Квантовый компьютер. Квантового компьютера


Квантовый компьютер - это... Что такое Квантовый компьютер?

3 кубита квантового регистра против 3 битов обычного

Квантовый компьютер — вычислительное устройство, работающее на основе квантовой механики. Квантовый компьютер принципиально отличается от классических компьютеров, работающих на основе классической механики. Полномасштабный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на переднем крае современной физики. Ограниченные (до 128[1]кубитов) квантовые компьютеры уже построены; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Введение

Одна из первых моделей квантового компьютера была предложена[2]Ричардом Фейнманом в 1981 году. Вскоре П. Бениоф описал теоретические основы построения такого компьютера[3].

Необходимость в квантовом компьютере возникает тогда, когда мы пытаемся исследовать методами физики сложные многочастичные системы, подобные биологическим. Пространство квантовых состояний таких систем растет как экспонента от числа составляющих их реальных частиц, что делает невозможным моделирование их поведения на классических компьютерах уже для . Поэтому Фейнман и предложил построение квантового компьютера.

Квантовый компьютер использует для вычисления не обычные (классические) алгоритмы, а процессы квантовой природы, так называемые квантовые алгоритмы, использующие квантовомеханические эффекты, такие как квантовый параллелизм и квантовая запутанность.

Если классический процессор в каждый момент может находиться ровно в одном из состояний , (обозначения Дирака) то квантовый процессор в каждый момент находится одновременно во всех этих базисных состояниях, при этом в каждом состоянии — со своей комплексной амплитудой . Это квантовое состояние называется «квантовой суперпозицией» данных классических состояний и обозначается как

Базисные состояния могут иметь и более сложный вид. Тогда квантовую суперпозицию можно проиллюстрировать, например, так: «Вообразите атом, который мог бы подвергнуться радиоактивному распаду в определённый промежуток времени. Или не мог бы. Мы можем ожидать, что у этого атома есть только два возможных состояния: „распад“ и „не распад“, <…> но в квантовой механике у атома может быть некое объединённое состояние — „распада — не распада“, то есть ни то, ни другое, а как бы между. Вот это состояние и называется „суперпозицией“»[4].

Квантовое состояние может изменяться во времени двумя принципиально различными путями:

  1. Унитарная квантовая операция (квантовый вентиль, англ. quantum gate), в дальнейшем просто операция.
  2. Измерение (наблюдение).

Если классические состояния есть пространственные положения группы электронов в квантовых точках, управляемых внешним полем , то унитарная операция есть решение уравнения Шредингера для этого потенциала.

Измерение есть случайная величина, принимающая значения с вероятностями соответственно. В этом состоит квантово-механическое правило Борна (англ.). Измерение есть единственная возможность получения информации о квантовом состоянии, так как значения нам непосредственно не доступны. Измерение квантового состояния не может быть сведено к унитарной шрёдингеровской эволюции, так как, в отличие от последней, оно необратимо. При измерении происходит так называемый коллапс волновой функции , физическая природа которого до конца не ясна. Спонтанные вредоносные измерения состояния в ходе вычисления ведут к декогерентности, то есть отклонению от унитарной эволюции, что является главным препятствием при построении квантового компьютера (см. Физические реализации квантовых компьютеров).

Квантовое вычисление есть контролируемая классическим управляющим компьютером последовательность унитарных операций простого вида (над одним, двумя или тремя кубитами). В конце вычисления состояние квантового процессора измеряется, что и дает искомый результат вычисления.

Содержание понятия «квантовый параллелизм» в вычислении может быть раскрыто так: «Данные в процессе вычислений представляют собой квантовую информацию, которая по окончании процесса преобразуется в классическую путём измерения конечного состояния квантового регистра. Выигрыш в квантовых алгоритмах достигается за счёт того, что при применении одной квантовой операции большое число коэффициентов суперпозиции квантовых состояний, которые в виртуальной форме содержат классическую информацию, преобразуется одновременно»[5].

Теория

Кубиты

Идея квантовых вычислений состоит в том, что квантовая система из L двухуровневых квантовых элементов (квантовых битов, кубитов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, пространством состояний такого квантового регистра является 2L-мерное гильбертово пространство. Операция в квантовых вычислениях соответствует повороту вектора состояния регистра в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубит фактически задействует одновременно 2L классических состояний.

Физическими системами, реализующими кубиты, могут быть любые объекты, имеющие два квантовых состояния: поляризационные состояния фотонов, электронные состояния изолированных атомов или ионов, спиновые состояния ядер атомов, и т. д.

Один классический бит может находиться в одном и только в одном из состояний или . Квантовый бит, называемый кубитом, находится в состоянии , так что |a|² и |b|² — вероятности получить 0 или 1 соответственно при измерении этого состояния; ; |a|² + |b|² = 1. Сразу после измерения кубит переходит в базовое квантовое состояние, соответствующее классическому результату.

Пример:

Имеется кубит в квантовом состоянии В этом случае, вероятность получить при измерении
0 составляет (4/5)²=16/25 = 64 %,
1 (-3/5)²=9/25 = 36 %.
В данном случае, при измерении мы получили 0 с 64 % вероятностью. В результате измерения кубит переходит в новое квантовое состояние , то есть, при следующем измерении этого кубита мы получим 0 со стопроцентной вероятностью (предполагается, что по умолчанию унитарная операция тождественна; в реальных системах это не всегда так).

Приведем для объяснения два примера из квантовой механики: 1) фотон находится в состоянии суперпозиции двух поляризаций. Это состояние есть вектор в двумерной плоскости, систему координат в которой можно представлять как две перпендикулярные оси, так что и есть проекции на эти оси; измерение раз и навсегда коллапсирует состояние фотона в одно из состояний или , причем вероятность коллапса равна квадрату соответствующей проекции. Полная вероятность получается по теореме Пифагора.

Перейдем к системе из двух кубитов. Измерение каждого из них может дать 0 или 1. Поэтому у системы есть 4 классических состояния: 00, 01, 10 и 11. Аналогичные им базовые квантовые состояния: . И наконец, общее квантовое состояние системы имеет вид . Теперь |a|² — вероятность измерить 00 и т. д. Отметим, что |a|²+|b|²+|c|²+|d|²=1 как полная вероятность.

Если мы измерим только первый кубит квантовой системы, находящейся в состоянии , у нас получится:

  1. С вероятностью первый кубит перейдет в состояние а второй — в состояние , а
  2. С вероятностью первый кубит перейдет в состояние а второй — в состояние .

В первом случае измерение даст состояние , во втором — состояние

Мы снова видим, что результат такого измерения невозможно записать как вектор в гильбертовом пространстве состояний. Такое состояние, в котором участвует наше незнание о том, какой же результат получится на первом кубите, называют смешанным состоянием. В нашем случае такое смешанное состояние называют проекцией исходного состояния на второй кубит, и записывают в виде матрицы плотности вида где матрица плотности состояния определяется как .

В общем случае системы из L кубитов, у неё 2L классических состояний (00000…(L-нулей), …00001(L-цифр), … , 11111…(L-единиц)), каждое из которых может быть измерено с вероятностями 0—100 %.

Таким образом, одна операция над группой кубитов затрагивает все значения, которые она может принимать, в отличие от классического бита. Это и обеспечивает беспрецедентный параллелизм вычислений.

Вычисление

Упрощённая схема вычисления на квантовом компьютере выглядит так: берется система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством унитарных преобразований, выполняющих те или иные логические операции. В конце измеряется значение, и это результат работы компьютера. Роль проводов классического компьютера играют кубиты, а роль логических блоков классического компьютера играют унитарные преобразования. Такая концепция квантового процессора и квантовых логических вентилей была предложена в 1989 году Дэвидом Дойчем. Также Дэвид Дойч в 1995 году нашёл универсальный логический блок, с помощью которого можно выполнять любые квантовые вычисления.

Оказывается, что для построения любого вычисления достаточно двух базовых операций. Квантовая система дает результат, только с некоторой вероятностью являющийся правильным. Но за счет небольшого увеличения операций в алгоритме можно сколь угодно приблизить вероятность получения правильного результата к единице.

С помощью базовых квантовых операций можно симулировать работу обычных логических элементов, из которых сделаны обычные компьютеры. Поэтому любую задачу, которая решена сейчас, квантовый компьютер решит, и почти за такое же время. Следовательно, новая схема вычислений будет не слабее нынешней.

Чем же квантовый компьютер лучше классического? Большая часть современных ЭВМ работают по такой же схеме: n бит памяти хранят состояние и каждый такт времени изменяются процессором. В квантовом случае система из n кубитов находится в состоянии, являющимся суперпозицией всех базовых состояний, поэтому изменение системы касается всех 2n базовых состояний одновременно. Теоретически новая схема может работать намного (в экспоненциальное число раз) быстрее классической. Практически (квантовый) алгоритм Гровера поиска в базе данных показывает квадратичный прирост мощности против классических алгоритмов

Алгоритмы

Главная статья Квантовый алгоритм
  • Алгоритм Гровера позволяет найти решение уравнения за время .
  • Алгоритм Шора позволяет разложить натуральное число n на простые множители за полиномиальное от log(n) время.
  • Алгоритм Залки — Визнера позволяет моделировать унитарную эволюцию квантовой системы частиц за почти линейное время с использованием кубит.
  • Алгоритм Дойча — Джоза позволяет «за одно вычисление» определить, является ли функция двоичной переменной f(n) постоянной (f1(n) = 0, f2(n) = 1 независимо от n) или «сбалансированной» (f3(0) = 0, f3(1) = 1; f4(0) = 1, f4(1) = 0).
  • Алгоритм Саймона решает проблему чёрного ящика экспоненциально быстрее, чем любой классический алгоритм, включая вероятностные алгоритмы.

Было показано, что не для всякого алгоритма возможно «квантовое ускорение». Более того, возможность получения квантового ускорения для произвольного классического алгоритма является большой редкостью[6].

Квантовая телепортация

Алгоритм телепортации реализует точный перенос состояния одного кубита (или системы) на другой. В простейшей схеме используются 3 кубита: телепортируемый кубит и запутанная пара, один кубит которой находится на другой стороне. Отметим, что в результате работы алгоритма первоначальное состояние источника разрушится — это пример действия общего принципа невозможности клонирования — невозможно создать точную копию квантового состояния, не разрушив оригинал. Не получится скопировать произвольное состояние, и телепортация — замена этой операции.

Телепортация позволяет передавать квантовое состояние системы с помощью обычных классических каналов связи. Таким образом, можно, в частности, получить связанное состояние системы, состоящей из подсистем, удаленных на большое расстояние.

Применение квантовых компьютеров

Специфика применения

Может показаться, что квантовый компьютер — это разновидность аналоговой вычислительной машины. Но это не так: по своей сути это цифровое устройство, но с аналоговой природой.

Основные проблемы, связанные с созданием и применением квантовых компьютеров:

  • необходимо обеспечить высокую точность измерений;
  • внешние воздействия могут разрушить квантовую систему или внести в неё искажения.

Приложения к криптографии

Благодаря огромной скорости разложения на простые множители, квантовый компьютер позволит расшифровывать сообщения, зашифрованные при помощи популярного асимметричного криптографического алгоритма RSA. До сих пор этот алгоритм считается сравнительно надёжным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Для того, например, чтобы получить доступ к кредитной карте, нужно разложить на два простых множителя число длиной в сотни цифр. Даже для самых быстрых современных компьютеров выполнение этой задачи заняло бы больше времени, чем возраст Вселенной, в сотни раз. Благодаря алгоритму Шора эта задача становится вполне осуществимой, если квантовый компьютер будет построен.

Применение идей квантовой механики уже открыли новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений[7]. Прототипы систем подобного рода находятся на стадии разработки[8].

Физические реализации квантовых компьютеров

Построение квантового компьютера в виде реального физического прибора является фундаментальной задачей физики XXI века. В настоящее время построены только ограниченные его варианты (в пределах 10 кубит). Вопрос о том, до какой степени возможно масштабирование такого устройства, является предметом новой интенсивно развивающейся области — многочастичной квантовой механики. Центральным здесь является вопрос о природе декогерентности (точнее, о коллапсе волновой функции), который пока остается открытым. Различные трактовки этого процесса можно найти в книгах[9][10][11].

История

На рубеже 21 века во многих научных лабораториях были созданы однокубитные квантовые процессоры (по существу, управляемые двухуровневые системы, о которых можно было предполагать возможность масштабирования на много кубитов). Очень скоро был реализован жидкостной ЯМР — квантовый компьютер (до 7 кубит, IBM, И. Чанг)[источник не указан 578 дней]. В 2005 году группой Ю. Пашкина (NEC, Япония) был построен двухкубитый квантовый процессор на сверхпроводящих элементах[источник не указан 578 дней]. Примерно в это время до десятка кубит было сделано на ионах в ловушках Пауля (Д. Винланд, П. Золлер, Р. Блатт)[источник не указан 578 дней].

  • В России разработкой вопросов физической реализации квантового компьютера занимается ряд исследовательских групп, ядро которых составляет школа академика К. А. Валиева: Физико-технологический институт РАН (лаборатория ФКК), МГУ (ф-т ВМК, кафедра КИ, физический ф-т, кафедра КЭ), МФТИ, МИФИ, МИЭТ, КГУ, ЯрГУ, а также ряд сотрудников институтов РАН (ИТФ, ИФТТ и др.) и вузов [источник не указан 578 дней].

Главные технологии для квантового компьютера:

  1. Твердотельные квантовые точки на полупроводниках: в качестве логических кубитов используются либо зарядовые состояния (нахождение или отсутствие электрона в определенной точке) либо направление электронного и/или ядерного спина в данной квантовой точке. Управление через внешние потенциалы или лазерным импульсом.
  2. Сверхпроводящие элементы (джозефсоновские переходы, сквиды и др.). В качестве логических кубитов используются присутствие/отсутствие куперовской пары в определенной пространственной области. Управление: внешний потенциал/магнитный поток.
  3. Ионы в вакуумных ловушках Пауля (или атомы в оптических ловушках). В качестве логических кубитов используются основное/возбужденное состояния внешнего электрона в ионе. Управление: классические лазерные импульсы вдоль оси ловушки или направленные на индивидуальные ионы + колебательные моды ионного ансамбля.
  4. Смешанные технологии: использование заранее приготовленных запутанных состояний фотонов для управления атомными ансамблями или как элементы управления классическими вычислительными сетями.
  • В феврале 2012 года компания IBM сообщила о достижении значительного прогресса в физической реализации квантовых вычислений с использованием сверхпроводящих кубитов которые, по мнению компании, позволят начать работы по созданию квантового компьютера[13].
  • В апреле 2012 года группе исследователей из Южно-Калифорнийского университета, Технологического университета Дельфта, университета штата Айова, и Калифорнийского университета, Санта-Барбара, удалось построить двухкубитный квантовый компьютер на кристалле алмаза с примесями. Компьютер функционирует при комнатной температуре и теоретически является масштабируемым. В качестве двух логических кубитов использовались направления спина электрона и ядра азота соответственно. Для обеспечения защиты от влияния декогерентности была разработана целая система, которая формировала импульс микроволнового излучения определенной длительности и формы. При помощи этого компьютера реализован алгоритм Гровера для четырёх вариантов перебора, что позволило получить правильный ответ с первой попытки в 95% случаев[14][15].

Пример реализации операции CNOT на зарядовых состояниях электрона в квантовых точках

Один кубит можно представить в виде электрона в двух ямном потенциале, так что означает нахождение его в левой яме, а — в правой. Это называется кубит на зарядовых состояниях. Общий вид квантового состояния такого электрона: . Зависимость его от времени есть зависимость от времени амплитуд ; она задается уравнением Шредингера вида где гамильтониан имеет в силу одинакового вида ям и эрмитовости вид для некоторой константы , так что вектор есть собственный вектор этого гамильтониана с собственным значением 0 (так называемое основное состояние), а — собственный вектор со значением (первое возбужденное состояние). Никаких других собственных состояний (с определенным значением энергии) здесь нет, так как наша задача двумерная. Поскольку каждое состояние переходит за время в состояние , то для реализации операции NOT (перехода и наоборот достаточно просто подождать время . То есть гейт NOT дается просто естественной квантовой эволюцией нашего кубита при условии, что внешний потенциал задает двух ямную структуру; это делается с помощью технологии квантовых точек.

Для реализации CNOT надо расположить два кубита (то есть две пары ям) перпендикулярно друг другу, и в каждой из них расположить по отдельному электрону. Тогда константа для первой (управляемой) пары ям будет зависеть от того, в каком состоянии находится электрон во второй (управляющей) паре ям: если ближе к первой, будет больше, если дальше — меньше. Поэтому состояние электрона во второй паре определяет время совершения NOT в первой яме, что позволяет снова выбрать нужную длительность времени для производства операции CNOT.

Эта схема очень приблизительная и идеализирована; реальные схемы сложнее и их реализация представляет вызов экспериментальной физике.

Заявления D-Wave

Канадская компания D-Wave заявила в феврале 2007 года о создании образца квантового компьютера, состоящего из 16 кубит (устройство получило название Orion[16][17]). Информация об этом устройстве не отвечала требованиям достоверного научного сообщения, поэтому новость не получила научного признания. Более того, дальнейшие планы компании — создать уже в ближайшем будущем 1024-кубитный компьютер — вызвали скепсис у членов экспертного сообщества[18].

В ноябре 2007 года та же компания D-Wave продемонстрировала работу образца 28-кубитного компьютера (устройство получило название Leda) онлайн на конференции, посвященной суперкомпьютерам[19]. Данная демонстрация также вызвала скепсис.

В январе 2008 года компания привлекла 17 млн долларов США от международных инвесторов на поддержание своей деятельности (англ. product development, operations and business development activity).[20]

В декабре 2008 года компания организовала проект распределенных вычислений AQUA@home (Adiabatic QUantum Algorithms)[21], в котором тестируются алгоритмы, оптимизирующие вычисления на адиабатических сверхпроводящих квантовых компьютерах D-Wave.

8 декабря 2009 года на конференции NIPS (англ.) научный сотрудник Google Hartmut Neven (англ.) продемонстрировал на компьютере D-Wave работу программы распознавания образов.[22]

Более подробно о компании D-Wave Systems Inc., проводящихся в ней исследованиях и последних результатах можно узнать в блоге сооснователя компании Geordie Rose.[23]

11 мая 2011 года представлен компьютер D-Wave One, созданный на базе 128-кубитного процессора.[24]

С 20 мая 2011 года D-Wave Systems продает за $ 11 млн квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу — дискретную оптимизацию.[25] Компьютер расположен в вычислительном центре Южно-Калифорнийского университета (университетский городок института информатики в Марина-дель-Рэе (англ. Marina del Rey)). Его рабочая температура составляет 20 мкК, компьютер тщательно экранирован от внешних электрических и магнитных полей.[26][27]

25 мая 2011 года Lockheed Martin подписала многолетний контракт с D-Wave Systems, касающийся выполнения сложных вычислительных задач на квантовых процессорах. Контракт также включает в себя техническое обслуживание, сопутствующие услуги и покупку квантового компьютера D-Wave One.[28]

В то же время, квантовые компьютеры D-Wave Systems подвергаются критике со стороны некоторых исследователей. Так, профессор Массачусетского Технологического Института Скотт Ааронсон считает, что D-Wave пока не смогла доказать ни того, что ее компьютер решает какие-либо задачи быстрее, чем обычный компьютер, ни того, что используемые 128 кубитов удается ввести в состоянии квантовой запутанности. Если же кубиты не находятся в запутанном состоянии, то это не квантовый компьютер[29].

23 августа 2012 года было объявлено об успешном решении задачи о нахождении трехмерной формы белка по известной последовательности аминокислот в его составе с использованием 115 кубитов квантового компьютера D-Wave One из 128 имеющихся методом квантового отжига. [30]

См. также

Примечания

  1. ↑ Решение "тяжелой" задачи потребовало 84 кубитов квантового компьютера и всего 270 миллисекунд вычислительного времени.
  2. ↑ Feynman, R.P. Simulating physics with computers // International Journal of Theoretical Physics. — 1982. — V. 21. — Number 6. — P. 467—488 [1]
  3. ↑ (1982) «Quantum mechanical hamiltonian models of turing machines». Journal of Statistical Physics 29 (3): 515–546. DOI:10.1007/BF01342185. Bibcode: 1982JSP....29..515B.
  4. ↑ Quantum entanglement
  5. ↑ Холево, А. КВАНТОВАЯ ИНФОРМАТИКА: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ // В МИРЕ НАУКИ. — июль 2008. — № 7
  6. ↑ Ozhigov Y. Quantum Computers Speed Up Classical with Probability Zero // Chaos Solitons and Fractals, 10 (1999) 1707—1714 [2]
  7. ↑ Валиев, К. А. Квантовая информатика: компьютеры, связь и криптография // Вестник российской академии наук. — 2000. — Том 70. — № 8. — С. 688—695
  8. ↑ Созданы прототипы квантовых компьютеров
  9. ↑ Р. Пенроуз, Путь к Реальности [3]
  10. ↑ X.Бройер, Ф.Петруччионе, Теория открытых квантовых систем [4]
  11. ↑ Ю. И. Ожигов, Конструктивная физика [5]
  12. ↑ First universal programmable quantum computer unveiled
  13. ↑ IBM сообщает об успехах в создании квантового компьютера
  14. ↑ Дефекты кристаллической решетки алмаза позволили создать "блестающий" квантовый компьютер
  15. ↑ Quantum computer built inside diamond - article with reference to the original work in Nature
  16. ↑ D-Wave Orion: первый квантовый компьютер
  17. ↑ Firm claims first "commercial" quantum computer
  18. ↑ D-Wave восхитила журналистов и возмутила ученых
  19. ↑ Сайт компании D-Wave
  20. ↑ D-Wave Systems: News, 31.01.2008
  21. ↑ Сайт AQUA@home
  22. ↑ Google: Machine Learning with Quantum Algorithms (англ.)
  23. ↑ D-Wave Systems: rose.blog (англ.)
  24. ↑ D-Wave Systems: official site (англ.)
  25. ↑ First Ever Commercial Quantum Computer Now Available for $10 Million. Архивировано из первоисточника 3 февраля 2012. Проверено 25 мая 2011.
  26. ↑ Теперь они нас посчитают / наука / Компьютерные блоги студентов ВМК. Физические основы ЭВМ
  27. ↑ USC — Viterbi School of Engineering — Operational Quantum Computing Center Established at USC
  28. ↑ Lockheed Martin Signs Contract with D-Wave Systems. Архивировано из первоисточника 3 февраля 2012.Retrieved 2011-05-25
  29. ↑ С.Ааронсон "Моя поездка в D-Wave: по ту сторону мясного сэндвича"
  30. ↑ Задача об укладке белка решена квантовым способом - Наука и техника - Квантовая механика - Квантовые компьютеры - Компьюлента

Литература

Статьи

  • Опенов Л. А. Спиновые логические вентили на основе квантовых точек // Соросовский образовательный журнал, 2000, т. 6, № 3, с. 93-98;
  • G. Brassard, I. Chuang, S. Lloyd, C. Monroe. Quantum computing // PNAS. — 1998. — Vol. 95. — P. 11032—11033.
  • Килин С. Я. Квантовая информация // УФН. — 1999. — Т. 169. — C. 507—527.
  • Валиев К. А. Квантовые компьютеры: можно ли их сделать «большими»? // УФН. — 1999. — Т. 169. — C. 691—694.
  • A. M. Steane, E. G. Rieffel. Beyond Bits: The Future of Quantum Information Processing // IEEE Computer. — January 2000. — P. 38—45.
  • Kilin S.Ya. Quanta and information // Progress in optics. — 2001. — Vol. 42. — P. 1-90.
  • Валиев К. А. Квантовые компьютеры и квантовые вычисления // УФН. — 2005. — Т. 175. — C. 3—39.
  • T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien. Quantum Computing // Nature. — 2010. — Vol. 464. — P. 45—53.
  • Квантовый компьютер и квантовые вычисления. Глав. ред. В.А. Садовничий, Ижевск: ИЖТ, 1999. - 288с.

Книги

  • Дойч Д. Структура реальности. — Ижевск НИЦ «Регулярная и хаотическая динамика», 2001, 400 с.
  • Квантовые вычисления за и против / Под ред. Садовничего В. А.
  • Квантовый компьютер и квантовые вычисления / Под ред. Садовничего В. А.
  • Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. — М.—Ижевск: Регулярная и хаотическая динамика, 2004. — 320 с. ISBN 5-93972-024-2
  • Кайе Ф., Лафламм Р., Моска М. Введение в квантовые вычисления. — Ижевск: РХД, 2009. — 360 с.
  • Китаев А., Шень А., Вялый М. Классические и квантовые вычисления. — М.: МЦНМО, 1999. — 192 с.
  • Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. — М.: Мир, 2006. — 824 с.
  • Ожигов Ю. И. Квантовые вычисления.
  • Ожигов Ю. И. Конструктивная физика.
  • Прескилл Дж. Квантовая информация и квантовые вычисления (в 2-х томах). — Ижевск: РХД, 2008-2011. — 776 с.

Ссылки

xzsad.academic.ru

Квантовый компьютер - это... Что такое Квантовый компьютер?

3 кубита квантового регистра против 3 битов обычного

Квантовый компьютер — вычислительное устройство, работающее на основе квантовой механики. Квантовый компьютер принципиально отличается от классических компьютеров, работающих на основе классической механики. Полномасштабный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на переднем крае современной физики. Ограниченные (до 128[1]кубитов) квантовые компьютеры уже построены; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Введение

Одна из первых моделей квантового компьютера была предложена[2]Ричардом Фейнманом в 1981 году. Вскоре П. Бениоф описал теоретические основы построения такого компьютера[3].

Необходимость в квантовом компьютере возникает тогда, когда мы пытаемся исследовать методами физики сложные многочастичные системы, подобные биологическим. Пространство квантовых состояний таких систем растет как экспонента от числа составляющих их реальных частиц, что делает невозможным моделирование их поведения на классических компьютерах уже для . Поэтому Фейнман и предложил построение квантового компьютера.

Квантовый компьютер использует для вычисления не обычные (классические) алгоритмы, а процессы квантовой природы, так называемые квантовые алгоритмы, использующие квантовомеханические эффекты, такие как квантовый параллелизм и квантовая запутанность.

Если классический процессор в каждый момент может находиться ровно в одном из состояний , (обозначения Дирака) то квантовый процессор в каждый момент находится одновременно во всех этих базисных состояниях, при этом в каждом состоянии — со своей комплексной амплитудой . Это квантовое состояние называется «квантовой суперпозицией» данных классических состояний и обозначается как

Базисные состояния могут иметь и более сложный вид. Тогда квантовую суперпозицию можно проиллюстрировать, например, так: «Вообразите атом, который мог бы подвергнуться радиоактивному распаду в определённый промежуток времени. Или не мог бы. Мы можем ожидать, что у этого атома есть только два возможных состояния: „распад“ и „не распад“, <…> но в квантовой механике у атома может быть некое объединённое состояние — „распада — не распада“, то есть ни то, ни другое, а как бы между. Вот это состояние и называется „суперпозицией“»[4].

Квантовое состояние может изменяться во времени двумя принципиально различными путями:

  1. Унитарная квантовая операция (квантовый вентиль, англ. quantum gate), в дальнейшем просто операция.
  2. Измерение (наблюдение).

Если классические состояния есть пространственные положения группы электронов в квантовых точках, управляемых внешним полем , то унитарная операция есть решение уравнения Шредингера для этого потенциала.

Измерение есть случайная величина, принимающая значения с вероятностями соответственно. В этом состоит квантово-механическое правило Борна (англ.). Измерение есть единственная возможность получения информации о квантовом состоянии, так как значения нам непосредственно не доступны. Измерение квантового состояния не может быть сведено к унитарной шрёдингеровской эволюции, так как, в отличие от последней, оно необратимо. При измерении происходит так называемый коллапс волновой функции , физическая природа которого до конца не ясна. Спонтанные вредоносные измерения состояния в ходе вычисления ведут к декогерентности, то есть отклонению от унитарной эволюции, что является главным препятствием при построении квантового компьютера (см. Физические реализации квантовых компьютеров).

Квантовое вычисление есть контролируемая классическим управляющим компьютером последовательность унитарных операций простого вида (над одним, двумя или тремя кубитами). В конце вычисления состояние квантового процессора измеряется, что и дает искомый результат вычисления.

Содержание понятия «квантовый параллелизм» в вычислении может быть раскрыто так: «Данные в процессе вычислений представляют собой квантовую информацию, которая по окончании процесса преобразуется в классическую путём измерения конечного состояния квантового регистра. Выигрыш в квантовых алгоритмах достигается за счёт того, что при применении одной квантовой операции большое число коэффициентов суперпозиции квантовых состояний, которые в виртуальной форме содержат классическую информацию, преобразуется одновременно»[5].

Теория

Кубиты

Идея квантовых вычислений состоит в том, что квантовая система из L двухуровневых квантовых элементов (квантовых битов, кубитов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, пространством состояний такого квантового регистра является 2L-мерное гильбертово пространство. Операция в квантовых вычислениях соответствует повороту вектора состояния регистра в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубит фактически задействует одновременно 2L классических состояний.

Физическими системами, реализующими кубиты, могут быть любые объекты, имеющие два квантовых состояния: поляризационные состояния фотонов, электронные состояния изолированных атомов или ионов, спиновые состояния ядер атомов, и т. д.

Один классический бит может находиться в одном и только в одном из состояний или . Квантовый бит, называемый кубитом, находится в состоянии , так что |a|² и |b|² — вероятности получить 0 или 1 соответственно при измерении этого состояния; ; |a|² + |b|² = 1. Сразу после измерения кубит переходит в базовое квантовое состояние, соответствующее классическому результату.

Пример:

Имеется кубит в квантовом состоянии В этом случае, вероятность получить при измерении
0 составляет (4/5)²=16/25 = 64 %,
1 (-3/5)²=9/25 = 36 %.
В данном случае, при измерении мы получили 0 с 64 % вероятностью. В результате измерения кубит переходит в новое квантовое состояние , то есть, при следующем измерении этого кубита мы получим 0 со стопроцентной вероятностью (предполагается, что по умолчанию унитарная операция тождественна; в реальных системах это не всегда так).

Приведем для объяснения два примера из квантовой механики: 1) фотон находится в состоянии суперпозиции двух поляризаций. Это состояние есть вектор в двумерной плоскости, систему координат в которой можно представлять как две перпендикулярные оси, так что и есть проекции на эти оси; измерение раз и навсегда коллапсирует состояние фотона в одно из состояний или , причем вероятность коллапса равна квадрату соответствующей проекции. Полная вероятность получается по теореме Пифагора.

Перейдем к системе из двух кубитов. Измерение каждого из них может дать 0 или 1. Поэтому у системы есть 4 классических состояния: 00, 01, 10 и 11. Аналогичные им базовые квантовые состояния: . И наконец, общее квантовое состояние системы имеет вид . Теперь |a|² — вероятность измерить 00 и т. д. Отметим, что |a|²+|b|²+|c|²+|d|²=1 как полная вероятность.

Если мы измерим только первый кубит квантовой системы, находящейся в состоянии , у нас получится:

  1. С вероятностью первый кубит перейдет в состояние а второй — в состояние , а
  2. С вероятностью первый кубит перейдет в состояние а второй — в состояние .

В первом случае измерение даст состояние , во втором — состояние

Мы снова видим, что результат такого измерения невозможно записать как вектор в гильбертовом пространстве состояний. Такое состояние, в котором участвует наше незнание о том, какой же результат получится на первом кубите, называют смешанным состоянием. В нашем случае такое смешанное состояние называют проекцией исходного состояния на второй кубит, и записывают в виде матрицы плотности вида где матрица плотности состояния определяется как .

В общем случае системы из L кубитов, у неё 2L классических состояний (00000…(L-нулей), …00001(L-цифр), … , 11111…(L-единиц)), каждое из которых может быть измерено с вероятностями 0—100 %.

Таким образом, одна операция над группой кубитов затрагивает все значения, которые она может принимать, в отличие от классического бита. Это и обеспечивает беспрецедентный параллелизм вычислений.

Вычисление

Упрощённая схема вычисления на квантовом компьютере выглядит так: берется система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством унитарных преобразований, выполняющих те или иные логические операции. В конце измеряется значение, и это результат работы компьютера. Роль проводов классического компьютера играют кубиты, а роль логических блоков классического компьютера играют унитарные преобразования. Такая концепция квантового процессора и квантовых логических вентилей была предложена в 1989 году Дэвидом Дойчем. Также Дэвид Дойч в 1995 году нашёл универсальный логический блок, с помощью которого можно выполнять любые квантовые вычисления.

Оказывается, что для построения любого вычисления достаточно двух базовых операций. Квантовая система дает результат, только с некоторой вероятностью являющийся правильным. Но за счет небольшого увеличения операций в алгоритме можно сколь угодно приблизить вероятность получения правильного результата к единице.

С помощью базовых квантовых операций можно симулировать работу обычных логических элементов, из которых сделаны обычные компьютеры. Поэтому любую задачу, которая решена сейчас, квантовый компьютер решит, и почти за такое же время. Следовательно, новая схема вычислений будет не слабее нынешней.

Чем же квантовый компьютер лучше классического? Большая часть современных ЭВМ работают по такой же схеме: n бит памяти хранят состояние и каждый такт времени изменяются процессором. В квантовом случае система из n кубитов находится в состоянии, являющимся суперпозицией всех базовых состояний, поэтому изменение системы касается всех 2n базовых состояний одновременно. Теоретически новая схема может работать намного (в экспоненциальное число раз) быстрее классической. Практически (квантовый) алгоритм Гровера поиска в базе данных показывает квадратичный прирост мощности против классических алгоритмов

Алгоритмы

Главная статья Квантовый алгоритм
  • Алгоритм Гровера позволяет найти решение уравнения за время .
  • Алгоритм Шора позволяет разложить натуральное число n на простые множители за полиномиальное от log(n) время.
  • Алгоритм Залки — Визнера позволяет моделировать унитарную эволюцию квантовой системы частиц за почти линейное время с использованием кубит.
  • Алгоритм Дойча — Джоза позволяет «за одно вычисление» определить, является ли функция двоичной переменной f(n) постоянной (f1(n) = 0, f2(n) = 1 независимо от n) или «сбалансированной» (f3(0) = 0, f3(1) = 1; f4(0) = 1, f4(1) = 0).
  • Алгоритм Саймона решает проблему чёрного ящика экспоненциально быстрее, чем любой классический алгоритм, включая вероятностные алгоритмы.

Было показано, что не для всякого алгоритма возможно «квантовое ускорение». Более того, возможность получения квантового ускорения для произвольного классического алгоритма является большой редкостью[6].

Квантовая телепортация

Алгоритм телепортации реализует точный перенос состояния одного кубита (или системы) на другой. В простейшей схеме используются 3 кубита: телепортируемый кубит и запутанная пара, один кубит которой находится на другой стороне. Отметим, что в результате работы алгоритма первоначальное состояние источника разрушится — это пример действия общего принципа невозможности клонирования — невозможно создать точную копию квантового состояния, не разрушив оригинал. Не получится скопировать произвольное состояние, и телепортация — замена этой операции.

Телепортация позволяет передавать квантовое состояние системы с помощью обычных классических каналов связи. Таким образом, можно, в частности, получить связанное состояние системы, состоящей из подсистем, удаленных на большое расстояние.

Применение квантовых компьютеров

Специфика применения

Может показаться, что квантовый компьютер — это разновидность аналоговой вычислительной машины. Но это не так: по своей сути это цифровое устройство, но с аналоговой природой.

Основные проблемы, связанные с созданием и применением квантовых компьютеров:

  • необходимо обеспечить высокую точность измерений;
  • внешние воздействия могут разрушить квантовую систему или внести в неё искажения.

Приложения к криптографии

Благодаря огромной скорости разложения на простые множители, квантовый компьютер позволит расшифровывать сообщения, зашифрованные при помощи популярного асимметричного криптографического алгоритма RSA. До сих пор этот алгоритм считается сравнительно надёжным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Для того, например, чтобы получить доступ к кредитной карте, нужно разложить на два простых множителя число длиной в сотни цифр. Даже для самых быстрых современных компьютеров выполнение этой задачи заняло бы больше времени, чем возраст Вселенной, в сотни раз. Благодаря алгоритму Шора эта задача становится вполне осуществимой, если квантовый компьютер будет построен.

Применение идей квантовой механики уже открыли новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений[7]. Прототипы систем подобного рода находятся на стадии разработки[8].

Физические реализации квантовых компьютеров

Построение квантового компьютера в виде реального физического прибора является фундаментальной задачей физики XXI века. В настоящее время построены только ограниченные его варианты (в пределах 10 кубит). Вопрос о том, до какой степени возможно масштабирование такого устройства, является предметом новой интенсивно развивающейся области — многочастичной квантовой механики. Центральным здесь является вопрос о природе декогерентности (точнее, о коллапсе волновой функции), который пока остается открытым. Различные трактовки этого процесса можно найти в книгах[9][10][11].

История

На рубеже 21 века во многих научных лабораториях были созданы однокубитные квантовые процессоры (по существу, управляемые двухуровневые системы, о которых можно было предполагать возможность масштабирования на много кубитов). Очень скоро был реализован жидкостной ЯМР — квантовый компьютер (до 7 кубит, IBM, И. Чанг)[источник не указан 578 дней]. В 2005 году группой Ю. Пашкина (NEC, Япония) был построен двухкубитый квантовый процессор на сверхпроводящих элементах[источник не указан 578 дней]. Примерно в это время до десятка кубит было сделано на ионах в ловушках Пауля (Д. Винланд, П. Золлер, Р. Блатт)[источник не указан 578 дней].

  • В России разработкой вопросов физической реализации квантового компьютера занимается ряд исследовательских групп, ядро которых составляет школа академика К. А. Валиева: Физико-технологический институт РАН (лаборатория ФКК), МГУ (ф-т ВМК, кафедра КИ, физический ф-т, кафедра КЭ), МФТИ, МИФИ, МИЭТ, КГУ, ЯрГУ, а также ряд сотрудников институтов РАН (ИТФ, ИФТТ и др.) и вузов [источник не указан 578 дней].

Главные технологии для квантового компьютера:

  1. Твердотельные квантовые точки на полупроводниках: в качестве логических кубитов используются либо зарядовые состояния (нахождение или отсутствие электрона в определенной точке) либо направление электронного и/или ядерного спина в данной квантовой точке. Управление через внешние потенциалы или лазерным импульсом.
  2. Сверхпроводящие элементы (джозефсоновские переходы, сквиды и др.). В качестве логических кубитов используются присутствие/отсутствие куперовской пары в определенной пространственной области. Управление: внешний потенциал/магнитный поток.
  3. Ионы в вакуумных ловушках Пауля (или атомы в оптических ловушках). В качестве логических кубитов используются основное/возбужденное состояния внешнего электрона в ионе. Управление: классические лазерные импульсы вдоль оси ловушки или направленные на индивидуальные ионы + колебательные моды ионного ансамбля.
  4. Смешанные технологии: использование заранее приготовленных запутанных состояний фотонов для управления атомными ансамблями или как элементы управления классическими вычислительными сетями.
  • В феврале 2012 года компания IBM сообщила о достижении значительного прогресса в физической реализации квантовых вычислений с использованием сверхпроводящих кубитов которые, по мнению компании, позволят начать работы по созданию квантового компьютера[13].
  • В апреле 2012 года группе исследователей из Южно-Калифорнийского университета, Технологического университета Дельфта, университета штата Айова, и Калифорнийского университета, Санта-Барбара, удалось построить двухкубитный квантовый компьютер на кристалле алмаза с примесями. Компьютер функционирует при комнатной температуре и теоретически является масштабируемым. В качестве двух логических кубитов использовались направления спина электрона и ядра азота соответственно. Для обеспечения защиты от влияния декогерентности была разработана целая система, которая формировала импульс микроволнового излучения определенной длительности и формы. При помощи этого компьютера реализован алгоритм Гровера для четырёх вариантов перебора, что позволило получить правильный ответ с первой попытки в 95% случаев[14][15].

Пример реализации операции CNOT на зарядовых состояниях электрона в квантовых точках

Один кубит можно представить в виде электрона в двух ямном потенциале, так что означает нахождение его в левой яме, а — в правой. Это называется кубит на зарядовых состояниях. Общий вид квантового состояния такого электрона: . Зависимость его от времени есть зависимость от времени амплитуд ; она задается уравнением Шредингера вида где гамильтониан имеет в силу одинакового вида ям и эрмитовости вид для некоторой константы , так что вектор есть собственный вектор этого гамильтониана с собственным значением 0 (так называемое основное состояние), а — собственный вектор со значением (первое возбужденное состояние). Никаких других собственных состояний (с определенным значением энергии) здесь нет, так как наша задача двумерная. Поскольку каждое состояние переходит за время в состояние , то для реализации операции NOT (перехода и наоборот достаточно просто подождать время . То есть гейт NOT дается просто естественной квантовой эволюцией нашего кубита при условии, что внешний потенциал задает двух ямную структуру; это делается с помощью технологии квантовых точек.

Для реализации CNOT надо расположить два кубита (то есть две пары ям) перпендикулярно друг другу, и в каждой из них расположить по отдельному электрону. Тогда константа для первой (управляемой) пары ям будет зависеть от того, в каком состоянии находится электрон во второй (управляющей) паре ям: если ближе к первой, будет больше, если дальше — меньше. Поэтому состояние электрона во второй паре определяет время совершения NOT в первой яме, что позволяет снова выбрать нужную длительность времени для производства операции CNOT.

Эта схема очень приблизительная и идеализирована; реальные схемы сложнее и их реализация представляет вызов экспериментальной физике.

Заявления D-Wave

Канадская компания D-Wave заявила в феврале 2007 года о создании образца квантового компьютера, состоящего из 16 кубит (устройство получило название Orion[16][17]). Информация об этом устройстве не отвечала требованиям достоверного научного сообщения, поэтому новость не получила научного признания. Более того, дальнейшие планы компании — создать уже в ближайшем будущем 1024-кубитный компьютер — вызвали скепсис у членов экспертного сообщества[18].

В ноябре 2007 года та же компания D-Wave продемонстрировала работу образца 28-кубитного компьютера (устройство получило название Leda) онлайн на конференции, посвященной суперкомпьютерам[19]. Данная демонстрация также вызвала скепсис.

В январе 2008 года компания привлекла 17 млн долларов США от международных инвесторов на поддержание своей деятельности (англ. product development, operations and business development activity).[20]

В декабре 2008 года компания организовала проект распределенных вычислений AQUA@home (Adiabatic QUantum Algorithms)[21], в котором тестируются алгоритмы, оптимизирующие вычисления на адиабатических сверхпроводящих квантовых компьютерах D-Wave.

8 декабря 2009 года на конференции NIPS (англ.) научный сотрудник Google Hartmut Neven (англ.) продемонстрировал на компьютере D-Wave работу программы распознавания образов.[22]

Более подробно о компании D-Wave Systems Inc., проводящихся в ней исследованиях и последних результатах можно узнать в блоге сооснователя компании Geordie Rose.[23]

11 мая 2011 года представлен компьютер D-Wave One, созданный на базе 128-кубитного процессора.[24]

С 20 мая 2011 года D-Wave Systems продает за $ 11 млн квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу — дискретную оптимизацию.[25] Компьютер расположен в вычислительном центре Южно-Калифорнийского университета (университетский городок института информатики в Марина-дель-Рэе (англ. Marina del Rey)). Его рабочая температура составляет 20 мкК, компьютер тщательно экранирован от внешних электрических и магнитных полей.[26][27]

25 мая 2011 года Lockheed Martin подписала многолетний контракт с D-Wave Systems, касающийся выполнения сложных вычислительных задач на квантовых процессорах. Контракт также включает в себя техническое обслуживание, сопутствующие услуги и покупку квантового компьютера D-Wave One.[28]

В то же время, квантовые компьютеры D-Wave Systems подвергаются критике со стороны некоторых исследователей. Так, профессор Массачусетского Технологического Института Скотт Ааронсон считает, что D-Wave пока не смогла доказать ни того, что ее компьютер решает какие-либо задачи быстрее, чем обычный компьютер, ни того, что используемые 128 кубитов удается ввести в состоянии квантовой запутанности. Если же кубиты не находятся в запутанном состоянии, то это не квантовый компьютер[29].

23 августа 2012 года было объявлено об успешном решении задачи о нахождении трехмерной формы белка по известной последовательности аминокислот в его составе с использованием 115 кубитов квантового компьютера D-Wave One из 128 имеющихся методом квантового отжига. [30]

См. также

Примечания

  1. ↑ Решение "тяжелой" задачи потребовало 84 кубитов квантового компьютера и всего 270 миллисекунд вычислительного времени.
  2. ↑ Feynman, R.P. Simulating physics with computers // International Journal of Theoretical Physics. — 1982. — V. 21. — Number 6. — P. 467—488 [1]
  3. ↑ (1982) «Quantum mechanical hamiltonian models of turing machines». Journal of Statistical Physics 29 (3): 515–546. DOI:10.1007/BF01342185. Bibcode: 1982JSP....29..515B.
  4. ↑ Quantum entanglement
  5. ↑ Холево, А. КВАНТОВАЯ ИНФОРМАТИКА: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ // В МИРЕ НАУКИ. — июль 2008. — № 7
  6. ↑ Ozhigov Y. Quantum Computers Speed Up Classical with Probability Zero // Chaos Solitons and Fractals, 10 (1999) 1707—1714 [2]
  7. ↑ Валиев, К. А. Квантовая информатика: компьютеры, связь и криптография // Вестник российской академии наук. — 2000. — Том 70. — № 8. — С. 688—695
  8. ↑ Созданы прототипы квантовых компьютеров
  9. ↑ Р. Пенроуз, Путь к Реальности [3]
  10. ↑ X.Бройер, Ф.Петруччионе, Теория открытых квантовых систем [4]
  11. ↑ Ю. И. Ожигов, Конструктивная физика [5]
  12. ↑ First universal programmable quantum computer unveiled
  13. ↑ IBM сообщает об успехах в создании квантового компьютера
  14. ↑ Дефекты кристаллической решетки алмаза позволили создать "блестающий" квантовый компьютер
  15. ↑ Quantum computer built inside diamond - article with reference to the original work in Nature
  16. ↑ D-Wave Orion: первый квантовый компьютер
  17. ↑ Firm claims first "commercial" quantum computer
  18. ↑ D-Wave восхитила журналистов и возмутила ученых
  19. ↑ Сайт компании D-Wave
  20. ↑ D-Wave Systems: News, 31.01.2008
  21. ↑ Сайт AQUA@home
  22. ↑ Google: Machine Learning with Quantum Algorithms (англ.)
  23. ↑ D-Wave Systems: rose.blog (англ.)
  24. ↑ D-Wave Systems: official site (англ.)
  25. ↑ First Ever Commercial Quantum Computer Now Available for $10 Million. Архивировано из первоисточника 3 февраля 2012. Проверено 25 мая 2011.
  26. ↑ Теперь они нас посчитают / наука / Компьютерные блоги студентов ВМК. Физические основы ЭВМ
  27. ↑ USC — Viterbi School of Engineering — Operational Quantum Computing Center Established at USC
  28. ↑ Lockheed Martin Signs Contract with D-Wave Systems. Архивировано из первоисточника 3 февраля 2012.Retrieved 2011-05-25
  29. ↑ С.Ааронсон "Моя поездка в D-Wave: по ту сторону мясного сэндвича"
  30. ↑ Задача об укладке белка решена квантовым способом - Наука и техника - Квантовая механика - Квантовые компьютеры - Компьюлента

Литература

Статьи

  • Опенов Л. А. Спиновые логические вентили на основе квантовых точек // Соросовский образовательный журнал, 2000, т. 6, № 3, с. 93-98;
  • G. Brassard, I. Chuang, S. Lloyd, C. Monroe. Quantum computing // PNAS. — 1998. — Vol. 95. — P. 11032—11033.
  • Килин С. Я. Квантовая информация // УФН. — 1999. — Т. 169. — C. 507—527.
  • Валиев К. А. Квантовые компьютеры: можно ли их сделать «большими»? // УФН. — 1999. — Т. 169. — C. 691—694.
  • A. M. Steane, E. G. Rieffel. Beyond Bits: The Future of Quantum Information Processing // IEEE Computer. — January 2000. — P. 38—45.
  • Kilin S.Ya. Quanta and information // Progress in optics. — 2001. — Vol. 42. — P. 1-90.
  • Валиев К. А. Квантовые компьютеры и квантовые вычисления // УФН. — 2005. — Т. 175. — C. 3—39.
  • T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien. Quantum Computing // Nature. — 2010. — Vol. 464. — P. 45—53.
  • Квантовый компьютер и квантовые вычисления. Глав. ред. В.А. Садовничий, Ижевск: ИЖТ, 1999. - 288с.

Книги

  • Дойч Д. Структура реальности. — Ижевск НИЦ «Регулярная и хаотическая динамика», 2001, 400 с.
  • Квантовые вычисления за и против / Под ред. Садовничего В. А.
  • Квантовый компьютер и квантовые вычисления / Под ред. Садовничего В. А.
  • Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. — М.—Ижевск: Регулярная и хаотическая динамика, 2004. — 320 с. ISBN 5-93972-024-2
  • Кайе Ф., Лафламм Р., Моска М. Введение в квантовые вычисления. — Ижевск: РХД, 2009. — 360 с.
  • Китаев А., Шень А., Вялый М. Классические и квантовые вычисления. — М.: МЦНМО, 1999. — 192 с.
  • Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. — М.: Мир, 2006. — 824 с.
  • Ожигов Ю. И. Квантовые вычисления.
  • Ожигов Ю. И. Конструктивная физика.
  • Прескилл Дж. Квантовая информация и квантовые вычисления (в 2-х томах). — Ижевск: РХД, 2008-2011. — 776 с.

Ссылки

3dic.academic.ru

Квантовый компьютер - это... Что такое Квантовый компьютер?

3 кубита квантового регистра против 3 битов обычного

Квантовый компьютер — вычислительное устройство, работающее на основе квантовой механики. Квантовый компьютер принципиально отличается от классических компьютеров, работающих на основе классической механики. Полномасштабный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на переднем крае современной физики. Ограниченные (до 128[1]кубитов) квантовые компьютеры уже построены; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Введение

Одна из первых моделей квантового компьютера была предложена[2]Ричардом Фейнманом в 1981 году. Вскоре П. Бениоф описал теоретические основы построения такого компьютера[3].

Необходимость в квантовом компьютере возникает тогда, когда мы пытаемся исследовать методами физики сложные многочастичные системы, подобные биологическим. Пространство квантовых состояний таких систем растет как экспонента от числа составляющих их реальных частиц, что делает невозможным моделирование их поведения на классических компьютерах уже для . Поэтому Фейнман и предложил построение квантового компьютера.

Квантовый компьютер использует для вычисления не обычные (классические) алгоритмы, а процессы квантовой природы, так называемые квантовые алгоритмы, использующие квантовомеханические эффекты, такие как квантовый параллелизм и квантовая запутанность.

Если классический процессор в каждый момент может находиться ровно в одном из состояний , (обозначения Дирака) то квантовый процессор в каждый момент находится одновременно во всех этих базисных состояниях, при этом в каждом состоянии — со своей комплексной амплитудой . Это квантовое состояние называется «квантовой суперпозицией» данных классических состояний и обозначается как

Базисные состояния могут иметь и более сложный вид. Тогда квантовую суперпозицию можно проиллюстрировать, например, так: «Вообразите атом, который мог бы подвергнуться радиоактивному распаду в определённый промежуток времени. Или не мог бы. Мы можем ожидать, что у этого атома есть только два возможных состояния: „распад“ и „не распад“, <…> но в квантовой механике у атома может быть некое объединённое состояние — „распада — не распада“, то есть ни то, ни другое, а как бы между. Вот это состояние и называется „суперпозицией“»[4].

Квантовое состояние может изменяться во времени двумя принципиально различными путями:

  1. Унитарная квантовая операция (квантовый вентиль, англ. quantum gate), в дальнейшем просто операция.
  2. Измерение (наблюдение).

Если классические состояния есть пространственные положения группы электронов в квантовых точках, управляемых внешним полем , то унитарная операция есть решение уравнения Шредингера для этого потенциала.

Измерение есть случайная величина, принимающая значения с вероятностями соответственно. В этом состоит квантово-механическое правило Борна (англ.). Измерение есть единственная возможность получения информации о квантовом состоянии, так как значения нам непосредственно не доступны. Измерение квантового состояния не может быть сведено к унитарной шрёдингеровской эволюции, так как, в отличие от последней, оно необратимо. При измерении происходит так называемый коллапс волновой функции , физическая природа которого до конца не ясна. Спонтанные вредоносные измерения состояния в ходе вычисления ведут к декогерентности, то есть отклонению от унитарной эволюции, что является главным препятствием при построении квантового компьютера (см. Физические реализации квантовых компьютеров).

Квантовое вычисление есть контролируемая классическим управляющим компьютером последовательность унитарных операций простого вида (над одним, двумя или тремя кубитами). В конце вычисления состояние квантового процессора измеряется, что и дает искомый результат вычисления.

Содержание понятия «квантовый параллелизм» в вычислении может быть раскрыто так: «Данные в процессе вычислений представляют собой квантовую информацию, которая по окончании процесса преобразуется в классическую путём измерения конечного состояния квантового регистра. Выигрыш в квантовых алгоритмах достигается за счёт того, что при применении одной квантовой операции большое число коэффициентов суперпозиции квантовых состояний, которые в виртуальной форме содержат классическую информацию, преобразуется одновременно»[5].

Теория

Кубиты

Идея квантовых вычислений состоит в том, что квантовая система из L двухуровневых квантовых элементов (квантовых битов, кубитов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, пространством состояний такого квантового регистра является 2L-мерное гильбертово пространство. Операция в квантовых вычислениях соответствует повороту вектора состояния регистра в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубит фактически задействует одновременно 2L классических состояний.

Физическими системами, реализующими кубиты, могут быть любые объекты, имеющие два квантовых состояния: поляризационные состояния фотонов, электронные состояния изолированных атомов или ионов, спиновые состояния ядер атомов, и т. д.

Один классический бит может находиться в одном и только в одном из состояний или . Квантовый бит, называемый кубитом, находится в состоянии , так что |a|² и |b|² — вероятности получить 0 или 1 соответственно при измерении этого состояния; ; |a|² + |b|² = 1. Сразу после измерения кубит переходит в базовое квантовое состояние, соответствующее классическому результату.

Пример:

Имеется кубит в квантовом состоянии В этом случае, вероятность получить при измерении
0 составляет (4/5)²=16/25 = 64 %,
1 (-3/5)²=9/25 = 36 %.
В данном случае, при измерении мы получили 0 с 64 % вероятностью. В результате измерения кубит переходит в новое квантовое состояние , то есть, при следующем измерении этого кубита мы получим 0 со стопроцентной вероятностью (предполагается, что по умолчанию унитарная операция тождественна; в реальных системах это не всегда так).

Приведем для объяснения два примера из квантовой механики: 1) фотон находится в состоянии суперпозиции двух поляризаций. Это состояние есть вектор в двумерной плоскости, систему координат в которой можно представлять как две перпендикулярные оси, так что и есть проекции на эти оси; измерение раз и навсегда коллапсирует состояние фотона в одно из состояний или , причем вероятность коллапса равна квадрату соответствующей проекции. Полная вероятность получается по теореме Пифагора.

Перейдем к системе из двух кубитов. Измерение каждого из них может дать 0 или 1. Поэтому у системы есть 4 классических состояния: 00, 01, 10 и 11. Аналогичные им базовые квантовые состояния: . И наконец, общее квантовое состояние системы имеет вид . Теперь |a|² — вероятность измерить 00 и т. д. Отметим, что |a|²+|b|²+|c|²+|d|²=1 как полная вероятность.

Если мы измерим только первый кубит квантовой системы, находящейся в состоянии , у нас получится:

  1. С вероятностью первый кубит перейдет в состояние а второй — в состояние , а
  2. С вероятностью первый кубит перейдет в состояние а второй — в состояние .

В первом случае измерение даст состояние , во втором — состояние

Мы снова видим, что результат такого измерения невозможно записать как вектор в гильбертовом пространстве состояний. Такое состояние, в котором участвует наше незнание о том, какой же результат получится на первом кубите, называют смешанным состоянием. В нашем случае такое смешанное состояние называют проекцией исходного состояния на второй кубит, и записывают в виде матрицы плотности вида где матрица плотности состояния определяется как .

В общем случае системы из L кубитов, у неё 2L классических состояний (00000…(L-нулей), …00001(L-цифр), … , 11111…(L-единиц)), каждое из которых может быть измерено с вероятностями 0—100 %.

Таким образом, одна операция над группой кубитов затрагивает все значения, которые она может принимать, в отличие от классического бита. Это и обеспечивает беспрецедентный параллелизм вычислений.

Вычисление

Упрощённая схема вычисления на квантовом компьютере выглядит так: берется система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством унитарных преобразований, выполняющих те или иные логические операции. В конце измеряется значение, и это результат работы компьютера. Роль проводов классического компьютера играют кубиты, а роль логических блоков классического компьютера играют унитарные преобразования. Такая концепция квантового процессора и квантовых логических вентилей была предложена в 1989 году Дэвидом Дойчем. Также Дэвид Дойч в 1995 году нашёл универсальный логический блок, с помощью которого можно выполнять любые квантовые вычисления.

Оказывается, что для построения любого вычисления достаточно двух базовых операций. Квантовая система дает результат, только с некоторой вероятностью являющийся правильным. Но за счет небольшого увеличения операций в алгоритме можно сколь угодно приблизить вероятность получения правильного результата к единице.

С помощью базовых квантовых операций можно симулировать работу обычных логических элементов, из которых сделаны обычные компьютеры. Поэтому любую задачу, которая решена сейчас, квантовый компьютер решит, и почти за такое же время. Следовательно, новая схема вычислений будет не слабее нынешней.

Чем же квантовый компьютер лучше классического? Большая часть современных ЭВМ работают по такой же схеме: n бит памяти хранят состояние и каждый такт времени изменяются процессором. В квантовом случае система из n кубитов находится в состоянии, являющимся суперпозицией всех базовых состояний, поэтому изменение системы касается всех 2n базовых состояний одновременно. Теоретически новая схема может работать намного (в экспоненциальное число раз) быстрее классической. Практически (квантовый) алгоритм Гровера поиска в базе данных показывает квадратичный прирост мощности против классических алгоритмов

Алгоритмы

Главная статья Квантовый алгоритм
  • Алгоритм Гровера позволяет найти решение уравнения за время .
  • Алгоритм Шора позволяет разложить натуральное число n на простые множители за полиномиальное от log(n) время.
  • Алгоритм Залки — Визнера позволяет моделировать унитарную эволюцию квантовой системы частиц за почти линейное время с использованием кубит.
  • Алгоритм Дойча — Джоза позволяет «за одно вычисление» определить, является ли функция двоичной переменной f(n) постоянной (f1(n) = 0, f2(n) = 1 независимо от n) или «сбалансированной» (f3(0) = 0, f3(1) = 1; f4(0) = 1, f4(1) = 0).
  • Алгоритм Саймона решает проблему чёрного ящика экспоненциально быстрее, чем любой классический алгоритм, включая вероятностные алгоритмы.

Было показано, что не для всякого алгоритма возможно «квантовое ускорение». Более того, возможность получения квантового ускорения для произвольного классического алгоритма является большой редкостью[6].

Квантовая телепортация

Алгоритм телепортации реализует точный перенос состояния одного кубита (или системы) на другой. В простейшей схеме используются 3 кубита: телепортируемый кубит и запутанная пара, один кубит которой находится на другой стороне. Отметим, что в результате работы алгоритма первоначальное состояние источника разрушится — это пример действия общего принципа невозможности клонирования — невозможно создать точную копию квантового состояния, не разрушив оригинал. Не получится скопировать произвольное состояние, и телепортация — замена этой операции.

Телепортация позволяет передавать квантовое состояние системы с помощью обычных классических каналов связи. Таким образом, можно, в частности, получить связанное состояние системы, состоящей из подсистем, удаленных на большое расстояние.

Применение квантовых компьютеров

Специфика применения

Может показаться, что квантовый компьютер — это разновидность аналоговой вычислительной машины. Но это не так: по своей сути это цифровое устройство, но с аналоговой природой.

Основные проблемы, связанные с созданием и применением квантовых компьютеров:

  • необходимо обеспечить высокую точность измерений;
  • внешние воздействия могут разрушить квантовую систему или внести в неё искажения.

Приложения к криптографии

Благодаря огромной скорости разложения на простые множители, квантовый компьютер позволит расшифровывать сообщения, зашифрованные при помощи популярного асимметричного криптографического алгоритма RSA. До сих пор этот алгоритм считается сравнительно надёжным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Для того, например, чтобы получить доступ к кредитной карте, нужно разложить на два простых множителя число длиной в сотни цифр. Даже для самых быстрых современных компьютеров выполнение этой задачи заняло бы больше времени, чем возраст Вселенной, в сотни раз. Благодаря алгоритму Шора эта задача становится вполне осуществимой, если квантовый компьютер будет построен.

Применение идей квантовой механики уже открыли новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений[7]. Прототипы систем подобного рода находятся на стадии разработки[8].

Физические реализации квантовых компьютеров

Построение квантового компьютера в виде реального физического прибора является фундаментальной задачей физики XXI века. В настоящее время построены только ограниченные его варианты (в пределах 10 кубит). Вопрос о том, до какой степени возможно масштабирование такого устройства, является предметом новой интенсивно развивающейся области — многочастичной квантовой механики. Центральным здесь является вопрос о природе декогерентности (точнее, о коллапсе волновой функции), который пока остается открытым. Различные трактовки этого процесса можно найти в книгах[9][10][11].

История

На рубеже 21 века во многих научных лабораториях были созданы однокубитные квантовые процессоры (по существу, управляемые двухуровневые системы, о которых можно было предполагать возможность масштабирования на много кубитов). Очень скоро был реализован жидкостной ЯМР — квантовый компьютер (до 7 кубит, IBM, И. Чанг)[источник не указан 578 дней]. В 2005 году группой Ю. Пашкина (NEC, Япония) был построен двухкубитый квантовый процессор на сверхпроводящих элементах[источник не указан 578 дней]. Примерно в это время до десятка кубит было сделано на ионах в ловушках Пауля (Д. Винланд, П. Золлер, Р. Блатт)[источник не указан 578 дней].

  • В России разработкой вопросов физической реализации квантового компьютера занимается ряд исследовательских групп, ядро которых составляет школа академика К. А. Валиева: Физико-технологический институт РАН (лаборатория ФКК), МГУ (ф-т ВМК, кафедра КИ, физический ф-т, кафедра КЭ), МФТИ, МИФИ, МИЭТ, КГУ, ЯрГУ, а также ряд сотрудников институтов РАН (ИТФ, ИФТТ и др.) и вузов [источник не указан 578 дней].

Главные технологии для квантового компьютера:

  1. Твердотельные квантовые точки на полупроводниках: в качестве логических кубитов используются либо зарядовые состояния (нахождение или отсутствие электрона в определенной точке) либо направление электронного и/или ядерного спина в данной квантовой точке. Управление через внешние потенциалы или лазерным импульсом.
  2. Сверхпроводящие элементы (джозефсоновские переходы, сквиды и др.). В качестве логических кубитов используются присутствие/отсутствие куперовской пары в определенной пространственной области. Управление: внешний потенциал/магнитный поток.
  3. Ионы в вакуумных ловушках Пауля (или атомы в оптических ловушках). В качестве логических кубитов используются основное/возбужденное состояния внешнего электрона в ионе. Управление: классические лазерные импульсы вдоль оси ловушки или направленные на индивидуальные ионы + колебательные моды ионного ансамбля.
  4. Смешанные технологии: использование заранее приготовленных запутанных состояний фотонов для управления атомными ансамблями или как элементы управления классическими вычислительными сетями.
  • В феврале 2012 года компания IBM сообщила о достижении значительного прогресса в физической реализации квантовых вычислений с использованием сверхпроводящих кубитов которые, по мнению компании, позволят начать работы по созданию квантового компьютера[13].
  • В апреле 2012 года группе исследователей из Южно-Калифорнийского университета, Технологического университета Дельфта, университета штата Айова, и Калифорнийского университета, Санта-Барбара, удалось построить двухкубитный квантовый компьютер на кристалле алмаза с примесями. Компьютер функционирует при комнатной температуре и теоретически является масштабируемым. В качестве двух логических кубитов использовались направления спина электрона и ядра азота соответственно. Для обеспечения защиты от влияния декогерентности была разработана целая система, которая формировала импульс микроволнового излучения определенной длительности и формы. При помощи этого компьютера реализован алгоритм Гровера для четырёх вариантов перебора, что позволило получить правильный ответ с первой попытки в 95% случаев[14][15].

Пример реализации операции CNOT на зарядовых состояниях электрона в квантовых точках

Один кубит можно представить в виде электрона в двух ямном потенциале, так что означает нахождение его в левой яме, а — в правой. Это называется кубит на зарядовых состояниях. Общий вид квантового состояния такого электрона: . Зависимость его от времени есть зависимость от времени амплитуд ; она задается уравнением Шредингера вида где гамильтониан имеет в силу одинакового вида ям и эрмитовости вид для некоторой константы , так что вектор есть собственный вектор этого гамильтониана с собственным значением 0 (так называемое основное состояние), а — собственный вектор со значением (первое возбужденное состояние). Никаких других собственных состояний (с определенным значением энергии) здесь нет, так как наша задача двумерная. Поскольку каждое состояние переходит за время в состояние , то для реализации операции NOT (перехода и наоборот достаточно просто подождать время . То есть гейт NOT дается просто естественной квантовой эволюцией нашего кубита при условии, что внешний потенциал задает двух ямную структуру; это делается с помощью технологии квантовых точек.

Для реализации CNOT надо расположить два кубита (то есть две пары ям) перпендикулярно друг другу, и в каждой из них расположить по отдельному электрону. Тогда константа для первой (управляемой) пары ям будет зависеть от того, в каком состоянии находится электрон во второй (управляющей) паре ям: если ближе к первой, будет больше, если дальше — меньше. Поэтому состояние электрона во второй паре определяет время совершения NOT в первой яме, что позволяет снова выбрать нужную длительность времени для производства операции CNOT.

Эта схема очень приблизительная и идеализирована; реальные схемы сложнее и их реализация представляет вызов экспериментальной физике.

Заявления D-Wave

Канадская компания D-Wave заявила в феврале 2007 года о создании образца квантового компьютера, состоящего из 16 кубит (устройство получило название Orion[16][17]). Информация об этом устройстве не отвечала требованиям достоверного научного сообщения, поэтому новость не получила научного признания. Более того, дальнейшие планы компании — создать уже в ближайшем будущем 1024-кубитный компьютер — вызвали скепсис у членов экспертного сообщества[18].

В ноябре 2007 года та же компания D-Wave продемонстрировала работу образца 28-кубитного компьютера (устройство получило название Leda) онлайн на конференции, посвященной суперкомпьютерам[19]. Данная демонстрация также вызвала скепсис.

В январе 2008 года компания привлекла 17 млн долларов США от международных инвесторов на поддержание своей деятельности (англ. product development, operations and business development activity).[20]

В декабре 2008 года компания организовала проект распределенных вычислений AQUA@home (Adiabatic QUantum Algorithms)[21], в котором тестируются алгоритмы, оптимизирующие вычисления на адиабатических сверхпроводящих квантовых компьютерах D-Wave.

8 декабря 2009 года на конференции NIPS (англ.) научный сотрудник Google Hartmut Neven (англ.) продемонстрировал на компьютере D-Wave работу программы распознавания образов.[22]

Более подробно о компании D-Wave Systems Inc., проводящихся в ней исследованиях и последних результатах можно узнать в блоге сооснователя компании Geordie Rose.[23]

11 мая 2011 года представлен компьютер D-Wave One, созданный на базе 128-кубитного процессора.[24]

С 20 мая 2011 года D-Wave Systems продает за $ 11 млн квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу — дискретную оптимизацию.[25] Компьютер расположен в вычислительном центре Южно-Калифорнийского университета (университетский городок института информатики в Марина-дель-Рэе (англ. Marina del Rey)). Его рабочая температура составляет 20 мкК, компьютер тщательно экранирован от внешних электрических и магнитных полей.[26][27]

25 мая 2011 года Lockheed Martin подписала многолетний контракт с D-Wave Systems, касающийся выполнения сложных вычислительных задач на квантовых процессорах. Контракт также включает в себя техническое обслуживание, сопутствующие услуги и покупку квантового компьютера D-Wave One.[28]

В то же время, квантовые компьютеры D-Wave Systems подвергаются критике со стороны некоторых исследователей. Так, профессор Массачусетского Технологического Института Скотт Ааронсон считает, что D-Wave пока не смогла доказать ни того, что ее компьютер решает какие-либо задачи быстрее, чем обычный компьютер, ни того, что используемые 128 кубитов удается ввести в состоянии квантовой запутанности. Если же кубиты не находятся в запутанном состоянии, то это не квантовый компьютер[29].

23 августа 2012 года было объявлено об успешном решении задачи о нахождении трехмерной формы белка по известной последовательности аминокислот в его составе с использованием 115 кубитов квантового компьютера D-Wave One из 128 имеющихся методом квантового отжига. [30]

См. также

Примечания

  1. ↑ Решение "тяжелой" задачи потребовало 84 кубитов квантового компьютера и всего 270 миллисекунд вычислительного времени.
  2. ↑ Feynman, R.P. Simulating physics with computers // International Journal of Theoretical Physics. — 1982. — V. 21. — Number 6. — P. 467—488 [1]
  3. ↑ (1982) «Quantum mechanical hamiltonian models of turing machines». Journal of Statistical Physics 29 (3): 515–546. DOI:10.1007/BF01342185. Bibcode: 1982JSP....29..515B.
  4. ↑ Quantum entanglement
  5. ↑ Холево, А. КВАНТОВАЯ ИНФОРМАТИКА: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ // В МИРЕ НАУКИ. — июль 2008. — № 7
  6. ↑ Ozhigov Y. Quantum Computers Speed Up Classical with Probability Zero // Chaos Solitons and Fractals, 10 (1999) 1707—1714 [2]
  7. ↑ Валиев, К. А. Квантовая информатика: компьютеры, связь и криптография // Вестник российской академии наук. — 2000. — Том 70. — № 8. — С. 688—695
  8. ↑ Созданы прототипы квантовых компьютеров
  9. ↑ Р. Пенроуз, Путь к Реальности [3]
  10. ↑ X.Бройер, Ф.Петруччионе, Теория открытых квантовых систем [4]
  11. ↑ Ю. И. Ожигов, Конструктивная физика [5]
  12. ↑ First universal programmable quantum computer unveiled
  13. ↑ IBM сообщает об успехах в создании квантового компьютера
  14. ↑ Дефекты кристаллической решетки алмаза позволили создать "блестающий" квантовый компьютер
  15. ↑ Quantum computer built inside diamond - article with reference to the original work in Nature
  16. ↑ D-Wave Orion: первый квантовый компьютер
  17. ↑ Firm claims first "commercial" quantum computer
  18. ↑ D-Wave восхитила журналистов и возмутила ученых
  19. ↑ Сайт компании D-Wave
  20. ↑ D-Wave Systems: News, 31.01.2008
  21. ↑ Сайт AQUA@home
  22. ↑ Google: Machine Learning with Quantum Algorithms (англ.)
  23. ↑ D-Wave Systems: rose.blog (англ.)
  24. ↑ D-Wave Systems: official site (англ.)
  25. ↑ First Ever Commercial Quantum Computer Now Available for $10 Million. Архивировано из первоисточника 3 февраля 2012. Проверено 25 мая 2011.
  26. ↑ Теперь они нас посчитают / наука / Компьютерные блоги студентов ВМК. Физические основы ЭВМ
  27. ↑ USC — Viterbi School of Engineering — Operational Quantum Computing Center Established at USC
  28. ↑ Lockheed Martin Signs Contract with D-Wave Systems. Архивировано из первоисточника 3 февраля 2012.Retrieved 2011-05-25
  29. ↑ С.Ааронсон "Моя поездка в D-Wave: по ту сторону мясного сэндвича"
  30. ↑ Задача об укладке белка решена квантовым способом - Наука и техника - Квантовая механика - Квантовые компьютеры - Компьюлента

Литература

Статьи

  • Опенов Л. А. Спиновые логические вентили на основе квантовых точек // Соросовский образовательный журнал, 2000, т. 6, № 3, с. 93-98;
  • G. Brassard, I. Chuang, S. Lloyd, C. Monroe. Quantum computing // PNAS. — 1998. — Vol. 95. — P. 11032—11033.
  • Килин С. Я. Квантовая информация // УФН. — 1999. — Т. 169. — C. 507—527.
  • Валиев К. А. Квантовые компьютеры: можно ли их сделать «большими»? // УФН. — 1999. — Т. 169. — C. 691—694.
  • A. M. Steane, E. G. Rieffel. Beyond Bits: The Future of Quantum Information Processing // IEEE Computer. — January 2000. — P. 38—45.
  • Kilin S.Ya. Quanta and information // Progress in optics. — 2001. — Vol. 42. — P. 1-90.
  • Валиев К. А. Квантовые компьютеры и квантовые вычисления // УФН. — 2005. — Т. 175. — C. 3—39.
  • T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien. Quantum Computing // Nature. — 2010. — Vol. 464. — P. 45—53.
  • Квантовый компьютер и квантовые вычисления. Глав. ред. В.А. Садовничий, Ижевск: ИЖТ, 1999. - 288с.

Книги

  • Дойч Д. Структура реальности. — Ижевск НИЦ «Регулярная и хаотическая динамика», 2001, 400 с.
  • Квантовые вычисления за и против / Под ред. Садовничего В. А.
  • Квантовый компьютер и квантовые вычисления / Под ред. Садовничего В. А.
  • Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. — М.—Ижевск: Регулярная и хаотическая динамика, 2004. — 320 с. ISBN 5-93972-024-2
  • Кайе Ф., Лафламм Р., Моска М. Введение в квантовые вычисления. — Ижевск: РХД, 2009. — 360 с.
  • Китаев А., Шень А., Вялый М. Классические и квантовые вычисления. — М.: МЦНМО, 1999. — 192 с.
  • Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. — М.: Мир, 2006. — 824 с.
  • Ожигов Ю. И. Квантовые вычисления.
  • Ожигов Ю. И. Конструктивная физика.
  • Прескилл Дж. Квантовая информация и квантовые вычисления (в 2-х томах). — Ижевск: РХД, 2008-2011. — 776 с.

Ссылки

brokgauz.academic.ru

Суть квантового компьютера | schel4koff.ru

      Квантовые компьютеры — это невероятно мощные машины, которые используют новый подход в обработке информации. Основываясь на принципах квантовой механики, они используют сложные и увлекательные законы природы, которые всегда существуют, но обычно остаются скрытыми от взглядов. Используя такое естественное поведение, квантовые вычисления могут запускать новые типы алгоритмов для обработки информации более целостно.

Они могут в один прекрасный день привести к революционным прорывам в материалах и открытии лекарств, оптимизации сложных искусственных систем и искусственного интеллекта. Мы ожидаем, что они откроют двери, которые, как мы думали, останутся заблокированными на неопределенный срок. Познакомьтесь со странным и захватывающим миром квантовых вычислений.Квантовый компьютер IBM

Классические компьютеры кодируют информацию в битах. Каждый бит может принимать значение 1 или 0. Эти 1 и 0 действуют как переключатели вкл./Выкл., Которые в конечном счете управляют функциями компьютера. Квантовые компьютеры, с другой стороны, основаны на кубитах, которые действуют по двум ключевым принципам квантовой физики: суперпозиция и запутывание.

Суперпозиция означает, что каждый кубит может одновременно представлять как 1, так и 0. Запутывание означает, что кубиты в суперпозиции могут быть соотнесены друг с другом; то есть состояние одного (независимо от того, является ли оно 1 или 0), может зависеть от состояния другого. Используя эти два принципа, кубиты могут действовать как более сложные коммутаторы, позволяя квантовым компьютерам функционировать таким образом, чтобы они могли решать сложные проблемы, которые невозможно решить с помощью современных компьютеров.

Разрыв между мечтой и реальностью

IBM использует квантовые явления, происходящие в сверхпроводящих материалах.

Например, иногда ток будет протекать по часовой стрелке и против часовой стрелки в одно и то же время. Компьютер IBM использует сверхпроводящие схемы, в которых два отдельных состояния электромагнитной энергии составляют кубит.

Сверхпроводящий подход имеет ключевые преимущества. Аппаратное обеспечение может быть выполнено с использованием хорошо установленных методов производства, и для управления системой может использоваться обычный компьютер. Кубитами в сверхпроводящей цепи также легче манипулировать и они менее чувствительны, чем отдельные фотоны или ионы.

В квантовой лаборатории IBM инженеры работают над версией компьютера с 50 кубитами. Вы можете запустить симуляцию простого квантового компьютера на обычном компьютере, но примерно на 50 кубитов это становится почти невозможным. Это означает, что IBM теоретически подходит к точке, где квантовый компьютер может решать проблемы, которые классический компьютер не может: другими словами, происходит квантовое превосходство.

Но, как скажут вам исследователи IBM, квантовое превосходство — это неуловимая концепция. Вам понадобятся все 50 кубитов, чтобы работать отлично, когда на самом деле квантовые компьютеры сталкиваются с ошибками, которые необходимо исправить. Также дьявольски трудно поддерживать кубиты в течение какого-то времени; они имеют тенденцию «декорировать» или теряют свою тонкую квантовую природу, так же, как дымное кольцо разрушается при малейшем потоке воздуха. И чем больше кубитов, тем труднее обе проблемы становятся.

«Если у вас есть 50 или 100 кубитов, и они действительно полноценно работают, и полностью исправлены ошибки, то вы могли бы сделать непостижимые расчеты, которые не могут быть воспроизведены на любой классической машине, сейчас или когда — либо,» говорит Роберт Schoelkopf, Йельский профессор и основатель компании Quantum Circuits. «Обратная сторона квантовых вычислений заключается в том, что существуют экспоненциальные пути для того, чтобы они ошибались».

«То, что движет шумихой, — это осознание того, что квантовые вычисления на самом деле реальны», — говорит Isaac Chuang, профессор MIT. «Это уже не мечта физика — это кошмар инженера».

Вот почему, даже когда они приближаются к 50- кубитному минимуму, собственные исследователи IBM стремятся развеять вокруг себя шумиху. На столе в коридоре, который выходит на пышный газон снаружи, я столкнулся с Jay Gambetta, высоким, спокойным австралийцем, который исследует квантовые алгоритмы и потенциальные приложения для аппаратного обеспечения IBM.

«Мы находимся на этом уникальном этапе, — сказал он, осторожно выбирая слова. «У нас есть это устройство, которое сложнее, чем вы можете имитировать на классическом компьютере, но оно еще не контролируется точностью, которую вы могли бы выполнять с помощью алгоритмов, которые вы знаете, как это сделать».

Chuang руководил разработкой некоторых из самых ранних квантовых компьютеров, работающих в IBM в Almaden, Калифорния, в конце 1990-х и начале 2000-х годов. Хотя он больше не работает над ними, он думает, что мы находимся в начале чего-то очень большого — что квантовые вычисления в конечном итоге даже сыграют роль в искусственном интеллекте.

Но он также считает, что революция не начнется, пока новое поколение студентов и хакеров не начнет играть на практических машинах. Квантовые компьютеры требуют не только разных языков программирования, но и принципиально иного способа мышления о том, что такое программирование. Как говорит Гамбетта: «Мы действительно не знаем, где эквивалент «Hello, world» находится на квантовом компьютере».

Мы только учимся. В 2016 году IBM подключила к облаку небольшой квантовый компьютер. Используя набор инструментов программирования QISKit, вы можете запускать на нем простые программы; тысячи людей, от академических исследователей до школьников, построили программы QISKit, которые управляют базовыми квантовыми алгоритмами. Теперь Google и другие компании также размещают свои зарождающиеся квантовые компьютеры в Интернете. Вы не можете много сделать с ними, но по крайней мере они дают людям, за пределами ведущих лабораторий, вкус того, что может произойти.

Химические реакции и свойства материалов определяются взаимодействием между атомами и молекулами. Эти взаимодействия управляются квантовыми явлениями. Квантовый компьютер может, по крайней мере, в теории-модели, то, что обычным компьютерам не под силу.

В прошлом году Гамбетта и его коллеги из IBM использовали семицикличную машину для моделирования точной структуры гидрида бериллия. На трех атомах, это самая сложная молекула, когда-либо смоделированная с помощью квантовой системы. В конечном счете, исследователи могут использовать квантовые компьютеры для разработки более эффективных солнечных элементов, более эффективных лекарств или катализаторов, которые превращают солнечный свет в чистые виды топлива.

Эти цели далеки. Но, говорит Гамбетта, возможно получить ценные результаты от подверженной ошибкам квантовой машины в паре с классическим компьютером.

Характеристики квантового компьютера

Квантовые компьютеры имеют принципиально разные вычислительные свойства, чем обычные компьютеры, данные, хранящиеся в квантовых компьютерах, называются кубитами, а не битами. На обычных компьютерах данные представлены микроскопическими канавками на жестком диске. В квантовом компьютере данные представлены квантовыми свойствами данной молекулы или набора молекул.Квантовый вычислитель

Вместо выполнения вычислений путем извлечения данных с жесткого диска и обработки его с использованием интегральной схемы, заполненной логическими затворами, квантовые компьютеры обрабатывают данные, бомбардируя содержащую информацию молекулу короткими импульсами излучения. Каждый цикл бомбардировки представляет собой алгоритмическую операцию над данными, содержащимися в молекуле. Когда алгоритм заканчивается, измеряется квантовое состояние молекулы. Это связано с неопределенным характером квантовой механики.

Чтобы обойти эту проблему, алгоритмы квантовых вычислений выполняются многократно, а средневзвешенное значение выхода асимптотически приближается к правильному ответу. Поскольку квантовые механические явления по своей природе скорее вероятностные, а не детерминированные, то четкий ответ получить с первой попытки невозможно.

Квантовые компьютеры обладают определенными возможностями, которых не хватает классическим компьютерам. Квантовые вычисления обеспечивают быструю факторизацию больших чисел (явную угрозу обычным криптографическим методам), более точное моделирование квантовых явлений и очень эффективный поиск в базе данных.

Квантовые вычисления предлагают фантастическое ускорение. В обычных компьютерах среднее время поиска является временем, необходимым для проверки каждого узла, умноженного на количество узлов (n), разделенных на два (вероятно, решение будет найдено примерно на полпути поиска). В квантовых компьютерах средним временем поиска считается время, затрачиваемое для проверки каждого узла, умноженное на квадратный корень из n. Это дает огромное преимущество, которое становится более впечатляющим, когда мы рассматриваем большие проблемы.

Пока еще невозможно представить все приложения квантовых компьютеров. Наибольшее количество кубитов, когда-либо содержавшихся в одной квантовой вычислительной системе, равно 7. Поскольку исследования квантовых вычислений продолжаются, это остается вопросом времени, пока не произойдет критический прорыв и не будут созданы впечатляющие приложения.

По материалам:

www.research.ibm.com/ibm-q/learn/what-is-quantum-computing/

www.technologyreview.com/s/610250/hello-quantum-world/

Вы можете посмотреть так же записи

schel4koff.ru

Квантовый компьютер - «Энциклопедия»

КВАНТОВЫЙ КОМПЬЮТЕР, компьютер, в котором вычислительные операции выполняются в соответствии с законами квантовой механики. Идея квантового компьютера как устройства, позволяющего преодолеть трудности численного моделирования квантовых систем, была выдвинута Р. Фейнманом в начале 1980-х годов, однако широкую известность она приобрела после того, как в 1994 году американский учёный П. Шор предложил описание квантового алгоритма, позволяющего осуществлять факторизацию (разложение на множители) больших натуральных чисел (n), используя меньшее (по числу знаков факторизуемого числа) количество элементарных операций, чем любой из известных классических алгоритмов (квантовый алгоритм факторизации требует полиномиального числа - n3 операций). Алгоритм Шора впервые продемонстрировал следующий феномен - класс сложности задачи изменяется в зависимости от того, на каких физических принципах строится вычислительный процесс. Поскольку предположение о практической невозможности факторизации большого натурального числа лежит в основе некоторых современных методов защиты информации (так называемых систем с открытым ключом), алгоритм, предложенный Шором, привёл к новым исследованиям в области разработки квантовых компьютеров.

Реклама

Базовым элементом квантового компьютера (носителем информации) является квантовый бит - кубит (q-бит). В качестве кубита может быть выбрана любая квантовая система с двумя состояниями, характеризуемыми ортонормированными волновыми функциями |φ0> и |φ1>, например ядерный (или электронный) спин, который в постоянном внешнем магнитном поле имеет два уровня энергии, соответствующих направлениям спина вдоль и против поля. Эволюция состояний квантовых систем происходит согласно уравнению Шрёдингера. Квантовая система может быть макроскопической (сверхпроводники, сверхтекучие жидкости, бозе-газ), отдельной атомной частицей или колебательной модой. Все эти системы могут быть использованы в качестве кубита. Кубит функционирует одновременно в абстрактном математическом векторном гильбертовом пространстве и в обычном трёхмерном евклидовом пространстве (смотри Квантовая теория информации).

Квантовый компьютер

Квантовый  компьютер  представляет собой регистр из n кубитов, управляемых внешними (классическими) полями. Регистр встроен в классическое окружение, состоящее из управляющего классического компьютера, генераторов импульсных полей (управляющих эволюцией кубитов) и средств измерения состояний кубитов (рис.).

Вектор состояния |φ> квантового регистра из n кубитов можно разложить по 2n базисным состояниям регистра (суперпозиция |φ> будет содержать 2n слагаемых). Это означает, что ограниченный физический ресурс, состоящий, например, из n=103 кубитов, создаёт огромный 21000 ≈ 10300 математический информационный ресурс в форме слагаемых суперпозиционного состояния и становится недоступным для самых быстрых классических компьютеров (современный суперкомпьютер выполняет 1015 операций в секунду, то есть 1023 операций в год). Именно из этого обстоятельства вытекает преимущество квантового компьютера над классическим. Следствием принципа суперпозиции является 2n-кратный параллелизм вычислений, т. е. изменение состояния только одного кубита перестраивает всю суперпозицию (амплитуды 2n базисных состояний). Вычислительный процесс носит характер интерференции, так как амплитуды базисных состояний являются комплексными числами. Квантовый  компьютер  можно рассматривать как сложное интерференционное устройство, в котором интерференция состояний создаёт вычислительную мощь компьютера.

Процесс вычислений на квантовом компьютере в гильбертовом пространстве описывается как преобразование вектора начального состояния |φin> квантового регистра в конечный вектор |φf> путём умножения вектора |φin> на унитарную матрицу U размерностью 2n х 2n (в которой заключены формулировка задачи и алгоритм её решения): |φf> = U(2n х 2n)|φin>. Для решения задачи на квантовом компьютере требуется изготовить необходимое число кубитов, привести их в начальное состояние |0>, т. е. инициализировать их (например, охлаждением регистра до сверхнизких температур), осуществить управление их квантовой эволюцией, т. е. выполнить преобразование U|φin>. Классическая информация о решении задачи содержится в конечном векторе состояния |φf>; она получается измерением состояния кубитов в базисе |0>, |l>. Физическая реализация измерения состояния отдельного кубита сопряжена с решением весьма сложных технологических проблем, поскольку необходимо производить измерения состояний отдельной атомной частицы: состояния спина электрона или ядра атома, состояния орбитального движения электрона в атоме или квантовой точке. По существу, для каждой реализации кубита требуется разработка соответствующего физического метода измерения его состояния. Желательно, чтобы длительность измерения была сопоставимой с длительностью квантовых операций. Проблема измерения состояния отдельных кубитов - одна из самых трудных на пути реализации квантового компьютера. Исход квантового измерения является вероятностным (т. е. квантовый компьютер  - цифровой вероятностный компьютер), поэтому для получения достоверного результата необходимо многократное повторение алгоритма. По способу управления квантовый компьютер  является аналоговым компьютером. По современным оценкам, параметры управляющих компьютером сигналов должны контролироваться с точностью 10-4-10-5.

Экспериментальные исследования по созданию кубитов и квантового компьютера ведутся по нескольким направлениям. Метод ЯМР в жидкостях при комнатной температуре позволил продемонстрировать выполнение основных квантовых алгоритмов и методов коррекции ошибок в квантовом компьютере, состоящих из семи (и менее) кубитов. Однако после установления факта, что число кубитов в данном квантовом компьютере ограниченно (не более 10-20), интерес к развитию этого направления несколько ослаб.

Большое число экспериментов по реализации квантовых вычислительных операций выполнено на ионах в одномерном ионном кристалле в так называемой ловушке Пауля (удержание иона в которой обеспечивается только электрическими силами). Однако и здесь обнаружены серьёзные препятствия по увеличению числа кубитов (ионов в одномерном кристалле) из-за неустойчивости одномерного ионного кристалла. Эту проблему можно преодолеть, например, используя ансамбль многих ловушек. В этом случае необходимы методы быстрой транспортировки ионов из одной ловушки в другую, например, с помощью управляемых напряжений на электродах ловушки.

Сходная с ионными кристаллами архитектура квантового компьютера может быть осуществлена в полупроводниковом кристалле 28Si (ядерный спин I = 0), в котором введённые атомы 31Р (кубиты) расположены в линейной цепочке (модель Кейна). Кубитом служит ядерный (I = 1/2) или электронный (S = 1/2) спин атома 31Р. Число кубитов в такой архитектуре не ограничено. Одной из основных проблем данной реализации квантового компьютера является измерение состояния одиночного спинового кубита. Проблема измерения кубита облегчается, если прибегнуть к ансамблевому варианту кубита (т. е. кубиту, состоящему из ансамбля атомов 31Р).

Ведётся активная экспериментальная работа по созданию кубитов на электронах в полупроводниковых квантовых точках, а также на сверхпроводниковых мезоструктурах (т. е. структурах субмикронных размеров). В этих реализациях чипы с кубитами становятся схожи с чипами классических компьютеров на транзисторах.

Применение квантового компьютера дополнит современную вычислительную технику, поскольку их использование оправданно лишь в тех случаях, когда они дают экспоненциальное ускорение решения задачи, заменяя неэффективные классические алгоритмы эффективными квантовыми.

Лит.: Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. 2-е изд. М.; Ижевск, 2004; Валиев К. А. Квантовые компьютеры и квантовые вычисления // Успехи физических наук. 2005. Т. 175. № 1; Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. М., 2006.

К. А. Валиев, А. С. Холево.

knowledge.su


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики