Как квантовая физика меняет мир. Что изучает квантовая физика
6 фактов о квантовой физике, которые должен знать каждый
Экология познания: Неподготовленного слушателя квантовая физика пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый день. Но она не непонятная
Неподготовленного слушателя квантовая физика пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый день. Но она не непонятная. Если вас интересует квантовая физика, на самом деле есть шесть ключевых понятий из нее, которые необходимо удерживать в уме. Нет, они мало связаны с квантовыми явлениями. И это не мысленные эксперименты. Просто намотайте их на ус, и квантовую физику будет намного проще понять.
Все состоит из волн — и частиц тоже
Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.
Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это экспериментальный факт.
Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» — значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.
Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.
Квантовая физика дискретна
Все в названии физики — слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся в квантовом поле, приходит в кратных величинах некой фундаментальной энергии. Для света это ассоциируется с частотой и длиной волны света — высокочастотный свет с короткой волной обладает огромной характерной энергией, тогда как низкочастотный свет с длинной волной обладает небольшой характерной энергией.
В обоих случаях между тем полная энергия, заключенная в отдельном световом поле, целочисленно кратна этой энергии — 1, 2, 14, 137 раз — и не встретить странных долей вроде полутора, «пи» или квадратному корню из двух. Это свойство также наблюдается в дискретных энергетических уровнях атомов, и энергетические зоны конкретны — некоторые величины энергий допускаются, остальные нет. Атомные часы работают благодаря дискретности квантовой физики, используя частоту света, связанного с переходом между двумя разрешенными состояниями в цезии, которая позволяет сохранить время на уровне, необходимом для осуществления «второго скачка».
Сверхточная спектроскопия также может быть использована для поиска вещей вроде темной материи и остается частью мотивации для работы института низкоэнергетической фундаментальной физики.
Это не всегда очевидно — даже некоторые вещи, которые квантовые в принципе, вроде излучения черного тела связаны с непрерывными распределениями. Но при ближайшем рассмотрении и при подключении глубокого математического аппарата квантовая теория становится еще более странной.
Квантовая физика является вероятностной
Одним из самых удивительных и (исторически, по крайней мере) противоречивых аспектов квантовой физики является то, что невозможно с уверенностью предсказать исход одного эксперимента с квантовой системой. Когда физики предсказывают исход определенного эксперимента, их предсказание носит форму вероятности нахождения каждого из конкретных возможных результатов, а сравнения между теорией и экспериментом всегда включают выведение распределения вероятностей из многих повторных экспериментов.
Математическое описание квантовой системы, как правило, принимает форму «волновой функции», представленной в уравнениях греческой буковой пси: Ψ. Ведется много дискуссий о том, что конкретно представляет собой волновая функция, и они разделили физиков на два лагеря: тех, кто видит в волновой функции реальную физическую вещь (онтические теоретики), и тех, кто считает, что волновая функция является исключительно выражением нашего знания (или его отсутствия) вне зависимости от лежащего ниже состояния отдельного квантового объекта (эпистемические теоретики).
В каждом классе основополагающей модели вероятность нахождения результата определяется не волновой функцией напрямую, а квадратом волновой функции (грубо говоря, все ей же; волновая функция — это сложный математический объект (а значит, включает воображаемые числа вроде квадратного корня или его отрицательного варианта), и операция получения вероятности немного сложнее, но «квадрата волновой функции» достаточно, чтобы понять основную суть идеи). Это известно как правило Борна в честь немецкого физика Макса Борна, впервые его вычислившего (в сноске к работе 1926 года) и удивившего многих людей уродливым его воплощением. Ведутся активные работы в попытках вывести правило Борна из более фундаментального принципа; но пока ни одна из них не была успешной, хотя и породила много интересного для науки.
Этот аспект теории также приводит нас к частицам, пребывающим в множестве состояний одновременно. Все, что мы можем предсказать, это вероятность, и до измерения с получением конкретного результата измеряемая система находится в промежуточном состоянии — состоянии суперпозиции, которое включает все возможные вероятности. А вот действительно ли система пребывает в множественных состояниях или находится в одном неизвестном — зависит от того, предпочитаете вы онтическую или эпистемическую модель. Обе они приводят нас к следующему пункту.
Квантовая физика нелокальна
Последний великий вклад Эйнштейна в физику не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».
Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).
Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х — они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.
Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.
Квантовая физика (почти всегда) связана с очень малым
У квантовой физики есть репутация странной, поскольку ее предсказания кардинально отличаются от нашего повседневного опыта. Это происходит, поскольку ее эффекты проявляются тем меньше, чем больше объект — вы едва ли увидите волновое поведение частиц и того, как уменьшается длина волны с увеличением момента. Длина волны макроскопического объекта вроде идущей собаки настолько смехотворно мала, что если вы увеличите каждый атом в комнате до размеров Солнечной системы, длина волны пса будет размером с один атом в такой солнечной системе.
Это означает, что квантовые явления по большей части ограничены масштабами атомов и фундаментальных частиц, массы и ускорения которых достаточно малы, чтобы длина волны оставалась настолько малой, что ее нельзя было бы наблюдать прямо. Впрочем, прикладывается масса усилий, чтобы увеличить размер системы, демонстрирующей квантовые эффекты.
Квантовая физика — не магия
Предыдущий пункт весьма естественно подводит нас к этому: какой бы странной квантовая физика ни казалась, это явно не магия. То, что она постулирует, странное по меркам повседневной физики, но она строго ограничена хорошо понятными математическими правилами и принципами.
Поэтому если кто-то придет к вам с «квантовой» идеей, которая кажется невозможной, — бесконечная энергия, волшебная целительная сила, невозможные космические двигатели — это почти наверняка невозможно. Это не значит, что мы не можем использовать квантовую физику, чтобы делать невероятные вещи: мы постоянно пишем о невероятных прорывах с использованием квантовых явлений, и они уже порядком удивили человечество, это лишь означает, что мы не выйдем за границы законов термодинамики и здравого смысла.
Если вышеуказанных пунктов вам покажется мало, считайте это лишь полезной отправной точкой для дальнейшего обсуждения. опубликовано econet.ru
P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet
Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках
econet.ru
Что такое квантовая физика? Основные понятия квантовой физики
Квантовая физика и квантовая механика это разные вещи. Их лучше не путать между собой. Квантовая механика это раздел физики, который изучает любые явления макро- и микромира, которые основаны на том факте, что физические характеристики тел (энергия, заряд, импульс, момент вращения, напряженность поля и др. ) передаются от тела к телу не в любом количестве, а только кратно некоторым минимальным порциям КВАНТАМ. Отсюда и название этого раздела физики "квантовая" физика. А квантовая механика это наука, которая разрабатывает математический аппарат и математические модели для описания квантовой физики. Поэтому это не одно и то же. Основным понятием квантовой механики является понятие кванта. существуют кванты энергии, кванты импульса, кванты заряда, кванты вращения, кванты полей и т. п, то есть у всех физических величин, которые могут передаваться от тела к телу, можно ввести понятие минимальной порции такой передачи.
набери в поисковике КВАНТОВАЯ МЕХАНИКА и читай. в объеме ответа все равно лучше не получится.
Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.
КВАНТОВАЯ МЕХАНИКА Фундаментальная теория физики, которая вместе с теорией ОТНОСИТЕЛЬНОСТИ сформировала основу науки ХХ века. Она утверждает, что энергия может испускаться или поглощаться только отдельными порциями или квантами. ФОТОН, к примеру, является квантом световой энергии. Электрон на орбитах вокруг атомного ядра не плавно переходит от одного энергетического уровня к другому, а совершает "к в а н т о в ы й с к а ч о к", поглощая или испуская при этом фотон. Эта простая предпосылка имеет далеко идущие последствия. Одно из них - принцип НЕОПРЕДЕЛЕННОСТИ, Который гласит. что невозможно одновременно точно установить положение частицы и ее момент и ее МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ. Поэтому волнообразное поведение света и электронов по сути представляет собой своеобразный "график" вероятности того, что частица или квант находится в определенном месте в определенное время. По существу, поведение материи становится вопросом вероятностей. Квантовая механика хорошо согласуется с классической физикой для явлений крупномасштабных, но на субатомном уровне и при предельных температурах только квантовая механика может объяснить такие явления. как сверхтекучесть ГЕЛИЯ, СВЕРХПРОВОДИМОСТЬ и поведение ПОЛУПРОВОДНИКОВ, фотоэлектричество, а также способность фотонов и электронов одновременно находиться в двух местах. Современная теория строения атома и химических элементов основана на квантовой механике. Некоторые люди называют ее и квантовой физикой. Энштейн не смог принять значение случая в объединении квантовой механики с теорией относительности, сказав. что " Бог не играет в кости со Вселенной ".
Тут квантовая физика разобрана на пальцах) - <a rel="nofollow" href="https://youtu.be/3CTdeOzzeBk" target="_blank">https://youtu.be/3CTdeOzzeBk</a>
touch.otvet.mail.ru
что изучает квантовая физика??? P.S. с удовольствием познакомлюсь с каким-нибудь молодым физиком! =)
Что сессия .. :)?
<a rel="nofollow" href="http://www.kirensky.ru/stud/natural/natural7.pdf" target="_blank">www.kirensky.ru/stud/natural/natural7.pdf</a> Привет, студенткам)
Квантовая физика изучает взаимодействие элементарных частиц, распределение энергии до и после взаимодействия, методы регистрации, изучение параметров этих частиц (масса покоя, если есть; заряд, скорость движения, период"жизни" и т. д.)
Квант - теоретическая единица условной величины. А по поводу изучения -институт травоведения занят изучением методов полива трав, это много вариантов: полив при молодой луне, полив под корень или распылением и ещё много вариантов ну примерно что написал "Николай Спиридонов"
А зачем тебе именно физик? Или учится еще долго а по физике проблемы? )) Ну да ладно. Квантовая физика это физическая часть квантовой механики. То есть та часть квантовой механики которая относится к физике. Квантовая значит волновая. Как тебе должно быть известно многие явления и "вещи" проявляют как волновые свойства ток и корпускулярные (частица-карпускула) . Например электрон вроде и частина но и волна однавременно. До сих пор нет точного представления, математического описания положения электрона в атоме. То есть если мы знаем где находится электрон то мы не знаем его состояние (и наоборот) . Ну и квантованием называется тот факт что частицы могут иметь в поле связывающих сил только определённые дискретные значения энергии.. . Короче квантовая механика, физика вопрос не простой и его надо по идеи изучать в течении семестра было )).
Забавный вопрос :)) А ты что, молодая физичка? :)) С чего бы физику с тобой знакомиться, да ещё и удовольствие доставлять? :)))) А начала-то как издалека... "что изучает квантовая физика"... :))
Ну почему же сразу с молодым физиком? неуж то молодой инженер не устроит? :-D Они тоже физику изучают) На Ответах было бы как минимум вдвое меньше вопросов, если бы авторы пользовались яндеком или хотя бы заглядывали на википедию. Как будто сложно потратить 30 сек на поиски: <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Квантовая_мех аника" target="_blank">http://ru.wikipedia.org/wiki/Квантовая_мех аника</a>
touch.otvet.mail.ru
Как квантовая физика меняет мир
Квантовая физика работает с изучением поведения самых маленьких вещей в нашей Вселенной: субатомных частиц. Это относительно новая наука, лишь в начале 20 века она стала таковой после того, как физиков стал интересовать вопрос, почему они не могут объяснить некоторые эффекты радиации. Один из новаторов того времени Макс Планк (Max Planck) при исследовании крошечных частиц с энергией использовал термин "кванты", отсюда и пошло название "квантовая физика". Планк отметил, что количество энергии, содержащейся в электронах, не является произвольным, а соответствует стандартам "квантовой" энергии. Одно из первых результатов практического применения этого знания стало изобретение транзистора.
В отличие от негибких законов стандартной физики, правила квантовой физики можно нарушать. Когда ученые полагают, что имеют дело с одним из аспектов исследования материи и энергии, появляется новый поворот событий, что напоминает им о том, как непредсказуема бывает работа в этой области. Тем не менее, они, даже если не полностью понимают происходящее, могут использовать результаты своей работы для разработки новых технологий, которые порой могут быть названы не иначе, как фантастическими.
В будущем, квантовая механика сможет помочь сохранить военные секреты, а также обеспечить безопасность и защитить ваш банковский счет от кибер-воров. Ученые в настоящее время работают на квантовых компьютерах, возможности которых выходят далеко за пределы обычного ПК. Разделенные на субатомные частицы, предметы в мгновение ока легко могут быть перенесены с одного места на другое. И, возможно, квантовая физика сможет дать ответ на самый интригующий вопрос относительно того, из чего состоит вселенная и как зародилась жизнь.
Ниже представлены факты, как квантовая физика может изменить мир. Как сказал Нильс Бор (Niels Bohr): "Тот, кто не шокирован квантовой механикой, просто еще не понял принцип ее работы".
Управление турбулентностью
Вскоре, возможно, благодаря квантовой физике, можно будет устранить турбулентные зоны, из-за которых вы проливаете сок в самолете. Путем создания квантовой турбулентности в ультрахолодных атомах газа в лаборатории, бразильские ученые, возможно, поймут работу турбулентных зон, с которыми сталкиваются самолеты и лодки. На протяжении веков, турбулентность ставила в тупик ученых из-за трудности ее воссоздания в лабораторных условиях.
Турбулентность вызывается сгустками газа или жидкости, но в природе кажется будто она формируется хаотично и формируется неожиданно. Хотя турбулентные зоны могут образовываться в воде и в воздухе, ученые обнаружили, что они также могут формироваться и в условиях ультрахолодных атомов газа или в среде сверхтекучего гелия. При помощи изучения этого явления в контролируемых лабораторных условиях, ученые в один прекрасный день смогут точно предсказывать место появления турбулентных зон, и, возможно, контролировать их в природе.
Спинтроника
Новый магнитный полупроводник, разработанный в Массачусетском технологическом институте, может привести к появлению еще более быстрого энергоэффективного электронного устройства в будущем. Называемая «спинтроника», эта технология использует спиновое состояние электронов для передачи и хранения информации. В то время, как обычные электронные схемы используют только зарядовое состояние электрона, спинтроника пользуется преимуществами спинового направления электрона.
Обработка информации с помощью схем спинтроники позволит данным накапливаться сразу с двух направлений одновременно, что так же уменьшит размер электронных схем. Этот новый материал внедряет электрон в полупроводник на основе его спиновой ориентации. Электроны проходят через полупроводник и становятся готовыми быть спин-детекторами на стороне выхода. Ученые утверждают, что новые полупроводники могут работать при комнатной температуре и являются оптически прозрачными, что означает возможность работы с сенсорными экранами и солнечными батареями. Они также полагают, что это поможет изобретателям придумать еще более многофункциональные устройства.
Параллельные миры
Вы никогда не задумывались о том, какой бы была наша жизнь, если у нас была возможность путешествовать во времени? Вы бы убили Гитлера? Или присоединились бы к римским легионам для того, чтобы увидеть древний мир? Тем не менее, пока мы все фантазируем на тему, чтобы мы сделали, если бы у нас была возможность вернуться в прошлое, ученые из калифорнийского университета Санта-Барбары уже очищают путь к восстановлению обид прошлых лет.
В эксперименте 2010 года ученым удалось доказать, что объект может одновременно существовать в двух разных мирах. Они изолировали крошечных кусочек металла и в специальных условиях обнаружили, что он двигался и стоял на месте одновременно. Однако, кто-то может посчитать это наблюдение бредом, вызванным переутомлением, все же физики говорят, что наблюдения за объектом действительно показывают, что он распадается во Вселенной на две части – одну из них мы видим, а другую нет. Теории параллельных миров в один голос говорят о том, что абсолютно любой объект распадается.
Сейчас ученые пытаются выяснить, как можно "перепрыгнуть" момент распада и войти в тот мир, который нам не видим. Это путешествие в параллельные вселенные во времени теоретически должно работать, поскольку квантовые частицы движутся и вперед, и назад во времени. Теперь, все, что ученые должны сделать – это построить машину времени с помощью квантовых частиц.
Квантовые точки
В скором времени, квантовые физики смогут помочь докторам обнаруживать раковые клетки в организме и точно определять, куда они распространились. Ученые обнаружили, что некоторые мелкие полупроводниковые кристаллы, называемые квантовыми точками, могут светиться под воздействием ультрафиолетового излучения, а также их удалось сфотографировать при помощи специального микроскопа. Затем их соединили с особым, «привлекательным» для раковых клеток материалом. При попадании в организм светящиеся квантовые точки притягивались к раковым клеткам, показывая тем самым, врачам, где именно искать. Свечение продолжается достаточно длительное время, и для ученых процесс настройки точек под характеристики конкретного вида рака относительно несложен.
Хотя высокотехнологичная наука, безусловно, несет ответственность за многие медицинские достижения, человек на протяжении веков зависим от многих других средств борьбы с заболеванием.
Молитва
Трудно представить себе, что может быть общего между коренным американцем, целителем-шаманом и пионерами квантовой физике. Однако, между ними все же есть нечто общее. Нильс Бор, один из ранних исследователей этой странной области науки, полагал, что многое из того, что мы называем реальностью зависит от "эффекта наблюдателя", то есть связь между тем, что происходит, и как мы это видим. Эта тема породила развитие серьезных дебатов между специалистами квантовой физики, однако, эксперимент, проведенный Бором более полувека назад, подтвердил его предположение.
Все это означает, что наше сознание влияет на реальность и может изменить ее. Повторяющиеся слова молитвы и ритуалы церемонии шамана-целителя могут быть попытками изменить направление "волны", которая создает реальность. Большинство обрядов проводятся также в присутствии многочисленных наблюдателей, указывая на то, что чем больше "волн исцеления" исходит от наблюдателей, тем мощнее они оказывают воздействие на реальность.
Взаимосвязь объектов
Взаимосвязь объектов может в дальнейшем оказать огромное влияние на солнечную энергию. Взаимосвязь объектов подразумевает квантовую взаимозависимость атомов, разделенных в реальном физическом пространстве. Физики полагают, что взаимосвязь может образоваться в части растений, ответственных за фотосинтез, или преобразование света в энергию. Структуры, ответственные за фотосинтез, хромофоры, могут превращать 95 процентов получаемого света в энергию.
Сейчас ученые изучают, как эта взаимосвязь на квантовом уровне может повлиять на создание солнечной энергии в надежде создания эффективных естественных солнечных элементов. Специалисты также обнаружили, что водоросли могут использовать некоторые положения квантовой механики для перемещения получаемой от света энергии, а также сохранять ее в двух местах одновременно.
Квантовые вычисления
Другой не менее важный аспект квантовой физики может быть применен в компьютерной сфере, где особый тип сверхпроводящего элемента дает компьютеру беспрецедентную скорость и силу. Исследователи объясняют, что элемент ведет себя как искусственные атомы, поскольку они могут только либо получить, либо потерять энергию путем перемещения между дискретными уровнями энергии. Самый сложный по строению атом обладает пятью уровнями энергии. Эта сложная система («кудит») обладает значительными преимуществами по сравнению с работой предыдущих атомов, у которых было лишь два уровня энергии («кубит»). Кудиты и кубиты это часть битов, используемых в стандартных компьютерах. Квантовые компьютеры в своей работе будут использовать принципы квантовой механики, что позволит им выполнять вычисления гораздо быстрее и точнее по сравнению с традиционными компьютерами.
Существует, однако, проблема, которая может возникнуть, если квантовые вычисления станут реальностью – криптография, или кодирование информации.
Квантовая криптография
Вся информация, начиная от номера вашей кредитной карты и заканчивая сверхсекретными военными стратегиями, есть в сети интернета, а квалифицированный хакер с достаточным количеством знаний и мощным компьютером может опустошить ваш банковский счет или подвергнуть мировую безопасность угрозе. Специальная кодировка держит эту информацию под секретом, а компьютерные специалисты постоянно работают над созданием новых, более безопасных методов кодирования.
Кодирование информации внутри отдельной частицы света (фотон) уже давно является целью квантовой криптографии. Казалось, что ученые университета Торонто уже очень близко подошли к созданию этого метода, поскольку им удалось закодировать видео. Шифрование включает в себя строки из нулей и единиц, которые и являются «ключом». Добавление ключа один раз кодирует информацию, добавление его повторно, декодирует ее. Если постороннему человеку удается получить ключ, то информация может быть взломана. Но даже если ключи будут использованы на квантовом уровне, уже сам факт их применения будет наверняка подразумевать наличие хакера.
Телепортация
Это научная фантастика, не более. Однако, она была осуществлена, но только не с участием человека, а с участием больших молекул. Но в этом то и заключается проблема. Каждая молекула в организме человека должна быть отсканирована с двух сторон. Но это вряд ли произойдет в ближайшее время. Есть еще одна проблема: как только вы сканируете частицу, по законам квантовой физики, вы меняете ее, то есть у вас нет возможности сделать ее точную копию.
Вот где проявляется взаимосвязь объектов. Она связывает два объекта так, будто они являются единым целым. Мы сканируем одну половину частицы, а телепортируемая копия будет сделана другой половиной. Это будет точная копия, поскольку мы не измеряли саму частицу, мы измеряли ее двойника. То есть частица, которую мы измерили, будет разрушена, но ее точная копия реанимирована ее двойником.
Частицы Бога
Ученые используют очень огромное свое творение – большой адронный коллайдер – для того, чтобы исследовать нечто крайне маленькое, но очень важное – фундаментальные частицы, которые, как полагаются, лежат в основе зарождения нашей Вселенной.
Частицы Бога – это то, что, как утверждают ученые, дает массу элементарным частицам (электронам, кваркам и глюонам). Специалисты считают, что частицы Бога должны пронизывать все пространство, но до сих пор существование этих частиц не доказано.
Обнаружение этих частиц помогло бы физикам понять, как Вселенная оправилась после Большого Взрыва и превратилась в то, что нам известно о ней сегодня. Это также помогло бы объяснить, как вещество балансирует с антивеществом. Короче говоря, выделение этих частиц поможет объяснить все.
Перевод: Баландина Е. А.
www.infoniac.ru
что такое квантовая физика и с чем ее едят?
Квантовая физика это такой раздел физики, который изучает любые физические явления, которые являются прямым следствием того факта, что некоторые физические характеристики передаются от одного тела к другому не в любых количествах, а пропорционально некоторым минимальным количествам квантам. Отсюда и название квантовая физика. Передаются квантами такие физические характеристики, как заряд, импульс, момент вращения, поля, энергия и др. Например, фотон это квант электромагнитного поля, то есть электромагнитные поля могут передаваться только в количестве пропорциональном числу фотонов. Обратите внимание, что квантовая физика имеет дело не только с микромиром (элементарные частицы) , но и с макроскопическими явлениями, такими как сверхпроводимость и сверхтекучесть, и даже с такими, с которыми мы сталкиваемся в быту, например, ферромагнетизм. Иногда квантовую физику путают с квантовой механикой. Квантовая механика это математический аппарат квантовой физики. Этот математический аппарат выходит за рамки школьного курса математики. Поэтому людям, которые не знакомы с высшей математикой, квантовая механика кажется непонятной. В основе математического аппарата квантовой механики лежит математика, которая описывает классические волны в разнодисперсных средах (обобщенный Фурье-анализ волновых пакетов и связанные с ними задачи на собственные значения стоячих волн).
Квантовая физика занимается явлениями, для объяснения которых нужна теория поведения элементарных частиц - электронов, фотонов (частиц света) , протонов и нейтронов в ядрах атомов.. . От других областей она недалека - другие области основываются на квантовой физике. Транзисторы, химические и ядерные реакции, фотоэлементы - все это описывается уравнениями квантовой физики. Сказать, что она непонятна, нельзя - просто в ней используется довольно сложная математика, не на уровне школы.
Она, действительно, плохо понимается. Но она существует. Дело в том, что фотон ведёт себя и как волна, и как частица. Ну фотон, бог с ним, но явные частицы, например электрон, и даже мелкие молекулы, ведут себя как волны. Есть ещё квантовые эффекты, от которых глаза на лоб лезут. Но здесь невозможно в двух словах описать квантовые эффекты. Погуглься, там Вам более подробно объяснят.
Объяснять сложные вопросы простыми словами это не просто, но я попробую . Один великий ученый ( не помню кто ) в году этак 1895 сказал про физику ,, Объясните что такое свет и я объясню все остальное ...спустя некоторое время физик Макс Планк произнес только одно слово ,, Квант " и тот же физик сказал ,, Я ни чего не знаю ! "Потому что появилась целая ГАЛАКТИКА в физике : квантовая механика, квантовая термодинамика, квантовая электродинамика и тп и тд . А все от того что ученые поняли что есть ЕДИНИЦА . и не важно чего света, массы, времени, теплоты, тяготения . Другими словами КВАНТ это единица взаимодействия .
Квантовая физика изучает и частицы и волны. А обычная только частицы.
Её не есть надобно, а понять попробовать, а поняв, можно с ума сойти.
Тут квантовая физика разобрана на пальцах) - <a rel="nofollow" href="https://youtu.be/3CTdeOzzeBk" target="_blank">https://youtu.be/3CTdeOzzeBk</a>
touch.otvet.mail.ru
Основы квантовой физики в пяти экспериментах для "чайников".
Никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.
Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.
Сегодня существует множество интерпретаций квантовой механики, но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.
В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).
Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.
Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним детали.
Внутри черного ящика сидит черный кот и вместе с ним флакон с ядом и механизм, который может высвободить яд случайным образом. Например, радиоактивный атом во время распада может разбить пузырек. Точное время распада атома неизвестно. Известен только период полураспада, в течение которого распад происходит с вероятностью 50%.
Очевидно, что для внешнего наблюдателя кот внутри коробки находится в двух состояниях: он либо жив, если все пошло хорошо, либо мертв, если распад произошел и флакон разбился. Оба этих состояния описываются волновой функцией кота, которая меняется с течением времени.
Чем больше времени прошло, тем больше вероятность того, что радиоактивный распад случился. Но как только мы открываем коробку, волновая функция коллапсирует, и мы сразу же видим результаты этого бесчеловечного эксперимента.
На самом деле, пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.
1. Дифракция электронов
Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.
Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине. Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).
Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.
Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос.
Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. Это мы обсудим позже.
2. Подогретые фуллерены
Эксперименты по дифракции частиц проводились не только с электронами, но и другими, гораздо более крупными объектами. Например, использовались фуллерены, большие и закрытые молекулы, состоящие из нескольких десятков атомов углерода. Недавно группа ученых из Венского университета под руководством профессора Цайлингера пыталась включить элемент наблюдения в эти эксперименты. Чтобы сделать это, они облучали движущиеся молекулы фуллеренов лазерными лучами. Затем, нагретые внешним источником, молекулы начинали светиться и неизбежно отображать свое присутствие для наблюдателя.
Вместе с этим нововведением изменилось и поведение молекул. До начала такого всеобъемлющего наблюдения фуллерены довольно успешно избегали препятствия (проявляя волновые свойства), аналогично предыдущему примеру с электронами, попадающими на экран. Но с присутствием наблюдателя фуллерены стали вести себя как совершенно законопослушные физические частицы.
3. Охлаждающее измерение
Одним из самых известных законов в мире квантовой физики является принцип неопределенности Гейзенберга, согласно которому невозможно определить скорость и положение квантового объекта одновременно. Чем точнее мы измеряем импульс частицы, тем менее точно мы можем измерить ее позицию. Однако в нашем макроскопическом реальном мире обоснованность квантовых законов, действующих на крошечные частицы, обычно остается незамеченной.
Недавние эксперименты профессора Шваба из США вносят весьма ценный вклад в эту область. Квантовые эффекты в этих экспериментах были продемонстрированы не на уровне электронов или молекул фуллеренов (примерный диаметр которых составляет 1 нм), а на более крупных объектах, крошечной алюминиевой ленте. Эта лента была зафиксирована с обеих сторон так, чтобы ее середина находилась в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом было помещено устройство, способное точно записывать положение ленты. В результате эксперимента обнаружилось несколько интересных вещей. Во-первых, любое измерение, связанное с положением объекта, и наблюдение за лентой влияло на нее, после каждого измерения положение ленты изменялось.
Экспериментаторы определили координаты ленты с высокой точностью, и таким образом, в соответствии с принципом Гейзенберга, изменили ее скорость, а значит и последующее положение. Во-вторых, что было довольно неожиданным, некоторые измерения привели к охлаждению ленты. Таким образом, наблюдатель может изменить физические характеристики объектов одним своим присутствием.
4. Замерзающие частицы
Как известно, нестабильные радиоактивные частицы распадаются не только в экспериментах с котами, но и сами по себе. Каждая частица имеет средний срок жизни, который, как выясняется, может увеличиться под бдительным оком наблюдателя. Этот квантовый эффект был предсказан еще в 60-х годах, а его блестящее экспериментальное доказательство появилось в статье, опубликованной группой под руководством нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.
В этой работе изучался распад нестабильных возбужденных атомов рубидия. Сразу после подготовки системы атомы возбуждались с помощью лазерного луча. Наблюдение проходило в двух режимах: непрерывном (система постоянно подвергалась небольшим световым импульсам) и импульсном (система время от времени облучалась более мощными импульсами).
Полученные результаты полностью соответствовали теоретическим предсказаниям. Внешние световые эффекты замедляют распад частиц, возвращая их в исходное состояние, которое далеко от состояния распада. Величина этого эффекта также совпадала с прогнозами. Максимальный срок существования нестабильных возбужденных атомов рубидия увеличивался в 30 раз.
5. Квантовая механика и сознание
Электроны и фуллерены перестают показывать свои волновые свойства, алюминиевые пластинки остывают, а нестабильные частицы замедляют свой распад. Бдительное око наблюдателя буквально меняет мир. Почему это не может быть доказательством причастности наших умов к работе мира? Возможно, Карл Юнг и Вольфганг Паули (австрийский физик, лауреат Нобелевской премии, пионер квантовой механики) были правы, в конце концов, когда заявили, что законы физики и сознания следует рассматривать как дополняющие одно другое?
Мы находимся в одном шаге от признания того, что мир вокруг нас — просто иллюзорный продукт нашего разума. Идея страшная и заманчивая. Давайте попробуем снова обратиться к физикам. Особенно в последние годы, когда все меньше и меньше людей верят Копенгагенской интерпретации квантовой механики с ее загадочными коллапсами волновой функции, обращаясь к более приземленной и надежной декогеренции.
Дело в том, что во всех этих экспериментах с наблюдениями экспериментаторы неизбежно влияли на систему. Они зажигали ее с помощью лазера и устанавливали измерительные приборы. Их объединял важный принцип: вы не можете наблюдать за системой или измерять ее свойства, не взаимодействуя с ней. Любое взаимодействие есть процесс модификации свойств. Особенно когда крошечная квантовая система подвергается воздействию колоссальных квантовых объектов. Некий вечно нейтральный буддист-наблюдатель невозможен в принципе. И здесь в игру вступает термин «декогеренция», который является необратимым с точки зрения термодинамики: квантовые свойства системы меняются при взаимодействии с другой крупной системой.
Во время этого взаимодействия квантовая система теряет свои первоначальные свойства и становится классической, словно «подчиняясь» крупной системе. Это объясняет и парадокс кота Шредингера: кот — это слишком большая система, поэтому ее нельзя изолировать от остального мира. Сама конструкция этого мысленного эксперимента не совсем корректна.
В любом случае, если допустить реальность акта творения сознанием, декогеренция представляется гораздо более удобным подходом. Возможно, даже слишком удобным. При таком подходе весь классический мир становится одним большим следствием декогеренции. И как заявил автор одной из самых известных книг в этой области, такой подход логически приводит к заявлениям типа «в мире нет частиц» или «нет времени на фундаментальном уровне».
В чем правда: в создателе-наблюдателе или мощной декогеренции? Нам нужно выбрать между двух зол. Тем не менее ученые все больше убеждаются в том, что квантовые эффекты — проявление наших психических процессов. И то, где заканчивается наблюдение и начинается реальность, зависит от каждого из нас.
По материалам topinfopost.com
Отсюда
razdolbaypegas.livejournal.com
Квантовая физика - это... Что такое Квантовая физика?
Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.
История
Квантовая физика и её основные теории — квантовая механика, квантовая теория поля — были созданы в первой половине XX века многими учёными, среди которых Макс Планк, Альберт Эйнштейн, Артур Комптон, Луи де Бройль, Нильс Бор, Эрвин Шрёдингер, Поль Дирак, Вольфганг Паули.
Подразделы
Квантовая физика объединяет несколько разделов физики, в которых принципиальную роль играют явления квантовой механики и квантовой теории поля, проявляющиеся на уровне микромира, но и имеющие следствия на уровне макромира.
Сюда относятся:См. также
Ссылки
Разделы квантовой физикиКатегория:
- Квантовая физика
Wikimedia Foundation. 2010.
- Оптика
- Специальная теория относительности
Смотреть что такое "Квантовая физика" в других словарях:
квантовая физика — kvantinė fizika statusas T sritis fizika atitikmenys: angl. quantum physics vok. Quantenphysik, f rus. квантовая физика, f pranc. physique quantique, f … Fizikos terminų žodynas
Стационарное состояние (квантовая физика) — У этого термина существуют и другие значения, см. Стационарное состояние. Стационарным состоянием (от лат. stationarius стоящий на месте, неподвижный) называется состояние квантовой системы, при котором её энергия и другие динамические … Википедия
Состояние (квантовая физика) — … Википедия
Квантовая теория — имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия
Квантовая система — Квантовая механика Принцип неопределённости Введение ... Математическая формулировка ... Основа … Википедия
ФИЗИКА. — ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия
Физика гиперядер — Физика гиперядер раздел физики на стыке ядерной физики и физики элементарных частиц, в котором предметом исследования выступают ядроподобные системы, содержащие кроме протонов и нейтронов другие элементарные частицы гипероны. Также… … Википедия
Физика ускорителей — раздел физики, изучающий динамику частиц в ускорителях, а также многочисленные технические задачи, связанные с сооружением и эксплуатацией ускорителей частиц. Физика ускорителей включает в себя вопросы, связанные с получением и накоплением частиц … Википедия
Физика твердого тела — Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия
Квантовая логика — Квантовая логика раздел логики, необходимый для рассуждения о предложениях, которые учитывают принципы квантовой теории. Эта область исследований была основана в 1936 году работой Гарита Бирхофа и Джона фон Неймана, которые пытались… … Википедия
Книги
- Квантовая физика, Леонид Мартинсон. Подробно изложен теоретический и экспериментальный материал, лежащий в основе квантовой физики. Большое внимание уделено физическому содержанию основных квантовых понятий и математическому… Подробнее Купить за 590 руб электронная книга
- Квантовая физика, Мартинсон Леонид Карлович, Смирнов Евгений Васильевич. Подробно изложен теоретический и экспериментальный материал, лежащий в основе квантовой физики. Большое внимание уделено физическому содержанию основных квантовых понятий и математическому… Подробнее Купить за 536 руб
- Квантовая физика, Мартинсон Л.К.. Подробно изложен теоретический и экспериментальный материал, лежащий в основе квантовой физики. Большое внимание уделено физическому содержанию основных квантовых понятий и математическому… Подробнее Купить за 505 руб
biograf.academic.ru