Геостационарная орбита. Искусственные спутники Земли. Высота орбита спутников земли


Геостационарная орбита. Искусственные спутники Земли :: SYL.ru

Что собой представляет геостационарная орбита? Это круговое поле, которое расположилось над экватором Земли, по нему искусственный спутник обращается с угловой скоростью вращения планеты вокруг оси. Он не изменяет свое направление в горизонтальной системе координат, а неподвижно висит в небе. Геостационарная орбита Земли (ГСО) представляет собой разновидность геосинхронного поля и применяется для размещения коммуникационных, телетрансляционных и других спутников.

Идея использования искусственных аппаратов

Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название - «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.

Характеристика «пояса Кларка»

Чтобы орбита была названа геостационарной, она должна отвечать ряду параметров:

1. Геосинхронность. К такой характеристике относится поле, которое имеет период, соответствующий периоду обращения Земли. Геосинхронный спутник заканчивает оборот вокруг планеты за сидерический день, который равен 23 часам 56 минутам и 4 секундам. То же время необходимо Земле для выполнения одного оборота в фиксированном пространстве.

2. Для поддержания спутника на определенной точке геостационарная орбита должна быть круговой, с нулевым наклонением. Эллиптическое поле приведет к смещению либо к востоку, либо к западу, так как аппарат движется в определенных точках орбиты по-разному.

3. «Точка зависания» космического механизма должна находиться на экваторе.

4. Расположение спутников на геостационарной орбите должны быть таким, чтобы небольшое количество частот, предназначенных для связи, не привело к наложению частот разных аппаратов при приеме и передаче, а также для исключения их столкновения.

5. Достаточное количество топлива для поддержания неизменного положения космического механизма.

Геостационарная орбита спутника уникальна тем, что только при сочетании ее параметров можно добиться неподвижности аппарата. Еще одной особенностью является возможность видеть Землю под углом в семнадцать градусов из расположенных на космическом поле спутников. Каждый аппарат отхватывает примерно одну третью часть поверхности орбиты, поэтому три механизма способны обеспечить охват почти всей планеты.

Искусственные спутники

Летательный аппарат вращается вокруг Земли по геоцентрическому пути. Для его вывода используют многоступенчатую ракету. Она представляет собой космический механизм, который приводит в действие реактивная сила двигателя. Для движения по орбите искусственные спутники Земли должны иметь начальную скорость, которая соответствует первой космической. Их полеты осуществляются на высоте не меньше нескольких сотен километров. Период обращения аппарата может составлять несколько лет. Искусственные спутники Земли могут запускаться с бортов других аппаратов, например, орбитальных станций и кораблей. Беспилотники имеют массу до двух десятков тонн и размер до нескольких десятков метров. Двадцать первый век ознаменовался рождением аппаратов со сверхмалым весом - до несколько килограммов.

Спутники запускались многими странами и компаниями. Первый в мире искусственный аппарат был создан в СССР и полетел в космос 4 октября 1957 года. Он носил имя «Спутник-1». В 1958 году США запустила второй аппарат - «Эксплорер-1». Первый спутник, который был выведен NASA в 1964 году, носил имя Syncom-3. Искусственные аппараты в основном невозвратные, но есть те, которые возвращаются частично или полностью. Их используют для проведения научных исследований и решения различных задач. Так, существуют военные, исследовательские, навигационные спутники и другие. Также запускаются аппараты, созданные сотрудниками университетов или радиолюбителями.

«Точка стояния»

Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.

Передвижение

Спутники можно переводить с низковысотной орбиты на геостационарную с помощью геопереходных полей. Последние представляют собой эллиптический путь с точкой на низкой высоте и пиком на высоте, которая близка к геостационарному кругу. Спутник, который стал непригодным для дальнейшей работы, отправляется на орбиту захоронения, расположенную на 200-300 километров выше ГСО.

Высота геостационарной орбиты

Спутник на данном поле держится на определенном расстоянии от Земли, не приближаясь и не удаляясь. Он всегда находится над какой-либо точкой экватора. Исходя из данных особенностей следует вывод, что силы гравитации и центробежная сила уравновешивают друг друга. Высота геостационарной орбиты рассчитывается методами, в основе которых лежит классическая механика. При этом учитывается соответствие гравитационных и центробежных сил. Значение первой величины определяется с помощью закона всемирного тяготения Ньютона. Показатель центробежной силы рассчитывается путем произведения массы спутника на центростремительное ускорение. Итогом равенства гравитационной и инертной массы является заключение о том, что высота орбиты не зависит от массы спутника. Поэтому геостационарная орбита определяется только высотой, при которой центробежная сила равна по модулю и противоположна по направлению гравитационной силе, создающейся притяжением Земли на данной высоте.

Из формулы расчета центростремительного ускорения можно найти угловую скорость. Радиус геостационарной орбиты определяется также по этой формуле либо путем деления геоцентрической гравитационной постоянной на угловую скорость в квадрате. Он составляет 42164 километра. Учитывая экваториальный радиус Земли, получаем высоту, равную 35786 километрам.

Вычисления можно провести другим путем, основываясь на утверждении, что высота орбиты, представляющая собой удаление от центра Земли, с угловой скоростью спутника, совпадающей с движением вращения планеты, рождает линейную скорость, которая равна первой космической на данной высоте.

Скорость на геостационарной орбите. Длина

Данный показатель рассчитывается путем умножения угловой скорости на радиус поля. Значение скорости на орбите равно 3,07 километра в секунду, что намного меньше первой космической скорости на околоземном пути. Чтобы уменьшить показатель, необходимо увеличить радиус орбиты более чем в шесть раз. Длина рассчитывается произведением числа Пи на радиус, умноженным на два. Она составляет 264924 километра. Показатель учитывается при вычислении «точек стояния» спутников.

Влияние сил

Параметры орбиты, по которой обращается искусственный механизм, могут изменяться под действием гравитационных лунно-солнечных возмущений, неоднородности поля Земли, эллиптичности экватора. Трансформация поля выражается в таких явлениях, как:

  1. Смещение спутника от своей позиции вдоль орбиты в сторону точек стабильного равновесия, которые носят название потенциальных ям геостационарной орбиты.
  2. Угол наклона поля к экватору растет с определенной скоростью и достигает 15 градусов один раз за 26 лет и 5 месяцев.

Для удержания спутника в нужной «точке стояния» его оснащают двигательной установкой, которую включают несколько раз в 10-15 суток. Так, для восполнения роста наклонения орбиты используют коррекцию «север-юг», а для компенсации дрейфа вдоль поля – «запад-восток». Для регулирования пути спутника в течение всего срока его работы необходим большой запас топлива на борту.

