Импульсное зарядное на основе трансформатора БП компьютера. Трансформатор блока питания компьютера


Как перемотать трансформатор из блока питания ПК

Перед тем как начать перемотку трансформатора, его нужно разобрать. О простом методе разборки импульсного трансформатора из блока питания ПК можно прочитать тут.

Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.

Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый. В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части. То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.

Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.

Разборка импульсного трансформатора Перемотка импульсного трансформатора

Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT. При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.

Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.

Скачиваем и запускаем программу Lite-CalcIT. Вбиваем  нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления. Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.

Расчет трансформатора ИИП

Вторичных обмотки будет две, с отводом от середины. Номинальное напряжение указывается для одной обмотки. В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.

Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки.  Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.

Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.

Ничего в расчете сложного нет.  В ходе него я получил следующие параметры:

- Число витков первичной обмотки 38;

-Число витков вторичной обмотки  10+10 двумя жилами указанного провода.

Начинаем мотать транс.

Каркас для намотки транса DSC_0720

38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать  буду в два слоя по 18 витков.

Провод эмалевый

Подпаиваем к контакту провод и мотаем 18 витков,  один к другому.  Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.

Первичная обмотканамотка первичной обмотки

Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.

Скотч как изолятор между обмоток транса

Изоляция для трансформатора

После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому. Припаиваем контакт.

18 витков первички

Кладем изоляцию. Все, первичка готова.

половина пути позади

Пример намотки первичной обмотки на частоту 30 кГц.

По расчетам я получил количество витков первичной обмотки, равное 48.  В первый слой я положил 35 витков.

транс на частоту 30 кГц

Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.

Транс для частоты 30 кГц

Изолируем первичную обмотку от вторичной.

Изолируем первичку

 

P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.

Мотаем вторичную обмотку импульсного трансформатора.

Подпаиваем два провода к выводу нашего транса от БП ПК.

Вторичная обмотка

Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.

Вторичка импульсника Вторичка импульсника

Оставляем хвост и изолируем.

Отвод от середины

 

Далее подпаиваем еще два провода к другим контактам.

вторая обмотка

Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.

DSC_090110 витков вторичной обмотки транса

Оставляем хвост.

Импульсный трансформатор своими руками

Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.

В принципе можно и с отводом от середины так мотать, кому как удобней короче.

P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.

Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.

Косу, которая получилась, перед  скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.

намотка трансформатора в домашних условиях ИИП своими руками

Похожие статьи

audio-cxem.ru

Блок питания ATX: переделка под усилитель низкой частоты (часть 2) - Лаборатория

Продолжение, начало здесь.

Если нужен блок питания для нестандартных условий, можно воспользоваться построением с низкочастотным трансформатором. Такое решение просто в реализации и не требует особо глубоких специальных знаний, но есть у него и ряд недостатков – большие габариты, низкий КПД и качество стабилизации выходных напряжений. Можно изготовить импульсный БП, но это довольно сложная процедура с массой подводных камней – при малейшей ошибке будет «хлопок» и куча ненужных деталей.

Попробуем снизить планку и ограничимся модернизацией обычного компьютерного блока питания ATX под необходимые требования. Гм, а что именно станет предметом рассмотрения? Вообще-то, 300-400 ваттный БП может обеспечить довольно значительную мощность, область применения у него большая. В одной статье трудно объять необъятное, поэтому ограничимся самым распространенным – усилителем низкой частоты, под него и попробуем осуществить переделку.

Блок питания довольно большой мощности, хотелось бы его использовать по максимуму. Из 12 вольт мощный усилитель не сделать, здесь требуется совсем другой подход – двуполярное питание с выходным напряжением явно побольше 12 В. Если БП будет запитывать самодельный усилитель, собранный из дискретных элементов, то его напряжение питания может быть любым (в разумных пределах), а вот интегральные микросхемы довольно придирчивы. Для определенности возьмем усилитель на TDA7294 – напряжение питания до 100 В (+/-50 В) с выходной мощностью 100 Вт. Микросхема обеспечивает ток в динамике до 10 ампер, что определяет максимальный ток нагрузки блока питания.

Вроде всё ясно, остается уточнить уровень выходного напряжения. Допускается работа от источника питания 100 вольт (+/-50 В), но попытка выбора такого значения выходного напряжения оказалась бы большой ошибкой. Микросхемы крайне отрицательно относятся к предельным режимам работы, особенно при одновременном максимальном значении нескольких параметров - напряжения питания и мощности. К тому же, вряд ли в обычной квартире есть смысл обеспечивать столь высокий уровень мощности, даже для низкочастотных динамиков с их низкой эффективностью.

Можно установить напряжение в 90 вольт (+/- 45 В), но это потребовало бы очень точного удержания выходного напряжения – в многоканальных блоках питания весьма затруднительно обеспечить одинаковость напряжений на разных выходах. Поэтому стоит немного снизить планку и установить номинальное напряжение для этой микросхемы 80 вольт (+/-40 В) - мощность усилителя немного упадет, но устройство будет работать с должным запасом прочности, что обеспечит достаточную надежность устройства.

Кроме того, если звуковая колонка будет работать не только в низкочастотной области, но еще содержит средне-высокочастотные каналы усилителей, то стоит получить от БП еще одно напряжение, меньше «+/-40 В». Эффективность работы низкочастотных динамиков большого диаметра существенно ниже более высокочастотных, поэтому запитывание усилителя СЧ-ВЧ канала от тех же «+/-40 В» довольно глупо, основная масса энергии уйдет в тепло. Для второго усилителя хорошо бы обеспечить выход +/-20 вольт.

Итак, спецификация блока питания, который хочется получить:

  • Канал № 1 (основной), напряжение: «+/-40 В».
  • Ток нагрузки от 0.1 А до 10 А.
  • Канал № 2 (дополнительный), напряжение: «+/-20 В».
  • Ток нагрузки от 0 до 5 А.

Характеристики определены, осталось выбрать подходящую модель. Совсем уж старый использовать нет никакого желания, конденсаторы давно уж высохли, да и схемные решения тех времен не внушают оптимизма. Стоит отметить, что часть «современных» блоков питания тоже не блещет качеством работы и надежностью, но с этим можно бороться – достаточно выбирать продукцию известных фирм, к которой есть доверие.

Кроме философского осмысления сущности БП и отбора по внешнему виду, есть вполне осмысленный критерий – их тип. Блок может быть выполнен по технологии «двухтактный полумост» или «однотактный прямоход», содержать в себе какую-то разновидность PFC (активную или пассивную на дросселе). Всё данные факторы оказывают влияние на качество работы и уровень помех. Причем, это не «просто слова», при переходе от трансформаторного БП на «импульсный» довольно часто замечается ухудшение качества звучания.

С одной стороны, «странно», ведь такой БП обеспечивает лучшую стабильность напряжения питания усилителя. С другой, ничего странного нет – «импульсник» производит помеху при переключении силовых транзисторов основного преобразователя (и блока APFC), что выражается в высокочастотных «всплесках» на цепях питания и земли. Чаще всего преобразователь БП работает на частоте 40-80 кГц, что выше звукового диапазона, а потому вроде бы не должно мешать устройству, но помехи распространяются по всему усилителю и сбивают рабочую точку усилительных каскадов, что приводит к интермодуляционным искажениям, звук становится «жестче». В компьютерном блоке питания шины 12 В и 5 В выглядят следующим образом:

320x234 6 KB

Так что, проблема не надуманная и на борьбу с ее негативным проявлением следует потратить некоторые усилия.

450x259 35 KB

Ничего необычного, классическая компоновка, разве что дроссель PFC вносит в картинку некоторый элемент дисгармонии. К слову, измерение характеристик и величины пульсаций на выходе показало, что наличие этого дросселя приводит лишь к тому, что блок питания становится тяжелее и немного «гудит» при мощности нагрузки 250-300 Вт.

Компьютерный блок питания должен формировать массу напряжений большой мощности – 12 В, 5 В, 3.3 В, -5 В, смысл в которых сразу теряется, как только речь заходит об усилителе. Кроме того, БП содержит дежурный источник 5 В, но его лучше не трогать и сохранить в неизменном виде – во-первых, он используется для работы основного преобразователя, во-вторых, можно будет реализовать включение-выключение усилителя от внешнего управления или просто по появлению звукового сигнала на входе усилителя. Это функция потребует изготовления высокочувствительного детектора с питанием от 5 вольт и вряд ли кто-нибудь станет делать этот элемент на начальной стадии сборки усилителя, ну хоть возможность такая останется. Пусть будет, это «бесплатно».

После удаления всех цепей формирования выходных напряжений получилось следующее:

342x450 54 KB. Big one: 400x527 69 KB

Оказалось не так много места, поэтому доработка не должна содержать слишком много деталей – банально не влезет. Фу ты, еще заложили в требования наличие двух выходных каналов.

Компьютерный блок питания формирует два основных выхода: 12 В и 5 В, этим объясняется наличие всего двух пар вторичных обмоток. Каким способом можно получить напряжение больше, чем заложено при проектировании БП?

1. Перемотать трансформатор. 2. Поставить умножитель. 3. Добавить второй трансформатор.

Первый вариант понятен и прост в техническом плане. Одно «но», конструкция импульсного трансформатора не так проста, как может показаться на первый взгляд. Существует масса требований и ограничений, не выполнив которых можно получить либо «крайне посредственный вариант», либо, что гораздо хуже, некачественную изоляцию вплоть до поражения электрическим током. В трансформаторе первичная обмотка выполнена из двух частей. Первая расположена в самом начале, а потому не мешает перемотке, а вот вторая наматывается самой последней.

Трудности умножаются тем, что между первичной и вторичной обмотками присутствует электростатический экран из медной ленты. Чтобы осуществить перемотку придется аккуратно смотать верхнюю часть первичной обмотки, убрать экран и вторичные обмотки. После чего намотать новые вторичные обмотки, восстановить экран и первичную обмотку. Естественно, между обмотками и экраном должна быть надежная изоляция. Дело усугубляется тем, что трансформатор пропитан лаком, а потому его разборка-сборка занятие «увлекательное» и качество выполнения доработки окажется не слишком хорошим. Впрочем, если у вас руки «прямые» и есть желание попробовать – некоторые рекомендации:

  • Число витков обмотки 12 В почти всегда постоянно (семь витков), что определяется не параметрами трансформатора, а единственным целым соотношением числа витков обмоток 12 В и 5 В (четыре и три). Если на семь витков приходится 12.6 вольт, то на «нужное» напряжение приходится 7*(«нужное»/12.6) число витков, с округлением до ближайшего целого.
  • При удалении обмоток 12 В и 5 В посчитайте место, которое они занимали – новая обмотка должна уместиться в эти же габариты.
  • При наличии места лучше использовать провод диаметром 0.8-0.9 мм. Если сечения одного провода недостаточно, то стоит увеличивать количество проводов, а не их сечение (диаметр)
  • Крайне аккуратно наматывайте экранирующий виток ленты (не замыкайте начало с концом) и изоляцию под и над ним – основной дефект самодельных трансформаторов заключается в пробое изоляции или закорачивании экранирующей обмотки. Медная лента жесткая с острой кромкой, легко режет изоляцию. В домашних условиях лучше использовать алюминиевую фольгу – она значительно мягче и и шансов порезать изоляцию меньше. Кроме того, ее проще найти. Увы, у такого подхода есть небольшой недостаток – к алюминиевой фольге труднее подсоединить отвод.

И всё же я бы не рекомендовал этот вариант переделки для тех, у кого нет опыта намотки импульсных трансформаторов. Не стоит, может выйти боком. К слову, если человек разбирается в вопросе, то ему проще намотать трансформатор полностью «с нуля», по крайней мере, не будет путаться под ногами этот «лак», да и число витков во всех обмотках можно будет выбрать оптимальным.

Второй вариант довольно сложен в реализации и обладает рядом серьезных недостатков. Пример такого построения изображен на рисунке:

309x383 4 KB
  • TV1 – обычный трансформатор блока питания, без каких-либо доработок.
  • TV1.1 – первичная обмотка.
  • TV1.3 и TV1.4 – обмотки канала 5 В.
  • TV1.2 и TV1.5 – обмотки, совместно с TV1.3 и TV1.4 формирующие канал 12 В.

Для анализа важен тот факт, что форма импульсов напряжения на выходе трансформатора с гладким верхом, а не «синус», «пила» или другие вариации. Устройство работает следующим образом - на первичной обмотке следуют импульсы напряжения прямоугольной формы с некоторой скважностью. Напряжение импульсов на первичной обмотке составляет половину напряжения питания или около 140 В при номинальном напряжении сети. На вторичной стороне форма импульсов сохраняется, а амплитуда зависит от числа витков и распределяется примерно как 9 В на обмотках «канала 5 В» (TV1.3 и TV1.4) и 21 В на «канале 12 В» (TV1.2+TV1.3 и TV1.4+ TV1.5).

Предположим, что в данный момент поступает импульс положительной полярности и на верхних выводах обмоток следует «+». Расставим напряжения в контрольных точках:

  • A = +21 В.
  • B = +9 В.
  • С = -9 В.
  • D = -21 В.

Отсюда можно сразу вычислить напряжение в токе «F», оно будет чуть меньше цепи «B» на величину падения напряжения на диоде D1.

При данной полярности диод D2 закрыт, поэтому напряжение в точке «E» будет определено при противоположной полярности импульса.

  • Напряжение на конденсаторе C2 = +8.4 – (-21) = 29.4 В.

Сменим полярность импульса, напряжения в контрольных точках поменяют знак:

  • A = -21 В.
  • B = -9 В.
  • С = +9 В.
  • D = +21 В.

Полярность сменилась и открывается диод D2. Напряжение в точке «F» станет чуть меньше цепи «B» или около +8.4 В.

  • E = +8.4 В.
  • Напряжение на конденсаторе C1 = +8.4 – (-21) = 29.4 В.

Схема симметричная, поэтому напряжения конденсаторов обязаны быть одинаковыми. Из анализа предыдущей полярности импульса следует, что

  • Напряжение в точке «F» смещено относительно точки «D» на величину напряжения конденсатора С2 (29.4 В) и равно +21 + 29.4 = +50.4 В.

Нет смысла анализировать аналогичное состояние точки «E» при смене полярности импульса, схема симметричная и там будет столько же, сколько сейчас на точке «F», +50.4 В.

В итоге, может интересовать только «E» и «F», ведь из них получается выходное напряжение. Соберем значения в этих точках в таблицу. Впрочем, забыл еще одно состояние, «пауза» импульса от ШИМ-регулировки. Этот случай очень прост, на всех обмотках нулевое напряжение и в точках «E» и «F» получается одно и то же напряжение +29.4 В, хранимое в конденсаторах. (При анализе не учитывалась конечная емкость конденсаторов и непрямоугольность формы импульсов).

Импульс:«E»«F»
Положительный+50.4 В+8.4 В
Отрицательный+8.4 В+50.4 В
Пауза+29.4 В+29.4 В

Выпрямительная сборка D3 «выбирает» наибольшее напряжение из двух входов («E» и «F»). Это означает, что на входе дросселя L6 будут идти импульсы амплитудой 50 В с паузой 8 В. При скважности ШИМ 70% на выходе сформируется напряжение примерно 37 вольт.

Всё сказанное относилось к получению повышенного напряжения положительной полярности. Если необходимо сформировать и отрицательный выход, то схему следует «удвоить» – добавить конденсаторы C1, С2 и C3, диоды D1 и D2, пару диодов в сборку D3 и намотать вторую обмотку на выходном дросселе. Не забудьте сменить полярность конденсаторов и диодов.

У подобного решения только одно достоинство – не придется что-то делать с трансформатором. Впрочем, есть еще одно - незначительное, девиация напряжения на выходном дросселе небольшой амплитуды, поэтому размеры дросселя и его индуктивность могут быть сниженной величины. Фактически, можно использовать старую обмотку канала 12 В.

Недостатков больше и они серьезные:

  • Весь импульсный ток протекает через повышающие конденсаторы С1 и С2.
  • Очень большой ток заряда конденсаторов в начальный момент времени. Кроме снижения срока службы конденсаторов, высокая величина тока может вызвать срабатывание общей защиты блока питания и он отключится.
  • Низкий диапазон регулирования выходного напряжения.
  • Невозможно получить больше одного канала со стабилизацией выходного напряжения. Выходы «+37 В» и «-37 В» получаются по вышеприведенной схеме, а вот обычные «+/-12 В» придется формировать на отдельном дросселе при повышенном уровне пульсаций с частотой сети и низкой стабильностью.

Основной недостаток схемного решения - весь ток протекает через конденсаторы С1 и С2. Довольно просто найти конденсаторы с подходящей емкостью или ESR, но вот величина импульсного тока у них окажется низка. Чтобы не быть голословным, подберем подходящий конденсатор для рассматриваемого блока питания усилителя (выходное напряжение соответствует заданным условиям, величина тока до 10 А).

Ранее я ссылался на конденсаторы общего применения фирмы Jamicon серии LP, посмотрим, что есть в данном исполнении – 2200 мкФ 50 В. Максимальный ток 2 ампера. Совершенно не подходит, конденсатор выйдет из строя через неделю работы усилителя. Переходим к серьезным сериям, «Low ESR». Например, серия WL:

НоминалДиаметр, ммВысота, ммESR, мОмМакс. ток, А
2200 мкФ 35 В16 (18)32 (25)403.8 (3.5)
1500 мкФ 50 В16 (18)36 (32)514 (3.9)
1000 мкФ 35 В13 (18)25 (15)702.5 (2.1)
1000 мкФ 50 В13 (18)40 (20)703.4 (2.8)
680 мкФ 35 В10 (16)28 (15)103 (86)2 (1.7)
680 мкФ 50 В13 (16)30 (20)862.6 (2.3)

В круглых скобках указывается характеристики альтернативного варианта исполнения корпуса конденсатора.

Хочется отметить интересный момент, для конденсатора «680 мкФ 35 В» первое исполнение, в сравнении со вторым, несет меньшее внутреннее сопротивление и максимальный ток, обычно происходит обратное – снижение ESR повышает величину тока. Видимо, причина в разной площади поверхности корпуса.

Если смотреть на ESR, то все конденсаторы вполне устраивают. Ну, сколько может «упасть» на сопротивлении 40-90 мОм при токе 3-8 ампер? Пустяк. Блок питания работать будет. Вот так и появляются «китайские» поделки. К слову, в Китае производится масса качественной продукции, это местные фарцовщики закупают хлам, отсюда и происходит недоверие к китайской продукции … причем зря.

Ну ладно, собираем для себя, поэтому делать плохо не будем. Конденсатор должен выдерживать ток не менее 10/2=5 А в долговременном режиме и на одном конденсаторе получить такую характеристику не удастся. Остается вариант с установкой пары или тройки конденсаторов параллельно. Два конденсатора «1000 мкФ 35 В» обеспечат ток до 5 (4.2) ампера, что маловато. Можно взять конденсаторы того же номинала, но чуть большего напряжения «1000 мкФ 50 В», предельный ток составит величину 6.4 (5.6) ампера.

С учетом конечной индуктивности выходного дросселя этот вариант может устроить, но не особо хорошо. Перейдем к утроению конденсаторов, «680 мкФ 35 В» обеспечит ток до 6 (5.1) А, или «680 мкФ 50 В» 7.8 (6.9) А. Последний вариант смотрится уже веселее, блок питания сможет работать достаточно долго.

В результате получается, что в блок питания придется установить 3*2*2=12 конденсаторов «680 мкФ 50 В», выйдет не самое компактное устройство, а место в БП ограничено.

Схема моделировалась, но практически не испытывалась, поскольку не лежит у меня душа к таким решениям. Этот вариант доработки дается на ваш страх и риск.

overclockers.ru

Преобразователь 12V-220V на трансформаторе от компьютерного блока питания

Схемы источников питания

материалы в категории

Такой преобразователь напряжения очень может пригодится в походных условиях если требуется получить напряжение 220 Вольт (Их еще иногда называют конвертер напряжения)

Схем преобразователей в интернете много, но у всех у них есть одна общая проблема- необходимость изготовления повышающего трансформатора и это отталкивает очень многих радиолюбителей сборки таких устройств.

Схема преобразователя напряжения 12-220 Вольт, которая представлена ниже лишена этой проблемы. Трансформатор, конечно-же здесь тоже имеется, но было принято решение применить уже готовый транс- из устаревшего компьютерного блока питания at-200

Большинство подобных  блоков питания   собирались по двухтактной схеме на двух транзисторах  MJE13005...MJE13007  или подобных,  которые через  небольшой  разделительный трансформатор запускались от задающего генератора на микросхемеTL494.   Выход преобразователя через конденсатор 1 мкФ подключался к первичной обмотке выходного трансформатора.  Проблема была в том, что  коэффициент трансформации  оказался  недостаточным, чтобы на выходе самодельного конвертера получить  достаточное для  запуска  энергосберегающих ламп напряжение.    Наиболее простым оказалось решение использовать  доступную микросхему для построения преобразователей напряжения - VD2, VD7, подключенных к "12В"  отводам трансформатора.  Выход схемы вольтодобавки подключен  к "минусу"  диодного моста  на VD3 ... VD6,   что   позволило получить на нагрузке напряжение 190 .... 220В,  достаточное  для  нормального  запуска  и свечения  люминесцентных ламп, питания адаптеров ноутбука, сотового телефона или небольшого стационарного телевизора.

преобразователь 12-220 схема

Использование силовых  полевых транзисторов  (MOSFET)  накладывает ограничение  на  минимальную величину  запускающих импульсов - при снижении амплитуды импульсов ниже 10В  сильно возрастает сопротивление открытого канала транзисторов,  увеличивается их нагрев,  снижается КПД  и максимальная мощность в нагрузке.  Для исключения   увеличения потерь преобразователя при разряде аккумулятора  в схеме  применён узел "вольтодобавки" для питания микросхемы.  При подаче питания  напряжение  на микросхему поступает через диодVD1,  а  после начала генерации  -  с  "вольтодобавки"  на диодах VD2, VD7,  через резистор R3, номинал которого подбирается в пределах 470 Ом ... 1,5 кОм, с расчётом, чтобы при  нормальной работе напряжение питания микросхемы составляло около 20В.  При этом,  даже при глубоко разряженном аккумуляторе,  напряжение питания микросхемы составляет не менее 15В, что  полностью открывает каналы полевых транзисторов.  Потери становятся настолько низки,  что даже при нагрузке преобразователя до 40Вт  для полевых транзисторов  можно  не использовать  радиаторы.  При использовании  небольшого радиатора  (пластина из алюминия  92*30*1,5 мм) мощность  преобразователя  достигает 100 ... 200 Вт  и полностью зависит от выбора импульсного трансформатора и  выходных полевых транзисторов.

  В схеме  можно использовать  любые доступные  MOSFET  транзисторы с   низким сопротивлением открытого канала. Чем меньше RDC(on), тем лучше.  Хорошо подходят транзисторы IRFZ24N, IRFZ34N,  IRFZ44N, IRFZ46N,  IRFZ48N, 2SK2985  и т.д.    Диоды VD2 ... VD7  должны быть  рассчитаны на рабочую частоту 100 кГц,  рабочее напряжение не менее 400В  и ток 1 ... 3А,  в качестве которых  хорошо подходят  доступные  FR204...FR207,  HER204 ... HER207, FR154 ... 157,  1N4936 ... 1N4937,  BYT52G, BYT53G, FR304 ... FR307  и т.д.  Можно использовать распространённые отечественные  диоды КД226В ... КД226Д.   Допустимый разброс ёмкости электролитических конденсаторов достаточно велик,  так ёмкость конденсатора С3 может быть от 1000 мкФ  и выше, на напряжение от 16В.   Ёмкость С5  может быть от  4,7 мкФ  и напряжение от  300В.  Конденсатор С1  служит для "мягкого" пуска преобразователя и в большинстве случаев может не устанавливаться, т.к. он создаёт задержку включения преобразователя, что не всегда желательно. Рабочая частота  генератора  определяется  номиналами резистора R2  и  конденсатора C2.  При сопротивлении резистора R2 = 5,1K  ёмкость конденсатора  может быть от 1000 до 3300 пФ.  Оптимальная частота для  конкретного импульсного трансформатора подбирается  из  условия получения максимального напряжения на номинальной нагрузке. На время настройки резистор R2 можно заменить подстроечным, а  после заменить постоянным.

Для контроля разряда аккумуляторной батареи до 11,8 В  конвертер можно дополнить  узлом  индикации  нормального напряжения,  в основе которого лежит использование  широко распространённой микросхемы TL431A.

Этот прецизионный регулятор, иногда называемый управляемым стабилитроном,  часто применяется в блоках питания  телевизоров и мониторов  для  регулирования выходного напряжения  посредством оптрона,  подключенному  к  драйверу   БП.   Микросхема содержит 3 вывода: анод, катод  и управляющий электрод REF.  При напряжении  на  входе REF  ниже 2,50 В  проводимость  между  анодом и катодом  при  обратной полярности напряжения низка.  При незначительном повышении напряжения свыше 2,50 В проводимость резко возрастает, что приводит к зажиганию светодиода.   Для индикации нормального напряжения свыше 11,8 В  необходимо точно подобрать делитель R1/R2. Соотношение  резисторов  должно быть равно  3,72,  т.е. если R2= 10K,   то R1  должно быть равно 37,2 К.  Для точной регулировки порога последовательно с одним из резисторов можно включить подстроечный резистор.  При использовании  не свинцовых аккумуляторов  пороговое напряжение  может быть иным. В этом случае произвольно задаётся номинал одного из  резисторов, например R2,  а R1  находится по формуле:  R1= R2 * (Uпор -2,5) / 2,5.

Резистор R3  предназначен для исключения подсветки светодиода   за счёт  протекания  небольшого тока между анодом  и катодом   микросхемы  при напряжении на выводе REF ниже 2,50 В.  Устройство подключают отдельными проводами прямо на клеммы аккумулятора. 

Внешний вид и печатная плата устройства выглядят вот так:

Устройство собрано на небольшой печатной плате размером  около 93 х  38 мм (в авторском варианте используется трансформатор  от БП at-200).При использовании  иных элементов печатную плату придётся немного подкорректировать.   Разрядный резистор R4  подключается непосредственно к выходной розетке. Его сопротивление может быть любым от 200кОм  до 4,7мОм, а допустимое рабочее напряжение должно быть не менее 300В.

 

Автор Кравцов В.Н. http://kravitnik.narod.ru/

Обсудить на форуме

 

radio-uchebnik.ru

Как устроен блок питания, часть 4

Как я уже сказал, речь сегодня пойдет о силовом трансформаторе, а также об узле, именуемом Снаббер.И если трансформатор наверное знает большинство, то снаббер в основном те, кто занимается блоками питания более плотно.Весь узел на фото выделен красным, а снаббер я обвел зеленым.

Также его можно увидеть в народном блоке питания. На фото я вычеркнул диод, не имеющий отношения к снабберу.

И в моем самодельном блоке питания. Здесь его схема отличается и об этом я расскажу немного позже.

Схема типового обратноходового блока питания думаю знакома многим, подобные схемы часто встречаются в моих обзорах.

Выделим из нее ту часть, о которой я и буду рассказывать.В нее входит снаббер, трансформатор, входной конденсатор и высоковольтный транзистор.

Отсечем ту часть, которая не имеет отношения к теме разговора, останется совсем мало деталей, думаю что так будет проще для понимания процессов.

Что же происходит в импульсном блоке питания во время работы.Сначала открывается силовой ключ, через цепь выделенную красным, течет ток, энергия в это время запасается в магнитопроводе трансформатора.

После закрытия ключа полярность на обмотках трансформатора меняется на противоположную и ток начинает течь в нагрузку.

Но так как трансформатор и выходные цепи неидеальны, то на первичной обмотке возникает выброс напряжения, который начинает течь через снаббер.Если вы посмотрите внимательно, то увидите, что начала обмоток помеченные точками, одинаково сориентированы по отношению к диодам D1 и D2, потому во время открытого состояния силового ключа эти цепи не работают.Функция снаббера поглотить паразитный выброс, который возникает в первичной обмотке и тем самым защитить высоковольтный транзистор. У некоторых совсем дешевых блоках питания снаббера нет вообще, и это весьма вредно, так как снижает надежность.

В типовом блоке питания данный участок схемы выглядит так. Номиналы подбираются в зависимости от индуктивности обмотки трансформатора, частоты работы и мощности блока питания. Я не буду рассказывать о методике расчета, это довольно долго, но скажу лишь что здесь не работает принцип - чем больше, тем лучше, цепь должна быть оптимальная для определенных условий.

Некоторые наверное увидели диод в схеме снаббера и подумали - что-то знакомое.Да, так и есть, ближайший аналог, это цепь защиты транзистора, который коммутирует питание обмотки реле. В данном случае он выполняет похожую функцию, не допускает выброса напряжения на транзисторе при выключении. Кстати если диод в этой схеме заменить стабилитроном, то работать должно лучше.

Так как вариант с диодом неприменим в варианте с трансформатором, то последовательно с ним ставят либо резистор с конденсатором, либо супрессор, как на этой схеме.

Еще одно новое слово - супрессор. Не пугайтесь, супрессор это по сути просто стабилитрон, но если у стабилитрона функция обеспечить стабильное напряжение, то у супрессора акцент сделан на импульсный ток и рассеиваемую мощность, стабильность напряжения в данном случае не так важна.Выглядит он как обычный диод, при этом бывает двунаправленным, но тогда катод не маркируется. Наиолее распространенные супрессоры серий P6KE и 1.5KE. Первый имеет импульсную мощность 600 Ватт, второй 1500 Ватт. Существуют и более мощные, но нас они не интересуют.

Я немного переверну схему так, чтобы было более понятно как работает эта схема. В подобных схемах чаще применяют супрессоры на напряжение в 200 Вольт, например P6KE200A.Благодаря этому напряжение на обмотке трансформатора не может быть больше чем 200 Вольт. Напряжение на входном конденсаторе около 310 Вольт.Получается что на транзисторе напряжение около 510 Вольт. На самом деле напряжение будет немного выше, так как детали неидеальны, а кроме того в сети может быть и более высокое напряжение.

В даташитах к микросхемам серии ТОР часто была показана именно такая схема включения супрессора.Такая схема имеет более жесткую характеристику ограничения, так как до 200 Вольт не ограничивает совсем, а потом старается обрезать все что выше 200 Вольт. Схема с конденсатором имеет немного другую характеристику ограничения, но на самом деле это не критично.

Для уменьшения мощности, рассеиваемой на супрессоре, параллельно ему можно подключить конденсатор.

Или вообще сделать гибрид из двух схем, где есть все элементы обоих вариантов, такое часто применяется в мощных обратноходовых блоках питания.

Иногда применяется альтернативный вариант защиты транзистора, супрессор включенный параллельно ему. Такой вариант применяется довольно редко, чаще в блоках питания имеющих низкое входное напряжение.

Например такое включение супрессора можно увидеть в РоЕ блоке питания, входное напряжение здесь не 310 Вольт постоянного тока, а всего до 70 Вольт.

Теперь можно перейти к трансформатору. Трансформатор состоит из магнитопровода и каркаса, иногда конструкция дополняется специальным скобами, которые фиксируют магнитопровод на каркасе.

Чаще всего для них используются Ш-образные магнитопроводы. Если блок питания обратноходовый, каким является подавляющее большинство недорогих маломощных блоков питания, то между половинками магнитопровода должен быть зазор. Зазор делается либо между половинками, либо используется специальный магнитопровод, где центральный керн уже имеет зазор, а этом случае ширина зазора должна быть в два раза больше.

Обычно в качестве материала магнитопровода используется феррит, у фирменных магнитопроводов может быть нанесена маркировка и по даташиту можно узнать его характеристики, у более дешевых магнитопроводом чаще маркировки нет.

Вначале мотаются обмотки трансформатора, а затем на этот магнитопровод устанавливается каркас.

Процесс намотки мелких трансформаторов довольно прост.Сначала мотаем первичную обмотку.

Затем вторичную, иногда в два и более проводов.

Если есть третья обмотка, чаще всего это обмотка питания ШИМ контроллера, то мотаем и ее.

В целях безопасности изолируем всю конструкцию.

После этого берем подобранный магнитопровод, в данном случае здесь у одной половинки средний керн укорочен.

Собираем всю конструкцию вместе. Магнитопровод чаще всего склеивается, но я обычно дополнительно фиксирую скотчем.

В итоге получаем небольшой аккуратный трансформатор. На фото трансформатор мощностью около 25-30 Ватт.

Этот трансформатор уже имеет мощность до 80-100 Ватт. Мотаются они подобным образом, но с некоторыми отличиями.

У трансформаторов рассчитанных на низкое выходное напряжение и большой ток выходная обмотка может мотаться либо литцендратом, либо шиной.

Величина выбора с первичной обмотке напрямую зависит от правильности намотки трансформатора и если для маломощных трансформаторов это не очень критично, то неправильная намотка мощного трансформатора может привести к печальным последствиям.Обычно наматывают обмотки в три слоя (если используется три обмотки), первичная, вторичная и вспомогательная.Но связь между обмотками можно сильно улучшить если вторичную обмотку разместить между двумя половинами первичной.

Кроме того рекомендуется мотать провод не внавал, а виток к витку, равномерно заполняя всю площадь каркаса. Обмотки рассчитанные на большой ток мотать лучше несколькими тонкими проводами, а не одним толстым.

Проблемы, которые могут возникнуть в этом узле:1. Межвитковое КЗ в случае выхода из строя высоковольтного транзистора.2. Перегрев трансформатора, последующее резкое уменьшение его индуктивности и выход из строя транзистора инвертора3. Пробой диода снаббера, крайне редко.4. Частичный пробой супрессора, например супрессор на 200 Вольт превращается в супрессор на 100 Вольт, ничего не выгорает, но БП не работает.

www.kirich.blog

Как разобрать трансформатор блока питания ПК

admin 10 октября 2015 г.

Сердечники из импульсных блоков питания персональных компьютеров отлично подходят для переделки, под  различные, самодельные импульсные источники. Также они легкодоступны. Но перед перемоткой импульсного трансформатора из БП ПК, его нужно разобрать. Некоторые трансформаторы так проклеены, что разобрать их без повреждения сердечника очень проблематично.

Есть различные методы разборки склеенных трансов, но я хочу рассказать вам про один, простой, доступный и надежный метод, который использую на протяжении долгого времени.

Как разобрать импульсный трансформатор Разборка трансформатора из БП ПК

Берем старую, металлическую кастрюльку. Заливаем в нее воды и доводим до кипения. После того, как вода в кастрюле закипит, помещаем в нее трансформатор.

Кипячение трансформатора

По истечении 30 минут кипения, вытаскиваем трансформатор из кипящей воды и пытаемся разобрать. В некоторых случаях транс разбирается руками, без применения инструмента.

Сердечник из ИИП Как достать сердечник из БП ПК

Изоляция проводов трансформатора остается неповрежденной, поэтому предварительно просушив его, можно перемотать вторичную обмотку, сохранив первичную.

Описанный выше способ разборки трансформатора из блока питания ПК примитивный  и в то же время надежный.

Похожие статьи

audio-cxem.ru

ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX

   С чего начинается Родина... То есть я хотел сказать с чего начинается любое радиоэлектронное устройство, будь то сигнализация или ламповый усилитель - конечно с источника питания. И чем значительнее ток потребления девайса, тем мощнее требуется трансформатор в его БП. Но если приборы изготавливаем часто, то никаких запасов трансформаторов нам не хватит. А если ходить покупать на радиобазаре то учтите, что в последнее время стоимость такого трансформатора превысила все разумные пределы - за средний стоваттник требуют около 10уе! 

блок питания ATX

   Но выход всё-же есть. Это обычный, стандартный блок питания ATX от любого, даже самого простого и древнего компьютера. Несмотря на дешевизну таких БП (бэушный можно найти по фирмам и за 5уе), они обеспечивают очень приличный ток и универсальные напряжения. По линии +12В - 10А, по линии -12В - 1А, по линии 5В - 12А и по линии 3,3В - 15А. Конечно указанные значения не точные, и могут несколько отличаться в зависимости от конкретной модели БП ATX.

блок питания ATX плата с деталями внутри

   Вот как раз недавно я и делал одну интересную вещь - музыкальный центр из цифровой автомагнитолы и корпуса от небольшой колонки. Всё бы хорошо, да вот учитывая приличную мощность усилителя НЧ, ток потребления центра в пиках басов достигал 8А. И даже попытка установить на питание 100 ваттный трансформатор с 4-х амперными вторичками нормального результата не дал: мало того, что на басах напряжение проваливалось на 3-4 вольта (что было хорошо заметно по затуханию ламп подсветки передней панели магнитолы), так ещё и от фона 50Гц никак не удавалось избавиться. Хоть 20000 микрофарад ставь, хоть экранируй всё, что можно.

извлечение из корпуса блока питания ATX

вид на дорожки схемы блока питания

   А тут как раз на счастье, сгорел старый системник на работе. Но блок питания ATX ещё рабочий. Вот и приткнём его для магнитолы. Хотя по паспорту автомагнитолы и ихние усилители питаются напряжением 12В, но мы то знаем, что гораздо мощнее она будет звучать если подать на неё 15-17В. По крайней мере за всю мою историю ещё ни один ресивер не сгорел от лишних 5-ти вольт.

напряжения выхода в блоке питания ATX

   Так как в имеющемся БП ATX напряжение 12-ти вольтовой шины было всего чуть больше 10В (может потому и не работал системник? Поздно.), будем поднимать его изменением управляющего напряжения на 2-м выводе TL494. Принципиальную схему компьютерного блока питания смотрите тут.

резистор управления напряжением блока питания ATX

   Проще говоря поменяем резистор или вообще впаяем его на дорожки другого номинала. Ставлю два килоома и вот 10,5В превращаются в 17. Надо меньше? - Увеличиваем сопротивление. Стартуется компьютерный блок питания замыканием зелёного провода на любой чёрный.

как стартонуть компьютерный блок питания ATX

лишние провода из блока питания ATX

   Так как места в корпусе будущего музыкального центра не много - вытаскиваем плату импульсного блока питания ATX из родного корпуса (коробочка пригодится для моего будущего проекта), и тем самым уменьшаем габариты БП в два раза. И не забываем перепаять конденсатор фильтра в БП на более высокое напряжение, а то мало ли что...

блок питания ATX замена конденсатора

свободный металлический корпус с разъёмами и кулером

   А кулер? - Спросит внимательный и сообразительный радиолюбитель. Он нам не нужен. Эксперименты показали, что при токе 5А 17В в течении часа работы магнитолы на максимальной громкости (за соседей не беспокойтесь - два резистора 4 Ома 25 ватт), радиатор диодов был немного тёплый, а транзисторов - почти холодный. Так что нагрузку до 100 ватт такой БП ATX будет держать без проблем.

   Форум по блокам питания

   Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX

radioskot.ru

Импульсное зарядное на основе трансформатора БП компьютера 2ZV.ru

Рассказать в:  Импульсное зарядное для мощных аккумуляторов можно собрать по несложной схеме, и что самое главное - использовать готовый трансформатор от ИБП компьютера. Здесь используется типовой понижающий трансформатор из компьютерного блока питания ATX. Конденсаторы на входе берутся из расчета 1мкф на 1 Вт. В данном случае конденсаторы "тянут" нагрузку в 200Вт. Микосхема IR2151 – управления затворами полевых транзисторов, заменима на IR2152, IR2153. Если в названии есть индекс "D", (IR2153D), то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct. Полевые транзисторы выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Кликните по схеме для увеличения.

Импульсное зарядное на основе трансформатора БП компьютера CVAVR CAVR AVR CodeVision cavr.ru

   Если необходимо, можно добавить узел защиты от замыкания и переполюсовки по такой схеме:

Импульсное зарядное на основе трансформатора БП компьютера CVAVR CAVR AVR CodeVision cavr.ru

   При монтаже полевых транзисторов на радиатор использовать изоляционные прокладки и шайбы-втулки. Трансформатор типовой понижающий из блока питания компьютера. Цоколевка как правило, соответствует приведенной на схеме. Диоды на выходе ставьте с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER. Не путать с диодами Шоттки. Емкость на выходе не следует устанавливать более 4700 мкф. Файлы печатной платы качаем тут.

Импульсное зарядное на основе трансформатора БП компьютера CVAVR CAVR AVR CodeVision cavr.ru

   Практика показала, что в работе полевые транзисторы не сильно нагреваются. Для них достаточно пассивного охлаждения. Но при заряде автомобильных аккумуляторов не лишне будет установить небольшой вентилятор.  Раздел: [Схемы] Сохрани статью в:

2zv.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики