состоит из молекул, атомов, протонов, нейтронов, электронов, кварков. Но эти объекты скомпонованы не вплотную друг к другу и между ними есть какое-то пространство. Давайте посчитаем, сколько процентов от объема человека занимают эти пустоты.

Для упрощения будем считать, что все атомы в человеке являются шариками. Тогда, если мы будем выкладывать их слой за слоем, мы можем добиться достаточно плотной, так называемой гранецентрированной кубической упаковки шаров. В таком случае шары заполняют чуть больше, чем 74% пространства, а остальные почти 26% ничем не заполнены. Доказано, что это одна из самых плотных упаковок, поэтому даже в теории человек не может полностью состоять из вещества, и в нем обязательно есть пустота.

Но скорее всего, в человеке атомы не так плотно упакованы, а может быть, даже перекрываются. Поэтому давайте посчитаем по-другому. Мы достаточно точно знаем химический состав человека: это кислород, углерод, водород и т.д. Зная это, мы можем посчитать количество атомов в теле человека. И если это количество умножить на объем этих атомов, то тогда их суммарный объем будет в 10 раз меньше, чем объем тела человека. Получается, что атомы заполняют только лишь 10% человека. Только представьте себе! Посмотрите, например, на свои руки: 90% того, что вы видите, ничем не заполнено.

Но тут возникает несколько вопросов. Во-первых, как атомы могут держаться вместе и не разваливаться, если между ними такие большие расстояния? Конечно, между ними нет никаких палочек, как показывают на картинках в учебнике химии. Атомы действительно висят в пространстве и удерживаются благодаря электростатическим силам притяжения. Это отчасти похоже на неокуб, в котором шарики удерживаются магнитными силами. Только между атомами сила электрическая.

И во-вторых, почему мы не видим промежутки, раз мы настолько пустые? Дело в том, что видимый свет — это электромагнитная волна, размеры которой намного больше, чем расстояние между атомами. В таком случае она не проходит насквозь, а отражается. Но есть электромагнитные волны с маленьким размером — это рентген, гамма-лучи, и вот такие волны могут пронизывать человека насквозь.

Но что происходит внутри атомов? Может быть, там тоже есть пустота? Действительно, атом состоит из ядра, вокруг которого вращаются электроны. И размер ядра в тысячи раз меньше, чем размеры атомов. Если бы оно было размером с яблоко, то сам атом был бы размером со стадион. А электроны — они легкие и маленькие, и, как пылинки, вращаются вокруг ядра. И получается, что атом по большей части пустой.

Но и тут не так все просто. Электрон в атоме нельзя представлять как шарик. Это квантовый объект, местоположение которого невозможно определить. Поэтому, по современным представлениям, электрон расплывается по атому и представляет собой некое электронное облако (причем порой самой причудливой формы), которое заполняет пространство вокруг ядра. Можно сказать, что ядро окружено облаком вероятности найти там электрон. Так что можно считать, что в атоме абсолютной пустоты нет.

Осталось рассмотреть только ядро: что происходит внутри него? Ядро состоит из протонов и нейтронов, а вот они, в свою очередь, состоят из кварков. Несмотря на то, что эти частицы очень-очень маленькие, между ними действует колоссальная сила в 150 000 Ньютонов. Это вес 15-тонного груза. Нет, вы только представьте: на 1 протон можно повесить 15 тонн! Но самое необычное вот в чем. Если мы захотим разорвать протон, возьмемся за два кварка и начнем их растягивать, то сила притяжения между ними будет только увеличиваться. Между кварками существует некая струна, которая в какой-то момент разрывается, и из пространства образуются еще два кварка, которые притягиваются к тем, которые у нас в руках. В итоге в одной руке у нас останется протон, а в другой руке будет мезон. Но как бы мы ни старались, у нас не получится сделать так, чтобы в руке остался только один кварк. Это явление называется конфайнмент. Оно означает, что кварки заперты в своих частицах и их вообще никак невозможно разделить.

Стоп, а откуда же берутся новые кварки? Из вакуума, что ли? Да, действительно, оказывается, вакуум наполнен виртуальными частицами, которые то рождаются, то исчезают. Это называется нулевыми колебаниями вакуума. И вы только представьте: оказывается, истинной пустоты нигде нет. Все заполнено виртуальными частицами. То есть получается, что на 90% человек состоит не из пустоты, а из виртуальных частиц.

Как убивает ток?

Как убивает электрический ток? На самом деле вопрос очень сложный, потому что ток оказывает на человека различное воздействие: тепловое, химическое, психологическое. Поэтому существует очень много факторов, из-за которых можно погибнуть. И почему-то очень мало экспериментов проведено на эту тематику. Поэтому давайте рассмотрим только три самых частых причины смерти от электрического тока.

Первая — это фибрилляция. Сердце перекачивает кровь благодаря ритмичному сокращению мышц. Это происходит из-за слабых ритмических импульсов, которые генерируются в определенных клетках сердца и передаются мышцам. И если через сердце пройдет очень сильный электрический ток, то мышцы могут потерять чувствительность к этим слабым электрическим импульсам. Они выходят из-под контроля и словно становятся сумасшедшими. Они начинают быстро, хаотично и нескоординированно сокращаться, и в таком состоянии кровь уже не перекачивается. Это и называется фибрилляция. Кровоток останавливается, кислород не поступает в мозг, и он может умереть через 5 минут от кислородного голодания. Что примечательно: прекратить фибрилляцию можно также благодаря электрическому току, с помощью дефибриллятора. Это такая встряска напряжением в 7 тысяч вольт, которая может заставить сердце восстановить свою стабильную работу.

Еще одна причина гибели от электрического тока — это паралич дыхательных мышц. Для начала надо уточнить, что объем легких увеличивается и уменьшается не из-за того, что там становится больше или меньше воздуха, а из-за того, что благодаря мышцам грудная клетка то увеличивает объем, и тогда воздух втягивается внутрь, то уменьшает объем, и тогда воздух выходит обратно. Вот так происходит дыхание, и контролируется этот процесс тоже благодаря электрическим импульсам, которые в данном случае генерирует мозг. Электрический ток может заблокировать мышцы грудной клетки, так как они потеряют чувствительность к этим электрическим импульсам. Человек не может ни вдохнуть, ни выдохнуть, и поэтому умирает от удушья.

И еще одна причина смерти от электрического тока — это ожоги. Когда по проводнику движется электрический ток, то заряженные частицы ударяются о молекулы проводника, эти молекулы увеличивают свою скорость, и температура проводника в целом увеличивается. Именно так устроены утюг, паяльник, плита. Абсолютно такой же нагрев может происходить в теле человека, и тогда он может получить смертельные ожоги внутренних органов.

Есть еще один вопрос: что же все-таки убивает? Ток или напряжение? Электрический ток — это упорядоченное движение заряженных частиц, а напряжение — это всего лишь характеристика электрического поля, под воздействием которого и начинается это упорядоченное движение. Поэтому можно считать, что электрический ток — это следствие напряжения и напряжение первично. Но убивает все равно электрический ток. Напряжение можно уподобить лучнику, а ток — стреле. Да, лучник создает движение, но убивает все равно стрела. Если будет очень большой ток, то вам точно крышка. А если будет очень высокое напряжение, то еще не факт.

В подтверждение этому можно привести скин-эффект. Электрический ток бывает постоянный, который течет только в одном направлении, и переменный, который меняет свое направление. И если он меняет направление тысячи раз в секунду, то тогда он протекает лишь по поверхности, не заходя внутрь проводника. Самый простой пример скин-эффекта — это плазменный шар. Если человек дотрагивается до него, по нему протекает электрический ток и уходит в землю и окружающее пространство. Напряжение здесь очень высокое — до 5 тысяч вольт. Однако из-за высокой частоты ток протекает только по коже и не причиняет никакого вреда.

Есть еще один интересный эффект — люминесценция. Если к плазменному шару поднести неподключенную лампу дневного света, она начинает светиться. Дело в том, что когда лампа подключается к сети, в ней возникает очень высокое напряжение (с помощью преобразователя), намного больше, чем 220 вольт, именно из-за этого она и светится. В данном случае происходит почти то же самое. Вокруг шара возникает высоковольтное электрическое поле, которое пронизывает все тела вокруг. Оно проходит внутрь лампы и заставляет ее светиться.

Ток — опасная штука. Будьте аккуратны с электричеством!

Почему небо голубое?

Почему небо голубое, если воздух прозрачный? Почему на каком-то удалении появляется синева, откуда она берется?

Этот эффект обеспечивают несколько факторов. Первый из них — это рассеивание света. Мы знаем, что свет представляет собой электромагнитные волны. Причем каждому цвету из спектра соответствует строго определенная частота. Белый солнечный свет — смесь всех этих цветов. И когда он попадает в атмосферу, то начинает рассеиваться, то есть немного менять направление. Но законы рассеивания таковы, что чем больше частота, тем сильнее отклонения лучей. Получается, что красный, оранжевый, желтый оттенки проходят атмосферу практически по прямой. А вот голубые, синие, фиолетовые лучи рассеиваются намного сильнее. Поэтому они начинают путешествовать в атмосфере, постоянно меняя направление. Соответственно, если мы смотрим не на солнце, то именно эти лучи-путешественники и должны приходить нам в глаза со всех сторон.

Можно привести аналогию с шариками разных размеров, которые скатываются с наклонной ребристой поверхности. Более крупные шарики движутся по ней практически по прямой. Более мелкие начинают рассеиваться и немного менять направление движения.

Но почему небо не фиолетовое? Ведь рассеивается сильнее всего именно этот оттенок. Вот тут сказывается второй фактор: в солнечном спектре разные цвета имеют разную интенсивность. Что касается фиолетового, то его интенсивность меньше, чем голубого или синего. Именно поэтому в атмосфере наибольшее количество рассеянных лучей именно голубого оттенка. Что касается закатного, красного неба, то в таком случае лучи падают по касательной к поверхности земли и проходят огромную толщу атмосферы, настолько большую, что слабенькое рассеивание красных оттенков уже дает о себе знать. Именно поэтому небо имеет такой цвет, несмотря на то, что воздух прозрачный.

Кстати, облака тоже должны быть прозрачными, ведь они состоят из воды. Но мы видим, какие они белые. Это происходит опять же из-за рассеяния. Однако облака состоят из более крупных частичек, микроскопических капелек жидкости, и поэтому рассеиваются абсолютно все оттенки: от красного до фиолетового. Ну, а при смешивании они дают белый цвет.

И раз уж мы заговорили о спектре солнца, то нужно понимать, что оно испускает и радиоволны, микроволны, ультрафиолетовое, инфракрасное излучение и даже немного рентгеновского. Так что видимое излучение — это всего лишь маленькая часть того, что излучает наше светило. Все это электромагнитные волны, и они обладают такими же свойствами, как и обычный свет.

Но вот почему на нашей планете вообще нет существ с чисто инфракрасным зрением? Или, например, с ультрафиолетовым? Во всем виновата эволюция. Если вы посмотрите на интенсивность солнечного света во всем спектре, то окажется, что самым ярким является зеленый свет. И живые существа в процессе естественного отбора приспособились к самому яркому излучению, которое падает к нам от солнца. Именно эти электромагнитные волны и стали видимым диапазоном спектра.

Как разгоняют тучи перед парадом?

Приятно, когда за окном лето, каникулы, хорошая погода, солнце. Но дождливые дни тоже иногда случаются. И как же иногда хочется управлять погодой и подстраивать ее под свое настроение! Что ж, при сильном желании и большом количестве денег нет ничего невозможного.

Ни для кого не секрет, что в крупных городах перед большими праздниками разгоняют тучи, чтобы была ясная и солнечная погода. Но как это делают? Все очень просто. Есть большие самолеты с огромными руками. Они летают вокруг города и отодвигают тучи!…

Нет-нет, конечно же, такого не бывает. На самом деле тучи не разгоняют, а осаждают, то есть заставляют их выпасть в виде дождя где-то вдалеке, благодаря чему облако исчезает. Но как заставить тучу выпасть в виде осадков?

Давайте разберемся, как образуются облака. В воздухе постоянно присутствует влага, невидимые водяные пары, которые испаряются с поверхности озер, океанов, луж. Эти водяные пары поднимаются вверх и конденсируются. В результате конденсации образуются микроскопические капельки жидкости, которые рассеивают свет. Возникает некий туман, это и есть облако. Но конденсация не может происходить просто так, при понижении температуры. Для этого нужны какие-то пылинки, взвешенные частички в воздухе, вокруг которых и образуется микрокапелька. Ну и конечно же, вокруг маленьких пылинок образуются настолько маленькие микрокапельки, что восходящие потоки воздуха не дают им упасть. Поэтому облако держится на плаву.

Если мы хотим, чтобы облако расплакалось, у нас есть два способа. Первый способ — это посыпать облако какими-то крупными частицами. Дешевый вариант — это цемент в виде порошка, более дорогой вариант — это йодистое серебро. В результате на этих крупных частицах образуются большие капли, которые выпадают в виде дождя. И второй способ — это охлаждение облака для усиления естественной конденсации. Для этого в туче распыляют жидкий азот или сухой лед. Эти вещества обладают очень низкой температурой, и общая температура в облаке немного понижается. Этого понижения достаточно для того, чтобы образовывались более крупные капли, которые выпадают в виде дождя. Ну и, конечно же, цена вопроса. Самый простой способ — это закидать все цементом, однако образующийся дождь получается очень грязным и противным. А вот качественный разгон облаков стоит около 2,5 миллиона долларов.

Почему гелий меняет голос?

Гелий — это газ из восьмой группы периодической таблицы Менделеева. Почему гелий так сильно меняет голос? Мало того, что голос становится более высоким, так он еще оказывается более искаженным и как будто бы игрушечным.

На этот счет существует очень много версий: повышается частота колебаний голосовых связок; гелий более легкий, поэтому выходит быстрее; гелий меняет химический состав голосовых связок. Но нет, на самом деле все по-другому.

Вспомним о том, что звук — это волна. И у нее есть частота ν, длина λ и скорость распространения V. Эти три параметра связаны очень важным соотношением, которое еще нам пригодится:

Звуковые волны могут распространяться достаточно далеко. И длина волны означает лишь ее масштабы. Звуковые волны могут быть очень большими, а могут быть очень маленькими. Но частоте соответствует высота, тон, нота, на которой мы слышим звук.

Для начала давайте разберемся, как в таком маленьком пространстве получается достаточно громкий человеческий голос? При выдохе, из-за набегающего потока воздуха, голосовые связки начинают вибрировать и издавать звук. Причем он настолько тихий, что мы его даже не слышим. И дело вот в чем: оказывается, при таких колебаниях помимо основной частоты возникают дополнительные, так называемые обертона. Их частота в 2—3 раза и более больше, чем основная. То же самое происходит при колебаниях струны, там тоже возникают дополнительные частоты. Благодаря колебаниям голосовых связок воздух в легких, в гортани, в ротовой полости тоже начинает колебаться. Это называется резонанс.

Резонанс — это резкое возрастание амплитуды колебаний при совпадениях частоты вынуждающей силы и собственной частоты резонатора. Обратите внимание, практически у каждого музыкального инструмента есть резонатор, колебание воздуха в котором увеличивает громкость звучания. Резонанс происходит не на всех частотах, а на вполне определенных, с конкретной длиной волны. И вот уже эта длина волны непосредственно зависит от размеров и формы резонатора. Именно эти волны являются самыми громкими, а остальных мы практически не слышим. А в любом человеческом голосе присутствуют 4—5 длин волн, на которых происходит резонанс. У всех они, конечно, разные, поэтому каждая имеет свой окрас голоса, так называемый тембр.

Ну и теперь главное: что все-таки делает гелий с нашим голосом? Да, он легче, да, у него меньше плотность, но он не заставляет наши связки колебаться с более высокой частотой. У гелия очень маленькая молярная масса, она в 7 раз меньше, чем у воздуха. Вследствие этого скорость звука в нем практически в 3 раза больше, чем в воздухе. Но резонанс происходит на тех же длинах волн, потому что размеры резонатора не поменялись. Поэтому, если мы посмотрим на соотношение величин, то увидим, что при увеличении скорости звука должна увеличиваться частота волн.

Вот и получается, что все резонансные частоты увеличиваются, и из-за этого, во-первых, повышается тон голоса, а во-вторых, он становится не настоящим, а искусственным, потому что от их положения зависит тембр голоса. Ну, а при переходе из гелия в воздух скорость звука уменьшается, но теперь меняется длина волны, а частота остается неизменной. Именно поэтому мы слышим все тот же высокий звук. И, конечно же, можно достичь обратного эффекта — понижения голоса. Для этого нужен газ с большой молярной массой, например, гексафторид серы (элегаз). Голос становится мистическим и устрашающим. Поэтому я советую его использовать, если вы хотите кого-то напугать ночью, когда он вас не видит.

theoryandpractice.ru

Человек на 90% состоит из пустоты?

Из чего состоит человек? Конечно, он состоит из молекул, атомов, протонов, нейтронов, электронов, кварков. Но эти объекты скомпонованы не вплотную друг к другу и между ними есть какое-то пространство. Давайте посчитаем, сколько процентов от объема человека занимают эти пустоты.

Для упрощения будем считать, что все атомы в человеке являются шариками. Тогда, если мы будем выкладывать их слой за слоем, мы можем добиться достаточно плотной, так называемой гранецентрированной кубической упаковки шаров. В таком случае шары заполняют чуть больше, чем 74% пространства, а остальные почти 26% ничем не заполнены. Доказано, что это одна из самых плотных упаковок, поэтому даже в теории человек не может полностью состоять из вещества, и в нем обязательно есть пустота.

Но скорее всего, в человеке атомы не так плотно упакованы, а может быть, даже перекрываются. Поэтому давайте посчитаем по-другому. Мы достаточно точно знаем химический состав человека: это кислород, углерод, водород и т.д. Зная это, мы можем посчитать количество атомов в теле человека. И если это количество умножить на объем этих атомов, то тогда их суммарный объем будет в 10 раз меньше, чем объем тела человека. Получается, что атомы заполняют только лишь 10% человека. Только представьте себе! Посмотрите, например, на свои руки: 90% того, что вы видите, ничем не заполнено.

Но тут возникает несколько вопросов. Во-первых, как атомы могут держаться вместе и не разваливаться, если между ними такие большие расстояния? Конечно, между ними нет никаких палочек, как показывают на картинках в учебнике химии. Атомы действительно висят в пространстве и удерживаются благодаря электростатическим силам притяжения. Это отчасти похоже на неокуб, в котором шарики удерживаются магнитными силами. Только между атомами сила электрическая.

И во-вторых, почему мы не видим промежутки, раз мы настолько пустые? Дело в том, что видимый свет — это электромагнитная волна, размеры которой намного больше, чем расстояние между атомами. В таком случае она не проходит насквозь, а отражается. Но есть электромагнитные волны с маленьким размером — это рентген, гамма-лучи, и вот такие волны могут пронизывать человека насквозь.

Но что происходит внутри атомов? Может быть, там тоже есть пустота? Действительно, атом состоит из ядра, вокруг которого вращаются электроны. И размер ядра в тысячи раз меньше, чем размеры атомов. Если бы оно было размером с яблоко, то сам атом был бы размером со стадион. А электроны — они легкие и маленькие, и, как пылинки, вращаются вокруг ядра. И получается, что атом по большей части пустой.

Но и тут не так все просто. Электрон в атоме нельзя представлять как шарик. Это квантовый объект, местоположение которого невозможно определить. Поэтому, по современным представлениям, электрон расплывается по атому и представляет собой некое электронное облако (причем порой самой причудливой формы), которое заполняет пространство вокруг ядра. Можно сказать, что ядро окружено облаком вероятности найти там электрон. Так что можно считать, что в атоме абсолютной пустоты нет.

Осталось рассмотреть только ядро: что происходит внутри него? Ядро состоит из протонов и нейтронов, а вот они, в свою очередь, состоят из кварков. Несмотря на то, что эти частицы очень-очень маленькие, между ними действует колоссальная сила в 150 000 Ньютонов. Это вес 15-тонного груза. Нет, вы только представьте: на 1 протон можно повесить 15 тонн! Но самое необычное вот в чем. Если мы захотим разорвать протон, возьмемся за два кварка и начнем их растягивать, то сила притяжения между ними будет только увеличиваться. Между кварками существует некая струна, которая в какой-то момент разрывается, и из пространства образуются еще два кварка, которые притягиваются к тем, которые у нас в руках. В итоге в одной руке у нас останется протон, а в другой руке будет мезон. Но как бы мы ни старались, у нас не получится сделать так, чтобы в руке остался только один кварк. Это явление называется конфайнмент. Оно означает, что кварки заперты в своих частицах и их вообще никак невозможно разделить.

Стоп, а откуда же берутся новые кварки? Из вакуума, что ли? Да, действительно, оказывается, вакуум наполнен виртуальными частицами, которые то рождаются, то исчезают. Это называется нулевыми колебаниями вакуума. И вы только представьте: оказывается, истинной пустоты нигде нет. Все заполнено виртуальными частицами. То есть получается, что на 90% человек состоит не из пустоты, а из виртуальных частиц.

obzor.press

ЧЕЛОВЕК СОСТОИТ ИЗ МАЛЕКУЛ, МАЛЕКУЛЫ ДЕЛЯТСЯ НА АТОМЫ, А ДАЛЬше ?

а дальше чтобы сперматозоид куда не надо не попал...

а ДаЛьШе кУчА МиКрОбОв8)

А дальше идут протоны и нейтроны

а атомы это куча нейтронов, протонов, электронов, и прочей мелочи :)))

Всё состоит из мОлекул, молекулы из атомов, атомы из элементарных частиц (электроны, протоны, нейтроны и пр.) , насчет последующего пока единой теории нет: одни говорят что частицы состоят из кварков, другие в этом не уверены и т. п.

Сплошные элементарные частицы!... -)) В современной физике в группу элементарных относятся более 350 частиц...

Атом состоит из ядра и ионов (положительно и отрицательно заряженных) , которые вращаются вокруг этого ядра ( а дальше никому не известно) , ничего не напоминает, например солнечную систему. Может и мы часть атома?

Ядро, + и - ионы.

вот уж не думал что химия когда-н пригодится=))атом состоит из ядра, образованного протонами и нейтронами, а также электронов=)

Атомы делятся на частицы, частицы делятся на протоны и нейроны

1. не мАлекулу, а мОлекулы, молукулы состоят из атомов, атом состоит из ядра, и вокруг него находятся электроны! Електрон-это мельчайшая частица-носитель отрицательного заряда, обладает запасом энергии, и имеет ничтожно малую массу1/1840, и находится в постоянном движении! А ядро состоит из нейтронов и протонов! Протон-это частица ядра, имеющая массу 1 и заряд +1! Нейтрон- незаряженная частица имеющая массу-1!

Велика пустота

Цитата: " А дальше протоны, нейтроны, электроны. Но это уже не материя, а энергия. " ------------что-то новенькое...

Человек "состоит" не из "малекул" а из двух рук, из двух ног, одной головы (у кого она есть разумеется) и так далее. А то про что вы подумали это уже следующий структурный уровень организации материи. Но опять же только теоретическая версия. Поэтому состоит ли человек из "малекул" это своего рода научная гипотеза в той или иной мере подтвержденная на данный момент.

Цитата: " А дальше протоны, нейтроны, электроны. Но это уже не материя, а энергия. " ------------что-то новенькое.. . --------------Какое ж новенькое? Давным давно отвергнутое и позабытое (поскольку полная чепуха) старенькое - Вильгельм Освальд и Эрнст Мах

Полный ответ о природе физического атома есть в источнике. Это сложно.

touch.otvet.mail.ru

Откуда мы знаем, что все состоит из атомов?

Горы, звезды, люди — все, что мы видим вокруг, состоит из крошечных атомов. Атомы маленькие. Очень и очень. С детства мы знаем, что все вещество состоит из скоплений этих крошечных штучек. Также мы знаем, что их нельзя увидеть невооруженным глазом. Мы вынуждены слепо верить этим заявлениям, не имея возможности проверить. Атомы взаимодействуют друг с другом и по кирпичикам составляют наш мир. Откуда мы это знаем? Многие не любят принимать утверждения ученых за чистую монету. Давайте вместе с наукой пройдем путь от осознания атомов до непосредственного доказательства их существования.

Может показаться, что есть простой способ доказать существование атомов: засунуть их под микроскоп. Но этот подход не сработает. Даже самые мощные микроскопы, фокусирующие свет, не могут визуализировать один атом. Объект становится видимым, поскольку отражает световые волны. Атомы настолько меньше длины волны видимого света, что они вовсе не взаимодействуют. Иными словами, атомы невидимы даже для света. Однако атомы все же оказывают наблюдаемые эффекты на некоторые вещи, которые мы можем увидеть.Сотни лет назад, в 1785 году, голландский ученый Ян Ингенхауж изучал странное явление, которое не мог понять. Мельчайшие частицы угольной пыли шныряли на поверхности какого-то спирта в его лаборатории.

50 лет спустя, в 1827 году, шотландский ботаник Роберт Броун описал нечто удивительно похожее. Изучая пыльцевые гранулы под микроскопом, Броун обнаружил, что некоторые гранулы испускают крошечные частицы — которые затем удалялись от пыльцы в случайном нервном танце.

Сначала Броун подумал, что частицы были каким-то неизвестным организмом. Он повторил эксперимент с другими субстанциями, вроде каменной пыли, которая явно была неживой, и снова увидел странное движение.

Потребовалось почти сто лет, чтобы наука нашла объяснение. Пришел Эйнштейн и разработал математическую формулу, которая предсказывала тот самый особенный тип движения — тогда названный броуновским движением, в честь Роберта Броуна. Теория Эйнштейна заключалась в том, что частицы пыльцевых гранул постоянно перемещались, поскольку в них врезались миллионы крошечных молекул воды — молекул, состоящих из атомов.

«Он объяснил, что это нервное движение, которое вы наблюдаете, на самом деле вызывалось воздействием отдельных молекул воды на частички пыли или что там у вас есть», — объясняет Гарри Клифф из Кембриджского университета, также куратор Музея науки в Лондоне.

К 1908 году наблюдения, подкрепленные расчетами, показали, что атомы реальны. За десять лет физики существенно продвинулись вперед. Растягивая отдельные атомы, они начали понимать их внутреннюю структуру.

Сюрпризом стало то, что атомы можно разделить — особенно в свете того, что само название «атом» вышло из греческого «атомос», означающего «неделимый». Но физики теперь знают, что атомы далеко не базовые кирпичи. Они состоят из трех основных частей: протонов, нейтронов и электронов. Представьте, что протоны и нейтроны вместе образуют «солнце», или ядро, в центре системы. Электроны находятся на орбите этого ядра, подобно планетам.Если атомы невообразимо малы, то эти субатомные частицы и вовсе. Забавно, но первой обнаружили самую малую частицу из трех — электрон. Чтобы понять разницу размеров, имейте в виду, что протоны в ядре в 1830 раз больше электрона. Представьте себе чупа-чупс на орбите воздушного шара — несоответствие будет примерно таким.

Но как мы узнали, что эти частицы там? Ответ в том, что они хоть и маленькие, но имеют большое влияние. Британский физик Томсон, открывший электроны, использовал прекрасный метод, чтобы доказать их существование в 1897 году.

У него была трубка Крукса — кусок стекла смешной формы, из которого машиной был высосан почти весь воздух. К одному концу трубки подводили отрицательный электрический заряд. Этого заряда было достаточно, чтобы выбить у молекул оставшегося в трубке газа часть электронов. Электроны заряжены отрицательно, поэтому летели к другому концу трубки. Благодаря частичному вакууму, электроны пролетали через трубку, не встречая на своем пути крупные атомы.

Электрический заряд приводил к тому, что электроны двигались очень быстро — порядка 59 500 километров в секунду — пока не врезались в стекло на дальнем конце, выбивая еще больше электронов, которые прятались в его атомах. Удивительно, но столкновение между этими умопомрачительно крошечными частицами производило столько энергии, что порождало фантастическое зелено-желтое свечение.

«Это был в некотором смысле один из первых ускорителей частиц, — говорит Клифф. — Он ускоряет электроны на одном конце трубки к другому, и они врезаются в экран на другом конце, производя фосфоресцирующее свечение».

Поскольку Томсон обнаружил, что может управлять пучками электронов с помощью магнитов и электрических полей, он знал, что это были не просто странные лучи света, — это были заряженные частицы.

И если вам интересно, как эти электроны могут летать независимо от своих атомов, то это благодаря процессу ионизации, в котором — в данном случае — электрический заряд меняет структуру атома, выбивая электроны в пространство поблизости.

В частности, благодаря тому что электронами так просто манипулировать и двигать, стали возможны электрические схемы. Электроны в медном проводе движутся подобно поезду от одного атома меди к другому — потому-то провод передается по проводу. Атомы, как мы уже сказали, это не цельные кусочки вещества, а системы, которые можно модифицировать или разобрать на структурные элементы.Открытие электрона показало, что нужно узнать об атомах побольше. Работа Томсона показала, что электроны отрицательно заряжены — но он знал, что атомы сами по себе не имеют общего заряда. Он предположил, что они должны содержать загадочные положительно заряженные частицы, чтобы компенсировать отрицательно заряженные электроны.

Эксперименты начала 20 века выявили эти положительно заряженные частицы и в то же время раскрыли внутреннюю структуру атома — похожую на солнечную систему.

Эрнест Резерфорд и его коллеги взяли очень тонкую металлическую фольгу и поставили ее под луч положительно заряженного излучения — поток крошечных частиц. Большая часть мощного излучения прошла насквозь, как и полагал Резерфорд, учитывая толщину фольги. Но, к удивлению ученых, часть его отскочила.

Резерфорд предположил, что атомы в металлической фольге должны содержать небольшие плотные области с положительным зарядом — ничто иное не обладало бы достаточным потенциалом, чтобы отразить такое мощное излучение. Он обнаружил положительные заряды в атоме — и одновременное доказал, что все они связаны в плотной массе, в отличие от электронов. Другими словами, он продемонстрировал существование плотного ядра в атоме.

Оставалась проблема. К тому моменту уже могли рассчитать массу атома. Но учитывая данные о том, какими тяжелыми должны были быть частицы ядра, идея того, что все они положительно заряжены, не имела смысла.

«Углерод имеет шесть электронов и шесть протонов в ядре — шесть положительных зарядов и шесть отрицательных зарядов, — объясняет Клифф. — Но ядро углерода не весит шесть протонов, оно весит эквиваленту 12 протонов».

Сначала предположили, что в ядре есть шесть других ядерных частиц с массой протона, но заряженных отрицательно: нейтроны. Но никто не смог это доказать. На самом деле, нейтроны не могли найти до 1930-х годов.Кембриджский физик Джеймс Чедвик отчаянно пытался открыть нейтрон. Он работал над этой теорией много лет. В 1932 году ему удалось осуществить прорыв.

За несколько лет до этого другие физики экспериментировали с радиацией. Они запускали положительно заряженное излучение — того типа, который использовал Резерфорд в поисках ядра — в атомы бериллия. Бериллий испускал собственную радиацию: излучение, которое не было заряжено положительно или отрицательно и могло проникать глубоко в материал.

К этому времени другие выяснили, что гамма-излучение было нейтральным и проникало глубоко, поэтому физики считали, что именно его испускают атомы бериллия. Но Чедвик так не считал.

Он самостоятельно произвел новое излучения и направил его на вещество, которое, как он знал, было богатым на протоны. Неожиданно оказалось, что протоны были выбиты из материала словно бы частицами с идентичной массой — будто шарики для бильярда другими шариками.

Гамма-излучение не может отражать протоны таким образом, поэтому Чедвик решил, что искомые частицы должны иметь массу протона, но другой электрический заряд: и это нейтроны.

Все основные частицы атома были найдены, но на этом история не заканчивается.

Хотя мы узнали об атомах много больше, чем знали раньше, их было трудно визуализировать. В 1930-х годах никто не располагал их снимками — и многие люди хотели их увидеть, чтобы принять их существование.

Важно отметить, впрочем, что методы, используемые учеными вроде Томсона, Резерфорда и Чедвика, проложили путь к новому оборудованию, которое в конце концов помогло нам произвести эти снимки. Пучки электронов, которые Томсон генерировал в своем эксперименте с трубкой Крукса, оказались особенно полезными.

Сегодня подобные пучки генерируются электронными микроскопами, и самый мощный из таких микроскопов может на самом деле делать снимки отдельных атомов. Это потому, что электронный пучок обладает длиной волны в тысячи раз короче пучка света — настолько короткой, по сути, что волны электронов могут отражаться от крошечных атомов и выдавать картинку, чего не могут световые пучки.

Нил Скиппер из Университетского колледжа в Лондоне говорит, что такие изображения полезны для людей, которые хотят изучать атомную структуру специальных веществ — вроде тех, что используются в производстве батарей для электромобилей, к примеру. Чем больше мы знаем об их атомной структуре, тем лучше нам удается проектировать батареи, делать их эффективными и надежными.

Можно также понять, как выглядят атомы, просто тыкнув в них. Так, по сути, работает атомно-силовая микроскопия.Идея в том, чтобы поднести кончик чрезвычайно малого зонда к поверхности молекулы или вещества. При достаточной близости зонд будет чувствителен к химической структуре того, на что указывает, и изменение сопротивления по мере движения зонда позволит ученым произвести снимки, к примеру, отдельной молекулы.

Недавно ученые опубликовали прекрасные снимки молекулы до и после химической реакции с помощью этого метода.

Скиппер добавляет, что многие атомные ученые исследуют, как структура вещей меняется при воздействии высокого давления или температуры. Большинство людей знает, что когда вещество нагревается, оно часто расширяется. Теперь можно обнаружить атомные изменения, которые происходят при этом, что зачастую оказывается полезным.

«При нагревании жидкости можно заметить, как ее атомы принимают неупорядоченную конфигурацию, — говорит Скиппер. — Вы можете увидеть это непосредственно из структурной карты».

Скиппер и другие физики также могут работать с атомами, используя нейтронные пучки, впервые обнаруженые Чедвиком в 1930-х.

«Мы запускаем много пучков нейтронов в образцы материалов, и из возникающего паттерна рассеяния можно понять, что вы рассеиваете нейтроны в ядрах, — говорит он. — Можно грубо прикинуть массу и размер объекта, который просвечивался».

Но атомы не всегда просто находятся там, в стабильном состоянии, ожидая, пока их изучат. Иногда они распадаются — то есть являются радиоактивными.

Существует множество естественных радиоактивных элементов. Этот процесс генерирует энергию, которая легла в основу ядерной энергетики — и ядерных бомб. Физики-ядерщики, как правило, пытаются лучше понять реакции, при которых ядро проходит через фундаментальные изменения вроде этих.Лаура Харкнесс-Бреннан из Ливерпульского университета специализируется на изучении гамма-лучей — типа излучения, испускаемого распадающимися атомами. Радиоактивный атом определенного типа испускает особую форму гамма-луча. Это значит, вы можете идентифицировать атомы, только регистрируя энергию гамма-лучей — этим, собственно, Харкнесс-Бреннан и занимается в своей лаборатории.

«Типы детекторов, которые вы должны использовать, представлены детекторами, которые позволят вам измерять одновременно присутствие излучения и энергии радиации, которая была отложена, — говорит она. — Все потому, что у всех ядер есть особый отпечаток».

Поскольку в области, где была обнаружена радиация, могут присутствовать все типы атомов, особенно после крупной ядерной реакции, важно точно знать, какие радиоактивные изотопы присутствуют. Такое обнаружение обычно проводится на ядерных станциях или в зонах, где произошла ядерная катастрофа.

Харкнесс-Бреннан и ее коллеги сейчас работают над системами обнаружения, которые можно разместить в таких местах, чтобы показать в трех измерениях, где может присутствовать радиация в конкретном помещении. «Вам нужны техники и инструменты, которые позволят составить трехмерную карту пространства и подскажут, где в этой комнате, в этой трубе радиация», — говорит она.

Также можно визуализировать излучение в «камере Вильсона». В рамках этого специального эксперимента охлажденный до -40 градусов по Цельсию спиртовый пар распыляется облаком над радиоактивным источником. Заряженные частицы радиации, летящие от источника излучения, выбивают электроны из молекул спирта. Спирт конденсируется в жидкость рядом с дорожкой излучаемых частиц. Результаты такого типа обнаружения впечатляют.

Мы мало работали непосредственно с атомами — разве что поняли, что это прекрасные сложные структуры, которые могут претерпевать удивительные изменения, многие из которых происходят в природе. Изучая атомы таким образом, мы улучшаем собственные технологии, извлекаем энергию из ядерных реакций и лучше понимаем природный мир вокруг нас. Мы также получили возможность защищать себя от радиации и изучать, как меняются вещества в экстремальных условиях.

«Учитывая, насколько мал атом, просто невероятно, как много физики мы можем извлечь из него», — метко подмечает Харкнесс-Бреннан. Все, что мы видим вокруг себя, состоит из этих мельчайших частиц. И хорошо знать, что они там есть, поскольку именно благодаря им все вокруг стало возможным.

idoorway.mirtesen.ru

“Откуда мы знаем, что все состоит из атомов?”

Горы, звезды, люди — все, что мы видим вокруг, состоит из крошечных атомов. Атомы маленькие. Очень и очень. С детства мы знаем, что все вещество состоит из скоплений этих крошечных штучек. Также мы знаем, что их нельзя увидеть невооруженным глазом. Мы вынуждены слепо верить этим заявлениям, не имея возможности проверить. Атомы взаимодействуют друг с другом и по кирпичикам составляют наш мир. Откуда мы это знаем? Многие не любят принимать утверждения ученых за чистую монету. Давайте вместе с наукой пройдем путь от осознания атомов до непосредственного доказательства их существования.

Может показаться, что есть простой способ доказать существование атомов: засунуть их под микроскоп. Но этот подход не сработает. Даже самые мощные микроскопы, фокусирующие свет, не могут визуализировать один атом. Объект становится видимым, поскольку отражает световые волны. Атомы настолько меньше длины волны видимого света, что они вовсе не взаимодействуют. Иными словами, атомы невидимы даже для света. Однако атомы все же оказывают наблюдаемые эффекты на некоторые вещи, которые мы можем увидеть.

Сотни лет назад, в 1785 году, голландский ученый Ян Ингенхауж изучал странное явление, которое не мог понять. Мельчайшие частицы угольной пыли шныряли на поверхности какого-то спирта в его лаборатории.

50 лет спустя, в 1827 году, шотландский ботаник Роберт Броун описал нечто удивительно похожее. Изучая пыльцевые гранулы под микроскопом, Броун обнаружил, что некоторые гранулы испускают крошечные частицы — которые затем удалялись от пыльцы в случайном нервном танце.

Сначала Броун подумал, что частицы были каким-то неизвестным организмом. Он повторил эксперимент с другими субстанциями, вроде каменной пыли, которая явно была неживой, и снова увидел странное движение.

Потребовалось почти сто лет, чтобы наука нашла объяснение. Пришел Эйнштейн и разработал математическую формулу, которая предсказывала тот самый особенный тип движения — тогда названный броуновским движением, в честь Роберта Броуна. Теория Эйнштейна заключалась в том, что частицы пыльцевых гранул постоянно перемещались, поскольку в них врезались миллионы крошечных молекул воды — молекул, состоящих из атомов.

«Он объяснил, что это нервное движение, которое вы наблюдаете, на самом деле вызывалось воздействием отдельных молекул воды на частички пыли или что там у вас есть», — объясняет Гарри Клифф из Кембриджского университета, также куратор Музея науки в Лондоне.

К 1908 году наблюдения, подкрепленные расчетами, показали, что атомы реальны. За десять лет физики существенно продвинулись вперед. Растягивая отдельные атомы, они начали понимать их внутреннюю структуру.

Сюрпризом стало то, что атомы можно разделить — особенно в свете того, что само название «атом» вышло из греческого «атомос», означающего «неделимый». Но физики теперь знают, что атомы далеко не базовые кирпичи. Они состоят из трех основных частей: протонов, нейтронов и электронов. Представьте, что протоны и нейтроны вместе образуют «солнце», или ядро, в центре системы. Электроны находятся на орбите этого ядра, подобно планетам.

Если атомы невообразимо малы, то эти субатомные частицы и вовсе. Забавно, но первой обнаружили самую малую частицу из трех — электрон. Чтобы понять разницу размеров, имейте в виду, что протоны в ядре в 1830 раз больше электрона. Представьте себе чупа-чупс на орбите воздушного шара — несоответствие будет примерно таким.

Но как мы узнали, что эти частицы там? Ответ в том, что они хоть и маленькие, но имеют большое влияние. Британский физик Томсон, открывший электроны, использовал прекрасный метод, чтобы доказать их существование в 1897 году.

У него была трубка Крукса — кусок стекла смешной формы, из которого машиной был высосан почти весь воздух. К одному концу трубки подводили отрицательный электрический заряд. Этого заряда было достаточно, чтобы выбить у молекул оставшегося в трубке газа часть электронов. Электроны заряжены отрицательно, поэтому летели к другому концу трубки. Благодаря частичному вакууму, электроны пролетали через трубку, не встречая на своем пути крупные атомы.

Электрический заряд приводил к тому, что электроны двигались очень быстро — порядка 59 500 километров в секунду — пока не врезались в стекло на дальнем конце, выбивая еще больше электронов, которые прятались в его атомах. Удивительно, но столкновение между этими умопомрачительно крошечными частицами производило столько энергии, что порождало фантастическое зелено-желтое свечение.

«Это был в некотором смысле один из первых ускорителей частиц, — говорит Клифф. — Он ускоряет электроны на одном конце трубки к другому, и они врезаются в экран на другом конце, производя фосфоресцирующее свечение».

Поскольку Томсон обнаружил, что может управлять пучками электронов с помощью магнитов и электрических полей, он знал, что это были не просто странные лучи света, — это были заряженные частицы.

И если вам интересно, как эти электроны могут летать независимо от своих атомов, то это благодаря процессу ионизации, в котором — в данном случае — электрический заряд меняет структуру атома, выбивая электроны в пространство поблизости.

В частности, благодаря тому что электронами так просто манипулировать и двигать, стали возможны электрические схемы. Электроны в медном проводе движутся подобно поезду от одного атома меди к другому — потому-то провод передается по проводу. Атомы, как мы уже сказали, это не цельные кусочки вещества, а системы, которые можно модифицировать или разобрать на структурные элементы.

Открытие электрона показало, что нужно узнать об атомах побольше. Работа Томсона показала, что электроны отрицательно заряжены — но он знал, что атомы сами по себе не имеют общего заряда. Он предположил, что они должны содержать загадочные положительно заряженные частицы, чтобы компенсировать отрицательно заряженные электроны.

Эксперименты начала 20 века выявили эти положительно заряженные частицы и в то же время раскрыли внутреннюю структуру атома — похожую на солнечную систему.

Эрнест Резерфорд и его коллеги взяли очень тонкую металлическую фольгу и поставили ее под луч положительно заряженного излучения — поток крошечных частиц. Большая часть мощного излучения прошла насквозь, как и полагал Резерфорд, учитывая толщину фольги. Но, к удивлению ученых, часть его отскочила.

Резерфорд предположил, что атомы в металлической фольге должны содержать небольшие плотные области с положительным зарядом — ничто иное не обладало бы достаточным потенциалом, чтобы отразить такое мощное излучение. Он обнаружил положительные заряды в атоме — и одновременное доказал, что все они связаны в плотной массе, в отличие от электронов. Другими словами, он продемонстрировал существование плотного ядра в атоме.

Оставалась проблема. К тому моменту уже могли рассчитать массу атома. Но учитывая данные о том, какими тяжелыми должны были быть частицы ядра, идея того, что все они положительно заряжены, не имела смысла.

«Углерод имеет шесть электронов и шесть протонов в ядре — шесть положительных зарядов и шесть отрицательных зарядов, — объясняет Клифф. — Но ядро углерода не весит шесть протонов, оно весит эквиваленту 12 протонов».

Сначала предположили, что в ядре есть шесть других ядерных частиц с массой протона, но заряженных отрицательно: нейтроны. Но никто не смог это доказать. На самом деле, нейтроны не могли найти до 1930-х годов.

Кембриджский физик Джеймс Чедвик отчаянно пытался открыть нейтрон. Он работал над этой теорией много лет. В 1932 году ему удалось осуществить прорыв.

За несколько лет до этого другие физики экспериментировали с радиацией. Они запускали положительно заряженное излучение — того типа, который использовал Резерфорд в поисках ядра — в атомы бериллия. Бериллий испускал собственную радиацию: излучение, которое не было заряжено положительно или отрицательно и могло проникать глубоко в материал.

К этому времени другие выяснили, что гамма-излучение было нейтральным и проникало глубоко, поэтому физики считали, что именно его испускают атомы бериллия. Но Чедвик так не считал.

Он самостоятельно произвел новое излучения и направил его на вещество, которое, как он знал, было богатым на протоны. Неожиданно оказалось, что протоны были выбиты из материала словно бы частицами с идентичной массой — будто шарики для бильярда другими шариками.

Гамма-излучение не может отражать протоны таким образом, поэтому Чедвик решил, что искомые частицы должны иметь массу протона, но другой электрический заряд: и это нейтроны.

Все основные частицы атома были найдены, но на этом история не заканчивается.

Хотя мы узнали об атомах много больше, чем знали раньше, их было трудно визуализировать. В 1930-х годах никто не располагал их снимками — и многие люди хотели их увидеть, чтобы принять их существование.

Важно отметить, впрочем, что методы, используемые учеными вроде Томсона, Резерфорда и Чедвика, проложили путь к новому оборудованию, которое в конце концов помогло нам произвести эти снимки. Пучки электронов, которые Томсон генерировал в своем эксперименте с трубкой Крукса, оказались особенно полезными.

Сегодня подобные пучки генерируются электронными микроскопами, и самый мощный из таких микроскопов может на самом деле делать снимки отдельных атомов. Это потому, что электронный пучок обладает длиной волны в тысячи раз короче пучка света — настолько короткой, по сути, что волны электронов могут отражаться от крошечных атомов и выдавать картинку, чего не могут световые пучки.

Нил Скиппер из Университетского колледжа в Лондоне говорит, что такие изображения полезны для людей, которые хотят изучать атомную структуру специальных веществ — вроде тех, что используются в производстве батарей для электромобилей, к примеру. Чем больше мы знаем об их атомной структуре, тем лучше нам удается проектировать батареи, делать их эффективными и надежными.

Можно также понять, как выглядят атомы, просто тыкнув в них. Так, по сути, работает атомно-силовая микроскопия.

Идея в том, чтобы поднести кончик чрезвычайно малого зонда к поверхности молекулы или вещества. При достаточной близости зонд будет чувствителен к химической структуре того, на что указывает, и изменение сопротивления по мере движения зонда позволит ученым произвести снимки, к примеру, отдельной молекулы.

Недавно ученые опубликовали прекрасные снимки молекулы до и после химической реакции с помощью этого метода.

Скиппер добавляет, что многие атомные ученые исследуют, как структура вещей меняется при воздействии высокого давления или температуры. Большинство людей знает, что когда вещество нагревается, оно часто расширяется. Теперь можно обнаружить атомные изменения, которые происходят при этом, что зачастую оказывается полезным.

«При нагревании жидкости можно заметить, как ее атомы принимают неупорядоченную конфигурацию, — говорит Скиппер. — Вы можете увидеть это непосредственно из структурной карты».

Скиппер и другие физики также могут работать с атомами, используя нейтронные пучки, впервые обнаруженые Чедвиком в 1930-х.

«Мы запускаем много пучков нейтронов в образцы материалов, и из возникающего паттерна рассеяния можно понять, что вы рассеиваете нейтроны в ядрах, — говорит он. — Можно грубо прикинуть массу и размер объекта, который просвечивался».

Но атомы не всегда просто находятся там, в стабильном состоянии, ожидая, пока их изучат. Иногда они распадаются — то есть являются радиоактивными.

Существует множество естественных радиоактивных элементов. Этот процесс генерирует энергию, которая легла в основу ядерной энергетики — и ядерных бомб. Физики-ядерщики, как правило, пытаются лучше понять реакции, при которых ядро проходит через фундаментальные изменения вроде этих.

Лаура Харкнесс-Бреннан из Ливерпульского университета специализируется на изучении гамма-лучей — типа излучения, испускаемого распадающимися атомами. Радиоактивный атом определенного типа испускает особую форму гамма-луча. Это значит, вы можете идентифицировать атомы, только регистрируя энергию гамма-лучей — этим, собственно, Харкнесс-Бреннан и занимается в своей лаборатории.

«Типы детекторов, которые вы должны использовать, представлены детекторами, которые позволят вам измерять одновременно присутствие излучения и энергии радиации, которая была отложена, — говорит она. — Все потому, что у всех ядер есть особый отпечаток».

Поскольку в области, где была обнаружена радиация, могут присутствовать все типы атомов, особенно после крупной ядерной реакции, важно точно знать, какие радиоактивные изотопы присутствуют. Такое обнаружение обычно проводится на ядерных станциях или в зонах, где произошла ядерная катастрофа.

Харкнесс-Бреннан и ее коллеги сейчас работают над системами обнаружения, которые можно разместить в таких местах, чтобы показать в трех измерениях, где может присутствовать радиация в конкретном помещении. «Вам нужны техники и инструменты, которые позволят составить трехмерную карту пространства и подскажут, где в этой комнате, в этой трубе радиация», — говорит она.

Также можно визуализировать излучение в «камере Вильсона». В рамках этого специального эксперимента охлажденный до -40 градусов по Цельсию спиртовый пар распыляется облаком над радиоактивным источником. Заряженные частицы радиации, летящие от источника излучения, выбивают электроны из молекул спирта. Спирт конденсируется в жидкость рядом с дорожкой излучаемых частиц. Результаты такого типа обнаружения впечатляют.

Мы мало работали непосредственно с атомами — разве что поняли, что это прекрасные сложные структуры, которые могут претерпевать удивительные изменения, многие из которых происходят в природе. Изучая атомы таким образом, мы улучшаем собственные технологии, извлекаем энергию из ядерных реакций и лучше понимаем природный мир вокруг нас. Мы также получили возможность защищать себя от радиации и изучать, как меняются вещества в экстремальных условиях.

«Учитывая, насколько мал атом, просто невероятно, как много физики мы можем извлечь из него», — метко подмечает Харкнесс-Бреннан. Все, что мы видим вокруг себя, состоит из этих мельчайших частиц. И хорошо знать, что они там есть, поскольку именно благодаря им все вокруг стало возможным.

По материалам BBC

Ноя 2, 2017Геннадий

zhizninauka.info


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики