Какими будут компьютеры через 100 лет? Башни.Нет. Компьютер через 100 лет картинки


Какими будут компьютеры через 100 лет? - 20 Февраля 2014 | Земля

Сказать, что компьютеры развиваются невероятно быстро — ничего не сказать. Еще в 1965 году Гордон Мур отметил, что число транзисторов, которые можно вместить на кремниевый чип, каждый год увеличивается вдвое. Эти маниакальные темпы немного замедлились — теперь удвоение происходит примерно раз в два года.

Осведомленность о головокружительной скорости, с которой развиваются компьютерные технологии, просочилась в общественное сознание. Кто еще не слышал шутку о том, что если купить компьютер в магазине, он устареет к тому времени, как вы его довезете домой? Что будет с компьютерами в будущем?

Если предположить, что производство микропроцессоров будет жить по закону Мура, вычислительная мощность наших компьютеров должна удваиваться каждые два года. Получается, через 100 лет компьютеры будут в 1 125 899 906 842 624 раза мощнее, чем сегодня. Это трудно вообразить.

Но даже сам Гордон Мур предостерегал от того, что закон Мура продержится так долго. В 2005 году инженер сказал, что транзисторы достигнут атомарных масштабов, и мы столкнемся с фундаментальными барьерами, которые не сможем пересечь. Потом мы не сможем вместить больше транзисторов в точку пространства.

Возможно, мы сможем обойти этот барьер за счет строительства более крупных процессорных чипов. Но транзисторы генерируют тепло, а горячие процессоры приводят к тому, что компьютер отключается. Компьютерам с быстрыми процессорами нужны эффективные системы охлаждения, чтобы избежать перегрева. Чем больше процессорный чип, тем больше тепла компьютер будет вырабатывать при работе на полной скорости.

Другая тактика — перейти к многоядерной архитектуре. Многоядерный процессор распределяет свою вычислительную мощь на каждое из ядер. Они хорошо справляются с задачами, которые можно разбить на меньшие компоненты, но плохо справляются с обработкой крупных вычислительных задач, которые разбить нельзя.

Компьютеры будущего, возможно, будут опираться совершенно на иную модель, нежели традиционные машины. Что если мы откажемся от старых процессоров на базе транзисторов?

Оптические, квантовые и ДНК-компьютерыОптоволоконные технологии уже начали революцию в мире компьютеров. Оптоволоконные линии передачи данных несут информацию с невероятной скоростью и не страдают от электромагнитных помех, как обычные классические кабели. Что если построить компьютер, который использует свет для передачи информации вместо электричества?

Одним из преимуществ будет то, что оптическая или фотонная система будет генерировать меньше тепла, чем традиционный электронный процессор на базе транзисторов. Эти данные также будут передаваться с большей скоростью. Однако инженерам еще предстоит разработать компактный оптический транзистор, который можно выпустить на массовый рынок. Ученые из ETH Zurich смогли построить оптический транзистор размером с одну молекулу. Но чтобы система стала эффективной, ученым нужно охладить молекулу до минус 272 градусов Цельсия, или 1 градуса Кельвина. Это ненамного теплее, чем глубокий космос. И это не совсем практично для обычного пользователя компьютера.

Фотонные транзисторы могут стать частью квантового компьютера. В отличие от традиционных компьютеров, которые используют двоичный счет или биты для выполнения операций, квантовые компьютеры используют квантовые биты или кубиты. Кубит может быть 0,1 или чем-то между ними одновременно.

Рабочий квантовый компьютер сможет решать крупные задачи, которые могут быть разделены на меньшие, в несколько раз быстрее традиционных компьютеров. Вся «фишка» в проблеме распараллеливания. Однако квантовые компьютеры по своей природе нестабильны. Если квантовое состояние компьютера нарушится, машина вернется к вычислительной мощи обычного компьютера. И как и оптические передатчики, собранные силами ETH Zurich, квантовые компьютеры способны работать при нескольких градусах выше абсолютного нуля, чтобы сохранить свое квантовое состояние.

Возможно, будущее компьютеров лежит внутри нас. Команды компьютерных ученых работают над созданием компьютеров, использующих ДНК для обработки информации. Такое сочетание информатики и биологии может проложить путь к следующему поколению компьютеров. ДНК-компьютер обладает определенными преимуществами по сравнению с традиционными машинами. К примеру, ДНК — это распространенный и недорогой ресурс. Если мы обнаружим способ использования ДНК в качестве инструмента обработки данных, она может произвести революцию в компьютерной сфере.

Распределенные вычисленияПопулярная в фантастике тема — это распределенные вычисления. В таком будущем компьютеры будут настолько малы и широко распространены, что будут практически везде. Возможно, в вашем полу будут установлены датчики, постоянно следящие за вашим физическим здоровьем. Компьютеры в вашей машине помогут вам добраться до работы. Компьютеры будут отслеживать каждый ваш шаг.

Это видение будущего одновременно и волнует, и пугает. С одной стороны, компьютерные сети станут настолько надежными, что мы всегда будем иметь быстрый и надежный доступ к Интернету. Вы сможете общаться с кем угодно вне зависимости от того, где находитесь — в метро или на необитаемом острове. С другой стороны, это создает дополнительные возможности для слежки за вами.

За последние десять лет в сфере распределенного вычисления было проделано очень многое. 4G, LTE, WiMAX расширяют Сеть далеко за пределы проводных машин. С помощью смартфона можно, если постараться, получить доступ к петабайтам информации в считанные секунды. Биометрические устройства развиваются и становятся все популярнее.

Мы также увидим суровые преобразования в технологиях пользовательского интерфейса. В настоящее время большинство компьютеров полагаются на физические входные данные, вроде компьютерных мышей, клавиатур, тачпадов и других сенсорных поверхностей. Также развиваются различные интерфейсы, которые позволяют людям управлять компьютером движением глаз, голосом или даже силой мысли. Кто знает, что будет завтра? Возможно, компьютеры будущего будут знать все наши желания.

Представить, что будет через 100 лет, крайне сложно. Технический прогресс не развивается линейно. За десятилетиями прогресса следуют моменты, в которых мы похожи на слепых котят. С другой стороны, мы можем провести четкую разницу между компьютерами и людьми сегодняшнего дня и 100 лет назад. Мы ведь стали лучше, не так ли?

earth-chronicles.ru

Какими будут компьютеры через 100 лет?

Экология познания. Наука и техника: Сказать, что компьютеры развиваются невероятно быстро — ничего не сказать. Еще в 1965 году Гордон Мур отметил, что число транзисторов, которые можно вместить на кремниевый чип, каждый год увеличивается вдвое. Эти маниакальные темпы немного замедлились — теперь удвоение происходит примерно раз в два года.

 

Сказать, что компьютеры развиваются невероятно быстро — ничего не сказать. Еще в 1965 году Гордон Мур отметил, что число транзисторов, которые можно вместить на кремниевый чип, каждый год увеличивается вдвое. Эти маниакальные темпы немного замедлились — теперь удвоение происходит примерно раз в два года.Какими будут компьютеры через 100 лет?Осведомленность о головокружительной скорости, с которой развиваются компьютерные технологии, просочилась в общественное сознание. Кто еще не слышал шутку о том, что если купить компьютер в магазине, он устареет к тому времени, как вы его довезете домой? Что будет с компьютерами в будущем?

Если предположить, что производство микропроцессоров будет жить по закону Мура, вычислительная мощность наших компьютеров должна удваиваться каждые два года. Получается, через 100 лет компьютеры будут в 1 125 899 906 842 624 раза мощнее, чем сегодня. Это трудно вообразить.

Но даже сам Гордон Мур предостерегал от того, что закон Мура продержится так долго. В 2005 году инженер сказал, что транзисторы достигнут атомарных масштабов, и мы столкнемся с фундаментальными барьерами, которые не сможем пересечь. Потом мы не сможем вместить больше транзисторов в точку пространства.

Возможно, мы сможем обойти этот барьер за счет строительства более крупных процессорных чипов. Но транзисторы генерируют тепло, а горячие процессоры приводят к тому, что компьютер отключается. Компьютерам с быстрыми процессорами нужны эффективные системы охлаждения, чтобы избежать перегрева. Чем больше процессорный чип, тем больше тепла компьютер будет вырабатывать при работе на полной скорости.

Другая тактика — перейти к многоядерной архитектуре. Многоядерный процессор распределяет свою вычислительную мощь на каждое из ядер. Они хорошо справляются с задачами, которые можно разбить на меньшие компоненты, но плохо справляются с обработкой крупных вычислительных задач, которые разбить нельзя.

Компьютеры будущего, возможно, будут опираться совершенно на иную модель, нежели традиционные машины. Что если мы откажемся от старых процессоров на базе транзисторов?

Оптические, квантовые и ДНК-компьютеры Оптоволоконные технологии уже начали революцию в мире компьютеров. Оптоволоконные линии передачи данных несут информацию с невероятной скоростью и не страдают от электромагнитных помех, как обычные классические кабели. Что если построить компьютер, который использует свет для передачи информации вместо электричества?

Одним из преимуществ будет то, что оптическая или фотонная система будет генерировать меньше тепла, чем традиционный электронный процессор на базе транзисторов. Эти данные также будут передаваться с большей скоростью. Однако инженерам еще предстоит разработать компактный оптический транзистор, который можно выпустить на массовый рынок. Ученые из ETH Zurich смогли построить оптический транзистор размером с одну молекулу. Но чтобы система стала эффективной, ученым нужно охладить молекулу до минус 272 градусов Цельсия, или 1 градуса Кельвина. Это ненамного теплее, чем глубокий космос. И это не совсем практично для обычного пользователя компьютера.

Фотонные транзисторы могут стать частью квантового компьютера. В отличие от традиционных компьютеров, которые используют двоичный счет или биты для выполнения операций, квантовые компьютеры используют квантовые биты или кубиты. Кубит может быть 0,1 или чем-то между ними одновременно.

Рабочий квантовый компьютер сможет решать крупные задачи, которые могут быть разделены на меньшие, в несколько раз быстрее традиционных компьютеров. Вся «фишка» в проблеме распараллеливания. Однако квантовые компьютеры по своей природе нестабильны. Если квантовое состояние компьютера нарушится, машина вернется к вычислительной мощи обычного компьютера. И как и оптические передатчики, собранные силами ETH Zurich, квантовые компьютеры способны работать при нескольких градусах выше абсолютного нуля, чтобы сохранить свое квантовое состояние.

Возможно, будущее компьютеров лежит внутри нас. Команды компьютерных ученых работают над созданием компьютеров, использующих ДНК для обработки информации. Такое сочетание информатики и биологии может проложить путь к следующему поколению компьютеров. ДНК-компьютер обладает определенными преимуществами по сравнению с традиционными машинами. К примеру, ДНК — это распространенный и недорогой ресурс. Если мы обнаружим способ использования ДНК в качестве инструмента обработки данных, она может произвести революцию в компьютерной сфере.

Распределенные вычисления Популярная в фантастике тема — это распределенные вычисления. В таком будущем компьютеры будут настолько малы и широко распространены, что будут практически везде. Возможно, в вашем полу будут установлены датчики, постоянно следящие за вашим физическим здоровьем. Компьютеры в вашей машине помогут вам добраться до работы. Компьютеры будут отслеживать каждый ваш шаг.

Это видение будущего одновременно и волнует, и пугает. С одной стороны, компьютерные сети станут настолько надежными, что мы всегда будем иметь быстрый и надежный доступ к Интернету. Вы сможете общаться с кем угодно вне зависимости от того, где находитесь — в метро или на необитаемом острове. С другой стороны, это создает дополнительные возможности для слежки за вами.

За последние десять лет в сфере распределенного вычисления было проделано очень многое. 4G, LTE, WiMAX расширяют Сеть далеко за пределы проводных машин. С помощью смартфона можно, если постараться, получить доступ к петабайтам информации в считанные секунды. Биометрические устройства развиваются и становятся все популярнее.

Мы также увидим суровые преобразования в технологиях пользовательского интерфейса. В настоящее время большинство компьютеров полагаются на физические входные данные, вроде компьютерных мышей, клавиатур, тачпадов и других сенсорных поверхностей. Также развиваются различные интерфейсы, которые позволяют людям управлять компьютером движением глаз, голосом или даже силой мысли. Кто знает, что будет завтра? Возможно, компьютеры будущего будут знать все наши желания. опубликовано econet.ru

 

 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

 

Присоединяйтесь к нам в Facebook и во ВКонтакте, а еще мы в Однокласниках

  Представить, что будет через 100 лет, крайне сложно. Технический прогресс не развивается линейно. За десятилетиями прогресса следуют моменты, в которых мы похожи на слепых котят. С другой стороны, мы можем провести четкую разницу между компьютерами и людьми сегодняшнего дня и 100 лет назад. Мы ведь стали лучше, не так ли?

econet.ru

Компюьтеры через 100 лет | Будущее рядом

Сказать, что компьютеры развиваются невероятно быстро — ничего не сказать. Еще в 1965 году Гордон Мур отметил, что число транзисторов, которые можно вместить на кремниевый чип, каждый год увеличивается вдвое. Эти маниакальные темпы немного замедлились — теперь удвоение происходит примерно раз в два года.

Компюьтеры через 100 лет

Осведомленность о головокружительной скорости, с которой развиваются компьютерные технологии, просочилась в общественное сознание. Кто еще не слышал шутку о том, что если купить компьютер в магазине, он устареет к тому времени, как вы его довезете домой? Что будет с компьютерами в будущем?

Если предположить, что производство микропроцессоров будет жить по закону Мура, вычислительная мощность наших компьютеров должна удваиваться каждые два года. Получается, через 100 лет компьютеры будут в 1 125 899 906 842 624 раза мощнее, чем сегодня. Это трудно вообразить.

Но даже сам Гордон Мур предостерегал от того, что закон Мура продержится так долго. В 2005 году инженер сказал, что транзисторы достигнут атомарных масштабов, и мы столкнемся с фундаментальными барьерами, которые не сможем пересечь. Потом мы не сможем вместить больше транзисторов в точку пространства.

Возможно, мы сможем обойти этот барьер за счет строительства более крупных процессорных чипов. Но транзисторы генерируют тепло, а горячие процессоры приводят к тому, что компьютер отключается. Компьютерам с быстрыми процессорами нужны эффективные системы охлаждения, чтобы избежать перегрева. Чем больше процессорный чип, тем больше тепла компьютер будет вырабатывать при работе на полной скорости.

Другая тактика — перейти к многоядерной архитектуре. Многоядерный процессор распределяет свою вычислительную мощь на каждое из ядер. Они хорошо справляются с задачами, которые можно разбить на меньшие компоненты, но плохо справляются с обработкой крупных вычислительных задач, которые разбить нельзя.

Компьютеры будущего, возможно, будут опираться совершенно на иную модель, нежели традиционные машины. Что если мы откажемся от старых процессоров на базе транзисторов?

Оптические, квантовые и ДНК-компьютерыОптоволоконные технологии уже начали революцию в мире компьютеров. Оптоволоконные линии передачи данных несут информацию с невероятной скоростью и не страдают от электромагнитных помех, как обычные классические кабели. Что если построить компьютер, который использует свет для передачи информации вместо электричества?

Одним из преимуществ будет то, что оптическая или фотонная система будет генерировать меньше тепла, чем традиционный электронный процессор на базе транзисторов. Эти данные также будут передаваться с большей скоростью. Однако инженерам еще предстоит разработать компактный оптический транзистор, который можно выпустить на массовый рынок. Ученые из ETH Zurich смогли построить оптический транзистор размером с одну молекулу. Но чтобы система стала эффективной, ученым нужно охладить молекулу до минус 272 градусов Цельсия, или 1 градуса Кельвина. Это ненамного теплее, чем глубокий космос. И это не совсем практично для обычного пользователя компьютера.

Фотонные транзисторы могут стать частью квантового компьютера. В отличие от традиционных компьютеров, которые используют двоичный счет или биты для выполнения операций, квантовые компьютеры используют квантовые биты или кубиты. Кубит может быть 0,1 или чем-то между ними одновременно.

Рабочий квантовый компьютер сможет решать крупные задачи, которые могут быть разделены на меньшие, в несколько раз быстрее традиционных компьютеров. Вся «фишка» в проблеме распараллеливания. Однако квантовые компьютеры по своей природе нестабильны. Если квантовое состояние компьютера нарушится, машина вернется к вычислительной мощи обычного компьютера. И как и оптические передатчики, собранные силами ETH Zurich, квантовые компьютеры способны работать при нескольких градусах выше абсолютного нуля, чтобы сохранить свое квантовое состояние.

Возможно, будущее компьютеров лежит внутри нас. Команды компьютерных ученых работают над созданием компьютеров, использующих ДНК для обработки информации. Такое сочетание информатики и биологии может проложить путь к следующему поколению компьютеров. ДНК-компьютер обладает определенными преимуществами по сравнению с традиционными машинами. К примеру, ДНК — это распространенный и недорогой ресурс. Если мы обнаружим способ использования ДНК в качестве инструмента обработки данных, она может произвести революцию в компьютерной сфере.

Распределенные вычисленияПопулярная в фантастике тема — это распределенные вычисления. В таком будущем компьютеры будут настолько малы и широко распространены, что будут практически везде. Возможно, в вашем полу будут установлены датчики, постоянно следящие за вашим физическим здоровьем. Компьютеры в вашей машине помогут вам добраться до работы. Компьютеры будут отслеживать каждый ваш шаг.

Это видение будущего одновременно и волнует, и пугает. С одной стороны, компьютерные сети станут настолько надежными, что мы всегда будем иметь быстрый и надежный доступ к Интернету. Вы сможете общаться с кем угодно вне зависимости от того, где находитесь — в метро или на необитаемом острове. С другой стороны, это создает дополнительные возможности для слежки за вами.

За последние десять лет в сфере распределенного вычисления было проделано очень многое. 4G, LTE, WiMAX расширяют Сеть далеко за пределы проводных машин. С помощью смартфона можно, если постараться, получить доступ к петабайтам информации в считанные секунды. Биометрические устройства развиваются и становятся все популярнее.

Мы также увидим суровые преобразования в технологиях пользовательского интерфейса. В настоящее время большинство компьютеров полагаются на физические входные данные, вроде компьютерных мышей, клавиатур, тачпадов и других сенсорных поверхностей. Также развиваются различные интерфейсы, которые позволяют людям управлять компьютером движением глаз, голосом или даже силой мысли. Кто знает, что будет завтра? Возможно, компьютеры будущего будут знать все наши желания.Представить, что будет через 100 лет, крайне сложно. Технический прогресс не развивается линейно. За десятилетиями прогресса следуют моменты, в которых мы похожи на слепых котят. С другой стороны, мы можем провести четкую разницу между компьютерами и людьми сегодняшнего дня и 100 лет назад. Мы ведь стали лучше, не так ли?

Источник: econet.ru

near-future.ru

Какими будут компьютеры через 100 лет? Интересное о техники в будущем

В современных реалиях техника развивается быстро — это сильно преуменьшить. В прошлом веке ученые доказали, что число транзисторов на процессоре с каждым десятилетием увеличивается по экспоненте. Но это было тогда. В наше время же начали модернизировать взаимодействие между ними. Это как показало, помогло решить серьезные проблемы с производительностью. Но темпы роста техники от этого только увеличились. Теперь раз в 5 лет технические прогрессы перерастают свой же потолок, а ученые открывают или создают что-то мощнее и новее.

Если эту закономерность попробовать посчитать, то окажется, что через сто лет в 1 квадрильон раз мощнее будут ПК. И тут возникла новая проблема. Сейчас транзисторы стали атомарных масштабов и ученые не могут вместить больше чем на одну точку пространства. Ученые решили создавать большую площадку для микропроцессоров, чтобы вмещать как можно больше транзисторов. Но опять возникла проблема — более быстрым процессорам нужно более мощное охлаждение.

Другой метод — перейти к многоядерной архитектуре. Такие процессоры разбивают свои мощности на ядра и распределяют их между ними. Они стали хорошо решать много мелких задач, но возникла новая проблема, большие задачи стало решать труднее, потому что один большой процесс трудно разбить на более мелкие или же вообще нельзя разбить.

Какими будут компьютеры через 100 лет Интересное о техники в будущем 1

Что может появиться в будущем?
  • Оптические ПК;
  • Квантовые ПК;
  • ДНК компьютеры.

Оптоволокно уже произвело революцию в компьютерном мире. Эти кабели несут информацию со скоростью света и не страдают от электромагнитных помех, как обычные кабеля из витой пары. А теперь представьте, что во всем компьютере будет информация передаваться со скоростью света! Преимуществом этого компьютера будет то, что тепла он будет выделять намного меньше, а скорость передачи данных будет в разы больше — примерно на скорости света. Но такие транзисторы работают только при определенной температуре.

Квантовые компьютеры тоже давно уже не мечты. Такие ПК уже сегодня, правда только в лабораториях, решают крупные задачи с легкостью и в несколько раз быстрее сегодняшних компьютеров. Есть минус — они очень нестабильны по своей природе. Если нарушить состояние такого ПК, то его вычислительная мощь вернется к обычному состоянию. И тут опять нужно поддерживать определенную температуру.

Какими будут компьютеры через 100 лет Интересное о техники в будущем 2

Третий вариант — это использовать нашу ДНК для обработки информации. Информации и разработок по этой теме очень мало и еще пока только теории, но если в этой системе будет прорыв, то взорвется весь мир, поскольку это будет новый уровень технологии. Причем доступность этого будет нереальна так, как ДНК есть у каждого человека. И уже сейчас развиваются со стремительной скоростью и внедряются в нашу жизнь биометрические компьютеры.

drasler.ru

Какими будут компьютеры через 100 лет

В современных реалиях техника развивается быстро — это сильно преуменьшить. В прошлом веке ученые доказали, что число транзисторов на процессоре с каждым десятилетием увеличивается по экспоненте. Но это было тогда. В наше время же начали модернизировать взаимодействие между ними. Это как показало, помогло решить серьезные проблемы с производительностью. Но темпы роста техники от этого только увеличились. Теперь раз в 5 лет технические прогрессы перерастают свой же потолок, а ученые открывают или создают что-то мощнее и новее.

Если эту закономерность попробовать посчитать, то окажется, что через сто лет в 1 квадрильон раз мощнее будут ПК. И тут возникла новая проблема. Сейчас транзисторы стали атомарных масштабов и ученые не могут вместить больше чем на одну точку пространства. Ученые решили создавать большую площадку для микропроцессоров, чтобы вмещать как можно больше транзисторов. Но опять возникла проблема — более быстрым процессорам нужно более мощное охлаждение.

Другой метод — перейти к многоядерной архитектуре. Такие процессоры разбивают свои мощности на ядра и распределяют их между ними. Они стали хорошо решать много мелких задач, но возникла новая проблема, большие задачи стало решать труднее, потому что один большой процесс трудно разбить на более мелкие или же вообще нельзя разбить.

Какими будут компьютеры через 100 лет Интересное о техники в будущем 1

Читать полностью

drasler.ru

Как будет выглядеть мир через 100 лет?

Так, Каку полагает, что уже к 2030 году в мире появится новый тип контактных линз - они будут способны выходить в Интернет. Над прототипом такого устройства уже работает профессор Бабак Парвиз из Университета Вашингтона.

В свободной продаже должны появиться также различные «запчасти» для человеческих организмов. Сегодня новейшие биотехнологии позволяют ученым без особых проблем «выращивать» в лабораторных условиях новые хрящи, носы, уши, кровеносные сосуды, сердечные клапаны, мочевые пузыри и т.д. На губкообразной пластиковой основе высеиваются стволовые клетки с ДНК пациента. Когда этим клеткам добавляетя катализатор, они начинают очень быстро расти и размножаться. Так появляются сначала живые ткани, а потом и целые органы.

Говорят, что уже через 20 лет общество овладеет возможностями телепатии. Сегодня ученые уже имеют вживлять в мозг парализованным специальные микросхемы, с помощью которых те могут только лишь при помощи силы управлять компьютерами, писать электронные письма, играть в видеоигры и пользоваться веб-браузерами. Инженеры из японской компании Honda уже научились создавать роботов, которые управляются пациентами силой мысли.

К 2070 году ученые планируют вернуть к жизни многих представителей фауны. По образцам ДНК, взятых спустя 25 лет после гибели животного, ученые смогли клонировать его в Бразилии. Геном неандертальца уже расшифрован. И в научных кругах всерьез говорят о возможном возрождении этого вида человека. Зачем это исследователям, правда, совершенно непонятно, но человеческое любопытство поистине безмерно.

Но что вне всяких сомнений ученые будут развивать, так это технологии, которые позволят в будущем замедлить наше старение. Соответствующие эксперименты уже проводят на насекомых и некоторых животных. Оказывается, 30%-е продление жизни очень просто: достаточно на 30% снизить потребление калорий средним американцем или европейцем. В будущем же продлевать жизнь можно будет сотней технологических способов.

Но самое интересное, что к 2100 году в мире появятся технологии «программируемой материи». Все помнят «Терминатор-2» и робота-убийцу Т-1000. Вот примерно об этом и идет речь: в мире появятся материалы, форму которых смогут программировать компьютеры. Уже созданы микрочипы размером с булавочную головку, которые без проблем могут перегруппировываться по воздействием электрических разрядов. Они могут принимать то форму листа бумаги, то чашки, то тарелки.

Уверены также ученые, что большого прогресса достигнут и космические технологии. Уже через сто лет мы сможем на космических кораблях летать к звездам, говорят они. Начнется все с микрокомпьютеров «размером с ноготь», которые можно будет миллионами рассылать по всему космосу. Они будут перемещаться в пространстве со скоростью, близкой к скорости света. Будут искать внеземной разум и передавать ему послания от землян, исследовать пространство. Затем к колонизации звездных миров приступят люди.

Примерно через сто лет человечество окончательно поборет рак. Доподлинно известно, что предупредить болезнь и уничтожить ее можно только на ранних стадиях. В будущем в наши унитазы будут встраивать ДНК-чипы, которые смогут обнаруживать опухоли на самом начальном этапе. Затем в организмы будут запускать «чистильщиков» - специальные нано-компьютеры, которые станут чистить организм от раковых клеток.

fishki.net

Какими будут компьютеры через 100 лет?

 

Сказать, что компьютеры развиваются невероятно быстро — ничего не сказать. Еще в 1965 году Гордон Мур отметил, что число транзисторов, которые можно вместить на кремниевый чип, каждый год увеличивается вдвое. Эти маниакальные темпы немного замедлились — теперь удвоение происходит примерно раз в два года.

Осведомленность о головокружительной скорости, с которой развиваются компьютерные технологии, просочилась в общественное сознание. Кто еще не слышал шутку о том, что если купить компьютер в магазине, он устареет к тому времени, как вы его довезете домой? Что будет с компьютерами в будущем?

Если предположить, что производство микропроцессоров будет жить по закону Мура, вычислительная мощность наших компьютеров должна удваиваться каждые два года. Получается, через 100 лет компьютеры будут в 1 125 899 906 842 624 раза мощнее, чем сегодня. Это трудно вообразить.

Но даже сам Гордон Мур предостерегал от того, что закон Мура продержится так долго. В 2005 году инженер сказал, что транзисторы достигнут атомарных масштабов, и мы столкнемся с фундаментальными барьерами, которые не сможем пересечь. Потом мы не сможем вместить больше транзисторов в точку пространства.

Возможно, мы сможем обойти этот барьер за счет строительства более крупных процессорных чипов. Но транзисторы генерируют тепло, а горячие процессоры приводят к тому, что компьютер отключается. Компьютерам с быстрыми процессорами нужны эффективные системы охлаждения, чтобы избежать перегрева. Чем больше процессорный чип, тем больше тепла компьютер будет вырабатывать при работе на полной скорости.

Другая тактика — перейти к многоядерной архитектуре. Многоядерный процессор распределяет свою вычислительную мощь на каждое из ядер. Они хорошо справляются с задачами, которые можно разбить на меньшие компоненты, но плохо справляются с обработкой крупных вычислительных задач, которые разбить нельзя.

Компьютеры будущего, возможно, будут опираться совершенно на иную модель, нежели традиционные машины. Что если мы откажемся от старых процессоров на базе транзисторов?

Оптические, квантовые и ДНК-компьютеры Оптоволоконные технологии уже начали революцию в мире компьютеров. Оптоволоконные линии передачи данных несут информацию с невероятной скоростью и не страдают от электромагнитных помех, как обычные классические кабели. Что если построить компьютер, который использует свет для передачи информации вместо электричества?

Одним из преимуществ будет то, что оптическая или фотонная система будет генерировать меньше тепла, чем традиционный электронный процессор на базе транзисторов. Эти данные также будут передаваться с большей скоростью. Однако инженерам еще предстоит разработать компактный оптический транзистор, который можно выпустить на массовый рынок. Ученые из ETH Zurich смогли построить оптический транзистор размером с одну молекулу. Но чтобы система стала эффективной, ученым нужно охладить молекулу до минус 272 градусов Цельсия, или 1 градуса Кельвина. Это ненамного теплее, чем глубокий космос. И это не совсем практично для обычного пользователя компьютера.

Фотонные транзисторы могут стать частью квантового компьютера. В отличие от традиционных компьютеров, которые используют двоичный счет или биты для выполнения операций, квантовые компьютеры используют квантовые биты или кубиты. Кубит может быть 0,1 или чем-то между ними одновременно.

Рабочий квантовый компьютер сможет решать крупные задачи, которые могут быть разделены на меньшие, в несколько раз быстрее традиционных компьютеров. Вся «фишка» в проблеме распараллеливания. Однако квантовые компьютеры по своей природе нестабильны. Если квантовое состояние компьютера нарушится, машина вернется к вычислительной мощи обычного компьютера. И как и оптические передатчики, собранные силами ETH Zurich, квантовые компьютеры способны работать при нескольких градусах выше абсолютного нуля, чтобы сохранить свое квантовое состояние.

Возможно, будущее компьютеров лежит внутри нас. Команды компьютерных ученых работают над созданием компьютеров, использующих ДНК для обработки информации. Такое сочетание информатики и биологии может проложить путь к следующему поколению компьютеров. ДНК-компьютер обладает определенными преимуществами по сравнению с традиционными машинами. К примеру, ДНК — это распространенный и недорогой ресурс. Если мы обнаружим способ использования ДНК в качестве инструмента обработки данных, она может произвести революцию в компьютерной сфере.

Распределенные вычисления Популярная в фантастике тема — это распределенные вычисления. В таком будущем компьютеры будут настолько малы и широко распространены, что будут практически везде. Возможно, в вашем полу будут установлены датчики, постоянно следящие за вашим физическим здоровьем. Компьютеры в вашей машине помогут вам добраться до работы. Компьютеры будут отслеживать каждый ваш шаг.

Это видение будущего одновременно и волнует, и пугает. С одной стороны, компьютерные сети станут настолько надежными, что мы всегда будем иметь быстрый и надежный доступ к Интернету. Вы сможете общаться с кем угодно вне зависимости от того, где находитесь — в метро или на необитаемом острове. С другой стороны, это создает дополнительные возможности для слежки за вами.

За последние десять лет в сфере распределенного вычисления было проделано очень многое. 4G, LTE, WiMAX расширяют Сеть далеко за пределы проводных машин. С помощью смартфона можно, если постараться, получить доступ к петабайтам информации в считанные секунды. Биометрические устройства развиваются и становятся все популярнее.

Мы также увидим суровые преобразования в технологиях пользовательского интерфейса. В настоящее время большинство компьютеров полагаются на физические входные данные, вроде компьютерных мышей, клавиатур, тачпадов и других сенсорных поверхностей. Также развиваются различные интерфейсы, которые позволяют людям управлять компьютером движением глаз, голосом или даже силой мысли. Кто знает, что будет завтра? Возможно, компьютеры будущего будут знать все наши желания. опубликовано 

 

 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

 

Присоединяйтесь к нам в Facebook и во ВКонтакте, а еще мы в Однокласниках

  Представить, что будет через 100 лет, крайне сложно. Технический прогресс не развивается линейно. За десятилетиями прогресса следуют моменты, в которых мы похожи на слепых котят. С другой стороны, мы можем провести четкую разницу между компьютерами и людьми сегодняшнего дня и 100 лет назад. Мы ведь стали лучше, не так ли?

Источник: vk.com/wiki_inventions?z=photo-56414092_380543090%2Falbum-56414092_00%2Frev

bashny.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики