Создана самая точная и детальная компьютерная модель Вселенной. Компьютерная вселенная германия


Покупки в Computeruniverse - Код скидки

Это сайт-инструкция для тех, кто хочет сделать заказ в интернет-магазине computeruniverseЗдесь полностью описан процесс покупки в computeruniverse.ru от приобретения пластиковой карты, до вручения посылки на почте.

На этом сайте вы найдете информацию:

Computeruniverse.net — немецкий интернет магазин электроники и бытовой техники. Магазин предоставляет доставку в любую точку мира, в том числе в Россию и страны снг.

В Computeruniverse представлены большинство новинок в области электроники по самым низким ценам (цены сами по себе низкие, к тому же при доставке за пределы евросоюза не взымается НДС, что снижает цену на 19%).

В компьютеруниверс представлено более 130.000 наименований товаров. Смартфоны и планшеты APPLE IPAD, IPHONE, SAMSUNG, HTC, SONY, LG, фото и видео техника всех ведущих производителей, ноутбуки, компьютеры, телевизоры и проекторы, роботы-пылесосы, моющие пылесосы и мойки высокого давления Kärcher,  Nilfisk, Thomas, Dirt Devil, Bosh, Karcher, компьютерные комплектующие, 3d принтеры, товары для дома, товары для здоровья и ухода за телом, а также многое другое.

Вся техника поддерживает европейские стандарты — евровилка и напряжение питания 220 вольт, европейские стандарты фото и видеосигналов, наличие русского языка во многих европейских комплектациях.

Магазин регулярно занимает призовые места среди интернет-магазинов электроники по совокупности цен и качества обслуживания

На всю технику в магазине дается 2 года гарантии.

Далее на сайте можно узнать последние новости о магазине, посмотреть небольшие обзоры некоторых товаров, либо сразу приступить к регистрации нового аккаунта Computeruniverse.

ComputerUniverse-New-AccountComputeruniverse-skidka-discount

computerunivers.ru

Создана самая точная и детальная компьютерная модель Вселенной

Наиболее точную и всеобъемлющую на данный момент компьютерную модель эволюции крупномасштабной структуры Вселенной, получившую название "Bolshoi", создали астрономы из США, Германии и России под руководством профессора университета Нью-Мексико Анатолия Клыпина.

МОСКВА, 1 окт - РИА Новости. Наиболее точную и всеобъемлющую на данный момент компьютерную модель эволюции крупномасштабной структуры Вселенной, получившую название "Bolshoi", создали астрономы из США, Германии и России под руководством профессора университета Нью-Мексико Анатолия Клыпина (Anatoly Klypin).

Ваш браузер не поддерживает данный формат видео.

Вконтакте

Facebook

Одноклассники

Twitter

Whatsapp

Viber

Telegram

Точную модель эволюции Вселенной создали астрономы НАСА

Модель, рассчитанная с помощью суперкомпьютера Pleiades, установленного в исследовательском центре НАСА имени Эймса, станет мощным инструментом для исследования эволюции Вселенной в целом, в частности, процесса формирования галактик, а также для поисков ответа на вопрос о природе темной материи и темной энергии.

"Такие большие космологические модели крайне важны для интерпретации результатов текущих астрономических наблюдений и для планирования новых больших проектов исследования Вселенной, которые, как ожидается, могут раскрыть тайну природы темной энергии", - говорит Клыпин, слова которого приводятся в сообщении университета.

Две статьи, подготовленные им и его коллегами на базе данных, полученных с помощью модели, уже приняты к печати в Astrophysical Journal.

Предыдущая большая модель Вселенной, Millennium Run, созданная в 2005 году европейскими учеными, основывалась на данных о реликтовом микроволновом излучении, полученных зондом WMAP (Wilkinson Microwave Anisotropy Probe). Этот зонд помог создать карту малых вариаций в микроволновом фоне, который является следом Большого взрыва. Однако с момента создания Millennium Run объем данных значительно вырос и в основу модели "Большой" лег набор данных WMAP5, накопленный за пять лет.

Теоретической основой для модели стала стандартная космологическая модель Lambda-CDM (Lambda-Cold Dark Matter), основанная на предположении, что гравитация, действовавшая на небольшие колебания плотности, возникшие после Большого взрыва, создала первые скопления темной материи, которые, разрастаясь, породили структуры, давшие начала скоплениям галактик.

Хотя природа темной материи неясна, на ее долю приходится 82% всей материи, поэтому эволюция Вселенной в основном зависела от гравитации сгустков темной материи. Обычная материя, под действием гравитации этих сгустков, превращалась в галактики в центре гало из темной материи.

Главная задача "Большого" - проследить за эволюцией этих сгустков. Свойства гало темной материи ученые описали в одной из статей, опубликованной в Astrophysical Journal. Другая статья посвящена моделированию свойств галактик. Сравнение расчетных данных и наблюдений показывает, что компьютерная модель достаточно хорошо описывает реальную Вселенную.

Программа, написанная Клыпиным, позволяет описать эволюцию кубического объема Вселенной со стороной в 1 миллиард световых лет, в котором происходит взаимодействие 8,6 миллиарда частиц темной материи. Чтобы полностью прокрутить эту модель суперкомпьютеру Pleiades, седьмому в мире по мощности, требуется 6 миллионов часов процессорного времени.

Другой вариант модели, BigBolshoi или MultiDark, оперирует тем же количеством частиц, но в 64 раза большем объеме. Эта модель используется для предсказания свойств и распределения скоплений галактик. Мини-вариант MiniBolshoi позволяет исследовать небольшие объемы, но с более высоким разрешением.

Клыпин и его коллеги продолжают исследовать возможности модели. В частности, они показали, что она хорошо воспроизводит число галактик, подобных Млечному пути имеющих спутники, похожие на Большое и Малое Магеллановы облака.

ria.ru

Computeruniverse.RU

Данный сайт является подробной инструкцией на русском языке для покупателей из России в магазине computeruniverse.ru

Полностью описан процесс покупки: выбор товара, приобретения пластиковой карты, оформление заказа, совершение покупки в computeruniverse.net и правила получения посылки на почте.

Вы найдете для себя советы по следующим вопросам:

  • регистрация учётной записи на сайте Computeruniverse.RU
  • получение банковской карты и привязка её к платёжной системе  PayPal
  • оформление скидки 5 евро для своего заказа  — код скидки:  FWU1P5U
  • инструкция по оплате покупок различными способами: картой и PP.
  • отслеживание посылки из Германии в Россию и правила получения посылки.

Computeruniverse.net – известный немецкий онлайн магазин электроники. Магазин доставляет свои товары почтой в любую точку мира, включая страны СНГ. По самым низким ценам здесь можно найти последние новинки в области электроники и к тому же к тому же при доставке за пределы Евросоюза магазин не взымает НДС – это снижает цену на 19%. На всю технику в Computeruniverse.Ru предоставляется 2 года гарантии от магазина.

Во многих моделях присутствует русских язык. Электроника рассчитана на европейские стандарты — электровилка и напряжение питания 220 вольт. Огромный выбор смартфонов от ведущих мировых производителей: Apple, Samsung, Nokia, HTC, Sony …

Лидеры продаж спреди покупателей из России в немецком интернет-магазине Компьютеруниверс доступны на странице наши бестселлеры.

лидеры продаж компьютеруниверс

 

 

Вы  можете оставить комментарий на соответствующей странице данного сайта инструкции. Общие вопросы непосредственно магазину можно задать через форму обратной связи на сайте либо электронной почте [email protected]

Если вам понравился наш интернет-ресурс и вы считаете информацию размещённую здесь полезной не только для вас, то нажмите справа сбоку на любую из кнопок социальных сетей, чтобы поделиться интересной ссылкой со своими друзьями! Заранее благодарны 🙂

computeruniverse.su

Набирает популярность теория, согласно которой наш мир - это компьютерная симуляция

Источник - http://www.kp.ru/daily/26332/3215451/Автор - Владимир Лаговский

Мозг - не генератор сознания. Это лишь интерфейс

Чем затейливее, шире, глубже и разветвленнее становится интернет, тем более его виртуальный мир начинает походить на тот, который окружает нас. По крайней мере, расширяется в точности как Вселенная. Краев уж не видно. Поэтому не случайно, наверное, именно в интернете пользуются небывалой популярностью идеи, которые распространяет некто Джим Элвидж (Jim Elvidge) - ученый, специалист по цифровым технологиям, квантовой физике и автор книги с громким названием "Вселенная - разгадана" (The Universe - Solved). Он и в самом деле полагает, что разгадал суть мироздания. Догадался, что Вселенная - это продукт компьютерного моделирования. Некая симуляция. И в основе ее - информация, данные. Из них же, по мнению Элвиджа, соткано и наше сознание, которое рождается отнюдь не в мозге. Мозг - даже не хранилище сознания, а всего лишь интерфейс, благодаря которому мы встраиваемся в симуляцию, обрабатываем информацию и обмениваемся данными с неким вселенским сервером. Туда же отправляются и души - тоже информация, формируя сегмент, который прежде называли загробным миром.

Смерть, в представлении Элвиджа, вовсе не страшна. Ведь она лишь окончание симуляции. Или даже ее временное прерывание, сопровождаемое перемещением души - то есть, информационного пакета - на сервер.

Ученый верит в реинкарнацию, объясняя ее переносом информации, накопленной одним "симулятором", в другой. Верит в интуицию и ясновидение, феномен которых, по его мнению, основан на доступе к вселенскому серверу - возможностью "скачать" с него некие запрашиваемые сведения. Как из интернета.Материи нет - одна пустота

Джим Элвидж уверяет, что окружающие нас объекты лишь кажутся реальными. А на самом деле их нет - одна пустота. Есть лишь информация о том, что объекты существуют - информация, которую мы получаем посредством мозга и органов чувств.

"Материя - это объективная реальность, данная нам в ощущениях", - гласит известное определение. Но ощущения можно смоделировать, возражает ученый. Стало быть, можно смоделировать и объективную реальность, и, в конце-концов, материю.

Объект становится "реальным" только тогда, когда за ним кто-то наблюдает, - полагает Элвидж. И глубокомысленно добавляет: "Дальнейшие исследования в области элементарных частиц приведут к пониманию того, что за всем, что нас окружает, скрывается некий код, аналогичный бинарному коду компьютерной программы… Теория цифровой реальности может послужить универсальным ключом к "теории всего", поисками которой уже давно занимаются ученые."

ВМЕСТО КОММЕНТАРИЯ: Фантастика, но весьма научная

Идеи Элвиджа, конечно же, привлекают своими аналогиями. Но они отнюдь не оригинальны. Отличается от многочисленных предыдущих лишь более современными терминами. И прежде многие намекали на существование вселенского сервера, но называли его иначе - энерго-информционным полем Вселенной. И там размещали и загробный мир, и всю накопленную информацию - о любом событии и даже о будущем. Вот только доказать, что так оно и есть - ни тогда, ни сейчас не получается. Ведь все доводы - не более, чем слова, ничем не подкрепленные фантазии. Хотя "фантазирует" не только Элвидж, но и другие вполне серьезные ученые.

Компьютер размером со Вселенную

Вот к примеру, Сет Ллойд из Массачусетсского технологического института давно еще задал себе вопрос: каков предельный размер компьютера? Сам же и ответил. Мол, очевидно, что наикрупнейшим и наимощнейшим станет устройство, в котором будут задействованы все частицы во Вселенной. А их - протонов, нейтронов, электронов и прочей мелочи, по подсчетам ученого, где-то 10 в 90-й степени. И если эти частицы были бы приобщены к делу с момента Большого Взрыва, то уже совершили бы 10 в 120-й степени логических операций. Это так много, что не возможно даже представить. Для сравнения: все компьютеры за время своего существования произвели менее 10 в 30-й степени операций. А вся информация о человеке с его многочисленными индивидуальными причудами записана примерно 10 в 25 степени битами.

И тут Ллойд - гораздо раньше Элвиджа - подумал: что если Вселенная это уже чей-то компьютер? Тогда все, что внутри ее, включая нас, - часть вычислительного процесса. Или его продукт… Значит, где-то должен быть и Программист.

Без Создателя не обойтись - так считают даже видные ученые.Ллойд предполагает, что мы все-таки существуем реально. Равно, как и окружающий нас мир. Существуем благодаря вселенскому компьютеру, который был запрограммирован так, чтобы создавать сложные структуры, включая живых существ. Компьютерная программа, кстати, не обязательно должна быть очень длинной.

Голограммы мы

Эксперименты, в результате которых, возможно, будет выяснено, голограмма ли наш мир или нет, затеял один из первооткрывателей темной энергии Крейг Хоган (Craig Hogan), директор центра квантовой астрофизики лаборатории Ферми (Fermilab's Center for Particle Astrophysics). Ученый представляет Вселенную в виде сферы, поверхность которой покрыта крошечными пикселями. Каждый представляет собой единицу информации - бит. А то что внутри - созданная ими голограмма. Доказать это он намерен, отыскав в ткани-пространства времени элементы, формирующие голографическую "картинку".

Согласно волновой теории реальности физика Дэвида Бомом нейрохирурга Карла Прибрама, мозг тоже работает на голографических принципах.

Трехмерное изображение объекта возникает в пространстве, к примеру, если осветить лазером изображение на плоскости.

- Вот так и наш мозг конструирует картину окружающего мира под воздействием некого внешнего излучения, - объясняет Прибрам, тоже подразумевая существование компьютерной программы, реализуемой в мироздании. Она-то, собственно, и определяет, что и где "осветить".

Наш мир может быть всего лишь голограммой. Ученые пытаются и такое доказать.Кстати, приняв голографическую сущность Вселенной, можно было бы разрешить парадокс, наблюдаемый экспериментально: элементарные частицы способны мгновенно обмениваться информацией на любом расстоянии - хоть в миллионы световых лет. То есть, вопреки Эйнштейну, осуществлять взаимодействия со сверхсветовой скоростью, преодолевая временной барьер. Такое перестает быть чудом в мире - голограмме. Ведь каждый ее участок содержит информацию о целом - о всей Вселенной.

А полагая, что Вселенная - это продукт компьютерного моделирования, можно объяснить разные странности, происходящие в ней. Например, НЛО. Или таинственные радиосигналы, приходящие из неоткуда. Это просто глюки в программе.

ВЫВОД: Бог живет в другой Вселенной

Логика подсказывает: если некий Создатель все же существует, то вряд ли стоит искать его в нашей Вселенной. Не может же он находиться внутри им же созданной голограммы?! Или программы?! Стало быть, вселенных много. Многие современные физики, кстати, в этом не сомневаются.

ru-universe.livejournal.com

Суперкомпьютер построил модель Вселенной | Великая Эпоха

Наиболее точную трехмерную модель Вселенной построил седьмой в мире по мощности компьютер Pleiades, который в течение 18 дней обрабатывал данные, собранные миссией WMAP центра НАСА. Работой руководила группа ученых из Нью-Мексико и Калифорнии во главе с Анатолием Клыпиным и Джоэлем Примаком. Наиболее точная на сегодняшний день модель Вселенной получила название «Большой» («Bolshoi»).

"Это колоссальное космологическое моделирование имеет важное значение для интерпретации результатов предыдущих астрономических наблюдений, а также для планирования новых крупных исследований Вселенной, которые, как ожидается, помогут определить природу загадочной темной энергии", - сказал руководитель исследования Анатолий Клыпин из Государственного университета Нью-Мексико.

Полученная модель показывает, как изменялась Вселенная в течение последних миллиардов лет: как формировались галактики, звезды и планеты, а также как распространялась в космосе темная материя. Такой цифровой макет галактик построен на основе принятой на сегодняшний день космической теории под названием Lamda. Согласно этой теории, пространственно-плоскостная Вселенная содержит не только обычную барионную материю, но и темную энергию (которая описывается космологической постоянной Λ в уравнениях Эйнштейна) и холодную темную материю.

Компьютерное моделирование даст ученым возможность сделать ряд космологических предсказаний, которые потом можно будет проверить данными, собранными астрономами.

Видеовизуализацию модели Вселенной можно увидеть на официальном сайте http://hipacc.ucsc.edu/Bolshoi/

www.epochtimes.com.ua

Астрофизики представили самую реалистичную компьютерную модель Вселенной

Детали и масштаб моделирования позволяют изучать формирование, развитие и рост галактик.

Новейшие вычислительные методы позволили создать самую реалистичную модель Вселенной. Инструмент дает важную информацию о том, как черные дыры влияют на распределение темной материи, как тяжелые элементы производятся и распространяются по всему космосу и откуда возникают магнитные поля. Результаты работы представлены серией статей в журнале Monthly Notices of the Royal Astronomical Society.

Новая компьютерная модель получила обозначение IllustrisTNG. Она является усовершенствованным преемником Illustris и была разработана астрофизиками из Гейдельбергского университета (Германия), институтов Астрономии и Астрофизики Макса Планка (Германия), Гарвардского университета (США), Массачусетского технологического института (США) и Центра вычислительной астрофизики (США).

IllustrisTNG стала самым продвинутым симулятором такого рода.

Визуализация интенсивности ударных волн в космическом газе (синий) вокруг разрушенных структур темной материи (оранжевый и белый). Credit: IllustrisTNG collaboration

Детали и масштаб моделирования позволяют изучать формирование, развитие и рост галактик, учитывая процесс звездообразования. «Когда мы наблюдаем галактики с помощью телескопа, мы можем раскрыть лишь некоторые их свойства. С помощью моделирования перед нами открываются все их характеристики. При этом мы можем проследить весь жизненный цикл галактики, вплоть до ее рождения», – рассказывает Шай Генель, участник проекта из Центра вычислительной астрофизики.

Сопоставление путей эволюции галактик в симуляции дает представление о том, как мог выглядеть Млечный Путь в эпоху формирования Земли, и как он изменится в будущем.

Моделирование реалистичной Вселенной

IllustrisTNG, в отличие от предшественника, учитывает физические процессы, которые играют решающую роль в формировании и эволюции галактик.

x

Как и в Illustris, проект моделирует кубическую Вселенную. На этот раз ученые воссоздали образование миллионов галактик в регионе, каждая из сторон которого простирается почти на 1 миллиард световых лет.

Космическая сеть газа и темной материи, созданная IllustrisTNG, формирует галактики очень по

in-space.ru

Глава 3 Вычислительная Вселенная. Программируя Вселенную. Квантовый компьютер и будущее науки

Глава 3

Вычислительная Вселенная

История Вселенной, часть первая

Вселенная состоит из атомов и элементарных частиц, таких как электроны, фотоны, кварки и нейтрино. Скоро мы углубимся в концепцию Вселенной, основанную на вычислительной модели, но было бы глупо не рассмотреть сначала ошеломляющие открытия космологии и физики элементарных частиц. Наука уже дала нам прекрасные возможности описания Вселенной с точки зрения физики, химии и биологии. Вычислительная Вселенная – это не альтернатива физической Вселенной. Вселенная, которая развивается, обрабатывая информацию, и Вселенная, которая эволюционирует согласно законам физики, – одна и та же. Эти два описания, вычислительное и физическое, дополняют друг друга и помогают лучше понять одни и и те же явления.

Конечно, люди начали размышлять о происхождении Вселенной задолго до появления современной науки. Мифы о Вселенной столь же стары, как и любые другие мифы. В норвежской мифологии Вселенная начинается с того, что гигантская корова вылизывает богов из соленых краев изначальной бездны. В японской мифологии Япония рождается в результате кровосмесительной связи брата и сестры, бога Идзанаги и богини Идзанами. В одном индуистском мифе о сотворении мира говорится, что все существа происходят из топленого масла, собранного из тысячеглавого Пуруши, принесенного в жертву богами. И лишь недавно, в течение последних 100 лет или около того, астрофизики и космологи построили детальную историю Вселенной, подкрепленную наблюдательными данными.

Вселенная возникла немногим менее 14 млрд лет назад, в результате грандиозного события, которое называют Большим взрывом. По мере того как она расширялась и остывала, из «космического супа» формировались знакомые нам формы материи. В течение трех минут после Большого взрыва образовались самые легкие атомы – водород и гелий. Эти «кирпичики» собирались вместе под действием силы тяжести, и спустя 200 млн лет после Большого взрыва из них сформировались первые звезды и галактики. В ходе термоядерного «горения» звезд образовались элементы вплоть до железа, а еще более тяжелые элементы появились позднее, когда эти первые звезды стали взрываться как сверхновые. Наше Солнце и наша Солнечная система сформировались около 5 млрд лет назад, а жизнь на Земле возникла немногим более миллиарда лет спустя.

Это общепринятая история Вселенной не так увлекательна, как некоторые другие, и молочные продукты появляются в ней на достаточно поздней стадии. Однако в отличие от более древних мифов о сотворении мира, у мифа научного есть одно достоинство: он соответствует известным научным законам и наблюдениям. И хотя эта история изложена языком физики, она не лишена интриги. В ней есть драма и неопределенность, она вызывает множество вопросов: как возникла жизнь? Почему Вселенная так сложна? Каково будущее Вселенной в целом и жизни в частности?

Исследуя Млечный путь – нашу собственную Галактику – мы видим множество звезд, похожих на нашу. А когда мы смотрим дальше, то видим множество галактик, очень похожих на Млечный путь. В том, что мы видим, есть определенный сценарий, и в нем снова и снова разворачиваются одни и те же звездные драмы, но с участием других актеров-звезд и в других местах. Если Вселенная имеет бесконечную протяженность, то в конце концов где-нибудь будет разыгран любой возможный сценарий, если он разрешен законами физики. История Вселенной – своеобразная космическая мыльная опера, где актеры разыгрывают перед нами все возможные перипетии космической драмы.

Энергия, или Первое начало термодинамики

Давайте познакомимся с главными героями космической мыльной оперы. В традиционной космологии считается, что ведущий актер – это энергия, лучистая энергия света и энергия массы протонов, нейтронов и электронов. Что такое энергия? В средней школе вы могли узнать, что энергия – это способность выполнять работу. Энергия заставляет физические системы что-то делать.

У энергии есть важное свойство: она сохраняется. Энергия может принимать разные формы – теплота, работа, электрическая энергия, механическая энергия, но при этом она никогда не исчезает. Это утверждение известно как первое начало термодинамики. Но если энергия сохраняется, а Вселенная возникла из ничего, то откуда тогда взялась энергия? У физики есть объяснение на этот счет.

Квантовая механика описывает энергию через квантовые поля – что-то вроде универсальной «ткани» Вселенной. Переплетения «нитей» этой «ткани» дают элементарные частицы – фотоны, электроны, кварки. Энергия, которую мы видим вокруг, будь это Земля, звезды, свет или тепло, извлечена из квантовых полей посредством расширения Вселенной. Гравитация – это сила притяжения, которая соединяет вещи друг с другом. Острые на язык американские школьники говорят: «Гравитация сосет». Действительно, по мере того как Вселенная расширяется (а она продолжает расширяться до сих пор), сила тяжести высасывает энергию из квантовых полей. Энергия, находящаяся в квантовых полях, почти всегда положительна. Эта положительная энергия в точности сбалансирована отрицательной энергией гравитационного притяжения. По мере расширения Вселенной становится доступно все больше положительной энергии в форме вещества и света, но ее компенсирует отрицательная энергия в форме силы притяжения гравитационного поля.

Общепринятая история Вселенной уделяет большое внимание энергии: сколько ее? Где она? Что она делает? Однако в той версии, которая изложена в этой книге, главным действующим лицом в физической истории Вселенной является информация. В конечном счете, информация и энергия дополняют друг друга: энергия заставляет физические системы что-то делать, а информация говорит, что именно нужно делать.

Энтропия, или Второе начало термодинамики

Если бы мы могли рассматривать вещество на уровне атомов, то заметили бы, что атомы танцуют и качаются во все стороны случайным образом. Энергию, которая управляет этим хаотичным танцем атомов, называют теплотой, а информацию, которая определяет шаги этого танца, называют энтропией. Проще говоря, энтропия – это информация, нужная для того, чтобы описать случайные движения атомов и молекул, движения столь малые, что мы не можем их увидеть. Энтропия – это информация, содержащаяся в физической системе и невидимая для нас.

Энтропия – это степень молекулярного беспорядка, существующего в системе: она определяет, какая часть тепловой энергии системы недоступна для преобразования в механическую работу и какая доля ее энергии является полезной. Второе начало термодинамики гласит, что энтропия во Вселенной в целом не уменьшается; иначе говоря, количество непригодной, связанной энергии растет. Проявления второго начала термодинамики легко заметить в обычной жизни. Горячий пар может вращать турбину и выполнять полезную работу. Когда пар охлаждается, его беспорядочно колеблющиеся молекулы передают часть своего беспорядка молекулам окружающего воздуха, подогревая его и увеличивая беспорядок в нем. Молекулы пара колеблются все медленнее и медленнее, а молекулы воздуха – все быстрее и быстрее, до тех пор, пока температура пара и воздуха не сравняется. Когда разница температур становится минимальной, энтропия системы достигает максимума. Но пар, охладившийся до комнатной температуры, уже не может выполнять никакой работы.

Вот еще один способ объяснить, что такое энтропия. Информация по большей части невидима. Количество битов информации, нужной для того, чтобы описать «танец» атомов, намного превышает количество битов, которые мы можем видеть или знать. Возьмите фотографию – она всегда зерниста, и размер зерен зависит от размера частиц галоида серебра, нанесенных на фотопленку, а если это цифровая фотография, то от количества пикселей, из которых состоит изображение на экране.

В качественном цифровом изображении может содержаться около миллиарда битов визуальной информации. Откуда я взял эту цифру? Тысяча пикселей на дюйм – это высокое разрешение, близкое к тому, на которое способен невооруженный глаз. При таком разрешении каждый квадратный дюйм фотографии содержит миллион пикселей. В цветной фотографии размером 6 × 8 дюймов (15 × 20 см) с разрешением 1000 пикселей на дюйм содержится 48 млн пикселей. Далее, у каждого пикселя есть цвет. Цифровые фотоаппараты, как правило, используют 24-битную кодировку, чтобы создать 16 млн цветов, – опять-таки это близко к количеству цветов, которые может различить человеческий глаз. Таким образом, в цветной цифровой фотографии размером 6 × 8 дюймов с разрешением 1000 пикселей на дюйм и 24-битным цветовым разрешением содержится 1 152 000 000 битов информации. (Более простой способ увидеть, сколько битов нужно, чтобы создать фотографию, – посмотреть, как быстро заполняется память вашего цифрового фотоаппарата, когда вы делаете снимки. В обычном цифровом фотоаппарате снимок с высоким разрешением занимает около 3 млн байтов[7] (3 мегабайта). Байт состоит из 8 битов, так что каждый снимок в цифровом фотоаппарате состоит примерно из 24 млн битов).

1 152 000 000 битов – это очень много информации, но количество информации, нужной для описания невидимых колебаний атомов зерен галоида серебра в обычной фотопленке, намного больше. Чтобы их описать, потребовалось бы больше миллиона миллиардов миллиардов битов (1024, или единица и 24 нуля). Невидимые колеблющиеся атомы содержат значительно больше информации, чем видимая фотография, которую они составляют. Фотография, содержащая то же самое количество видимой информации, что и невидимая информация в грамме атомов, была бы размерами со штат Мэн[8].

Количество битов, содержащихся в колеблющихся атомах, из которых состоит фотографическое изображение на пленке, можно оценить следующим образом. Размер одного зерна галоида серебра – около одной миллионной метра, и в нем примерно триллион атомов. На фотопленке находятся десятки миллиардов зерен галоида серебра. Отдельный атом, который (при комнатной температуре) находится в своем бесконечном танце, требует для своего описания от 10 до 20 битов. Следовательно, общий объем информации, хранимой атомами на фотографии, составляет 1023 бита. Один миллиард (109) битов информации, видимой на цифровой фотографии, представляет собой лишь небольшую долю от этого количества. Остаток информации, содержащейся в веществе обычной фотографии, невидим. Эта невидимая информация и есть энтропия атомов.

Свободная энергия

Взаимодействием между двумя нашими актерами, энергией и информацией, управляют законы, или начала термодинамики. Чтобы увидеть еще один пример первого и второго начал, возьмем яблоко. В яблоке есть сахар, и он содержит то, что называют свободной энергией. Свободная энергия – это энергия в чрезвычайно упорядоченной форме, где относительно мало энтропии. В яблоке энергия сахара сохраняется не в случайных колебаниях атомов, а в упорядоченных химических связях, удерживающих молекулу сахара как целое. Нужно намного меньше информации, чтобы описать форму, которую принимает энергия в миллиарде упорядоченных химических связей, чем для описания той же самой энергии, если она распределена среди миллиарда колеблющихся атомов. Для описания этой энергии нужно относительно небольшое количество информации, поэтому ее легко использовать: такая энергия и называется свободной.

Возьмите яблоко и откусите от него кусочек. Вы только что проглотили свободную энергию. Ваша пищеварительная система содержит химические вещества, так называемые ферменты, которые превращают сахар яблока в глюкозу – форму сахара, в которой его могут непосредственно использовать ваши мышцы. Каждый грамм глюкозы содержит несколько килокалорий свободной энергии. Переварив сахар, вы получили несколько сотен килокалорий и сможете пробежать несколько миль. (Калория – это количество энергии, необходимой для нагрева одного грамма воды на один градус Цельсия. Килокалорию, или 1000 калорий, называют также большой калорией, а диетологи часто для простоты опускают слово «большая». Чайная ложка сахара содержит десять килокалорий свободной энергии. Между прочим, сто килокалорий – это энергия, достаточная для того, чтобы поднять автомобиль «Фольксваген» метров на тридцать над дорогой!)

Когда вы бежите, мышцы превращают свободную энергию сахара в движение. К моменту окончания забега вы, вероятно, вспотеете: свободная энергия сахара превратилась в теплоту и работу. Количество калорий температуры и работы в точности соответствует количеству калорий свободной энергии, содержавшейся в сахаре яблока. В соответствии с первым законом термодинамики общее количество энергии остается тем же самым. (А в соответствии со вторым законом термодинамики количество информации, нужной для описания дополнительных колебаний молекул в ваших разогретых мышцах и вспотевшей коже, намного больше, чем количество информации, которая была нужна для описания упорядоченных химических связей в сахаре яблока.)

К сожалению, запустить этот процесс в обратном направлении не так легко. Если вы захотите снова превратить энергию теплоты, где есть много невидимой информации (или энтропии), в энергию химических связей, где энтропии намного меньше, вам придется что-то делать с этой дополнительной информацией. Как мы вскоре увидим, проблема поиска места для дополнительных битов в теплоте накладывает фундаментальные ограничения на то, как хорошо могут функционировать механизмы, люди, мозги, ДНК и компьютеры.

Тем не менее в обоих случаях энергия и информация (видимая и невидимая) – два главных героя вселенской драмы. Вселенная, которую мы видим вокруг, – результат взаимодействия между этими двумя величинами, и этим взаимодействием управляют первое и второе начала термодинамики. Энергия сохраняется. Информация никогда не уменьшается. Требуется энергия, чтобы физическая система перешла из одного состояния в другое. Иначе говоря, для обработки информации необходима энергия. Чем больше энергии можно приложить, тем быстрее происходят физические изменения и тем быстрее обрабатывается информация. Максимальная скорость, с которой физическая система может обрабатывать информацию, пропорциональна ее энергии. Чем больше энергии, тем быстрее меняются биты. Земля, воздух, огонь и вода в конечном итоге состоят из энергии, но разные формы, которые они принимают, определяются информацией. Чтобы что-то сделать, нужна энергия. Чтобы описать сделанное, нужна информация. Энергия и информация естественным образом переплетены между собой.

История Вселенной, часть вторая

Теперь, когда мы представили героев конфликта, давайте расскажем историю Вселенной на языке их взаимодействия между собой. Именно это взаимодействие – перепасовка между информацией и энергией – заставляет Вселенную вычислять.

В течение последнего столетия достижения в создании мощных телескопов позволили вести очень точные наблюдения за Вселенной вне нашей Солнечной системы. Прошлое десятилетие было особенно знаменательным для наблюдения небес. Наземные телескопы и спутниковые обсерватории позволили собрать обширные данные о том, как сейчас выглядит Вселенная, а также о том, какой она была в прошлом. (Скорость света конечна, и когда мы смотрим на галактику, отстоящую от нас на миллиард световых лет, то видим ее такой, какой она была миллиард лет назад.) Эта принципиальная историчность наблюдений космоса оказывается весьма полезной, когда мы пытаемся расшифровать раннюю историю Вселенной.

Вселенная началась менее 14 млрд лет назад в виде гигантского взрыва. Но что было до Большого взрыва? Ничего!{3}. Не было ни времени, ни пространства. Еще раз: не то чтобы пространство было пустым – оно отсутствовало; время же имело свое начало.

Нет ничего страшного в идее начала из ничего. Например, положительные числа начинаются с нуля (с шунья, «пустоты»). До нуля положительных чисел нет[9]. Так и до Большого взрыва не было ничего – ни энергии, ни битов.

А потом – внезапно – возникла Вселенная. Началось время, а с ним и пространство. Новорожденная Вселенная была простой; свежесотканная ткань квантовых полей содержала очень мало информации и энергии. Для ее описания достаточно было всего нескольких битов. Если, как предполагают некоторые физические теории, существует всего одно возможное начальное состояние Вселенной и всего один самосогласованный набор физических законов, то для описания этого начального состояния не требуется ни одного бита информации! Как мы помним, чтобы создать информацию, должна существовать альтернатива: 0 или 1, «да» или «нет», то или это. Если же начальному состоянию Вселенной не было никаких альтернатив, то для ее описания нужен был нуль битов информации и ровно нуль битов она содержала в себе. Такой первоначальный недостаток информации соответствует представлению о том, что Вселенная возникла из ничего.

Возникнув, Вселенная сразу начала расширяться, и по мере расширения она вытягивала все больше энергии из квантовой ткани пространства и времени. Современные физические теории утверждают, что количество энергии на ранних этапах развития Вселенной росло очень быстро (этот процесс называют «инфляцией»), а количество информации увеличивалось медленнее. В начале Вселенная оставалась простой и упорядоченной: для ее описания хватало всего нескольких битов информации. Энергия, которая в ней возникала, была свободной энергией.

Впрочем, такой дефицит информации продлился недолго. По мере того как расширение Вселенной продолжалось, свободная энергия в квантовых полях превращалась в теплоту, увеличивая энтропию, и образовались все виды элементарных частиц. Эти частицы были горячими: они колебались просто-таки яростно. Чтобы описать эту «пляску», требовалось много информации. Прошла всего одна миллиардная доля секунды – время, за которое свет проходит расстояние в тридцать сантиметров, и количество информации, содержавшейся во Вселенной, достигло порядка 100 миллионов миллиардов миллиардов миллиардов миллиардов миллиардов, или 1050 битов. (Если угодно, это примерно по биту на каждый из атомов, из которых состоит наша Земля.) Чтобы сохранить столько информации в визуальной форме, потребовалась бы фотография размером с Млечный путь. Большой взрыв был также и Битовым взрывом.

Пока энергия в Мире меняла форму, Вселенная также обрабатывала и преобразовывала биты, заполняя свой «регистр памяти» результатами обработки этой информации. После той, самой первой, миллиардной доли секунды Вселенная выполнила приблизительно 10 000 миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов (1067) элементарных операций с битами, и много что произошло за это время. Но что вычисляла Вселенная во время этой первой миллиардной доли секунды? Писатели-фантасты считают, что за это время – намного быстрее, чем мы успеваем моргнуть глазом, – могли возникнуть и исчезнуть целые цивилизации! У нас нет никаких доказательств этого. Более вероятно, что эти первые операции представляли собой случайные столкновения элементарных частиц.

После этой первой миллиардной доли секунды Вселенная была очень горячей. Почти вся закачанная в нее энергия теперь находилась в форме теплоты. Потребовалось бы очень много информации, чтобы описать бесконечно малые движения элементарных частиц в этом состоянии. Вообще, когда все вещество имеет одну и ту же температуру, энтропия достигает максимума. На данном этапе было очень немного свободной энергии, то есть порядка, и поэтому время сразу после Большого взрыва было враждебным для таких процессов, как жизнь. Для жизни нужна свободная энергия. Даже если и могла бы существовать какая-то форма жизни, способная выдержать высокие температуры Большого взрыва, этой форме жизни было бы нечего есть!

Расширяясь, Вселенная остывала. Элементарные частицы колебались все медленнее. Количество информации, нужное для описания их «танца», оставалось почти таким же и лишь постепенно увеличивалось со временем. Может показаться, что для описания более медленных колебаний нужно меньше битов, и действительно, для описания их скорости требовалось меньше битов. В то же время объем пространства, в котором колебались частицы, возрастал, и нужно было все больше битов для описания их положений. Поэтому общее количество информации оставалась постоянным или росло в соответствии со вторым началом термодинамики.

Частицы колебались все медленнее и медленнее, и биты и кусочки космического супа начали уплотняться. Результатом этой конденсации стали некоторые виды материи, которые мы видим и сегодня. Когда количество энергии в типичном колебании становилось меньше количества энергии, необходимого для формирования и сохранения сложной элементарной частицы, например протона, стали формироваться эти частицы. Иначе говоря, когда колебания составляющих элементов – кварков в случае протона – уже были недостаточно энергичны для того, чтобы поддерживать их автономию, они склеивались в сложную частицу, которая «выпадала» из «космического супа». Каждый раз, когда из «супа» конденсировался новый компонент, происходил взрыв энтропии – в космическую поваренную книгу записывалась новая информация.

Частицы формировались из «космического супа» в порядке энергий, необходимых для удержания их в стабильном состоянии. Протоны и нейтроны – частицы, из которых состоят ядра атомов, – сконденсировались через одну миллионную долю секунды после Большого взрыва при температуре приблизительно в 10 миллионов миллионов (1013) °С. Атомные ядра начали формироваться примерно через одну секунду, при температуре около миллиарда градусов. К трехминутной отметке были сформированы ядра легких атомов – водород, гелий, дейтерий, литий, бериллий и бор. Однако электроны все еще носились слишком быстро, чтобы ядра могли их захватить и сформировать полные атомы. Спустя триста восемьдесят тысяч лет после Большого взрыва, когда температура Вселенной стала немного ниже 10 000 °C, электроны, наконец, стали достаточно холодными для захвата, и стали появляться стабильные атомы.

Порядок из хаоса (эффект бабочки)

До образования атомов почти вся информация во Вселенной находилась на уровне элементарных частиц. Почти все биты были записаны положениями и скоростями протонов, электронов и т. д. На более высоких уровнях Вселенная все еще содержала очень мало информации: она была невыразительной и однородной. (Насколько однородной? Представьте себе поверхность озера безветренным утром, такую спокойную, что отражения деревьев в воде неотличимы от самих деревьев. Представьте себе Землю, где нет холмов выше кротовой норы. Ранняя Вселенная была еще более однородной.)

Сейчас, однако, телескопы показывают нам огромные различия и неоднородность во Вселенной. Вещество собирается и формирует планеты, такие как Земля, и звезды, такие как Солнце. Планеты и солнца вместе создают солнечные системы. Наша Солнечная система вместе с миллиардами других формирует нашу галактику, Млечный путь. Млечный путь, в свою очередь, – только одна из десятков галактик в местном скоплении галактик, а оно – всего лишь одно из скоплений в сверхскоплении. Эта иерархия скоплений вещества, разделенных космическими пустотами, и составляет современную крупномасштабную структуру Вселенной.

Но как появилась эта структура? Откуда взялись биты информации? Эти биты происходят из самой ранней Вселенной, о которой мы только что говорили. Их происхождение можно объяснить законами квантовой механики вместе с законами тяготения.

Квантовая механика – это теория, которая описывает, как ведут себя вещество и энергия на самых фундаментальных уровнях. На микроуровне квантовая механика описывает поведение молекул, атомов и элементарных частиц. На больших масштабах она описывает наше с вами поведение. На еще больших – поведение Вселенной в целом. Законы квантовой механики отвечают за возникновение деталей и структуры Вселенной.

Теория квантовой механики дает начало крупномасштабной структуре благодаря своему неустранимо вероятностному характеру. Каким бы парадоксальным это ни казалось, квантовая механика создает разнообразие и структуру, потому что она по определению неопределенна.

Ранняя Вселенная была однородной: плотность энергии везде была почти одинаковой. Но – не совсем одинаковой. В квантовой механике такие величины, как положение, скорость и плотность энергии, не имеют точных значений. Их значения колеблются, или, как говоря физики, флуктуируют. Мы можем описать их вероятные значения, например наиболее вероятное местоположение некоторой частицы, но при этом не можем указать его совершенно точно.

Из-за этих квантовых флуктуаций некоторые области ранней Вселенной были чуть более плотными, чем другие. Время шло, и гравитация заставляла материю смещаться к этим более плотным областям, еще больше увеличивая плотность энергии в них и уменьшая в окружающем пространстве. Таким образом, гравитация усиливала и увеличивала первоначально едва заметные различия. Вот так крошечные квантовые флуктуации в начале времен стали зародышами и указали места для скоплений галактик. Немного позже дальнейшие неоднородности задали положения отдельных галактик в скоплении, а еще позже флуктуации задали положения звезд и планет.

В процессе создания этой масштабной структуры гравитация создавала еще и свободную энергию, необходимую живым существам. Формируясь и уплотняясь, материя двигалась быстрее и быстрее, получая энергию от гравитационного поля; иначе говоря, вещество нагревалось. Чем больше оказывался сгусток, тем более горячим становилось вещество в нем. Если собиралось достаточное количество материи, температура в центре сгустка повышалась до той точки, где начинаются термоядерные реакции, – и новое солнце начинало сиять! В солнечном свете много свободной энергии – той энергии, которую, например, могут использовать растения для фотосинтеза. И как только они появятся, они так и будут делать.

Способность гравитации усиливать небольшие флуктуации плотности – отражение физического феномена, которое называют «хаосом». В хаотической системе крошечные различия со временем усиливаются. Возможно, самый известный пример хаоса – так называемый эффект бабочки. Уравнения, отражающие движения в атмосфере Земли, хаотичны по своей сути; поэтому крошечное изменение, скажем взмах крыла бабочки, со временем и с расстоянием может усиливаться и через месяцы и километры превратиться в ураган. Крохотные квантовые флуктуации плотности энергии во время Большого взрыва – это те самые «бабочки», которые в результате превратились в крупномасштабную структуру Вселенной.

Каждая галактика, звезда и планета обязаны своей массой и положением квантовым событиям в начале Вселенной. Но не только: эти события также стали источниками мелких деталей Вселенной. Случайность – ключевой элемент языка природы. Каждый бросок «квантовых костей» создает в мире еще несколько битов различий и подробностей. Эти детали накапливаются и формируют зачатки всего разнообразия Вселенной. Каждое дерево, каждая ветка, лист, клетка и спираль ДНК обязаны своей особенной формой какому-то случайному броску в этой квантовой игре. Если бы не законы квантовой механики, Вселенная до сих пор была бы невыразительной и пустой. Возможно, азартные игры на деньги и являются воплощением ада, но квантовая игра в кости – божественный промысел!

Универсальный компьютер

Мы уже знаем, что Вселенная вычисляет, записывая и трансформируя информацию. Поэтому все то, что мы видим вокруг, можно назвать вселенским, или универсальным компьютером. Однако у этого названия есть другое, более техническое значение. В информатике тоже есть понятие «универсальный компьютер» – это устройство, которое можно запрограммировать так, что оно будет обрабатывать биты информации любым желаемым способом. Обычные цифровые компьютеры, такие, на каком я пишу эту книгу, – это универсальные компьютеры, а их языки – универсальные языки. Люди способны производить универсальные вычисления, и человеческие языки универсальны. Почти все системы, которые можно запрограммировать на выполнение произвольно длинных последовательностей простых преобразований информации, являются универсальными.

Универсальный компьютер может сделать с информацией почти все что угодно. Изобретатели универсальных компьютеров и универсальных языков, Алонзо Черч и Алан Тьюринг, выдвинули гипотезу, что на универсальном компьютере может быть выполнена любая возможная математическая манипуляция, то есть что универсальный компьютер может создавать математические построения любого уровня сложности. Но сам он не должен быть сложной машиной; все, что он должен уметь, – это брать биты, по одному или по два за раз, и выполнять с ними простые операции. Чтобы совершить любое желаемое преобразование над сколь угодно большим набором битов, достаточно многократно выполнять операции всего с одним или двумя битами за раз. Любая машина, которая может выполнить такую последовательность простых логических операций, является универсальным компьютером.

Важно, что универсальный компьютер можно запрограммировать так, чтобы преобразовывать информацию любым желаемым образом, и любой универсальный компьютер можно запрограммировать так, чтобы он преобразовывал информацию точно так же, как это делает любой другой универсальный компьютер. Таким образом, любой универсальный компьютер может моделировать другой, и наоборот. Такая взаимомоделируемость означает, что все универсальные компьютеры могут выполнять один и тот же набор задач. (Эта особенность вычислительной универсальности нам знакома: если какая-то программа работает на PC, ее, безусловно, можно видоизменить так, что она будет работать на Mac.)

Конечно, на Mac программа может работать медленнее, чем на PC, и наоборот. Программа, написанная для универсального компьютера определенного типа, на нем обычно работает быстрее, чем ее «переводная» версия на другом компьютере. Но эта переведенная программа все равно будет работать. Можно показать, что любой универсальный компьютер может не только имитировать любой другой универсальный компьютер, но и делать это эффективно. При переводе программы с одного компьютера на другой она будет работать медленнее, но ненамного.

Цифровое и квантовое

Вселенная вычисляет. Ее компьютерный язык состоит из законов физики и их химических и биологических следствий. Но можно ли считать, что Вселенная является универсальным цифровым компьютером, в том техническом значении, который обосновали Чёрч и Тьюринг, и ничем более? На этот вопрос можно дать точный научный ответ: нет.

Идея о том, что Вселенная в самой своей основе может являться цифровым компьютером, возникла несколько десятилетий назад. В 1960-х гг. Эдвард Фредкин, бывший тогда профессором Массачусетского технологического института, и тот самый Конрад Цузе, который сконструировал первые электронные цифровые компьютеры в Германии в начале 1940-х, предположили, что Вселенная, в сущности, является универсальным цифровым компьютером. (Сравнительно недавно эта концепция нашла последователя в лице ученого в области информатики Стивена Вольфрама.) Идея очень привлекательна: цифровые системы просты и при этом способны воспроизводить поведение любой степени сложности. В частности, компьютеры, архитектура которых воспроизводит структуру пространства и времени (так называемые клеточные автоматы), могут эффективно воспроизводить движения классических частиц и взаимодействия между ними.

Помимо эстетической привлекательности идеи цифровой Вселенной существуют веские доказательства вычислительной силы законов физики. Законы физики определенно обеспечивают универсальные вычисления. Проблема же с определением Вселенной как классического цифрового компьютера состоит в том, что она, как представляется, обладает гораздо большей вычислительной мощностью.

У двух компьютеров одна и та же вычислительная мощность, если каждый из них может эффективно моделировать другой. Ключевое слово здесь «эффективно». Законы физики могут эффективно моделировать цифровые вычисления; Вселенная без труда включает в себя обычные цифровые компьютеры. Но поставим вопрос иначе: может ли наш обычный компьютер эффективно смоделировать Вселенную? Представляется, что это невозможно.

На первый взгляд кажется, что ответ должен быть иным. В конце концов, законы физики выглядят просто. Даже если они окажутся немного более сложными, чем мы сейчас думаем, все же это математические законы, которые могут быть выражены на обычном машинном языке; то есть обычный компьютер может смоделировать законы физики и их следствия. Если бы у нас был достаточно большой компьютер, то мы могли бы запрограммировать его (например, с помощью языка Java), описав начальное состояние Вселенной и законы физики, и запустить в работу. В итоге мы могли бы ожидать, что этот компьютер даст точное описание состояния Вселенной в любой последующий момент.

Проблема такого моделирования не в том, что оно невозможно, а в том, что оно неэффективно. Природа Вселенной, по самой своей сути, квантово-механическая, а обычным компьютерам нелегко моделировать квантово-механические системы. Почему? Обычным компьютерам квантовая механика кажется настолько же странной и парадоксальной, как и людям. А поэтому, чтобы смоделировать даже крошечный фрагмент Вселенной, состоящий, скажем, всего из нескольких сотен атомов, на интервале времени в крошечную долю секунды, обычному компьютеру понадобилось бы больше памяти, чем атомов во всей Вселенной, и больше времени, чем она существует. Это действительно неэффективно!

Нельзя сказать, что классические компьютеры не способны отражать определенные аспекты квантового поведения: они неплохо вычисляют приближенные энергии и основные состояния квантовых систем. В то же время нет никакого известного способа, позволяющего им выполнять полноценное динамическое моделирование сложной квантовой системы, не используя при этом огромного количества динами

librolife.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики