Лекция №1 "История развития вычислительных систем". Компьютеры используемые для решения крупномасштабных вычислитель


Классификация компьютеров

Классификация компьютеров

Компьютер- это комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Видов компьютера много, они различаются по назначению, мощности, размерам, элементной базе и т.д., поэтому и классифицируют их по разным признакам, однако любая классификация является условной, поскольку развитие вычислительной техники настолько бурное, что, например, сегодняшний ПК не уступает по мощности мини-ЭВМ пятилетней давности и даже суперкомпьютерам недавнего прошлого.

Распространенные критерии классификации компьютеров:

Классификация ЭВМ по принципу действия

  • аналоговые вычислительные машины (АВМ)- вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, то есть в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).

  • цифровые вычислительные машины (ЦВМ)- вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

  • гибридные вычислительные машины (ГВМ)- вычислительные машины комбинированного действия работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Классификация ЭВМ по этапам создания

Классификация ЭВМ по уровню специализации

  • Универсальные ЭВМ предназначены для решения самых различных задач: инженерно-технических, экономических, математических, информационных и др., отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

  • Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно несложных алгоритмов; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

  • Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

Классификация ЭВМ по назначению

  • Большие ЭВМ: эксплуатировали в 70-х -80-х годах для решения научных и производственных задач. Производительность не менее 10 MIPS (миллионов операций с плавающей точкой в секунду), основная память от 64 до 10000 МВ, внешняя память не менее 50 ГВ, многопользовательский режим работы.

  • Малые ЭВМ: использовали на небольших предприятиях, в научно-исследовательских институтах для решения специфических задач, а также для обучение студентов в вузах. Ёмкость основной памяти - 4-512 МВ, ёмкость дисковой памяти - 2 - 100 ГВ.

  • Микрокомпьютеры: в 90-х годах заменили большие и маленькие компьютеры. Сегодня микрокомпьютеры используют на предприятиях, в научных организациях, учебных заведениях, а также в быте.

  • Персональные компьютеры: это компьютеры, которые могут использоваться одним человеком автономно, независимо от других компьютеров. Персональные компьютеры могут быть настольными, переносными и карманными.

Классификация ЭВМ по размеру

Компьютеры делятся:

Наиболее распространенными являются настольные ПК, которые позволяют легко изменять конфигурацию.

Портативные удобны для пользования, имеют средства компьютерной связи.

Карманные модели можно назвать «интеллектуальными» записными книжками, разрешают хранить оперативные данные и получать к ним быстрый доступ.

Классификация по совместимости

Существует множество типов компьютеров , которые собираются из деталей, изготовленных разными производителями. Важным является совместимость обеспечения компьютера:

studfiles.net

Классификация компьютеров

1.2. Технические средства обработки информации

1.2.1. Классификация компьютеров

Компьютер – это устройство или средство, предназначенное для обработки информации. Компьютер может обрабатывать только информацию, представленную в числовой форме. Информацию в иной форме представления для ввода в компьютер необходимо преобразовать в числовую форму.

Современным компьютерам предшествовали ЭВМ нескольких поколений. В развитии ЭВМ выделяют пять поколений.

В основу классификации заложена элементная база, на которой строятся ЭВМ:

  1. В 1943 году была создана вычислительных машин ЭВМ первого поколения на базе электронных ламп.
  2. Второе поколение (50 – 60 г.г.) компьютеров построено на базе полупроводниковых элементов (транзисторах).
  3. Основная элементная база компьютеров третьего поколения (60 – 70 г.г.) - интегральные схемы малой и средней интеграции.
  4. В компьютерах четвертого поколения (70 – по н/в) применены больших интегральных схемах БИС (микропроцессоры). Применение микропроцессоров в ЭВМ позволило создать персональный компьютер (ПК), отличительной особенностью которого является небольшие размеры и низкая стоимость.
  5. В настоящее время ведутся работы по созданию ЭВМ пятого поколения, которые разрабатываются на сверхбольших интегральных схемах.

Существует и другие различные системы классификации ЭВМ:

  1. По производительности и быстродействию.
  2. По назначению.
  3. По уровню специализации.
  4. По типу используемого процессора.
  5. По особенностям архитектуры.
  6. По размерам.

Рассмотрим схему классификации ЭВМ (Рис. 1.), исходя из их вычислительной мощности и габаритов.

Рис. 1.

Суперкомпьютеры – это самые мощные по быстродействию и производительности вычислительные машины. К суперЭВМ относятся “Cray” и “IBM SP2” (США). Используются для  решения  крупномасштабных  вычислительных  задач и моделирования, для сложных вычислений в аэродинамике, метеорологии, физике высоких энергий, также находят применение и в финансовой сфере.

Большие машины или мейнфреймы (Mainframe). Мейнфреймы используются в финансовой сфере, оборонном комплексе, применяются для комплектования ведомственных, территориальных и региональных вычислительных центров.

Средние ЭВМ широкого назначения используются для управления сложными технологическими производственными процессами.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов, в качестве сетевых серверов.

Микро - ЭВМ — это компьютеры, в которых в качестве центрального процессора используется микропроцессор. К ним относятся встроенные микро – ЭВМ (встроенные в различное оборудование, аппаратуру или приборы) и персональные компьютеры PC.

Современные персональные компьютеры имеют практически те же характеристики, что и мини-ЭВМ восьмидесятых годов. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня, используются как средство обработки информации в информационных системах.

К персональным компьютерам относятся настольные и переносные ПК. К переносным ЭВМ относятся Notebook (блокнот или записная книжка) и карманные персональные компьютеры (Personal Computers Handheld - Handheld PC, Personal Digital Assistants – PDA и Palmtop).

Далее...>>>Тема: 1.2.2. Архитектура ЭВМ

www.lessons-tva.info

Cверхсложные вычислительные задачи, решаемые на суперкомпьютерах

Предсказания погоды, климата и глобальных изменений в атмосфере

Науки о материалах

Построение полупроводниковых приборов

Сверхпроводимость

Структурная биология

Разработка фармацевтических препаратов

Генетика человека

Квантовая хромодинамика

Астрономия

Транспортные задачи

Гидро- и газодинамика

Управляемый термоядерный синтез

Эффективность систем сгорания топлива

Разведка нефти и газа

Вычислительные задачи наук о мировом океане

Раcпознавание и синтез речи

Распознавание изображений

Мета-компьютинг

(краткий обзор технологий организации распределенных вычислений в Интернет)

Что такое мета-компьютинг? Этот термин возник вместе с развитием высокоскоростной сетевой инфраструктуры в начале 90-х годов и относился к объединению нескольких разнородных вычислительных ресурсов в локальной сети организации для решения одной задачи. Основная цель построения мета-компьютера в то время заключалась в оптимальном распределении частей работы по вычислительным системам различной архитектуры и различной мощности. Например, предварительная обработка данных могли производится на пользовательской рабочей станции, основное моделирование на векторно-конвейерном суперкомпьютере, решение больших систем линейных уравнений - на массивно-паралллельной системе, а визуализация результатов - на специальной графической станции.

В дальнейшем, исследования в области технологий мета-компьютинга были развиты в сторону однородного доступа к вычислительным ресурсам большого числа (вплоть до нескольких тысяч) компьютеров в локальной или глобальной сети. Компонентами "мета-компьютера" могут быть как простейшие ПК, так и мощные массивно-параллельные системы. Что важно, мета-компьютер может не иметь постоянной конфигурации - отдельные компоненты могут включаться в его конфигурацию или отключаться от нее; при этом технологии мета-компьютинга обеспечивают непрерывное функционирование системы в целом. Современные исследовательские проекты в этой области направлены на обеспечение прозрачного доступа пользователей через Интернет к необходимым распределенным вычислительным ресурсам, а также прозрачного подключения простаивающих вычислительных систем к мета-компьютерам.

Очевидно, что наилучшим образом для решения на мета-компьютерах подходят задачи переборного и поискового типа, где вычислительные узлы практически не взамодействуют друг с другом и основную часть работы производят в автономном режиме. Основная схема работы в этом случае примерно такая: специальный агент, расположенный на вычислительном узле (компьютере пользователя), определяет факт простоя этого компьютера, соединяется с управляющим узлом мета-компьютера и получает от него очередную порцию работы (область в пространстве перебора). По окончании счета по данной порции вычислительный узел передает обратно отчет о фактически проделанном переборе или сигнал о достижении цели поиска.

Далее будут вкратце описаны и приведены ссылки на основные исследовательские проекты в области мета-компьютинга, разработанные программные технологии, конкретные примеры мета-компьютеров.

"Distributed.net"

http://www.distributed.net/.

Одно из самых больших объединений пользователей Интернет, предоставляющих свои компьютеры для решения крупных переборных задач. Основные проекты связаны с задачами взлома шифров (RSA Challenges). В частности, 19 января 1999 года была решена предложенная RSA Data Security задача расшифровки фразы, закодированной с помощью шифра DES-III. Достигнута скорость перебора, равная 75 млрд. ключей в секунду (всего требуется проверить 264 ключей). За решение этой задачи RSA предлагает приз в $10 тыс.

GIMPS - Great Internet Mersenne Prime Search

http://www.mersenne.org/

Поиск простых чисел Мерсенна (т.е. простых чисел вида 2P-1). С начала проекта было найдено 4 таких простых числа. Организация Electronic Frontier Foundation предлагает приз в $100 тыс. за нахождение простого числа Мерсенна с числом цифр 10 млн.

SETI@home

http://setiathome.ssl.berkeley.edu

Проект SETI@home (Search for Extraterrestrial Intelligence) - поиск внеземных цивилизаций с помощью распределенной обработки данных, поступающих с радиотелескопа. Присоединиться может любой желающий. Доступны клиентские программы для Windows, Mac, UNIX, OS/2. Для участия в проекте зарегистрировались около 920 тыс. человек.

TERRA ONE

Коммерческий проект TERRA ONE компании Cerentis ставит своей целью объединение множества персональных компьютеров, подключенных (или периодически подключаемых) к Интернет, для решения задач анализа информации, предоставляемой различными заказчиками. Клиентские компьютеры (TerraProcessor), подключенные к TERRA ONE, используются во время простаивания с помощью screen-saver'а. За обработку информации владельцы ПК получают возможность покупки в Интернет-магазинах - им начисляются "кредиты" (TerraPoints) за каждую единицу обработанной информации.

studfiles.net

Лекция №1 "История развития вычислительных систем"

ИСТОРИЯ РАЗВИТИЯ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) – это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer — «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Простейшие ручные приспособления

История компьютера тесным образом связана с попытками человека облегчить, автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось устройство – абак. Абак (греч. αβαξ, abákion, лат. abacus − доска) − это счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

В России ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление – русские счёты.

Механические приспособления

Механизация вычислительных операций началась в XVII веке. На первом этапе для создания механических вычислительных устройств использовались механизмы, аналогичные часовым.

В 1623 год − немецкий ученый Вильгельм Шиккард разработал первое в мире механическое устройство («суммирующие часы») для выполнения операций сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно неизвестно, но в 1960 году оно было воссоздано по чертежам и подтвердило свою работоспособность.

В 1642 году французский механик Блез Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин»), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.

Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз Чарльз Калмар изобрёл машину, которая могла производить четыре основных арифметических действия. Машину Калмара назвали арифмометр. Благодаря своей универсальности арифмометры использовались довольно длительное время до 60-х годов ХХ века.

Автоматизация вычислений

Идея автоматизации вычислительных операций пришла из часовой промышленности. Старинные монастырские башенные часы были построены так, чтобы в заданное время включать механизм, связанный с системой колоколов.

В 1833 году английский ученый, профессор Кембриджского университета Чарльз Беббидж разработал проект аналитической машины, которая имела черты современного компьютера. Это был гигантский арифмометр с программным управлением, арифметическим и запоминающим устройствами. Оно имело устройство для ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Сотрудницей и помощницей Ч. Беббиджа во многих его научных изысканиях была леди Ада Лавлейс (урожденная Байрон).

Она разработала первые программы для машины и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением. Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х годов двадцатого столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada. День программиста отмечается в день рождения Ады Лавлейс 10 декабря.

Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты-листы из плотной бумаги с информацией, наносимой с помощью отверстий.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. Для работы этой машины использовалось электричество. В 1890 изобретение Холлерита было использовано в 11-ой американской переписи населения. Работа, которую 500 сотрудников выполняли в течение семи лет, Холлерит с 43 помощниками на 43 табуляторах выполнил за один месяц.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В 1944 г. американский инженер Говард Эйкен при поддержке фирмы Ай-Би-Эм (IBM) сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк 1», по площади занимал примерно половину футбольного поля и включал более 800 километров проводов, около 750 тыс.деталей, 3304 реле. «Марк-1» был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо 4 секунды.

Но электромеханические реле работали недостаточно быстро. В 1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК (ENIAC - электронный числовой интегратор и вычислитель), который можно было перепрограммировать для решения полного диапазона задач. Разработали его американские ученые Джон Уильям Мокли и Джон Преспер Экерт. В ЭНИАКе в качестве основы компонентной базы электромеханические реле были заменены вакуумными лампами. Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность – 150 кВт по тем временам было достаточно для освещения большого города. Вычислительная мощность – 300 операций умножения или 5000 операций сложения в секунду. Вес – 27 тонн, более 30 метров. Вычисления проводились в десятичной системе. ЭНИАК использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

В СССР вычислительная машина МЭСМ (малая электронная счётная машина) была создана в 1951 году под руководством академика Сергея Алексеевича Лебедева. Машина вычисляла факториалы натуральных чисел и решала уравнения параболы. Одновременно Лебедев работал над созданием БЭСМ - быстродействующей электронной счётной машины, разработка которой была завершена в 1953 году.

В 1971 году фирмой Intel (США) был создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС (сверхбольших интегральных схем).

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора, но только четыре года спустя мышка была показана на компьютерной конференции в Сан-Франциско.

Первый персональный компьютер (ПК) в 1976г. выпустила фирма Apple; в СССР ПК появились в 1985г.

Таблица 1. Поколения ЭВМ

Показатель

Поколения ЭВМ

Первое

1950-1960-е годы

Второе

1960-1970-е годы

Третье

1970-1980-е годы

Четвертое

1980-1990-е годы

Пятое

1990-настоящее время

Элементная база процессора

Электронные лампы

Полупроводники (Транзисторы)

Малые интегральные схемы (МИС)

Большие ИС (БИС) и Сверхбольшие ИС (СБИС)

Оптоэлектроника

Криоэлектроника (лазеры, голография)

Элементная база ОЗУ

Электронно-лучевые трубки

Ферритовые сердечники

Кремниевые кристаллы

БИС и СБИС

СБИС

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, клавиатура, “мышь” и др.

Цветной графический дисплей, сканер, клавиатура, устройства голосовой связи с ЭВМ

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Магнитный диск

Перфоленты, магнитный диск (30 см в диаметре)

Магнитные и оптические диски

Максимальная емкость ОЗУ, байт

101

102

104

105 - 107

108 (?)

Максимальное быстродействие процессора (оп/с)

104

106

107

108 - 109

+Многопроцессорность

1012

+Многопроцессорность

Языки программирования

Универсальные языки программирования, трансляторы (машинный код)

Пакетные операционные системы, оптимизирующие трансляторы

(Ассемблер, Фортран)

Процедурные языки высокого уровня (ЯВУ)

Новые процедурные ЯВУ и Непроцедурные ЯВУ

Новые непроцедурные ЯВУ

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Использование элементов искусственного интеллекта и распознавание зрительных и звуковых образов

Поколения ЭВМ

ЭВМ принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за её короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Определяющими признаками при отнесении ЭВМ к тому или иному поколению являются их элементная база (из каких в основном элементов они построены), быстродействие, емкость памяти, способы управления и переработки информации.

Первое поколение. 1950-1960-е годы

Компьютеры на электронных вакуумных лампах (диодах и триодах), а в качестве оперативных запоминающих устройств использовались электронно-лучевые трубки, в качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины.

Машины предназначались для решения сравнительно несложных научно-технических задач. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы.

Быстродействие их не превышало 2-3 тысяч операций в секунду, емкость оперативной памяти - 2048 машинных слов длиной 48 двоичных знаков. Использовались в основном для научных расчетов.

В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках.

ЭНИАК, МЭСМ, БЭСМ и первые модели ЭВМ "Минск" и "Урал".

Второе поколение ЭВМ. 1960-1970-е годы

Элементной базой машин этого поколения были полупроводниковые элементы (транзисторы). Транзисторы (твердые диоды и триоды) заменили электронные лампы в процессорах, а ферритовые (намагничиваемые) сердечники – электронно-лучевые трубки в оперативных запоминающих устройствах. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве.

Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность.

Скорость ЭВМ возросла до сотен тысяч операций в секунду, а память – до десятков тысяч машинных слов. Создаются долговременные запоминающие устройства на магнитных лентах. Начали применять языки программирования высокого уровня, такие как Фортран.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 × 12 дюймов и разрешением 1024 × 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Третье поколение ЭВМ: 1970-1980-е годы

Элементная база ЭВМ - малые интегральные схемы (МИС), что привело к дальнейшему увеличению скорости до миллиона операций в секунду и памяти до сотен тысяч слов. Машины предназначались для широкого использования в различных областях науки и техники.

ЭВМ третьего поколения также характеризуется крупнейшими сдвигами в архитектуре ЭВМ, их программном обеспечении, организации взаимодействия человека с машиной. Это, прежде всего наличие развитой конфигурации внешних устройств (алфавитно-цифровые терминалы, графопостроители, магнитные диски (30 см в диаметре) и т.п.), развитая операционная система.

В период машин третьего поколения произошел крупный сдвиг в области применения ЭВМ. Если раньше ЭВМ использовались в основном для научно-технических расчетов, то в 60-70-е годы первое место стала занимать обработка символьной информации, в основном экономической.

IV поколение. 1980-1990-е годы

Переход к машинам четвертого поколения – ЭВМ на больших интегральных схемах (БИС) – происходил во второй половине 70-х годов и завершился приблизительно к 1980 г. Теперь на одном кристалле размером 1 см2 стали размещаться сотни тысяч электронных элементов. Скорость и объем памяти возросли в десятки тысяч раз по сравнению с машинами первого поколения и составили примерно 109 операций в секунду и 107 слов соответственно.

Наиболее крупным достижением, связанным с применением БИС, стало создание микропроцессоров, а затем на их основе микро-ЭВМ. Если прежние поколения ЭВМ требовали для своего расположения специальных помещений, системы вентиляции, специального оборудования для электропитания, то требования, предъявляемые к эксплуатации микро-ЭВМ, ничем не отличаются от условий эксплуатации бытовых приборов. При этом они имеют достаточно высокую производительность, экономичны в эксплуатации и дешевы.

Микро-ЭВМ используются в измерительных комплексах, системах числового программного управления, в управляющих системах различного назначения.

Дальнейшее развитие микро-ЭВМ привело к созданию персональных компьютеров (ПК), широкое распространение которых началось с 1975 г., когда фирма IBM выпустила свой первый персональный компьютер IBM PC.

В период машин четвертого поколения стали также серийно производиться супер-ЭВМ. В нескольких серийных моделях была достигнута производительность свыше 1 млрд. операций в секунду.

К числу наиболее значительных разработок четвертого поколения относится ЭВМ «Крей-3».

Примером отечественной суперЭВМ является многопроцессорный вычислительный комплекс «Эльбрус».

V поколение. 1990-настоящее время

С 90-х годов в истории развития вычислительной техники наступила пора пятого поколения. Высокая скорость выполнения арифметических вычислений дополняется высокими скоростями логического вывода.

Сверхбольшие интегральные схемы повышенной степени интеграции, использование оптоэлектронных принципов (лазеры, голография).

Способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Используются модели и средства, разработанные в области искусственного интеллекта. Архитектура содержит несколько блоков: блок общения – обеспечивает интерфейс между пользователем и ЭВМ на естественном языке; база знаний – хранятся знания, накопленные человечеством в различных предметных областях; решатель - организует подготовку программы решения задачи на основании знаний, получаемых из базы знаний и исходных данных, полученных из блока общения. Ядро вычислительной системы составляет ЭВМ высокой производительности.

В связи с появлением новой базовой структуры ЭВМ в машинах пятого поколения широко используются модели и средства, разработанные в области искусственного интеллекта.

Классификация ЭВМ

Существует достаточно много систем классификации по различным признакам.

I. Классификация по назначению:

1) СуперЭВМ предназначены для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных. Это очень мощные компьютеры с производительностью свыше 100 мегафлопов (1 мегафлоп — миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Различают суперкомпьютеры среднего класса, класса выше среднего и переднего края (high end).

2) Большие ЭВМ - для комплектования ведомственных, территориальных и региональных вычислительных центров. Мэйнфреймы предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200 — 300 рабочих мест.

3) Средние ЭВМ - широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов.

4) Персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

5) Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.

II. Классификация ПК по типоразмерам:

  1. Настольные (desktop) - используются для оборудования рабочих мест, отличаются простотой изменения конфигурации. Наиболее распространены.

  2. Портативные – удобны для транспортировки, можно работать при отсутствии рабочего места.

Основные разновидности портативных компьютеров:

Laptop (наколенник, от lap> — колено и top — поверх). По размерам близок к обычному портфелю. По основным характеристикам (быстродействие, память) примерно соответствует настольным ПК. Сейчас компьютеры этого типа уступают место ещё меньшим.

Notebook (блокнот, записная книжка). По размерам он ближе к книге крупного формата. Имеет вес около 3 кг. Является переносным персональным компьютером. Он имеет компактные габариты и встроенные аккумуляторы, позволяющие работать без сетевого напряжения.

Palmtop (наладонник) — это самый маленький ПК. Он не имеет внешней памяти на магнитных дисках, она заменена на энергозависимую электронную память. Эта память может перезаписываться при помощи линии связи с настольным компьютером. Карманный компьютер можно использовать как словарь-переводчик или записную книжку

III. Классификация по условиям эксплуатации:

По условиям эксплуатации компьютеры делятся на два типа:

  1. офисные (универсальные) – на их основе можно собирать вычислительные системы произвольного состава;

  2. специализированные – предназначены для решения конкретного круга задач (например, бортовые компьютеры автомобилей, самолетов).

Основные принципы функционирования ПК

Исторически компьютер появился как машина для вычислений и назывался электронной вычислительной машиной – ЭВМ. Общие принципы работы универсальных вычислительных устройств были сформулированы известным американским математиком Джоном фон Нейманом в 1946 году:

  1. Любая ЭВМ для выполнения своих функций должна иметь минимальный набор функциональных блоков:

    • АЛУ – арифметическое логическое устройство. Преобразует информацию, выполняя сложение, вычитание и основные логические операции «И», «ИЛИ», «НЕ».

    • УУ – устройство управления. Организует процесс выполнения программ.

    • ОЗУ – оперативное запоминающее устройство (память), состоящее из перенумерованных ячеек. Хранит данные, адреса и команды, обладает высокой скоростью записи и чтения чисел.

    • УВВ – устройство ввода-вывода. Получают информацию извне, выводят её получателю.

Эhello_html_35812c95.gifто классическая структура вычислительной машины, на основе которой уже более полувека создаются ЭВМ.

В современных компьютерах объединены АЛУ и УУ в одной сверхбольшой интегральной схеме (микропроцессор). Уменьшение габаритов ОЗУ позволило разместить микропроцессор и ОЗУ на одной электронной плате (материнская). Все связи между отдельными устройствами объединены в пучок параллельных проводов (системная шина).

  1. Информация кодируется в двоичной форме.

  2. Алгоритм представляется в форме последовательности команд, совокупность которых называется программой.

  3. Программы и данные хранятся в одной и той же памяти.

infourok.ru

ЭВОЛЮЦИЯ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

ЭВОЛЮЦИЯ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) –это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer — «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Простейшие ручные приспособления

История компьютера тесным образом связана с попытками человека облегчить, автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось устройство – абак. Абак (греч. αβαξ, abákion, лат. abacus − доска) − это счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

В России ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление – русские счёты.

Механические приспособления

Механизация вычислительных операций началась в XVII веке. На первом этапе для создания механических вычислительных устройств использовались механизмы, аналогичные часовым.

В 1623 год − немецкий ученый Вильгельм Шиккардразработал первое в мире механическое устройство («суммирующие часы») для выполнения операцийсложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно неизвестно, но в 1960 году оно было воссоздано по чертежам и подтвердило свою работоспособность.

В 1642 годуфранцузский механик Блез Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин»), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.

Однако широкое распространение вычислительные аппараты получили только в 1820году, когда француз Чарльз Калмар изобрёл машину, которая могла производить четыре основных арифметических действия. Машину Калмара назвали арифмометр. Благодаря своей универсальности арифмометры использовались довольно длительное время до 60-х годов ХХ века.

Автоматизация вычислений

Идея автоматизации вычислительных операций пришла из часовой промышленности. Старинные монастырские башенные часы были построены так, чтобы в заданное время включать механизм, связанный с системой колоколов.

В 1833 годуанглийский ученый, профессор Кембриджского университета Чарльз Беббидж разработал проект аналитической машины, которая имела черты современного компьютера. Это был гигантский арифмометр с программным управлением, арифметическим и запоминающим устройствами. Оно имело устройство для ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Сотрудницей и помощницей Ч. Беббиджа во многих его научных изысканиях была леди Ада Лавлейс (урожденная Байрон).

Она разработала первые программы для машины и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением. Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х годов двадцатого столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada. День программиста отмечается в день рождения Ады Лавлейс 10 декабря.

Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты-листы из плотной бумаги с информацией, наносимой с помощью отверстий.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. Для работы этой машины использовалось электричество. В 1890 изобретение Холлерита было использовано в 11-ой американской переписи населения. Работа, которую 500 сотрудников выполняли в течение семи лет, Холлерит с 43 помощниками на 43 табуляторах выполнил за один месяц.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В 1944 г. американский инженер Говард Эйкен при поддержке фирмы Ай-Би-Эм (IBM) сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк 1», по площади занимал примерно половину футбольного поля и включал более 800 километров проводов, около 750 тыс.деталей, 3304 реле. «Марк-1» был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо 4 секунды.

Но электромеханические реле работали недостаточно быстро. В 1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК (ENIAC - электронный числовой интегратор и вычислитель), который можно было перепрограммировать для решения полного диапазона задач. Разработали его американские ученые Джон Уильям Мокли и Джон Преспер Экерт.В ЭНИАКе в качестве основы компонентной базы электромеханические реле были заменены вакуумными лампами. Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность – 150 кВт по тем временам было достаточно для освещения большого города. Вычислительная мощность – 300 операций умножения или 5000 операций сложения в секунду. Вес – 27 тонн, более 30 метров. Вычисления проводились в десятичной системе. ЭНИАК использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

В СССР вычислительная машина МЭСМ (малая электронная счётная машина) была создана в 1951 году под руководством академика Сергея Алексеевича Лебедева.Машина вычисляла факториалы натуральных чисел и решала уравнения параболы. Одновременно Лебедев работал над созданием БЭСМ - быстродействующей электронной счётной машины, разработка которой была завершена в 1953 году.

В 1971 годуфирмой Intel (США) был создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС (сверхбольших интегральных схем).

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора, но только четыре года спустя мышка была показана на компьютерной конференции в Сан-Франциско.

Первый персональный компьютер (ПК) в 1976г. выпустила фирма Apple; в СССР ПК появились в 1985г.

Таблица 1. Поколения ЭВМ

 

Показатель Поколения ЭВМ
Первое 1950-1960-е годы Второе 1960-1970-е годы Третье 1970-1980-е годы Четвертое 1980-1990-е годы Пятое 1990-настоящее время  
Элементная база процессора Электронные лампы Полупроводники (Транзисторы) Малые интегральные схемы (МИС) Большие ИС (БИС) и Сверхбольшие ИС (СБИС) Оптоэлектроника Криоэлектроника (лазеры, голография)
Элементная база ОЗУ Электронно-лучевые трубки Ферритовые сердечники Кремниевые кристаллы БИС и СБИС СБИС
Основные устройства ввода Пульт, перфокарточный, перфоленточный ввод Алфавитно-цифровой дисплей, клавиатура Цветной графический дисплей, клавиатура, “мышь” и др. Цветной графический дисплей, сканер, клавиатура, устройства голосовой связи с ЭВМ
Основные устройства вывода Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод Графопостроитель, принтер  
Внешняя память Магнитные ленты, барабаны, перфоленты, перфокарты Магнитный диск Перфоленты, магнитный диск (30 см в диаметре) Магнитные и оптические диски  
Максимальная емкость ОЗУ, байт 101 102 104 105 - 107 108 (?)
Максимальное быстродействие процессора (оп/с) 104 106 107 108 - 109 +Многопроцессорность 1012 +Многопроцессорность
Языки программирования Универсальные языки программирования, трансляторы (машинный код) Пакетные операционные системы, оптимизирующие трансляторы (Ассемблер, Фортран) Процедурные языки высокого уровня (ЯВУ) Новые процедурные ЯВУ и Непроцедурные ЯВУ Новые непроцедурные ЯВУ
Цель использования ЭВМ Научно-технические расчеты Технические и экономические расчеты Управление и экономические расчеты Телекоммуникации, информационное обслуживание Использование элементов искусственного интеллекта и распознавание зрительных и звуковых образов

Поколения ЭВМ

ЭВМ принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за её короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Определяющими признаками при отнесении ЭВМ к тому или иному поколению являются их элементная база (из каких в основном элементов они построены), быстродействие, емкость памяти, способы управления и переработки информации.

Классификация ЭВМ

Существует достаточно много систем классификации по различным признакам.

I. Классификация по назначению:

1) СуперЭВМ предназначены для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных.Это очень мощные компьютеры с производительностью свыше 100 мегафлопов (1 мегафлоп — миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Различают суперкомпьютеры среднего класса, класса выше среднего и переднего края (high end).

2) Большие ЭВМ - для комплектования ведомственных, территориальных и региональных вычислительных центров. Мэйнфреймы предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200 — 300 рабочих мест.

3) Средние ЭВМ - широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов.

4) Персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

5) Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.

II. Классификация ПК по типоразмерам:

1) Настольные (desktop) - используются для оборудования рабочих мест, отличаются простотой изменения конфигурации. Наиболее распространены.

2) Портативные – удобны для транспортировки, можно работать при отсутствии рабочего места.

Основные разновидности портативных компьютеров:

Laptop (наколенник, от lap> — колено и top — поверх). По размерам близок к обычному портфелю. По основным характеристикам (быстродействие, память) примерно соответствует настольным ПК. Сейчас компьютеры этого типа уступают место ещё меньшим.

Notebook (блокнот, записная книжка). По размерам он ближе к книге крупного формата. Имеет вес около 3 кг. Является переносным персональным компьютером. Он имеет компактные габариты и встроенные аккумуляторы, позволяющие работать без сетевого напряжения.

Palmtop (наладонник) — это самый маленький ПК. Он не имеет внешней памяти на магнитных дисках, она заменена на энергозависимую электронную память. Эта память может перезаписываться при помощи линии связи с настольным компьютером. Карманный компьютер можно использовать как словарь-переводчик или записную книжку

III. Классификация по условиям эксплуатации:

По условиям эксплуатации компьютеры делятся на два типа:

1) универсальные – на их основе можно собирать вычислительные системы произвольного состава;

2) специализированные – предназначены для решения конкретного круга задач (например, бортовые компьютеры автомобилей, самолетов).

ЭВОЛЮЦИЯ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) –это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer — «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики