Что такое память компьютера? Память компьютерная это
Что такое память компьютера. Какие существуют виды компьютерной памяти
Память компьютера — специальное устройство для записи и хранения различного рода данных. Выделяют два типа памяти в компьютерном устройстве: оперативная и постоянная (внутренняя и внешняя).
1
Оперативная память — быстрый тип памяти, позволяющий с высокой скоростью записывать и считывать данные, но при этом информация хранится в ней только во включенном состоянии компьютерного устройства, то есть когда на нее подается электричество. Именно этот нюанс делает оперативную память непригодной для долгосрочного хранения информации. Выключите компьютер — и вся информация из оперативной памяти будет стерта.2
Предназначение оперативной памяти — это запись-чтение информации с высокой скоростью установленными программами и операционной системой. Загрузка компьютера при включении представляет собой всего лишь загрузку необходимых для работы программ в оперативную память. Оперативная память бывает нескольких типов: SDRAM, DDR, DDR2, DDR3. Каждый последующий тип памяти представляет собой улучшение предыдущего и позволяет новой памяти работать с большей скоростью. В данный момент в современных компьютерах используется оперативная память типа DDR3. Выбор оперативной памяти зависит от разъемов на материнской плате.3
Постоянная память — тип памяти, позволяющий хранить информацию и при выключенном компьютере. Наиболее распространенный вариант постоянной памяти — жесткие диски HDD. Они представляют собой один или несколько магнитных дисков, вращающихся с огромной скоростью (от 5 до 12 тысяч оборотов в минуту), и головок, предназначенных для считывания и записи информации. HDD являются надежными носителями информации, позволяют записывать и считывать информацию огромное количество раз. Единственный их минус — они очень восприимчивы к ударам, падениям и прочим механическим воздействиям, особенно в момент работы.4
Все большее распространение набирают твердотельные накопители SSD. Данный вид постоянной памяти развился из USB-флеш-накопителей. Основные преимущества и недостатки SSD-накопителей:- имеют в разы более высокую скорость чтения и записи, чем HDD;
- не восприимчивы к механическим воздействиям;
- стоимость SSD-накопителей превышает плату за HDD в несколько раз;
- имеют конечное количество циклов чтения-записи.
5
CD и DVD-диски также относятся к постоянной памяти компьютера, являясь относительно недорогим вариантом хранения небольших объемов информации. Опасность потери информации на этих носителях состоит в их механическом повреждении: царапины, разломы, термическое воздействие.Каждый вид памяти компьютерного устройства имеет свои преимущества и недостатки, но есть некоторые, без которых компьютер не будет работать. CD и DVD-диски, USB-флеш-накопитель, съемный жесткий диск являются необязательными комплектующими в системном блоке, а без оперативной памяти и локального жесткого диска устройство не будет функционировать.
sovetclub.ru
КОМПЬЮТЕРНАЯ ПАМЯТЬ - это... Что такое КОМПЬЮТЕРНАЯ ПАМЯТЬ?
КОМПЬЮТЕРНАЯ ПАМЯТЬ, часть КОМПЬЮТЕРА, в которой хранятся данные в виде «слов» или «БИТОВ», у каждого из которых есть идентификационное число (адрес), служащее для обнаружения его ПРОЦЕССОРОМ. Память может представлять собой магнитный сердечник, ленту, барабан или диск. Разработка ИНТЕГРАЛЬНЫХ СХЕМ произвела переворот в технологии компьютерной памяти благодаря увеличению скорости извлечения данных и миниатюризации носителей.
Научно-технический энциклопедический словарь.
- КОМПЬЮТЕРНАЯ ГРАФИКА
- КОМПЬЮТЕРНАЯ ПРОГРАММА
Смотреть что такое "КОМПЬЮТЕРНАЯ ПАМЯТЬ" в других словарях:
Компьютерная память — НЖМД объёмом 44 Мб 1980 х годов выпуска и CompactFlash на 2 Гб 2000 х годов выпуска … Википедия
НАКОПИТЕЛЬ/КОМПЬЮТЕРНАЯ ПАМЯТЬ — (memory) Запоминающее устройство компьютера, хранящее данные и программы. Компьютер имеет два различных вида памяти: оперативную память (main store) и резервную память (backing store). См. также: запоминающее устройство с произвольной выборкой… … Словарь бизнес-терминов
Память (биологическая) — Память одна из психических функций и видов умственной деятельности, предназначенная сохранять, накапливать и воспроизводить информацию. Способности длительно хранить информацию о событиях внешнего мира и реакциях организма и многократно… … Википедия
Память (психология) — Память одна из психических функций и видов умственной деятельности, предназначенная сохранять, накапливать и воспроизводить информацию. Способности длительно хранить информацию о событиях внешнего мира и реакциях организма и многократно… … Википедия
Память (человеческая) — Память одна из психических функций и видов умственной деятельности, предназначенная сохранять, накапливать и воспроизводить информацию. Способности длительно хранить информацию о событиях внешнего мира и реакциях организма и многократно… … Википедия
Память (компьютерная) — НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия
Память — У этого термина существуют и другие значения, см. Память (значения). Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите … Википедия
Память (компьютер) — НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия
Память (значения) — Содержание 1 В психологии 2 В компьютерной технике … Википедия
Память с произвольной выборкой — Варианты конструкции модулей RAM, используемые в качестве ОЗУ компьютеров. Сверху вниз: DIP, SIPP, SIMM 30 pin, SIMM 72 pin, DIMM, DDR DIMM Запоминающее устройство с произвольным доступом ЗУПД (или Запоминающее устройство произвольной выборки… … Википедия
Что такое память компьютера?
Ни одно вычислительное устройство не может работать без установленной памяти. Даже обычный карманный калькулятор хранит в своих ячейках памяти введенные цифры и результаты расчетов, тем более, если речь идет о полноценном компьютере. К сожалению, современные пользователи не всегда хотят знать устройство своего электронного помощника. Такова тенденция развития: человек всегда стремится эффективно решать поставленные задачи, а не вникать в специфику работы оборудования. Поэтому данная статья рассчитана, прежде всего, на любознательных владельцев вычислительной техники, желающих расширить свой кругозор и узнать, что такое память компьютера и какой она бывает.
Многие новички будут удивлены, но в компьютере и ноутбуке установлена только оперативна память. Запомните: всего один-единственный тип! Зайдя в магазин электроники и попросив консультанта показать память компьютера, следует ждать не встречных наводящих вопросов, вроде «какая именно» (это в дальнейшем), а демонстрации витрин с модулями оперативной памяти.
Физически, оперативная память представляет собой ряд микросхем, размещенных на пластине текстолита прямоугольной формы, носящей название «модуль памяти». С одной из сторон пластины расположены скользящие медные контакты, позволяющие вставлять модуль в разъем материнской платы компьютера. В некоторых случаях сами микросхемы не видны, так как скрыты под металлической «одежкой», защищающей их от случайного прикосновения и повреждения статическим разрядом, также повышается механическая прочность и, конечно же, «одежка» выполняет функции радиатора, отводя тепло от горячих микросхем. Память компьютера различается типом (SDRAM, DDR, DDR2 и 3), наличием блока коррекции ECC, форм-фактором (для ноутбуков размер пластины уменьшен) и объемом в гигабайтах. Разумеется, сюда же можно приписать фирму-разработчика.
Оперативная память компьютера служит для временного хранения результатов работы центрального процессора, все программы выполняются именно в ее объеме. После выключения питания все данные, содержащиеся в ней, теряются. Исключение - режим сна S3. По этой причине оперативная память является энергозависимой. С определенными оговорками оперативку можно приравнять к памяти человека.
Кроме нее, различные источники часто указывают на энергонезависимую память компьютера. Хотя слово «память» к таким устройствам применимо лишь частично и не совсем корректно, рассказать о ней нужно. Очевидно, что данные, сохраненные в ней, не теряются при прекращении подачи электроэнергии. Яркий пример – жесткий диск (винчестер). Он является отдаленным родственником знакомой многим кассеты с магнитной пленкой. Конечно, пленки в нем нет, а вот намагничиваемая записывающими головками поверхность осталась. Установка программ и операционной системы выполняется на разделы диска. Другим носителем, к которому иногда применяют термин «память», является знакомый многим компакт-диск.
Все-таки, эти устройства лучше не называть памятью. По аналогии, их можно сравнить с записной книжкой в руках человека, а книжку, конечно же, никто не назовет «памятью».
Все вышесказанное относится к реально существующим устройствам. Но кроме них есть системная память. Она представляет собой весь тот объем ячеек, формируемый из установленных в компьютере модулей памяти. Например, подключили два модуля по 2 гигабайта каждый – в сумме системной памяти получилось 4 Гб. Иногда этот термин используют в более узком смысле, который предполагает указание битности используемой операционной системы: даже при установленных 4 Гб 32-бит операционная система позволяет работать лишь с 3,25 Гб. Версиям 64-бит доступно намного больше, но это совсем другая тема…
Кстати, говоря об увеличении памяти компьютера, подразумевают наращивание объема оперативки, а не жесткого диска. Вот так все просто.
fb.ru
Компьютерная память — Википедия РУ
Компью́терная па́мять (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемая в вычислениях в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х годов. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.
В персональных компьютерах «памятью» часто называют один из её видов — динамическая память с произвольным доступом (DRAM), — которая используется в качестве ОЗУ персонального компьютера.
Задачей компьютерной памяти является хранение в своих ячейках состояния внешнего воздействия, запись информации. Эти ячейки могут фиксировать самые разнообразные физические воздействия. Они функционально аналогичны обычному электромеханическому переключателю и информация в них записывается в виде двух чётко различимых состояний — 0 и 1 («выключено»/«включено»). Специальные механизмы обеспечивают доступ (считывание, произвольное или последовательное) к состоянию этих ячеек.
Процесс доступа к памяти разбит на разделённые во времени процессы — операцию записи (сленг. прошивка, в случае записи ПЗУ) и операцию чтения, во многих случаях эти операции происходят под управлением отдельного специализированного устройства — контроллера памяти.
Также различают операцию стирания памяти — занесение (запись) в ячейки памяти одинаковых значений, обычно 0016 или FF16.
Наиболее известные запоминающие устройства, используемые в персональных компьютерах: модули оперативной памяти (ОЗУ), жёсткие диски (винчестеры), дискеты (гибкие магнитные диски), CD- или DVD-диски, а также устройства флеш-памяти.
Функции памяти
Компьютерная память обеспечивает поддержку одной из функций современного компьютера, — способность длительного хранения информации. Вместе с центральным процессором запоминающее устройство являются ключевыми звеньями так называемой архитектуры фон Неймана, — принципа, заложенного в основу большинства современных компьютеров общего назначения.
Первые компьютеры использовали запоминающие устройства исключительно для хранения обрабатываемых данных. Их программы реализовывались на аппаратном уровне в виде жёстко заданных выполняемых последовательностей. Любое перепрограммирование требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации, перестройки блоков и устройств и т. д. Использование архитектуры фон Неймана, предусматривающей хранение компьютерных программ и данных в общей памяти, коренным образом переменило ситуацию.
Любая информация может быть измерена в битах и потому, независимо от того, на каких физических принципах и в какой системе счисления функционирует цифровой компьютер (двоичной, троичной, десятичной и т. п.), числа, текстовая информация, изображения, звук, видео и другие виды данных можно представить последовательностями битовых строк или двоичными числами. Это позволяет компьютеру манипулировать данными при условии достаточной ёмкости системы хранения (например, для хранения текста романа среднего размера необходимо около одного мегабайта).
К настоящему времени создано множество устройств, предназначенных для хранения данных, основанных на использовании самых разных физических эффектов. Универсального решения не существует, у каждого имеются свои достоинства и свои недостатки, поэтому компьютерные системы обычно оснащаются несколькими видами систем хранения, основные свойства которых обуславливают их использование и назначение.
Физические основы функционирования
В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. В современной компьютерной технике часто используются физические свойства полупроводников, когда прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1. Устойчивые состояния, определяемые направлением намагниченности, позволяют использовать для хранения данных разнообразные магнитные материалы. Наличие или отсутствие заряда в конденсаторе также может быть положено в основу системы хранения. Отражение или рассеяние света от поверхности CD, DVD или Blu-ray-диска также позволяет хранить информацию.
Классификация типов памяти
Следует различать классификацию памяти и классификацию запоминающих устройств (ЗУ). Первая классифицирует память по функциональности, вторая же — по технической реализации. Здесь рассматривается первая — таким образом, в неё попадают как аппаратные виды памяти (реализуемые на ЗУ), так и структуры данных, реализуемые в большинстве случаев программно.
Доступные операции с данными
- Память только для чтения (read-only memory, ROM)
- Память для чтения/записи
Память на программируемых и перепрограммируемых ПЗУ (ППЗУ и ПППЗУ) не имеет общепринятого места в этой классификации. Её относят либо к подвиду памяти «только для чтения»[1], либо выделяют в отдельный вид.
Также предлагается относить память к тому или иному виду по характерной частоте её перезаписи на практике: к RAM относить виды, в которых информация часто меняется в процессе работы, а к ROM — предназначенные для хранения относительно неизменных данных[1].
Метод доступа
- Последовательный доступ (англ. sequential access memory, SAM) — ячейки памяти выбираются (считываются) последовательно, одна за другой, в очерёдности их расположения. Вариант такой памяти — стековая память.
- Произвольный доступ (англ. random access memory, RAM) — вычислительное устройство может обратиться к произвольной ячейке памяти по любому адресу.
Организация хранения данных и алгоритмы доступа к ним
Повторяет классификацию структур данных:
- Адресуемая память — адресация осуществляется по местоположению данных.
- Ассоциативная память (англ. associative memory, content-addressable memory, CAM) — адресация осуществляется по содержанию данных, а не по их местоположению (память проверяет наличие ячейки с заданным содержимым, и если таковая(ые) присутствует(ют) возвращает её(их) адрес(а) или другие данные с ней(ними) ассоциированные).
- Магазинная (стековая) память (англ. pushdown storage) — реализация стека.
- Матричная память (англ. matrix storage) — ячейки памяти расположены так, что доступ к ним осуществляется по двум или более координатам.
- Объектная память (англ. object storage) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
- Семантическая память (англ. semantic storage) — данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков.
Назначение
- Буферная память (англ. buffer storage) — память, предназначенная для временного хранения данных при обмене ими между различными устройствами или программами.
- Временная (промежуточная) память (англ. temporary (intermediate) storage) — память для хранения промежуточных результатов обработки.
- Кеш-память (англ. cache memory) — часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кэшируемая память.
- Корректирующая память (англ. patch memory) — часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины relocation table и remap table.
- Управляющая память (англ. control storage) — память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.
- Разделяемая память или память коллективного доступа (англ. shared memory, shared access memory) — память, доступная одновременно нескольким пользователям, процессам или процессорам.
Организация адресного пространства
- Реальная или физическая память (англ. real (physical) memory) — память, способ адресации которой соответствует физическому расположению её данных;
- Виртуальная память (англ. virtual memory) — память, способ адресации которой не отражает физического расположения её данных;
- Оверлейная память (англ. overlayable storage) — память, в которой присутствует несколько областей с одинаковыми адресами, из которых в каждый момент доступна только одна.
Удалённость и доступность для процессора
- Первичная память (сверхоперативная, СОЗУ) — доступна процессору без какого-либо обращения к внешним устройствам.
- регистры процессора (процессорная или регистровая память) — регистры, расположенные непосредственно в АЛУ;
- кэш процессора — кэш, используемый процессором для уменьшения среднего времени доступа к компьютерной памяти. Разделяется на несколько уровней, различающихся скоростью и объёмом (например, L1, L2, L3).
- Вторичная память — доступна процессору путём прямой адресации через шину адреса (адресуемая память). Таким образом доступна оперативная память (память, предназначенная для хранения текущих данных и выполняемых программ) и порты ввода-вывода (специальные адреса, через обращение к которым реализовано взаимодействие с прочей аппаратурой).
- Третичная память — доступна только путём нетривиальной последовательности действий. Сюда входят все виды внешней памяти — доступной через устройства ввода-вывода. Взаимодействие с третичной памятью ведётся по определённым правилам (протоколам) и требует присутствия в памяти соответствующих программ. Программы, обеспечивающие минимально необходимое взаимодействие, помещаются в ПЗУ, входящее во вторичную память (у PC-совместимых ПК — это ПЗУ BIOS).
Положение структур данных, расположенных в основной памяти, в этой классификации неоднозначно. Как правило, их вообще в неё не включают, выполняя классификацию с привязкой к традиционно используемым видам ЗУ[2].
Доступность техническими средствами
- Непосредственно управляемая (оперативно доступная) память (англ. on-line storage) — память, непосредственно доступная в данный момент.[источник не указан 3076 дней]
- Автономная память, Архив (англ. off-line storage) — память, доступ к которой требует внешних действий — например, вставку оператором архивного носителя с указанным программой идентифиткатором
- Полуавтономная память англ. nearline storage — то же, что автономная, но физическое перемещение носителей осуществляется роботом по команде системы, то есть не требует присутствия оператора
Прочие термины
- Многоблочная память (англ. multibank memory) — вид оперативной памяти, организованной из нескольких независимых блоков, допускающих одновременное обращение к ним, что повышает её пропускную способность. Часто употребляется термин «интерлив» (калька с англ. interleave — перемежать) и может встречаться в документации некоторых фирм «многоканальная память» (англ. multichanel).
- Память со встроенной логикой (англ. logic-in-memory) — вид памяти, содержащий встроенные средства логической обработки (преобразования) данных, например их масштабирования, преобразования кодов, наложения полей и др.
- Многовходовая память (англ. multiport storage memory) — устройство памяти, допускающее независимое обращение с нескольких направлений (входов), причём обслуживание запросов производится в порядке их приоритета.
- Многоуровневая память (англ. multilevel memory) — организация памяти, состоящая из нескольких уровней запоминающих устройств с различными характеристиками и рассматриваемая со стороны пользователей как единое целое. Для многоуровневой памяти характерна страничная организация, обеспечивающая «прозрачность» обмена данными между ЗУ разных уровней.
- Память параллельного действия (англ. parallel storage) — вид памяти, в которой все области поиска могут быть доступны одновременно.
- Страничная память (англ. page memory) — память, разбитая на одинаковые области — страницы. Операции записи-чтения на них осуществляются путём переключения страниц контроллером памяти.
См. также
Примечания
Литература
- Айен Синклер. Память // Словарь компьютерных терминов = Dictionary of Personal Computing / Пер. с англ. А. Помогайбо. — М.: Вече, АСТ, 1996. — 177 с. — ISBN 5-7141-0309-2.
Ссылки
http-wikipediya.ru
Память компьютера
Министерство науки и образования Украины
Новокаховский гуманитарный институт
ВНЗ ОМУРЧ "Украина"
Кафедра "Правоведение"
Реферат
По дисциплине: "Основы информатики и компьютерной техники"
На тему: Память компьютера
Студентки 1-го курса
Форма обучения дневная
Группа 1-Ю-1
"Правоведение"
Белевцовой Екатерины Павловны
Научный руководитель
Преподаватель
Ивасюк. П. М
г. Новая Каховка
2010г.
Содержание
Вступление
Раздел 1. Виды памяти
1.1 Оперативная память
1.2 BIOS
1.3 CMOS
1.4 Кэш память
Раздел 2. Видеопамять
Литература
Вступление
Память компьютера
Как устроена память компьютера
Память компьютера лучше всего представить себе в виде последовательности ячеек. Количество информации в каждой ячейке – один байт.
Любая информация сохраняется в памяти компьютера в виде последовательности байтов. Байты (ячейки) памяти пронумерованы один за другим, причем номер первого от начала памяти байта приравнивается к нулю. Каждая конкретная информация, которая сохраняется в памяти, может занимать один или несколько байтов. Количество байтов, которые занимает та или иная информация в памяти, являются размером этой информации в байтах.
Например, целое плюсовое число от 0 до 28 -1=255 занимает 1 байт памяти. Для хранения целого плюсового числа от 28= 256 до 216 -1=65536 нужно уже два последовательных байта.
Основная задача при работе с памятью состоит в том, чтобы найти место в памяти, где находится необходимая информация.
Для того, чтобы найти человека в большом городе, необходимо знать его точный адрес. Так же, чтобы найти место той или иной информации в памяти, введено понятие адреса в памяти.
Например, если слово "информатика", которое состоит из 11 букв, занимает байты с номерами от 1234 до 1244 (всего 11 байтов), то адрес этого слова равняется 1234.
Чем больше объем памяти, тем больше файлов и программ она может вместить, тем больше задач можно развязать с помощью компьютера.
Чем же определяется объем доступной памяти компьютера или какое наибольшее число можно использовать для указания адреса?
Адрес, как и любая информация в компьютере, подается в двоичном виде. Значит, наибольшее значение адреса определяется количеством битов, которые используются для его двоичной подачи. В одном байте (8 битов) можно сохранять 28 (= 256) чисел от 0 до 255, в двух байтах (16 битов) - 216 чисел от 0 до 65536, в четырех байтах (32 бита) – 232 чисел от 0 до 4294967295.
Раздел 1. Виды памяти
1.1 Оперативная память
Оперативная память (ОЗУ или англ.RAM от Random Access Memory – память с произвольным доступом) – это быстро запоминающее устройство не очень большого объема, которое непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, которые обрабатываются этими программами.
Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается то все, что находилось на ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой – это значит, что каждый байт памяти имеет свой индивидуальный адрес.
Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для не сложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.
Обычно ОЗУ исполняется из интегральных микросхем памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за утечки токов такие конденсаторы быстро разряжаются и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (Refresh Memory). Микросхемы SDRAM имеют емкость от 16 до 256 Мбит и более. Они устанавливаются в корпусе и собираются в модули памяти. Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-line Memory Module - модуль памяти с двухрядным расположением микросхем). В компьютерных системах на самых современных процессорах используются
Высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM.
1.2 BIOS
Сразу после включения компьютера начинают "тикать" электронные "часы" основной шины. Их импульсы расталкивают заспавшийся процессор, и тот может начинать работу. Но для работы процессора нужны команды.
Точнее говоря, нужны программы, потому что программы — это и есть упорядоченные наборы команд. Таким образом, где-то в компьютере должна быть заранее, заготовлена пусковая программа, а процессор в момент пробуждения должен твердо знать, где она лежит.
Хранить эту программу на каких-либо носителях информации нельзя, потому что в момент включения процессор ничего не знает ни о каких устройствах. Чтобы он о них узнал, ему тоже нужна какая-то программа, и мы возвращаемся к тому, с чего начали. Хранить ее в оперативной памяти тоже нельзя, потому что в ней в обесточенном состоянии ничего не хранится.
Выход здесь существует один-единственный. Такую программу надо создать аппаратными средствами. Для этого на материнской плате имеется специальная микросхема, которая называется постоянным запоминающим устройством — ПЗУ. Еще при производстве в нее "зашили" стандартный комплекс программ, с которых процессор должен начинать работу. Этот комплекс программ называется базовой системой ввода-вывода.
По конструкции микросхема ПЗУ отличается от микросхем оперативной памяти, но логически это те же самые ячейки, в которых записаны какие-то числа, разве что не стираемые при выключении питания. Каждая ячейка имеет свой адрес.
После запуска процессор обращается по фиксированному адресу (всегда одному и тому же), который указывает именно на ПЗУ. Отсюда и поступают первые данные и команды. Так начинается работа процессора, а вместе с ним и компьютера. На экране в этот момент мы видим белые символы на черном фоне.
Одной из первых исполняется подпрограмма, выполняющая самотестирование компьютера. Она так и называется: Тест при включении (по-английски — POST — Power-On Self Test). В ходе ее работы проверяется многое, но на экране мы видим только, как мелькают цифры, соответствующие проверенным ячейкам оперативной памяти.
1.3 CMOS
Программных средств BIOS достаточно, чтобы сделать первичные проверки и подключить стандартные устройства, такие как клавиатура и монитор. Слово стандартные мы выделили специально. Дело в том, что монитор и клавиатура у вас могут быть очень даже нестандартными. Но на данном этапе это не имеет значения — просто компьютер пока рассматривает их как стандартные. Ему еще не ведомы все их свойства, и он полагает, что клавиатура и монитор у нас такие, какие были в ходу двадцать лет назад, во времена первых компьютеров. Этим обеспечивается гарантия того, что вы хоть что-то увидите на экране, вне зависимости от той модели монитора, какая имеется в вашем распоряжении. BIOS предполагает, что монитор у нас черно-белый — именно поэтому первые сообщения на экранет проходят в черно-белом режиме.
Однако долго работать лишь только со стандартными устройствами компьютер не может. Ему пора бы узнать о том, что у него есть на самом деле. Истинная информация об устройствах компьютера записана на жестком диске, но и его еще надо научиться читать. У каждого человека может быть свой жесткий уникальный диск, не похожий на другие. Спрашивается, откуда программы BIOS узнают, как работать именно с вашим жестким диском?
Для этого на материнской плате есть еще одна микросхема — CMOS-память. В ней сохраняются настройки, необходимые для работы программ BIOS. В частности, здесь хранятся текущая дата и время, параметры жестких дисков и некоторых других устройств. Эта память не может быть ни оперативной (иначе она стиралась бы), ни постоянной (иначе в нее нельзя было бы вводить данные с клавиатуры). Она сделана энергонезависимой и постоянно подпитывается от небольшой аккумуляторной батарейки, тоже размещенной на материнской плате. Заряда этой батарейки хватает, чтобы компьютер не потерял настройки, даже если его не включать несколько лет.
Настройки CMOS, в частности, необходимы для задания системной даты и системного времени, при установке или замене жестких дисков, а также при выходе из большинства аварийных ситуаций. Настройкой BIOS можно, например, задать пароль, благодаря которому посторонний человек не сможет запустить компьютер. Впрочем, эта защита эффективна только от очень маленьких детей.
Для изменения настроек, хранящихся в CMOS-памяти, в ПЗУ содержится специальная программа — SETUP. Чтобы ее запустить, надо в самый первый момент после запуска компьютера нажать и удерживать клавишу DELETE. Навигацию в системе меню программы SETUP выполняют с помощью клавиш управления курсором. Нужные пункты меню выбирают клавишей ENTER, а возврат в меню верхнего уровня — клавишей ESC. Для изменения установленных значений служат клавиши Page Up и Page Down.
1.4 Кэш-память
Кэш-память - это высокоскоростная память произвольного доступа, используемая процессором компьютера для временного хранения информации. Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды "ближе" к процессору, откуда их можно быстрей получить.
Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой. Представьте себе массив информации, используемой в вашем офисе. Небольшие объемы информации, необходимой в первую очередь, скажем список телефонов подразделений, висят на стене над вашим столом. Точно так же вы храните под рукой информацию по текущим проектам. Реже используемые справочники, к примеру, городская телефонная книга, лежат на полке, рядом с рабочим столом. Литература, к которой вы обращаетесь совсем редко, занимает полки книжного шкафа. Компьютеры хранят данные в аналогичной иерархии. Когда приложение начинает работать, данные и команды переносятся с медленного жесткого диска в оперативную память произвольного доступа, откуда процессор может быстро их получить. Оперативная память играет роль КЭШа для жесткого диска. Для достаточно быстрых компьютеров необходимо обеспечить быстрый доступ к оперативной памяти, иначе микропроцессор будет простаивать, и быстродействие компьютера уменьшится. Для этого такие компьютеры могут оснащаться кэш-памятью, т.е. "сверхоперативной" памятью относительно небольшого объема (обычно от 64 до 256 Кбайт), в которой хранятся наиболее часто используемые участки оперативной памяти. Кэш-память располагается "между" микропроцессором и оперативной памятью, и при обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные содержаться в кэш-памяти, среднее время доступа к памяти уменьшается. Для компьютеров на основе intel-80386dx или 80486sx размер кэш-памяти в 64 кбайт является удовлетворительным, 128 кбайт - вполне достаточным. Компьютеры на основе intel-80486dx и dx2 обычно оснащаются кэш-памятью емкостью 256 Кбайт.
mirznanii.com
Виды компьютерной памяти - Все о компьютерах и Windows
Существует множество типов и подтипов компьютерной памяти, которые классифицируются в зависимости от роли в компьютерной системе. В этой статье мы сосредоточим свое внимание на самых основных видах компьютерной памяти.
Память является одним из самых важных компонентов, включенных в компьютерную систему, будь то ноутбуки или настольные компьютеры. Существуют различные типы компьютерной памяти, которые могут быть установлены, в зависимости от фактической потребности для функционирования и технических характеристик системы.
Память связана со многими устройствами и компонентами, которые отвечают за хранение данных и приложений на временной или постоянной основе. Это позволяет пользователю сохранять информацию и хранить ее на компьютере. Без оперативной памяти было бы сложно найти место, которое необходимо для хранения вычислений и процессов. Существуют различные типы памяти, общей характеристикой для всех типов является то, что они предназначены для задач сохранения некоторых видов данных. Каждая из них имеет свои особенности и возможности.
RAM работает в пределах компьютерной системы, отвечает за хранение данных на временной основе и делает их оперативно доступными для процессора. Информация, хранящаяся в памяти, как правило, загружается с жесткого диска компьютера, и включает в себя данные, касающиеся операционной системы и некоторых приложений. Когда система выключается, ОЗУ теряет всю хранимую информацию. Данные размещенные в этом типе данных, хранятся в ней только тогда, пока система работает. Когда оперативная память заполняется полностью, компьютерная система начинает подтормаживать, скорость работы замедляется. Данные могут быть получены в любом произвольном порядке. Есть два типа оперативной памяти, а именно: Static RAM (SRAM) и динамическое ОЗУ (DRAM). Когда на компьютере запускается одновременно множество программ, которые суммарно превышают возможности оперативной памяти, то те части памяти, которые не используются определенное по длительности время, сбрасываются частями в так называемую виртуальную память. Виртуальная память представляет собой специально отведенное на жестком диске пространство. Благодаря виртуальной памяти система может динамически освобождать часть оперативной памяти.
Этот тип памяти является активным, независимо от того, включена ли система или выключена. Это своего рода постоянная энергонезависимая память. Как следует из названия ‘только для чтения’, это предполагает, что содержащиеся в ней данные не могут быть изменены. Это интегрированная микросхема, которая запрограммирована важными данными, которые обязательно должны присутствовать на компьютере и выполнять необходимые функции. В качестве примера можно привести BIOS (базовая система ввода и вывода) материнской платы.
Кэш память является своего рода оперативной памятью, которую компьютерная система использует для того, чтобы получить доступ к определенным данным более оперативно, чем это позволяет RAM. Кэш-память располагается на центральном процессоре. В нее загружаются данные, которые наиболее часто используются процессором. Это исключает необходимость в системе поиска информации в больших массивах данных, расположенных в оперативной памяти, что в свою очередь приводит к более быстрому извлечению данных.
Жесткий диск — это устройство хранения данных, использующееся для записи и хранения информации в компьютерной системе. Объем их памяти колеблется в широких пределах и пользователь волен выбирать объем носителя в зависимости от того, сколько ему необходимо объема для хранения всех своих файлов. В настоящее время жесткие диски имеют объем емкостью от 120 гигабайт до 1.5 Тб, а то и выше.
Это энергонезависимый вид памяти, представляющий собой мобильные устройства для хранения и удобного переноса данных с одного компьютера на другой. В нем данные могут быть стерты и повторно запрограммированы. Имеет определенное количество циклов стирания и записи, которые может выдержать, после чего появляется тенденция потери части хранимой информации.
В данной статье мы познакомились с основными типами памяти компьютера, которые применяются для краткосрочного и долговременного хранения данных.
comments powered by HyperCommentsspravkapc.ru
Оперативная память компьютера - Компьютер для новичков
Оперативная память является одним из главных компонентов компьютера, без нее работа системы невозможна. Объем и характеристики установленной в системе оперативной памяти напрямую влияют на скорость работы компьютера. Давайте выясним на простом потребительском уровне, какая она бывает и зачем вообще нужна в компьютере.
Как уже понятно из названия, оперативная память компьютера или ОЗУ (оперативное запоминающее устройство) на компьютерном жаргоне «оперативка», а так же просто «память» служит для оперативного (временного) хранения данных необходимых для работы. Однако такое объяснение не до конца понятно, что значит временного и зачем их хранить в оперативке, когда есть жесткий диск.
Тут мы подошли к принципиальному различию в устройстве и назначении этих двух подсистем компьютера. В статье посвященной жесткому диску мы уже затрагивали этот вопрос и для большего понимания вопроса рекомендуем вам ознакомиться с ней. Здесь более подробно рассмотрим вопрос именно со стороны оперативной памяти компьютера. Поскольку материал предназначен начинающим пользователям компьютера и людям желающим разобраться более подробно в его устройстве, мы не будем углубляться в стандарты, технические реализации различных видов оперативки и другие сложные технические моменты, интересные только инженерам, а рассмотрим данный вопрос с позиций обычного человека.
Проще всего ответить на вопрос, что значит для временного хранения данных. Конструкция оперативной памяти выполнена таким образом, что данные в ней сохраняются только, пока на нее подается напряжение, поэтому она является энергозависимой памятью в отличие от жесткого диска. Выключение компьютера, перезагрузка очищают оперативную память и все данные, находящиеся в ней в этот момент удаляются. Даже кратковременный перебой в подаче напряжения на планки памяти способен обнулить их или вызвать повреждение отдельной части информации. Другими словами оперативная память компьютера хранит загруженные в нее данные максимум в пределах одного сеанса работы компьютера.
Вторая часть вопроса, зачем она вообще нужна немного труднее для понимания. Тут уже необходимо хотя бы в общих чертах представлять себе устройство компьютера, поэтому советуем ознакомиться с этой статьей, а так же взаимодействие различных компонентов, между собой рассказанное в материале посвященном материнской плате компьютера.
Итак, оперативная память служит буфером между центральным процессором и винчестером. Жесткий диск энергонезависимый и хранит всю информацию в компьютере, но расплатой за это является его медленная скорость работы. Если процессор брал бы данные напрямую с жесткого диска компьютера, он работал бы как черепаха. Решением данной проблемы служит применение дополнительного буфера между ними в виде оперативной памяти.
Память энергозависима и требует подачи постоянного питания для своей работы, зато она в разы быстрее. Когда процессору требуются какие то данные, эти данные считываются с винчестера и загружаются в оперативку и все дальнейшие операции с ними происходят в ней. По завершении работы с ними, если результаты нужно сохранить, то они отправляются обратно на жесткий диск для записи на него, а из оперативной памяти они удаляются, чтобы освободить место для других данных. Если результаты сохранять не нужно, оперативная память компьютера просто очищается.
Так в сильно упрощенном виде выглядит их взаимодействие. Помимо центрального процессора информация из ОЗУ может потребоваться и другим компонентам, например, видеокарте. Естественно одновременно в памяти хранится множество данных, поскольку все программы, которые вы запускаете или открываемые вами файлы загружаются в нее. Файлы браузера, через который вы смотрите сейчас этот сайт, а так же сама интернет-страница находятся именно в оперативной памяти.
Стоит отметить, что данные с жесткого диска именно копируются в оперативку, поэтому пока изменения сделанные с ними не будут сохранены обратно на диск, там будет оставаться их старая версия. Именно по этой причине открыв, например вордовский файл и внеся в него какие то изменения в редакторе, вам требуется в конце выполнить сохранение, при этом файл загружается обратно на жесткий диск и перезаписывает хранящийся там.
Различные компоненты компьютера взаимодействуют между собой не напрямую, а через различные интерфейсы, так для обмена информацией между процессором и ОЗУ используется системная шина.
Производительность всего компьютера зависит от скорости работы всех его составляющих и самое медленное из них будет бутылочным горлышком тормозящим работу всей системы. Появление оперативной памяти существенно увеличило скорость работы, но не решило всех проблем. Во-первых, скорость работы ОЗУ не идеальна, а во-вторых соединительные интерфейсы тоже имеют ограничения по пропускной способности.
Дальнейшее развитие техники привело к тому, что в устройства требующие высокой скорости обработки данных стали встраивать собственную память, этим устраняются издержки на передачу данных туда-обратно и обычно в таких случаях используется более скоростная память чем в применяемая в ОЗУ. Примером может служить видеоадаптер, встроенный кэш центрального процессора и так далее. Даже многие винчестеры имеют сейчас свой внутренний высокоскоростной буфер, позволяющий ускорить операции чтения/запись. Ответ на вопрос, почему эта высокоскоростная память не используется сейчас в качестве оперативной очень простой, некоторые технические сложности, но главное ее дороговизна.
Применительно к типичным компьютерам, оперативная память выпускается в виде модулей, устанавливаемых в специальный разъем материнской платы. Размеры и форма зависят от применяемого стандарта, но в общем случае выглядит примерно как на рисунке.
Однако модули памяти с высокими скоростными характеристиками и ориентированные на высокопроизводительную компьютерную систему или разгон, могут существенно отличаться внешним видом от своих рядовых собратьев. Производители могут устанавливать различные дополнительные элементы, например радиаторы для улучшения охлаждения и повышения стабильности работы на высоких частотах. Примером может служить данный модуль производства компании OCZ с установленным радиатором на тепловой трубке.
Виды оперативной памяти
На данный момент времени, существует два типа памяти возможных к применению в качестве оперативной памяти в компьютере. Оба представляют собой память на основе полупроводников с произвольным доступом. Другими словами, память позволяющая получить доступ к любому своему элементу (ячейке) по её адресу.
Память статического типа
SRAM (Static random access memory) — изготавливается на основе полупроводниковых триггеров и имеет очень высокую скорость работы. Основных недостатков два: высокая стоимость и занимает много места. Сейчас используется в основном для кэша небольшой емкости в микропроцессорах или в специализированных устройствах, где данные недостатки не критичны. Поэтому в дальнейшем мы её рассматривать не будем.
Память динамического типа
DRAM (Dynamic random access memory) — память наиболее широко используемая в качестве оперативной в компьютерах. Построена на основе конденсаторов, имеет высокую плотность записи и относительно низкую стоимость. Недостатки вытекают из особенностей её конструкции, а именно, применение конденсаторов небольшой емкости приводит к быстрому саморазряду последних, поэтому их заряд приходится периодически пополнять. Этот процесс называют регенерацией памяти, отсюда возникло и название динамическая память. Регенерация заметно тормозит скорость ее работы, поэтому применяют различные интеллектуальные схемы стремящиеся уменьшить временные задержки.
Развитие технологий идет быстрыми темпами и совершенствование памяти не исключение. Компьютерная оперативная память, применяемая в настоящее время, берет свое начало с разработки памяти DDR SDRAM. В ней была удвоена скорость работы по сравнению с предыдущими разработками за счет выполнения двух операций за один такт (по фронту и по срезу сигнала), отсюда и название DDR (Double Data Rate). Поэтому эффективная частота передачи данных равна удвоенной тактовой частоте. Сейчас ее можно встретить практически только в старом оборудовании, зато на её основе была создана DDR2 SDRAM.
В DDR2 SDRAM была вдвое увеличена частота работы шины, но задержки несколько выросли. За счет применения нового корпуса и 240 контактов на модуль, она обратно не совместима с DDR SDRAM и имеет эффективную частоту от 400 до 1200 МГц.
Сейчас наиболее распространённой памятью является третье поколение DDR3 SDRAM. За счет технологических решений и снижения питающего напряжения удалось снизить энергопотребление и поднять эффективную частоту, составляющую от 800 до 2400 МГц. Несмотря на тот же корпус и 240 контактов, модули памяти DDR2 и DDR3 электрически не совместимы между собой. Для защиты от случайной установки ключ (выемка в плате) находится в другом месте.
DDR4 является перспективной разработкой, которая в ближайшее время придет на смену DDR3 и будет иметь пониженное энергопотребление и более высокие частоты, до 4266 МГц.
Наряду с частотой работы, большое влияние на итоговую скорость работы оказывают тайминги. Таймингами называются временные задержки между командой и её выполнением. Они необходимы, чтобы память могла «подготовиться» к её выполнению, в противном случае часть данных может быть искажена. Соответственно, чем меньше тайминги (латентность памяти) тем лучше и следовательно быстрее работает память при прочих равных.
Различных таймингов существует много, но обычно выделяют четыре основных:
- CL (CAS Latency) — задержка между командой на чтение и началом поступления данных
- TRCD (Row Address to Column Address Delay) — задержка между подачей команды на активацию строки и командой на чтение или запись данных
- TRP (Row Precharge Time) — задержка между командой закрытия строки и открытием следующей
- TRAS (Row Active Time) — время между активацией строки и её закрытием
Указываются обычно в виде строки цифр разделенных дефисом, например 2-2-3-6, если указывается только одна цифра, то подразумевается параметр CAS Latency. Это позволяет сравнить скорость работы различных модулей и объясняет разницу в стоимости казалось бы одинаковых планок.
Кстати, обычно чем больше объем модуля, тем больше тайминги, поэтому взять две планки по 2 Гб может оказаться выгоднее, чем одну на 4 Гб. К тому же использование нескольких одинаковых планок памяти активирует многоканальный режим работы, что обеспечивает дополнительное увеличение быстродействия. Справедливости ради нужно отметить, что в настоящее время влияние таймингов на производительность несколько снизилось из-за повсеместного увеличения объема кэша на основе высокоскоростной памяти статического типа интегрированного в современные процессоры.
Какой объем оперативной памяти использовать
Количество памяти, которое можно установить в компьютер зависит от материнской платы. Объем памяти ограничивается как физически количеством слотов для её установки, так и в большей мере программными ограничениями конкретной материнской платы или установленной операционной системы компьютера.
В общем случае для просмотра интернета и работы в офисных программах достаточно 2 Гб, если вы играете в современные игры или собираетесь активно редактировать фотографии, видео или использовать другие требовательные к объему памяти программы, то объем установленной памяти следует повысить как минимум до 4 Гб.
Следует иметь в виду, что в настоящее время операционные системы Windows выпускаются в двух вариантах: 32-битная (x32) и 64-битная (x64). Максимальный объем доступный операционной системе в 32-битных версиях в зависимости от различных комбинаций комплектующих примерно от 2,8 до 3,2 Гб, то есть даже если вы установите в компьютер 4 Гб, система будет видеть максимум 3,2 Гб. Причина этого ограничения появилась на заре появления операционных систем, когда о таких объемах памяти никто даже в самых радужных мечтах бы не подумал. Существует способы позволить 32-битной системе работать с 4 Гб памяти, но это все «костыли» и не на всех конфигурациях работают.
Так же Windows 7 Начальная \ Starter имеет только 32-битную версию и ограничена максимальным объемом оперативной памяти в 2 Гб.
Таких проблем не испытывают 64-битные версии операционной системы, например Windows 7 Домашняя базовая поддерживает до 8 Гб, а Домашняя расширенная до 16 Гб. Если вам вдруг и этого мало, милости просим воспользоваться версиями Профессиональная, Корпоративная или Максимальная, где можно установить до 192 Гб памяти, главное материнскую плату, куда все это богатство поставите найти не забудьте и чтобы вам еще денег хватило.
Как узнать какая оперативная память стоит в компьютере
Существует два способа определить тип и характеристики установленной в компьютере памяти. Можно посмотреть эти данные на стикере наклеенном самом модуле, правда его наверняка придется вынуть из слота, иначе вы вряд ли что-либо увидите. Если стикер с информацией отсутствует или не читаем, то тип DDR памяти можно определить по количеству контактов и расположению ключа (выемки) на планке. Воспользуйтесь для этого нижеприведенным рисунком.
Другой способ узнать исчерпывающую информацию о характеристиках и режиме работы оперативной памяти, воспользоваться какой-нибудь программой, показывающей информацию о системе. Рекомендуем воспользоваться бесплатной программой CPU-Z показывающей, в том числе характеристике и режим работы памяти.
На вкладке Memory отображается тип установленной в компьютере оперативной памяти, её объем, режим работы и используемые тайминги. Вкладка SPD показывает все характеристики конкретного модуля памяти установленного в выбранный слот.
Что такое SPD
В каждом современном модуле памяти содержится специальная микросхема называемая SPD. Данная аббревиатура расшифровывается как Serial Presence Detect и в эту микросхему производитель записывает всю информацию о данном модуле включая объем, маркировку, производителя, серийный номер, рекомендованные задержки и некоторую другую информацию. Во время начальной загрузки компьютера эта информация считывается BIOS из микросхемы SPD и в соответствии с указанными настройками, выставляется режим работы памяти.
Последнее, что стоит знать начинающему пользователю, что существует буферизованная (registered) и ECC-память. Оперативная память с поддержкой ECC (Error Checking and Correction) позволяет исправлять некоторые возникающие в процессе передачи данных ошибки. Модули буферизованной памяти содержат встроенный буфер определенного размера, повышающий надежность и снижающий нагрузку на контролер памяти. Оба этих типа памяти предназначены для применения в рабочих станциях и серверах и в персональных компьютерах не используются.
beginpc.ru