Двигательные установки

Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля – спутник» занимает около 0,12 секунды, а «Земля – спутник – Земля» - 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник – спутник – приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Эффект Допплера

Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.

Отношение в мире к геостационарным полям

Космическая орбита своим рождением создала много вопросов и международно-правовых проблем. Их решением занимается ряд комитетов, в частности, Организация Объединенных Наций. Некоторые страны, расположенные на экваторе, предъявляли претензии на распространение их суверенитета на находящуюся над их территорией часть космического поля. Государства заявляли, что геостационарная орбита представляет собой физический фактор, который связан с существованием планеты и зависит от гравитационного поля Земли, поэтому сегменты поля являются продолжением территории их стран. Но такие притязания были отвергнуты, так как в мире существует принцип неприсвоения космического пространства. Все проблемы, связанные с работой орбит и спутников, разрешаются на мировом уровне.

www.syl.ru

Типы спутниковых орбит и их определения

Заметки и детали о спутниковых орбитах: базовая информация; различные типы спутниковых орбит; определения спутниковых орбит.

В наше время человечество использует несколько различных орбит для размещения спутников. Наибольшее внимание приковано к геостационарной орбите, которая может быть использована для «стационарного» размещения спутника над той или иной точкой Земли. Орбита, выбираемая для работы спутника, зависит от его назначения. К примеру, спутники, используемые для прямого вещания телевизионных программ, помещают на геостационарную орбиту. Многие спутники связи также находятся на геостационарной орбите. Другие спутниковые системы, в частности те, которые используются для связи между спутниковыми телефонами, вращаются на низкой околоземной орбите. Аналогично спутниковые системы, используемые для систем навигации, таких как Navstar или Система глобального позиционирования (GPS), также находятся на относительно низких околоземных орбитах. Существует ещё бесчисленное множество других спутников – метеорологические, исследовательские и так далее. И каждый из них, в зависимости от своего назначения, получает «прописку» на определённой орбите.

Читайте также: Геостационарная спутниковая орбита (GEO)

Конкретная орбита, избираемая для работы спутника, зависит от множества факторов, среди которых – функции спутника, а также обслуживаемая им территория. В одних случаях это может быть крайне низкая околоземная орбита (LEO), находящаяся на высоте всего 160 километров над Землёй, в других случаях спутник находится на высоте более 36 000 километров над Землёй – то есть, на геостационарной орбите GEO. Более того, ряд спутников использует не круговую орбиту, а эллиптическую.

Притяжение Земли и спутниковые орбиты

По мере обращения спутников на околоземной орбите они потихоньку с неё смещаются из-за силы притяжения Земли. Если бы спутники не вращались по орбите, они бы начали постепенно падать на Землю и сгорели бы в верхних слоях атмосферы. Однако само вращение спутников вокруг Земли создаёт силу, отталкивающую их от нашей планеты. Для каждой из орбит существует своя расчётная скорость, которая позволяет сбалансировать силу притяжения Земли и центробежную силу, удерживая аппарат на постоянной орбите и не давая ему ни набирать, ни терять высоту.

Вполне понятно, что чем ниже орбита спутника, тем сильнее на него влияет притяжение Земли и тем большая требуется скорость для преодоления этой силы. Чем больше расстояние от поверхности Земли до спутника – тем, соответственно, меньшая требуется скорость для его нахождения на постоянной орбите. Для аппарата, вращающегося на расстоянии около 160 км над поверхностью Земли, требуется скорость примерно 28 164 км/ч, а это значит, что такой спутник совершает виток вокруг Земли примерно за 90 минут. На расстоянии 36 000 км над поверхностью Земли спутнику для нахождения на постоянной орбите требуется скорость немногим менее 11 266 км/ч, что даёт возможность такому спутнику обращаться вокруг Земли примерно за 24 часа.

Определения круговой и эллиптической орбит

Все спутники обращаются вокруг Земли, используя один из двух базовых типов орбит.

  • Круговая    спутниковая орбита: при обращении космического аппарата вокруг Земли по    круговой орбите его расстояние над земной поверхностью остаётся всегда    одинаковым.
  • Эллиптическая спутниковая орбита: Вращение спутника по эллиптической орбите означает    изменение расстояния до поверхности Земли в разное время в течение одного витка.

sat-orbit-1

Читайте также: Высокие эллиптические спутниковые орбиты (HEO)

Спутниковые орбиты

Существует множество различных определений, связанных с различными типами спутниковых орбит:

  • Центр Земли: Когда спутник обращается вокруг земли – по круговой или эллиптической орбите – орбита спутника формирует плоскость, которая проходит через центр земного притяжения или же Центр Земли.
  • Направление движения вокруг Земли: Способы обращения спутника вокруг нашей планеты можно разбить на две категории в соответствии с направлением этого обращения:

1. Ускорительная орбита: Обращение спутника вокруг Земли называют ускорительным, если спутник вращается в том же направлении, в котором вращается Земля;2. Ретроградная орбита: Обращение спутника вокруг Земли называют ретроградным, если спутник вращается в направлении, противоположном направлению вращения Земли.

  • Трасса орбиты: трассой орбиты спутника называют точку на земной поверхности, при пролёте над которой спутник находится прямо над головой в процессе движения по орбите вокруг Земли. Трасса образует круг, в центре которого расположен Центр Земли. Следует отметить, что геостационарные спутники представляют собой особый случай, поскольку они постоянно находятся над одной и той же точкой над поверхностью Земли. Это означает, что их трасса орбиты состоит из одной точки, расположенной на экваторе Земли. Также можно добавить, что трасса орбиты спутников, вращающихся строго над экватором, тянется вдоль этого самого экватора.

Для этих орбит, как правило, характерно смещение трассы орбиты каждого спутника в западном направлении, поскольку Земля под спутником обращается в восточном направлении.

  • Орбитальные узлы: Это точки, в которых трасса орбиты переходит из одного полушария в другое. Для неэкваториальных орбит существует два таких узла:

1. Восходящий узел: Это узел, в котором трасса орбиты переходит из южного полушария в северное.2. Нисходящий узел: Это узел, в котором трасса орбиты переходит из северного полушария в южное.

  • Высота спутника: При расчёте многих орбит необходимо учитывать высоту спутника над центром Земли. Этот показатель включает расстояние от спутника до поверхности Земли плюс радиус нашей планеты. Как правило, считается, что он равен 6370 километрам.
  • Орбитальная скорость: Для круговых орбит она всегда одинакова. Однако в случае с эллиптическими орбитами всё обстоит иначе: скорость обращения спутника по орбите изменяется в зависимости от его позиции на этой самой орбите. Она достигает своего максимума при наибольшем приближении к Земле, где спутнику предстоит максимальное противостояние силе притяжения планеты, и снижается до минимума при достижении точки наибольшего удаления от Земли.
  • Угол подъёма: Углом подъёма спутника называют угол, на котором спутник расположен над линией горизонта. Если угол слишком мал, сигнал может быть перекрыт расположенными близко объектами – в случае, если приёмная антенна поднята недостаточно высоко. Однако и для антенн, которые подняты над препятствием, также существует проблема при приёме сигнала со спутников, имеющих низкий угол подъёма. Причина здесь в том, что спутниковый сигнал в таком случае должен пройти большее расстояние через земную атмосферу и в результате он подвергается большему ослаблению. Минимально допустимым углом подъёма для более-менее удовлетворительного приёма принято считать угол в пять градусов.
  • Угол наклона: Не все спутниковые орбиты следуют вдоль линии экватора – на самом деле, большая часть низких околоземных орбит не придерживается этой линии. А поэтому необходимо определять угол наклона орбиты спутника. Диаграмма, расположенная ниже, иллюстрирует данный процесс.
sat-orbit-2Угол наклона спутниковой орбиты

Прочие показатели, связанные со спутниковой орбитой

Для того чтобы спутник мог использоваться для предоставления услуг связи, наземные станции должны иметь возможность «следить» за ним с целью получения с него сигнала и отправки сигнала на него. Понятно, что связь со спутником возможна лишь в то время, когда он находится в зоне видимости наземных станций, и, в зависимости от типа орбиты, он может находиться в зоне видимости лишь в короткие промежутки времени. Для уверенности в том, что связь со спутником возможна в течение максимального промежутка времени, существует несколько вариантов, которые можно использовать:

  • Первый    вариант состоит в использовании эллиптической орбиты, точка апогея которой    находится в аккурат над планируемым размещением наземной станции, что даёт    возможность спутнику пребывать в зоне видимости этой станции в течение    максимального промежутка времени.
  • Второй    вариант заключается в запуске нескольких спутников на одну орбиту, и,    таким образом, в то время, когда один из них исчезает из виду и связь с    ним теряется, на его место приходит другой. Как правило, для организации    более-менее бесперебойной связи требуется запуск на орбиту трёх спутников.    Однако процесс смены одного «дежурного» спутника другим вносит в систему    дополнительные сложности, а также ряд требований к минимум трём спутникам.

Определения круговых орбит

Круговые орбиты можно классифицировать по нескольким параметрам. Такие термины, как Низкая околоземная орбита, Геостационарная орбита (и им подобные) указывают на отличительную черту конкретной орбиты. Краткий обзор определений круговых орбит представлен в таблице ниже.

sat-orbit-3Читайте также: Низкая околоземная орбита (LEO)

Для выполнения некоторых задач может требоваться размещение спутника на высокой околоземной орбите. В этих случаях период обращения спутника вокруг Земли превышает 24 часа, а кроме того расстояние до спутника является немалым, что приводит к большей задержке во время движения сигнала с Земли к спутнику и назад, а также большим потерям сигнала.

Выбор орбиты спутника зависит от функций, которые он выполняет. В то время, как для организации прямого вещания и подобных услуг, как правило, используются спутники, расположенные на геостационарных орбитах, для систем GPS и даже для мобильной телефонии используются спутники, вращающиеся намного ниже.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилось нас читать? Подпишись тут

mediasat.info

Геостационарная орбита (ГСО) – Журнал "Все о Космосе"

Геостационарная орбита

Геостационарная орбита (ГСО) — круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой, искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. В горизонтальной системе координат направление на спутник не изменяется ни по азимуту, ни по высоте над горизонтом, спутник «висит» в небе неподвижно. Поэтому спутниковая антенна, однажды направленная на такой спутник, всё время остаётся направленной на него. Геостационарная орбита является разновидностью геосинхронной орбиты и используется для размещения искусственных спутников (коммуникационных, телетрансляционных и т. п.).

Спутник должен обращаться в направлении вращения Земли, на высоте 35 786 км над уровнем моря. Именно такая высота обеспечивает спутнику период обращения, равный периоду вращения Земли относительно звёзд (Звёздные сутки: 23 часа 56 минут 4,091 секунды).

Идея использования геостационарных спутников для целей связи высказывалась ещё словенским теоретиком космонавтики Германом Поточником в 1928 году.

Преимущества геостационарной орбиты получили широкую известность после выхода в свет научно-популярной статьи Артура Кларка в журнале «Wireless World» в 1945 году, поэтому на Западе геостационарная и геосинхронные орбиты иногда называются «орбитами Кларка», а «поясом Кларка» называют область космического пространства на расстоянии 36000 км над уровнем моря в плоскости земного экватора, где параметры орбит близки к геостационарной. Первым спутником, успешно выведенным на ГСО, был Syncom-3, запущенный NASA в августе 1964 года.

Точка стояния

Спутник, находящийся на геостационарной орбите, неподвижен относительно поверхности Земли, поэтому его местоположение на орбите называется точкой стояния. В результате, сориентированная на спутник и неподвижно закреплённая направленная антенна может сохранять постоянную связь с этим спутником длительное время.

Размещение спутников на орбите

Геостационарная орбита может быть точно обеспечена только на окружности, расположенной прямо над экватором, с высотой, очень близкой к 35 786 км.

Если бы геостационарные спутники были видны на небе невооружённым глазом, то линия, на которой они были бы видны, совпадала бы с «поясом Кларка» для данной местности. Геостационарные спутники, благодаря имеющимся точкам стояния, удобно использовать для спутниковой связи: единожды сориентированная антенна всегда будет направлена на выбранный спутник (если он не сменит позицию).

Для перевода спутников с низковысотной орбиты на геостационарную используются переходные геостационарные (геопереходные) орбиты (ГПО) — эллиптические орбиты с перигеем на низкой высоте и апогеем на высоте, близкой к геостационарной орбите.

После завершения активной эксплуатации на остатках топлива спутник должен быть переведён на орбиту захоронения, расположенную на 200—300 км выше ГСО.

Вычисление параметров геостационарной орбиты

Радиус орбиты и высота орбиты

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

,где  — сила инерции, а в данном случае, центробежная сила;  — гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона: ,где  — масса спутника,  — масса Земли в килограммах,  — гравитационная постоянная, а  — расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

,где  — центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника  присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которых центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

,где  — угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае — сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

.Сокращая , переводя  влево, а  вправо, получаем: или .Можно записать это выражение иначе, заменив  на  — геоцентрическую гравитационную постоянную: Угловая скорость  вычисляется делением угла, пройденного за один оборот ( радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:  рад/сПолученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

Можно сделать вычисления и иначе. Высота геостационарной орбиты — это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

Линейная скорость спутника, движущегося с угловой скоростью  на расстоянии  от центра вращения равна

Первая космическая скорость на расстоянии  от объекта массой  равна Приравняв правые части уравнений друг к другу, приходим к полученному ранее выражению радиуса ГСО:

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

 км/сЭто примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу, то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год, и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в 10-15 суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45—50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12—15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува — гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счёт продолжительной работы, измеряемой десятками минут для единичного манёвра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для манёвра перевода спутника в другую орбитальную позицию. В некоторых случаях, как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток».

Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

Недостатки геостационарной орбиты

Задержка сигнала

Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля-спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Полная задержка (измеряемая утилитой Ping) при использовании спутниковой связи для приема и передачи данных составит почти полсекунды. С учетом задержки сигнала в аппаратуре ИСЗ, в аппаратуре и в кабельных системах передач наземных служб общая задержка сигнала на маршруте «источник сигнала → спутник → приёмник» может достигать 2—4 секунд. Такая задержка затрудняет применение спутников на ГСО в телефонии и делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх).

Невидимость ГСО с высоких широт

Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу), то невозможна связь и телетрансляция с использованием ГСО в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды. К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположенной на 75° ю.ш. французской станции Конкордия, с которой уже видно несколько американских геостационарных спутников.

Таблица наблюдаемого сектора геостационарной орбиты в зависимости от широты местаВсе данные приведены в градусах и их долях.

Широтаместности Видимый сектор орбиты Теоретическийсектор Реальный(с уч. рельефа)сектор
90
82
81 29,7
80 58,9
79 75,2
78 86,7 26,2
75 108,5 77
60 144,8 132,2
50 152,8 143,3
40 157,2 149,3
20 161,5 155,1
0 162,6 156,6

Из вышележащей таблицы видно, например, что если на широте С.-Петербурга (~60°) видимый сектор орбиты (и соответственно количество принимаемых спутников) равен 84 % от максимально возможного (на экваторе), то на широте полуострова Таймыр (~75°) видимый сектор составляет 49 %, а на широте Шпицбергена и мыса Челюскина (~78°) — лишь 16 % от наблюдаемого на экваторе. В этот сектор орбиты в районе Сибири попадает 1-2 спутника (не всегда необходимой страны).

Солнечная интерференция

Одним из самых неприятных недостатков геостационарной орбиты является уменьшение и полное отсутствие сигнала в ситуации, когда Солнце и спутник-передатчик находятся на одной линии с приёмной антенной (положение «Солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут. В такие моменты в ясную погоду солнечные лучи сфокусированные светлым покрытием антенны могут повредить (расплавить или перегреть) приёмо-передающую аппаратуру спутниковой антенны.

Международно-правовой статус ГСО

Использование геостационарной орбиты ставит целый ряд не только технических, но и международно-правовых проблем. Значительный вклад в их разрешение вносит ООН, а также её комитеты и иные специализированные учреждения.

Некоторые экваториальные страны в разное время предъявляли претензии (например, Декларация об установлении суверенитета на участке ГСО, подписанная в Боготе Бразилией, Колумбией, Конго, Эквадором, Индонезией, Кенией, Угандой и Заиром 3 декабря 1976 г.) на распространение их суверенитета на находящуюся над их территориями часть космического пространства, в которой проходят орбиты геостационарных спутников. Было, в частности, заявлено, что геостационарная орбита является физическим фактором, связанным с существованием нашей планеты и полностью зависящим от гравитационного поля Земли, а потому соответствующие части космоса (сегменты геостационарной орбиты) как бы являются продолжением территорий, над которыми они находятся. Соответствующее положение закреплено в Конституции Колумбии.

Эти притязания экваториальных государств были отвергнуты, как противоречащие принципу неприсвоения космического пространства. В Комитете ООН по космосу такие заявления подверглись обоснованной критике. Во-первых, нельзя претендовать на присвоение какой-либо территории или пространства, находящегося на таком значительном удалении от территории соответствующего государства. Во-вторых, космическое пространство не подлежит национальному присвоению. В-третьих, технически неправомочно говорить о какой-либо физической взаимосвязи между государственной территорией и столь отдаленным районом космоса. Наконец, в каждом отдельном случае феномен геостационарного спутника связан с конкретным космическим объектом. Если нет спутника, то нет и геостационарной орбиты.

Wikipedia

aboutspacejornal.net

Орбиты спутников, спутниковые орбиты - история спутниковых орбит

Со времен запуска первого Искусственного Спутника Земли (ИСЗ) в 1957 году жизнь человечества сильно изменилась. Многим достижениям технического прогресса (международная спутниковая связь, точный прогноз погоды, интернет) человечество обязано именно спутникам, летающим по орбитам в околоземном пространстве. Сегодня таких спутников, выполняющих совершенно разные задачи, десятки тысяч. Их размеры: от огромных (около 100 метров) до совсем маленьких (буквально в несколько сантиметров). У каждого из них своя задача и своя орбита. По каким орбитам летают спутники? Какие бывают орбиты и что это вообще такое?

 

 

 

Высота орбит спутников

Немного истории

Люди давно заметили, что огромные космические тела, будь то кометы, планеты или звезды, движутся по небу, сохраняя некую периодичность. Особенно любознательные записывали свои наблюдения, что давало каждому новому поколению все больше и больше знаний о движении в космическом пространстве.

Так, например, исследуя труды датского астронома Тихо Браге, Иоганн Кеплер, немецкий астроном XVI века, установил, что все космические тела движутся по определенным законам. В частности Кеплер предположил, что Марс (именно за это планетой долгое время наблюдал Браге) движется вокруг Солнца вовсе не по кругу. В своем труде «Новая астрономия, изложенная в исследованиях о движении звезды Марс» Кеплер показал, что Марс вращается вокруг Солнца по эллипсу. Позднее Кеплер сформулировал еще несколько выводов, которые объединил в три определения. Сегодня эти определения (теперь мы называем их Законами) известны нам под его именем.

 

Не будем углубляться в историю во всех подробностях. Лучше давайте рассмотрим, чего добилось и какие выводы сделало человечество, используя законы Кеплера. Начнем с определения орбиты.

 

Что такое орбита спутника

Орбитой спутника, собственно, называется траектория его движения. Движение по орбите происходит по инерции (с выключенными двигателями), и при этом на спутник (это может быть искусственный спутник или планета) оказывает влияние только гравитация (в основном, конечно, Земля). Орбиты спутников имеют эллиптическую форму и движутся по воображаемой плоскости, проходящей через центр Земли. Плоскость эта, а значит и орбита, не симметричная, а как бы вытянутая, то есть не является постоянной, она все время изменяется, то увеличиваясь, то уменьшаясь по ходу траектории. Выражаясь научным языком, наивысшая точка орбиты (максимальное удаление от Земли) называется апогеем, а наинизшая (минимальное удаление от Земли) точка – перигеем. Находятся они, соответственно в южном и северном полушариях Земли.

Согласно Второму Закону Кеплера планета (в нашем случае спутник), движущаяся в плоскости проходит (описывает) за равные промежутки времени равные площади. Из этого можно сделать вывод, что спутники движутся неравномерно. Чем ближе спутник к Земле (перигей), тем выше его линейная скорость, и чем дальше он от Земли (апогей), тем его скорость ниже. Это явление позволило ученым предположить, а потом и рассчитать различные спутниковые орбиты, оптимальные для конкретного целевого назначения.

 

Какие бывают орбиты

В зависимости от заданной начальной скорости, выведенный в космос спутник занимает определенную орбиту (или сначала одну, а потом другую). Свойства орбиты спутника позволяют оптимизировать приемо-передающее оборудование для оптимальной реализации поставленных задач. Различаются орбиты по наклонению, по величине большой полуоси (или высоте над поверхностью Земли) и по скорости обращения спутника вокруг Земли. Рассмотрим виды спутниковых орбит подробнее.

 

Орбиты с заданным наклонением

Эта классификация показывает, как орбиты различаются по углу наклонения. Чем больше угол наклонения орбиты, тем более заметен будет спутник в северных широтах. А чем спутник выше, тем шире становиться область видимости. Существуют экваториальные (орбита проходит вдоль экватора Земли), полярные (орбита проходит перпендикулярно экватору) и солнечно-синхронные орбиты. Последняя орбита чаще всего используется для размещения спутников, предназначенных для фото и видео съемки поверхности Земли.

 

Разновысотные орбиты (величина большой полуоси)

ОрбитыВ зависимости от высоты орбиты, выведенный спутник, соответственно, называется низкоорбитальным или среднеорбитальным.

Низкоорбитальные спутники летают над поверхностью Земли на высоте от 160 километров до 2000 километров. Их наиболее распространенное название в научной литературе: LEO (от англ. Low Earth Orbit – малая земная орбита).

Используются такие низкоорбитальные спутники чаще всего для обеспечения персональной радиотелефонной связи. Объясняется это бесперебойностью контакта наземных терминалов с ретрансляторами спутников, а также мощностью приемо-передающего сигнала. Данный аспект, однако, был использован в сфере массовых телекоммуникаций сравнительно недавно. Так, в странах с развитой инфраструктурой, доля услуг, предоставляемых именно низкоорбитальными спутниками, составляет всего около 35%. Основную долю составляют спутники, летающие на геостационарной орбите.

Среднеорбитальными спутниками называют спутники, летающие над поверхностью Земли на высоте от 2000 километров до 35786 километров. Называются они, соответственно, MEO (от англ. "Medium Earth Orbit – средняя земная орбита).

Именно эти орбитальные высоты используются системами глобальной навигации (GPS, ГЛОНАСС).Это вполне справедливо, так как заданная высота среднеорбитальных спутников позволяет максимально точно обмениваться данными с приемниками (навигаторами).

 

Геостационарная орбита

Данная классификация показывает скорость обращения спутника вокруг Земли, находящегося на определенной орбите. Скорость обращения такого спутника составляет 23часа 56минут и 4,09секунды. Несложно понять, что этот показатель равен земным суткам. Следовательно, спутник на такой орбите как бы «висит» в небе на одном месте.

Вывод спутника на орбиту Геостационарная орбита располагается от поверхности Земли на расстоянии 35786 километров. Орбита проходит в экваториальной плоскости Земли. Её радиус равен 42164 километрам. Это приблизительно в 6 раз больше, чем радиус нашей планеты (составляет 6378 километров). Небесные координаты такого спутника на геостационарной орбите остаются постоянными. Это дает возможность использовать их для работы спутникового телевидения. Сигнал, приходящий от таких спутников, четкий и бесперебойный.

Сохранение постоянной точки позиционирования («зависание» на одном месте) не является абсолютным, так как на спутник постоянно оказывается влияние ближайшего естественного спутника Земли – Луны. Луна вызывает гравитационные возмущения на орбите спутника, притягивая его к себе. Корректировка позиции спутника проводится с помощью двигателей, которыми он оснащен.

 

«Пояс Кларка»

Впервые в истории рассчитал геостационарную орбиту английский инженер Артур Кларк. Случилось это в, уже далеком, 1945 году. Кларк предложил использовать эту орбиту для спутников связи. Эта идея, на удивление самого Кларка, была реализована, и очень скоро! Практически все глобальные системы коммуникации обязаны своим существованием именно этому человеку. Если смотреть в более широком смысле, то все люди, кто сегодня пользуется Интернетом, находятся в неоценимом долгу перед Артуром Кларком. В Англии и большинстве других стран, особенно европейских, геостационарную орбиту называют «Поясом Кларка».

 

Вывод спутников на орбиту

Процесс отправки спутника и его вывод на заданную высоту (орбиту) представляет собой совокупность научно-практических действий, основанных на четких математических и физических расчетах. Непосредственная доставка спутника осуществляется многоступенчатой ракетой, с использованием промежуточной орбиты.

Для чего это нужно

Средне высотни орбиты супутникаРассмотрение таких сложных, но интересных тем, как орбитальные спутники, определение и классификация орбит и другие, совершенно логично вызывает ряд вопросов. Какая от этого польза? Для чего всё это нужно знать?

Как уже говорилось в начале статьи, с появлением орбитальных искусственных спутников Земли и освоением человеком околоземной орбиты, многое в жизни современного человечества изменилось. Например, значительно снизилась средняя стоимость международных телефонных разговоров. Появилась возможность использования ресурсов глобальной системы спутниковой навигации. Точный прогноз погоды, расчет климатических изменений в определенных регионах планеты, прогнозирование гео-климатических изменений в планетарном масштабе, обследование морского дна и залежей полезных ископаемых, доступ во всемирную сеть Интернет в любой точке планеты, изучение космоса, в конце концов, - всё это стало возможным благодаря орбитальным спутникам.

К сожалению, сегодня околоземная орбита перенасыщена различным «космическим мусором». Подсчитано, что более 1 100 летающих объектов диаметром более полуметра находятся в непосредственной близости от геостационарной орбиты Земли, на которой, как правило, размещается коммуникационное оборудование. Однако, всего лишь 300 из этих объектов — это действующие спутники. Среди опасных объектов, которые за ненадобностью бросили в космосе на разных высотах,— 32 давно выведенных из строя ядерных реактора. Все это говорит о неблагодарности отдельных «пользователей» орбиты к тем, кто когда-то подарил нам бесценные знания о Законах движения тел во вселенной.

rusohost.ru

Вычисление параметров геостационарной орбиты Радиус орбиты и высота орбиты

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

где – сила инерции, а в данном случае, центробежная сила;– гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона:

где – масса спутника,– масса Земли в килограммах,– гравитационная постоянная, а– радиус орбиты (расстояние в метрах от спутника до центра Земли).

Величина центробежной силы равна:

где – центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует в выражениях и для центробежной силы, и для гравитационной силы. То есть, высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которой центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

где – угловая скорость вращения спутника, в радианах в секунду.

Исходя из равенства гравитационной и центробежной сил, получаем:

Отсюда .

Угловая скорость ωвычисляется делением угла, пройденного за один оборот на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:рад/с

Расчетный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту ГСО 35 786 км.

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты: км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с для околоземной орбиты (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу, то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км. Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите. Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т.д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, так называемых «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального =0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10—15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45—50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12—15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную систему подачи топлива (газ наддува – гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и азотный тетраксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше, чем у химических, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях – как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток». Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

studfiles.net

Геостационарная орбита — WiKi

Синхронная орбита Вид Земли с высоты около 30 тысяч км (Аполлон-8)

Геостациона́рная орби́та (ГСО) — круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой, искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. В горизонтальной системе координат направление на спутник не изменяется ни по азимуту, ни по высоте над горизонтом — спутник как бы «висит» в небе неподвижно. Поэтому спутниковая антенна, однажды направленная на такой спутник, всё время остаётся направленной на него. Геостационарная орбита является разновидностью геосинхронной орбиты и используется для размещения искусственных спутников (коммуникационных, телетрансляционных и т. п.).

Спутник должен обращаться в направлении вращения Земли, на высоте 35 786 км над уровнем моря (вычисление высоты ГСО см. ниже). Именно такая высота обеспечивает спутнику период обращения, равный периоду вращения Земли относительно звёзд (Звёздные сутки: 23 часа 56 минут 4,091 секунды).

Идея использования геостационарных спутников для целей связи высказывалась ещё словенским теоретиком космонавтики Германом Поточником[1] в 1928 году.

Преимущества геостационарной орбиты получили широкую известность после выхода в свет научно-популярной статьи Артура Кларка в журнале «Wireless World» в 1945 году[2], поэтому на Западе геостационарная и геосинхронные орбиты иногда называются «орбитами Кларка», а «поясом Кларка» называют область космического пространства на расстоянии 36000 км над уровнем моря в плоскости земного экватора, где параметры орбит близки к геостационарной. Первым спутником, успешно выведенным на ГСО, был Syncom-3[en], запущенный NASA в августе 1964 года.

Точка стояния

Спутник, находящийся на геостационарной орбите, неподвижен относительно поверхности Земли[3], поэтому его местоположение на орбите называется точкой стояния. В результате сориентированная на спутник и неподвижно закреплённая направленная антенна может сохранять постоянную связь с этим спутником длительное время.

Размещение спутников на орбите

  Для Архангельска максимально возможная высота спутника над горизонтом — 17,2° Наивысшая точка пояса Кларка всегда находится строго на юге (для северного полушария). В нижней части графика градусы — меридианы, над которыми находятся спутники. По бокам — высоты спутников над горизонтом. Сверху — направление на спутник. Для наглядности можно растянуть по горизонтали в 7,8 раза и отразить слева направо. Тогда он будет выглядеть так же, как на небе.

Геостационарная орбита может быть точно обеспечена только на окружности, расположенной прямо над экватором, с высотой, очень близкой к 35 786 км.

Если бы геостационарные спутники были видны на небе невооружённым глазом, то линия, на которой они были бы видны, совпадала бы с «поясом Кларка» для данной местности. Геостационарные спутники, благодаря имеющимся точкам стояния, удобно использовать для спутниковой связи: единожды сориентированная антенна всегда будет направлена на выбранный спутник (если он не сменит позицию).

Для перевода спутников с низковысотной орбиты на геостационарную используются переходные геостационарные (геопереходные) орбиты (ГПО) — эллиптические орбиты с перигеем на низкой высоте и апогеем на высоте, близкой к геостационарной орбите.

После завершения активной эксплуатации на остатках топлива спутник должен быть переведён на орбиту захоронения, расположенную на 200 — 300 км выше ГСО.

Существуют каталоги объектов на геостационарной орбите.[4]

Вычисление параметров геостационарной орбиты

Радиус орбиты и высота орбиты

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

Fu=FΓ{\displaystyle F_{u}=F_{\Gamma }} ,

где Fu{\displaystyle F_{u}}  — сила инерции, а в данном случае, центробежная сила; FΓ{\displaystyle F_{\Gamma }}  — гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона:

FΓ=G⋅M3⋅mcR2{\displaystyle F_{\Gamma }=G\cdot {\frac {M_{3}\cdot m_{c}}{R^{2}}}} ,

где mc{\displaystyle m_{c}}  — масса спутника, M3{\displaystyle M_{3}}  — масса Земли в килограммах, G{\displaystyle G}  — гравитационная постоянная, а R{\displaystyle R}  — расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

Fu=mc⋅a{\displaystyle F_{u}=m_{c}\cdot a} ,

где a{\displaystyle a}  — центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника mc{\displaystyle m_{c}}  присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит[5] и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которой центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

a=ω2⋅R{\displaystyle a=\omega ^{2}\cdot R} ,

где ω{\displaystyle \omega }  — угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае — сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

mc⋅ω2⋅R=G⋅M3⋅mcR2{\displaystyle m_{c}\cdot \omega ^{2}\cdot R=G\cdot {\frac {M_{3}\cdot m_{c}}{R^{2}}}} .

Сокращая mc{\displaystyle m_{c}} , переводя R2{\displaystyle R^{2}}  влево, а ω2{\displaystyle \omega ^{2}}  вправо, получаем:

R3=G⋅M3ω2{\displaystyle R^{3}=G\cdot {\frac {M_{3}}{\omega ^{2}}}} 

или

R=G⋅M3ω23{\displaystyle R={\sqrt[{3}]{\frac {G\cdot M_{3}}{\omega ^{2}}}}} .

Можно записать это выражение иначе, заменив G⋅M3{\displaystyle G\cdot M_{3}}  на μ{\displaystyle \mu }  — геоцентрическую гравитационную постоянную:

R=μω23{\displaystyle R={\sqrt[{3}]{\frac {\mu }{\omega ^{2}}}}} 

Угловая скорость ω{\displaystyle \omega }  вычисляется делением угла, пройденного за один оборот (360∘=2⋅π{\displaystyle 360^{\circ }=2\cdot \pi }  радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:

ω=2⋅π86164=7,29⋅10−5{\displaystyle \omega ={\frac {2\cdot \pi }{86164}}=7,29\cdot 10^{-5}}  рад/с

Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

Можно сделать вычисления и иначе. Высота геостационарной орбиты — это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

Линейная скорость спутника, движущегося с угловой скоростью ω{\displaystyle \omega }  на расстоянии R{\displaystyle R}  от центра вращения равна

vl=ω⋅R{\displaystyle v_{l}=\omega \cdot R} 

Первая космическая скорость на расстоянии R{\displaystyle R}  от объекта массой M{\displaystyle M}  равна

vk=GMR;{\displaystyle v_{k}={\sqrt {G{\frac {M}{R}}}};} 

Приравняв правые части уравнений друг к другу, приходим к полученному ранее выражению радиуса ГСО:

R=GMω23{\displaystyle R={\sqrt[{3}]{G{\frac {M}{\omega ^{2}}}}}} 

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

v=ω⋅R=3,07{\displaystyle v=\omega \cdot R=3{,}07}  км/с

Это примерно в 2,5 раза меньше, чем первая космическая скорость, равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу,

v=GMR;{\displaystyle v={\sqrt {G{\frac {M}{R}}}};} 

то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

R≈6400⋅(83,07)2≈43000{\displaystyle R\approx \,\!{6400\cdot \left({\frac {8}{3{,}07}}\right)^{2}}\approx \,\!43000} 

Длина орбиты

Длина геостационарной орбиты: 2⋅π⋅R{\displaystyle {2\cdot \pi \cdot R}} . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север — юг» для компенсации роста наклонения орбиты и «запад — восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в 10 — 15 суток. Существенно, что для коррекции «север — юг» требуется значительно большее приращение характеристической скорости (около 45 — 50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12 — 15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува — гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счёт продолжительной работы, измеряемой десятками минут для единичного манёвра) радикально снизить требуемую массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется при необходимости для манёвра перевода спутника в другую орбитальную позицию. В некоторых случаях (как правило, в конце срока эксплуатации спутника) для сокращения расхода топлива коррекция орбиты «север — юг» прекращается, а остаток топлива используется только для коррекции «запад — восток».

Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите (кроме отказов компонентов самого спутника).

Недостатки геостационарной орбиты

Задержка сигнала

Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля — спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Полная задержка (измеряемая утилитой Ping) при использовании спутниковой связи для приема и передачи данных составит почти полсекунды. С учетом задержки сигнала в аппаратуре ИСЗ, в аппаратуре и в кабельных системах передач наземных служб общая задержка сигнала на маршруте «источник сигнала → спутник → приёмник» может достигать 2 — 4 секунд[6]. Такая задержка затрудняет применение спутников на ГСО в телефонии и делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх)[7].

Невидимость ГСО с высоких широт

Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу), то в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды невозможна связь и телетрансляция с использованием ГСО[8]. К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположенной на 75° ю. ш. французской станции Конкордия, с которой уже видно несколько американских геостационарных спутников[9].

Таблица наблюдаемого сектора геостационарной орбиты в зависимости от широты местаВсе данные приведены в градусах и их долях.

Широтаместности Видимый сектор орбиты Теоретическийсектор Реальный(с уч. рельефа)сектор[10]
90 -- --
82 -- --
81 29,7 --
80 58,9 --
79 75,2 --
78 86,7 26,2
75 108,5 77
60 144,8 132,2
50 152,8 143,3
40 157,2 149,3
20 161,5 155,1
0 162,6 156,6

Из таблицы видно, например, что если на широте Санкт-Петербурга (~60°) видимый сектор орбиты (и, соответственно, количество принимаемых спутников) равен 84 % от максимально возможного (на экваторе), то на широте полуострова Таймыр (~75°) видимый сектор составляет 49 %, а на широте Шпицбергена и мыса Челюскина (~78°) — лишь 16 % от наблюдаемого на экваторе. В этот сектор орбиты в районе Сибири попадает 1 — 2 спутника (не всегда необходимого оператора).

Солнечная интерференция

Одним из самых неприятных недостатков геостационарной орбиты является уменьшение и полное отсутствие сигнала в ситуации, когда солнце и спутник находятся на одной линии с приёмной антенной (положение «солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут[11]. В такие моменты в ясную погоду солнечные лучи, сфокусированные светлым покрытием антенны могут даже повредить (расплавить или перегреть) приёмо-передающую аппаратуру спутниковой антенны[12].

Международно-правовой статус ГСО

Использование геостационарной орбиты ставит целый ряд не только технических, но и международно-правовых проблем. Значительный вклад в их разрешение вносит ООН, а также её комитеты и иные специализированные учреждения.

Некоторые экваториальные страны в разное время предъявляли претензии (например, Декларация об установлении суверенитета на участке ГСО, подписанная в Боготе Бразилией, Колумбией, Конго, Эквадором, Индонезией, Кенией, Угандой и Заиром 3 декабря 1976 г.[13]) на распространение их суверенитета на находящуюся над их территориями часть космического пространства, в которой проходят орбиты геостационарных спутников. Было, в частности, заявлено, что геостационарная орбита является физическим фактором, связанным с существованием нашей планеты и полностью зависящим от гравитационного поля Земли, а потому соответствующие части космоса (сегменты геостационарной орбиты) как бы являются продолжением территорий, над которыми они находятся. Соответствующее положение закреплено в Конституции Колумбии[14].

Эти притязания экваториальных государств были отвергнуты, как противоречащие принципу неприсвоения космического пространства. В Комитете ООН по космосу такие заявления подверглись обоснованной критике. Во-первых, нельзя претендовать на присвоение какой-либо территории или пространства, находящегося на таком значительном удалении от территории соответствующего государства. Во-вторых, космическое пространство не подлежит национальному присвоению. В-третьих, технически неправомочно говорить о какой-либо физической взаимосвязи между государственной территорией и столь отдаленным районом космоса. Наконец, в каждом отдельном случае феномен геостационарного спутника связан с конкретным космическим объектом. Если нет спутника, то нет и геостационарной орбиты.

См. также

Примечания

  1. ↑ Noordung, Hermann. The Problem With Space Travel. — DIANE Publishing, 1995. — P. 72.
  2. ↑ Extra-Terrestrial Relays — Can Rocket Stations Give Worldwide Radio Coverage? (англ.) (pdf). Arthur C. Clark (October 1945). Проверено 25 февраля 2010. Архивировано 23 августа 2011 года.
  3. ↑ Требование неподвижности спутников относительно Земли на своих орбитальных позициях на геостационарной орбите, а также большое количество спутников на этой орбите в разных её точках, приводят к интересному эффекту при наблюдении и фотографировании звёзд с помощью телескопа с использованием гидирования — удержания ориентации телескопа на заданной точке звёздного неба для компенсации суточного вращения Земли (задача, обратная геостационарной радиосвязи). Если наблюдать в такой телескоп звёздное небо вблизи небесного экватора, где проходит геостационарная орбита, то при определённых условиях можно видеть, как спутники друг за другом проходят на фоне неподвижных звёзд в пределах узкого коридора, как автомобили по оживлённой автотрассе. Особенно хорошо это заметно на фотографиях звёзд с длительными экспозициями, смотри, например: Babak A. Tafreshi. GeoStationary HighWay. (англ.). The World At Night (TWAN). Проверено 25 февраля 2010. Архивировано 23 августа 2011 года. Источник: Бабак Тафреши (Ночной мир). Геостационарная магистраль. (рус.). Астронет.ру. Проверено 25 февраля 2010. Архивировано 23 августа 2011 года.
  4. ↑ CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS
  5. ↑ для орбит спутников, масса которых пренебрежимо мала по сравнению с массой притягивающего его астрономического объекта
  6. ↑ Орбиты искусственных спутников Земли. Вывод спутников на орбиту
  7. ↑ The Teledesic Network: Using Low-Earth-Orbit Satellites to Provide Broadband, Wireless, Real-Time Internet Access Worldwide
  8. ↑ Журнал «Вокруг Света».№ 9 Сентябрь 2009. Орбиты, которые мы выбираем
  9. ↑ Мозаика. Часть II
  10. ↑ взято превышение спутником горизонта в 3°
  11. ↑ Внимание! Настаёт период активной солнечной интерференции!
  12. ↑ Солнечная интерференция
  13. ↑ B.IV.1. Declaration of the First Meeting of Equatorial Countries ("Bogota Declaration") of December 3, 1976 // Space Law. Basic Legal Documents. Volume 1. / Karl-Heinz Böckstiegel, Marietta Benkö, Stephan Hobe. — Eleven International Publishing, 2005. — ISBN 9780792300915.
  14. ↑ Национальное законодательство и практика, имеющие отношение к определению и делимитации космического пространства

Ссылки

ru-wiki.org

Орбита искусственных спутников Земли — это, что такое, какие, определение, значение, доклад, реферат, конспект, сообщение, вики — WikiWhat

Высота орбиты спутников

Точка орбиты спутника, наиболее приближенная к Земле, называется перигеем, наиболее удалённая — апогеем. Боль­шая полуось орбиты искусственных спутников Земли определяется выражением

a = R + (hп + hа) / 2,

где hп и hа — высоты перигея и апогея; R — радиус Земли.

Перигей орбиты искусственных спутников Земли выбирается не ниже 200 км, так как на более низких орбитах время существования спутника слиш­ком мало (из-за сопротивления воздуха).

Период обращения спутника

Период обращения спутника вычисляется по третьему закону Кеплера, который перепишем в виде

T = 2π√(a3 / GM).

Подставив в это выражение численные значения постоянных величин, получим

T = 0,83√(12376 + (hп + hа)).

Высоты должны быть выражены в километрах, период — в минутах.

Из этой формулы видно, что период обращения искусственных спутников Земли по круговой орбите определяется её высотой. На высоте 35 942 км он становится равным 24 ч.

Классификация орбит

Геостационарная орбита

Если орбита спутника лежит в плоскости экватора, то он висит над одной и той же точкой земной поверхности. Такая орбита называется геостационарной, а спутники на ней — стационарными. Они удобны для организации связи и передачи телепрограмм на больших расстояниях (рис. 42, спут­ник «Экран»).

Высокая эллиптическая орбита

На значительной части территории России стационар­ный спутник виден на слишком малой угловой высоте над го­ризонтом, что затрудняет приём сигналов с него (в районах севернее 80° с. ш. стационарный спутник вообще не виден). Для обслуживания этих районов спутники запускаются на сильно вытянутые орбиты, которые называются высокие эллиптические орбиты. Материал с сайта http://wikiwhat.ru

Так, у искусственного спутника Земли «Молния» высота пе­ригея около 500 км, а апогея около 50 000 км, при этом апо­гей орбиты расположен над северной полярной областью. По второму закону Кеплера большую часть времени такой искусственный спутник Земли будет проводить около апогея, т. е. хорошо наблюдаться имен­но там, где стационарный спутник не виден.

Переход спутника с одной орбиты на другую

см. Переход спутника с одной орбиты на другую

Картинки (фото, рисунки)

  • Рис. 42. Орбиты ИСЗ различного назначения
На этой странице материал по темам:
  • Доклад на тему искуственные спутники земли

  • Краткое сообщение что такое спутники земли

  • Период обрпащения спутника по эллиптической орбите

  • Доклад искусственные спутники земли

  • Вопросы по теме исусственый спутник земли

wikiwhat.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики