Квантовая запутанность: теория, принцип, эффект. Квантовой запутанности


Квантовая запутанность | Virtual Laboratory Wiki

Квантовая запутанность (сцепленность) (англ. Entanglement) — квантовомеханическое явление, при котором квантовое состояние двух или большего числа объектов должно описываться во взаимосвязи друг с другом, даже если отдельные объекты разнесены в пространстве. Вследствие этого возникают корреляции между наблюдаемыми физическими свойствами объектов. Например, можно приготовить две частицы, находящиеся в едином квантовом состоянии так, что когда одна частица наблюдается в состоянии со спином, направленным вверх, то спин другой оказывается направленным вниз, и наоборот, и это несмотря на то, что согласно квантовой механике, предсказать, какие фактически каждый раз получатся направления, невозможно. Иными словами, создаётся впечатление, что измерения, проводимые над одной системой, оказывают мгновенное воздействие на запутанную с ней. Однако то, что понимается под информацией в классическом смысле, всё-таки не может быть передано через запутанность быстрее, чем со скоростью света.

Раньше исходный термин «entanglement» переводился противоположно по смыслу — как запу́танность, но смысл слова заключается в сохранении связи даже после сложной биографии квантовой частицы. Так что при наличии связи между двумя частицами в клубке физической системы, «подергав» одну частицу, можно было определить другую.

Квантовая запутанность является основой таких будущих технологий, как квантовый компьютер и квантовая криптография, а также она была использована в опытах по квантовой телепортации. В теоретическом и философском плане данное явление представляет собой одно из наиболее революционных свойств квантовой теории, так как можно видеть, что корреляции, предсказываемые квантовой механикой, совершенно несовместимы с представлениями о, казалось бы, очевидной локальности реального мира, при которой информация о состоянии системы может передаваться только посредством её ближайшего окружения. Различные взгляды на то, что в действительности происходит во время процесса квантовомеханического запутывания, ведут к различным интерпретациям квантовой механики.

    История вопроса Править

    В 1935 г. Эйнштейн, Подольский и Розен сформулировали знаменитый Парадокс Эйнштейна — Подольского — Розена, который показал, что из-за связности квантовая механика становится нелокальной теорией. Известно, как Эйнштейн высмеивал связность, называя его «кошмарным дальнодействием. Естественно нелокальная связность опровергала постулат ТО о предельной скорости света (передаче сигнала).

    С другой стороны, квантовая механика отлично зарекомендовала себя в предсказании экспериментальных результатов, и фактически наблюдались даже сильные корреляции, происходящие благодаря феномену запутывания. Есть способ, который позволяет, казалось бы, успешно объяснить квантовое запутывание — подход «теории скрытых параметров» при котором за корреляции отвечают определённые, но неизвестные микроскопические параметры. Однако, в 1964 г. Дж. С. Белл показал, что «хорошую» локальную теорию таким образом построить всё равно не удастся, то есть, запутывание, предсказываемое квантовой механикой, можно экспериментально отличить от результатов, предсказываемых широким классом теорий с локальными скрытыми параметрами. Результаты последующих экспериментов дали ошеломляющее подтверждение квантовой механики. Некоторые проверки показывают, что в этих экспериментах есть ряд узких мест, но общепризнано, что они несущественны.

    Связность приводит к интересным взаимоотношениям с принципом относительности, который утверждает, что информация не может переноситься с места на место быстрее, чем со скоростью света. Хотя две системы могут быть разделены большим расстоянием и быть при этом запутанными, передать через их связь полезную информацию невозможно, поэтому причинность не нарушается из-за запутанности. Это происходит по двум причинам:

    1. результаты измерений в квантовой механике носят принципиально вероятностный характер
    2. теорема о клонировании квантового состояния запрещает статистическую проверку запутанных состояний.

    Причины влияние частиц Править

    Эта страница использует содержимое оригинальной статьи, которая находится по адресу Проведены новые эксперименты по проверке механизма квантовой запутанности в соответствии с принципом добросовестного использования. Не преследуя коммерческие цели, а только в исследовательских и учебных целях. Если Вы автор этой статьи и размещение здесь этой статьи нарушает Ваши авторские права сообщите нам это здесь Нарушение авторских прав - статья будет немедленно удалена.

    В нашем мире существуют особые состояния нескольких квантовых частиц — запутанные состояния, у которых наблюдаются квантовые корреляции (вообще, корреляция — это взаимосвязь между событиями выше уровня случайных совпадений). Эти корреляции можно обнаружить экспериментально, что было сделано впервые свыше двадцати лет назад и сейчас уже рутинно используется в разнообразных экспериментах. В классическом (то есть неквантовом) мире существует два типа корреляций — когда одно событие является причиной другого или же когда у них обоих есть общая причина. В квантовой теории возникает третий тип корреляций, связанный с нелокальными свойствами запутанных состояний нескольких частиц. Этот третий тип корреляций трудно представить себе, пользуясь привычными бытовыми аналогиями. А может быть, эти квантовые корреляции есть результат какого-то нового, неизвестного до сих пор взаимодействия, благодаря которому запутанные частицы (и только они!) влияют друг на друга?

    Сразу стоит подчеркнуть «ненормальность» такого гипотетического взаимодействия. Квантовые корреляции наблюдаются, даже если детектирование двух разнесенных на большое расстояние частиц происходит одновременно (в пределах погрешностей эксперимента). Значит, если такое взаимодействие и имеет место, то оно должно распространяться в лабораторной системе отсчета чрезвычайно быстро, со сверхсветовой скоростью. А из этого неизбежно следует, что в других системах отсчета это взаимодействие будет вообще мгновенным и даже будет действовать из будущего в прошлое (правда, не нарушая принцип причинности).

    Суть эксперимента Править

    Геометрия эксперимента. Пары запутанных фотонов порождались в Женеве, затем фотоны посылались вдоль оптоволоконных кабелей одинаковой длины (отмечены красным цветом) в два приемника (отмечены буквами APD), отстоящими друг от друга на 18 км. Изображение из обсуждаемой статьи в Nature

    Идея эксперимента [1] состоит в следующем: создадим два запутанных фотона и отправим их в два детектора, отстоящих как можно дальше друг от друга (в описываемом эксперименте расстояние между двумя детекторами было 18 км). При этом пути фотонов до детекторов сделаем по возможности одинаковыми, так чтобы моменты их детектирования были максимально близкими. В этой работе моменты детектирования совпадали с точностью примерно 0,3 наносекунды. Квантовые корреляции в этих условиях по-прежнему наблюдались. Значит, если предположить, что они «работают» за счет описанного выше взаимодействия, то его скорость должна превышать скорость света в сотню тысяч раз.

    Такой эксперимент, на самом деле, проводился этой же группой и раньше, см., например, статьи The speed of quantum information and the preferred frame: analysis of experimental data и Experimental test of nonlocal quantum correlation in relativistic configurations, опубликованные в 2000-2001 годах. Новизна данной работы лишь в том, что эксперимент длился долго. Квантовые корреляции наблюдались непрерывно и не исчезали ни в какое время суток.

    Почему это важно? Если гипотетическое взаимодействие переносится некоторой средой, то у этой среды будет выделенная система отсчета. Из-за вращения Земли лабораторная система отсчета движется относительно этой системы отсчета с разной скоростью. Это значит, что промежуток времени между двумя событиями детектирования двух фотонов будет для этой среды всё время разным, в зависимости от времени суток. В частности, будет и такой момент, когда эти два события для этой среды будут казаться одновременными. (Тут, кстати, используется тот факт из теории относительности, что два одновременных события будут одновременными во всех инерциальных системах отсчета, движущихся перпендикулярно соединяющей их линии).

    Если квантовые корреляции осуществляются за счет описанного выше гипотетического взаимодействия и если скорость этого взаимодействия конечна (пусть и сколь угодно большая), то в этот момент корреляции бы исчезли. Поэтому непрерывное наблюдение корреляций в течение суток полностью закрыло бы эту возможность. А повторение такого эксперимента в разные времена года закрыло бы эту гипотезу даже с бесконечно быстрым взаимодействием в своей, выделенной системе отсчета.

    К сожалению, этого достичь не удалось из-за неидеальности эксперимента. В этом эксперименте для того, чтобы сказать, что корреляции действительно наблюдаются, требуется накапливать сигнал в течение нескольких минут. Исчезновение корреляций, например, на 1 секунду этот эксперимент не смог бы заметить. Именно поэтому авторы не смогли полностью закрыть гипотетическое взаимодействие, а лишь получили ограничение на скорость его распространения в своей выделенной системе отсчета, что, конечно, сильно снижает ценность полученного результата.

    Читатель может спросить: а если всё же описанная выше гипотетическая возможность реализуется, но просто эксперимент из-за своей неидеальности ее проглядел, то означает ли это, что теория относительности неверна? Можно ли использовать этот эффект для сверхсветовой передачи информации или даже для перемещения в пространстве?

    Нет. Описанное выше гипотетическое взаимодействие по построению служит единственной цели — это те «шестеренки», которые заставляют «работать» квантовые корреляции. Но уже доказано, что с помощью квантовых корреляций невозможно передать информацию быстрее скорости света. Поэтому каков бы ни был механизм квантовых корреляций, нарушить теорию относительности он не может.

    коммент

    Гипотетическое взаимодействие по построению - почему гипотетическое построение? Это же научный эксперимент. В чем его гипотетичность, непонятно. Что такое взаимодействие по построению? тут не хватает ключевого слова или я что-то не понимаю... Информация передается или нет? Я так понимаю, что передается. почему тогда не противоречит ТО?

    Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Квантовая запутанность. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .

    ru.vlab.wikia.com

    Квантовая запутанность может быть неотъемлемым свойством реальности

    Действительно ли явление под названием квантовая запутанность необходимо для описания физического мира или же возможна некая пост-квантовая теория без запутанности? В новом исследовании, о котором пишет phys.org, физики математически доказали, что любая теория с классическим пределом – когда она может описывать наши наблюдения классического мира, обращаясь к классической теории при определенных условиях – должна включать запутанность. Поэтому, несмотря на то, что запутанность расходится с классическим пониманием, она должна быть неизбежным и важнейшим свойством не только квантовой теории, но и любой неклассической теории, даже еще не разработанной.

    Физики в лице Джонатана Риченса из Имперского колледжа Лондона и Университетского колледжа Лондона, Джона Селби из Имперского колледжа Лондона и Оксфордского университета и Сабри Аль-Сафи из Университета Ноттингем-Трент, опубликовали статью, в которой говорится о том, что запутанность является неизбежной особенностью любой неклассической теории, в Physical Review Letters.

    «У квантовой теории много странных особенностей по сравнению с классической теорией», говорит Риченс. «По традиции мы изучаем, как классический мир выходит из квантового, но тут мы решили обратить вспять это рассуждение, чтобы увидеть, как классический мир формирует квантовый. Так мы показали, что одна из самых странных особенностей последнего, квантовая запутанность, является неизбежным следствием выхода за рамки классической теории или, возможно, даже следствием нашей неспособности отказаться от классической теории, оставить ее позади».

    Хотя полное доказательство намного подробнее, основная идея заключается в том, что любая теория, описывающая реальность, должна вести себя как классическая теория в некотором пределе. Это требование кажется довольно очевидным, но, как показывают физики, оно накладывает серьезные ограничения на структуру любой неклассической теории.

    Квантовая теория удовлетворяет этому требованию наличия классического предела в процессе декогеренции. Когда квантовая система взаимодействует с внешней средой, она теряет свою квантовую когеренцию, связанность, и все, что делает ее квантовой. Таким образом, система становится классической и ведет себя как, как ожидается в классической теории.

    Физики показали, что любая неклассическая теория, которая восстанавливает классическую теорию, должна содержать запутанные состояния. Чтобы доказать это, они пошли от обратного: допустим, такая теория не имеет запутанности. И затем они показали, что без запутанности любая теория, которая восстанавливает классическую теорию, должна быть сама классической – и это противоречит изначальной гипотезе, что такая теория должна быть неклассической. Этот результат означает, что предположение отсутствия запутанности в такой теории будет ложным, а значит, любая теория такого типа должна ее иметь.

    Этот результат может быть только началом многих других связанных открытий, поскольку открывает возможность того, что другие физические особенности квантовой теории можно воспроизвести, просто потребовав от теории наличия классического предела. Физики предполагают, что такие особенности, как информационная каузальность (причинно-следственная связь), битовая симметрия и макроскопическая локальность могут быть доказаны, благодаря этому единственному требованию. Эти результаты также дают более четкое представление о том, как должна выглядеть любая будущая неклассическая, постквантовая теория.

    «Мои будущие цели состоят в том, чтобы увидеть, может ли нелокальность Белла также извлечена из существования классического предела», говорит Риченс. «Было бы интересно, если бы все теории, заменяющие классическую теорию, нарушали бы локальный реализм».

    Локальный реализм — это комбинация принципа локальности с «реалистичным» предположением, что все объекты обладают «объективно существующими» значениями своих параметров и характеристик для любых возможных измерений, могущих быть произведенными над этими объектами, перед тем как эти измерения производятся. Эйнштейн, будучи, по всей видимости, сторонником локального реализма, любил в связи с этим говорить, что Луна не исчезает с неба, даже если её никто не наблюдает. Данные современной квантовой механики, основанные на проведенных экспериментах, ставят под сомнение адекватность модели локального реализма «устройству» реальности.

    hi-news.ru

    Квантовая запутанность

    Ква́нтовая запу́танность [1] [2]  — квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми (например, можно получить пару фотонов , находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот).

    Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий . Измерение параметра одной частицы приводит к мгновенному (выше скорости света ) прекращению запутанного состояния другой, что находится в логическом противоречии с принципом локальности (при этом теория относительности не нарушается и информация не передаётся).

    История изучения

    Спор Бора и Эйнштейна, ЭПР-Парадокс

    На Пятом Сольвеевском конгрессе 1927 года одним из центров дискуссии стал спор Бора и Эйнштейна о принципах Копенгагенской интерпретации квантовой механики [3] , которая, впрочем, ещё не имела этого названия, закрепившегося только в 50-е годы XX века [4] . Эйнштейн настаивал на сохранении в квантовой физике принципов детерминизма классической физики и на трактовке результатов измерения с точки зрения «несвязанного наблюдателя» ( англ.   «detached observer» ). С другой стороны, Бор настаивал на принципиально недетерминированном (статистическом) характере квантовых явлений и на неустранимости эффекта влияния измерения на само состояние. Как квинтэссенция этих споров часто приводится диалог Эйнштейна с Бором: «— Бог не играет в кости . — Альберт, не указывай Богу, что ему делать.», а также саркастический вопрос Эйнштейна: «Вы действительно считаете, что Луна существует, только когда вы на неё смотрите?» [5]

    В продолжение начавшихся споров в 1935 году Эйнштейн, Подольский и Розен сформулировали ЭПР-парадокс , который должен был показать неполноту предлагаемой модели квантовой механики. Их статья «Можно ли считать квантово-механическое описание физической реальности полным?» была опубликована в № 47 журнала «Physical Review» [6] .

    В ЭПР-парадоксе мысленно нарушался принцип неопределённости Гейзенберга : при наличии двух частиц, имеющих общее происхождение, можно измерить состояние одной частицы и по нему предсказать состояние другой, над которой измерение ещё не производилось. Анализируя в том же году подобные теоретически взаимозависимые системы, Шрёдингер назвал их «спутанными» ( англ.   entangled ) [7] . Позднее англ.   entangled и англ.   entanglement стали общепринятыми терминами в англоязычных публикациях [8] . Следует отметить, что сам Шрёдингер считал частицы запутанными, только пока они физически взаимодействовали друг с другом. При удалении за пределы возможных взаимодействий запутанность исчезала [8] . То есть значение термина у Шрёдингера отличается от того, которое подразумевается в настоящее время.

    Эйнштейн не рассматривал ЭПР-парадокс как описание какого-либо действительного физического феномена. Это была именно мысленная конструкция, созданная для демонстрации противоречий принципа неопределённости. В 1947 году в письме Максу Борну он назвал подобную связь между запутанными частицами «жутким дальнодействием» ( нем.   spukhafte Fernwirkung , англ.   spooky action at a distance в переводе Борна) [9] :

    Поэтому я не могу в это поверить, так как (эта) теория непримирима с принципом того, что физика должна отражать реальность во времени и пространстве, без (неких) жутких дальнодействий.

    Оригинальный текст  (нем.)

    Ich kann aber deshalb nicht ernsthaft daran glauben, weil die Theorie mit dem Grundsatz unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum darstellen soll, ohne spukhafte Fernwirkungen.

    — «Entangled systems: new directions in quantum physics» [10]

    Уже в следующем номере «Physical Review» Бор опубликовал свой ответ в статье с таким же заголовком, как и у авторов парадокса [11] . Сторонники Бора посчитали его ответ удовлетворительным, а сам ЭПР-парадокс — вызванным неправильным пониманием сути «наблюдателя» в квантовой физике Эйнштейном и его сторонниками [8] . В целом большинство физиков просто устранилось от философских сложностей Копенгагенской интерпретации. Уравнение Шрёдингера работало, предсказания совпадали с результатами, и в рамках позитивизма этого было достаточно. Гриббин   (англ.) русск. пишет по этому поводу [12] : «чтобы добраться из точки А в точку Б, водителю необязательно знать, что происходит под капотом его машины». Эпиграфом же к своей книге Гриббин поставил слова Фейнмана :

    Думаю, я могу ответственно заявить, что никто не понимает квантовую механику. Если есть возможность, прекратите спрашивать себя «Да как же это возможно?» — так как вас занесёт в тупик, из которого ещё никто не выбирался.

    Неравенства Белла, экспериментальные проверки неравенств

    Предсказываемые теоремой Белла результаты корреляций спина при наличии локального реализма (сплошная линия) и при его отсутствии (точечная синусоида).

    Такое состояние дел оказалось не слишком удачным для развития физической теории и практики. «Запутанность» и «жуткие дальнодействия» игнорировались почти 30 лет [8] , пока ими не заинтересовался ирландский физик Джон Белл . Вдохновлённый идеями Бома [13] ( Теория де Бройля — Бома ), Белл продолжил анализ ЭПР-парадокса и в 1964 сформулировал свои неравенства [14] [15] . Весьма упрощая математические и физические составляющие, можно сказать, что из работы Белла следовали две однозначно распознаваемые ситуации при статистических измерениях состояний запутанных частиц. Если состояния двух запутанных частиц определённы в момент разделения, то должно выполняться одно неравенство Белла. Если состояния двух запутанных частиц неопределённы до измерения состояния одной из них, то должно выполняться другое неравенство.

    Неравенства Белла предоставили теоретическую базу для возможных физических экспериментов, однако по состоянию на 1964 год техническая база не позволяла ещё их поставить. Первые успешные эксперименты по проверке неравенств Белла были осуществлены Клаузером и Фридманом в 1972 году [16] . Из результатов следовала неопределённость состояния пары запутанных частиц до проведения измерения над одной из них. И всё же вплоть до 1980-х годов большинство физиков рассматривали квантовую сцеплённость «не как новый неклассический ресурс, который можно использовать, а скорее как конфуз, ждущий окончательного разъяснения» [8] .

    Однако за экспериментами группы Клаузера последовали эксперименты Аспе в 1981 году [16] . В классическом эксперименте Аспе (см. схему ) два потока фотонов с нулевым суммарным спином , вылетавшие из источника S , направлялись на призмы Николя a и b . В них за счёт двойного лучепреломления происходило разделение поляризаций каждого из фотонов на элементарные, после чего пучки направлялись на детекторы D+ и D- . Сигналы от детекторов через фотоумножители поступали в регистрирующее устройство R , где вычислялось неравенство Белла.

    Результаты, полученные как в опытах Фридмана — Клаузера, так и в опытах Аспе, чётко говорили в пользу отсутствия эйнштейновского локального реализма : «жуткое дальнодействие» из мысленного эксперимента окончательно стало физической реальностью. Последний удар по локальности был нанесён в 1989 году многосвязными состояниями Гринбергера — Хорна — Цайлингера   (англ.) русск. [17] , заложившими базис квантовой телепортации . В 2010 году Джон Клаузер , Ален Аспе и Антон Цайлингер стали лауреатами премии Вольфа по физике «за фундаментальный концептуальный и экспериментальный вклад в основы квантовой физики, в частности за серию возрастающих по сложности проверок неравенств Белла (или расширенных версий этих неравенств) с использованием запутанных квантовых состояний» [18] .

    • Лауреаты премии Вольфа по физике 2010 года
    • Джон Клаузер (слева)

    • Антон Цайлингер

    Современный этап

    Современные версии описанного выше эксперимента создают сегменты Sa и Sb такой длины, чтобы регистрация фотонов происходила в заведомо не связанных известными взаимодействиями областях пространства-времени . В 2007 году исследователям из Мичиганского университета удалось разнести запутанные фотоны на рекордное в тот момент расстояние в 1 м [19] [20] .

    В 2008 году группе швейцарских исследователей из Университета Женевы удалось разнести два потока запутанных фотонов на расстояние 18 километров. Помимо прочего, это позволило произвести временны́е измерения с недостижимой ранее точностью. В результате было установлено, что если некое скрытое взаимодействие и происходит, то скорость его распространения должна как минимум в 100 000 раз превышать скорость света в вакууме . При меньшей скорости временные задержки были бы замечены [21] [22] .

    Летом того же года другой группе исследователей из австрийского Института квантовой оптики и квантовой информации   (англ.) русск. , включая Цайлингера, удалось поставить ещё более масштабный эксперимент, разнеся потоки запутанных фотонов на 144 километра, между лабораториями на островах Пальма и Тенерифе . Обработка и анализ столь масштабного эксперимента продолжаются, последняя версия отчёта была опубликована в 2010 году [23] [24] . В данном эксперименте удалось исключить возможное влияние недостаточного расстояния между объектами в момент измерения и недостаточной свободы выбора настроек измерения. В результате были ещё раз подтверждены квантовая запутанность и, соответственно, нелокальная природа реальности. Правда, осталось третье возможное влияние — недостаточно полной выборки. Эксперимент, в котором все три потенциальных влияния будут исключены одновременно, на сентябрь 2011 года является вопросом будущего.

    В большинстве экспериментов с запутанными частицами используются фотоны. Это объясняется относительной простотой получения запутанных фотонов и их передачи в детекторы, а также бинарной природой измеряемого состояния (положительная или отрицательная спиральность ). Однако явление квантовой запутанности существует и для других частиц и их состояний. В 2010 году международный коллектив учёных из Франции, Германии и Испании получил и исследовал [25] [26] запутанные квантовые состояния электронов , то есть частиц с массой, в твёрдом сверхпроводнике из углеродных нанотрубок . В 2011 году исследователям из Института квантовой оптики общества Макса Планка удалось создать состояние квантовой запутанности между отдельным атомом рубидия и конденсатом Бозе-Эйнштейна , разнесёнными на расстояние 30 м [27] [28] .

    Название явления в русскоязычных источниках

    При устойчивом английском термине Quantum entanglement , достаточно последовательно использующимся в англоязычных публикациях, русскоязычные работы демонстрируют широкое разнообразие узуса . Из встречающихся в источниках по теме терминов можно назвать (в алфавитном порядке):

    1. Запутанные квантовые состояния [29]
    2. Квантовая запутанность
    3. Квантовая зацепленность [30]
    4. Квантовые корреляции [31] [32] (термин неудачен из-за неоднозначности [33] [34] )
    5. Квантовая нелокальность [35]
    6. Квантовая перепутанность [36]
    7. Несепарабельность [37] (как уточнение к «квантовым корреляциям»)
    8. Квантовая сцепленность [1]

    В популярной прессе употребляется также выражение «квантовая спутанность» [38] .

    Такое разнообразие можно объяснить несколькими причинами, в том числе объективным наличием двух обозначаемых объектов: а) само состояние ( англ.   quantum entanglement ) и б) наблюдаемые эффекты в этом состоянии ( англ.   spooky action at a distance ), которые во многих русскоязычных работах различаются по контексту, а не терминологически.

    Математическая формулировка

    Получение запутанных квантовых состояний

    В простейшем случае источником S потоков запутанных фотонов служит определённый нелинейный материал, на который направляется лазерный поток определённой частоты и интенсивности (схема с одним эмиттером) [39] . В результате спонтанного параметрического рассеяния (СПР) на выходе получаются два конуса поляризации H и V , несущие пары фотонов в запутанном квантовом состоянии ( бифотоны ) [40] .

    подробнее [41]
    При СПР типа II под воздействием поляризованного лазерного излучения накачки в кристалле бета-бората бария спонтанно рождаются бифотоны, сумма частот которых равна частоте излучения накачки:

    ω 1 + ω 2 = ω

    а поляризации ортогональны в базисе, определяемом ориентацией кристалла. Благодаря двойному лучепреломлению, при определённых условиях фотоны имеют одну частоту и излучаются вдоль двух конусов, не имеющих общей оси. При этом в одном конусе поляризация вертикальная, а во втором — горизонтальная (по отношению к ориентации кристалла и поляризации излучения накачки). При СПР для волновых векторов также верно

    k 1 → + k 2 → = k → {\displaystyle {\vec {k_{1}}}+{\vec {k_{2}}}={\vec {k}}}

    поэтому, если забирать один фотон бифотонной пары из одной линии пересечения конусов, то второй фотон можно всегда забрать из второй линии пересечения.

    В кристалле фотоны разных поляризаций распространяются с разной скоростью, поэтому в реальной экспериментальной установке каждый пучок дополнительно пропускается через такой же кристалл половинной толщины, повёрнутый на 90°. Кроме того, для нивелирования поляризационных эффектов, в одном из пучков вертикальная и горизонтальная поляризации меняются местами при помощи комбинации полуволновой и четвертьволновой пластинок. Создаваемые в результате СПР члены бифотонной пары можно обозначить индексами 1 и 2, при этом:

    1. каждый фотон с равной вероятностью может находиться в одном из двух состояний поляризации | x ⟩ {\displaystyle |x\rangle } или | y ⟩ {\displaystyle |y\rangle }
    2. поляризации фотонов ортогональны,
    3. каждый фотон с равной вероятностью может попасть в пучок m или n  — это мы назовём пространственным состоянием фотона — мода | m ⟩ {\displaystyle |m\rangle } и мода | n ⟩ {\displaystyle |n\rangle }

    По аналогии с двухщелевым экспериментом два возможных варианта измерений поляризации (после поворота в одном из пучков поляризации одинаковы) можно описать суперпозицией произведений | x ⟩ 1 | x ⟩ 2 {\displaystyle |x\rangle _{1}|x\rangle _{2}} и | y ⟩ 1 | y ⟩ 2 {\displaystyle |y\rangle _{1}|y\rangle _{2}} , а возможные варианты измерения пространственных мод | m ⟩ 1 | n ⟩ 2 {\displaystyle |m\rangle _{1}|n\rangle _{2}} и | n ⟩ 1 | m ⟩ 2 {\displaystyle |n\rangle _{1}|m\rangle _{2}} .

    Так как состояние поляризации и пространственные моды независимы друг от друга, то общая волновая функция принимает вид:

    | Ψ ⟩ = 1 2 ( | x ⟩ 1 | x ⟩ 2 + e i α | y ⟩ 1 | y ⟩ 2 ) ⋅ 1 2 ( | m ⟩ 1 | n ⟩ 2 + e i β | n ⟩ 1 | m ⟩ 2 ) {\displaystyle |\Psi \rangle ={\frac {1}{\sqrt {2}}}(|x\rangle _{1}|x\rangle _{2}+e^{i\alpha }|y\rangle _{1}|y\rangle _{2})\cdot {\frac {1}{\sqrt {2}}}(|m\rangle _{1}|n\rangle _{2}+e^{i\beta }|n\rangle _{1}|m\rangle _{2})}

    Фотоны являются бозонами, поэтому волновая функция пары фотонов должна быть симметрична относительно перестановки индексов. В результате симметризации получаем:

    | Ψ ⟩ = 1 2 ( | x ⟩ 1 | x ⟩ 2 + e i ϕ | y ⟩ 1 | y ⟩ 2 ) ⋅ 1 2 ( | m ⟩ 1 | n ⟩ 2 + | n ⟩ 1 | m ⟩ 2 ) {\displaystyle |\Psi \rangle ={\frac {1}{\sqrt {2}}}(|x\rangle _{1}|x\rangle _{2}+e^{i\phi }|y\rangle _{1}|y\rangle _{2})\cdot {\frac {1}{\sqrt {2}}}(|m\rangle _{1}|n\rangle _{2}+|n\rangle _{1}|m\rangle _{2})}

    Ориентацией компенсационных кристаллов фазовый множитель e i ϕ {\displaystyle e^{i\phi }} можно привести к 1 и мы получаем окончательный вид волновой функции бифотона:

    | Ψ ⟩ = 1 2 ( | x ⟩ 1 | x ⟩ 2 + | y ⟩ 1 | y ⟩ 2 ) ⋅ 1 2 ( | m ⟩ 1 | n ⟩ 2 + | n ⟩ 1 | m ⟩ 2 ) {\displaystyle |\Psi \rangle ={\frac {1}{\sqrt {2}}}(|x\rangle _{1}|x\rangle _{2}+|y\rangle _{1}|y\rangle _{2})\cdot {\frac {1}{\sqrt {2}}}(|m\rangle _{1}|n\rangle _{2}+|n\rangle _{1}|m\rangle _{2})}

    Множитель, описывающий состояние поляризации, является одним из четырёх белловских максимально запутанных состояний:

    | Φ + ⟩ 12 = 1 2 ( | x ⟩ 1 | x ⟩ 2 + | y ⟩ 1 | y ⟩ 2 ) {\displaystyle |\Phi ^{+}\rangle _{12}={\frac {1}{\sqrt {2}}}(|x\rangle _{1}|x\rangle _{2}+|y\rangle _{1}|y\rangle _{2})}

    Выбор конкретного материала зависит от задач эксперимента, используемой частоты и мощности [42] [43] . В таблице ниже приводятся лишь некоторые часто используемые неорганические нелинейные кристаллы с регулярной доменной структурой   (англ.) русск. [44] (РДС-кристаллы, англ.   periodically poled ):

    Интересным и сравнительно молодым направлением стали нелинейные кристаллы на органической основе [45] [46] . Предполагалось, что органические составляющие живых организмов должны обладать сильными нелинейными свойствами из-за позиций орбиталей в π-связях . Эти предположения подтвердились, и несколькими группами исследователей были получены высококачественные нелинейные кристаллы путём дегидратации насыщенных растворов аминокислот . Некоторые из этих кристаллов:

    LMMM из таблицы получается кристаллизацией смеси в пропорции два к одной L-метионина (метаболическое средство) и малеиновой кислоты (пищевая промышленность), то есть из массово производимых веществ. При этом эффективность правильно выращенного кристалла составляет 90 % от более дорогого и труднодоступного неорганического KTP [46] .

    Идеи применения

    «Сверхсветовой коммуникатор» Херберта

    Всего через год после эксперимента Аспэ, в 1982 году, американский физик Ник Херберт   (англ.) русск. предложил журналу «Foundations of Physics» статью с идеей своего «сверхсветового коммуникатора на основе нового типа квантовых измерений» FLASH (First Laser-Amplified Superluminal Hookup). По позднейшему рассказу Ашера Переса [47] , бывшего в тот момент одним из рецензентов журнала, ошибочность идеи была очевидной, но, к своему удивлению, он не нашёл конкретной физической теоремы, на которую мог бы кратко сослаться. Поэтому он настоял на публикации статьи, так как это «пробудит заметный интерес, а нахождение ошибки приведёт к заметному прогрессу в нашем понимании физики». Статья была напечатана [48] , и в результате развернувшейся дискуссии Вуттерсом , Зуреком   (англ.) русск. и Диксом   (англ.) русск. была сформулирована и доказана теорема о запрете клонирования . Так излагается история у Переса в его статье, опубликованной 20 лет спустя после описываемых событий.

    Теорема о запрете клонирования утверждает невозможность создания идеальной копии произвольного неизвестного квантового состояния . Весьма упрощая ситуацию, можно привести пример с клонированием живых существ. Можно создать идеальную генетическую копию овцы , но нельзя «клонировать» жизнь и судьбу прототипа.

    Учёные обычно скептически относятся к проектам со словом «сверхсветовой» в названии. К этому добавился неортодоксальный научный путь самого Херберта. В 1970-х он вместе с приятелем из Xerox PARC сконструировал «метафазовую печатную машинку» для «коммуникации с бесплотными духами» [49] (результаты интенсивных экспериментов были признаны участниками непоказательными). А в 1985 Херберт написал книгу о метафизическом в физике [50] . В целом, события 1982 года достаточно сильно скомпрометировали идеи квантовой коммуникации в глазах потенциальных исследователей, и до конца XX века существенного прогресса в этом направлении не наблюдалось.

    Квантовая коммуникация

    Теория квантовой механики запрещает передачу информации со сверхсветовой скоростью. Это объясняется принципиально вероятностным характером измерений и теоремой о запрете клонирования . Представим разнесённых в пространстве наблюдателей А и Б , у которых имеется по экземпляру квантово-запутанных ящиков с котами Шрёдингера , находящимися в суперпозиции «жив-мёртв». Если в момент t1 наблюдатель А открывает ящик, то его кот равновероятно оказывается либо живым, либо мёртвым. Если живым, то в момент t2 наблюдатель Б открывает свой ящик и находит там мёртвого кота. Проблема в том, что до исходного измерения нет возможности предсказать, у кого именно что окажется, а после один кот жив, другой мёртв, и назад ситуацию не повернуть.

    Обход классических ограничений был найден в 2006 году А. Коротковым и Э. Джорданом [51] из Калифорнийского университета за счёт слабых квантовых измерений ( англ.   weak quantum measurement ). Продолжая аналогию, оказалось, что можно не распахивать ящик, а лишь чуть-чуть приподнять его крышку и подсмотреть в щёлку. Если состояние кота неудовлетворительно, то крышку можно сразу захлопнуть и попробовать ещё раз. В 2008 году другая группа исследователей из Калифорнийского университета объявила об успешной экспериментальной проверке данной теории. «Реинкарнация» кота Шрёдингера стала возможной. Наблюдатель А теперь может приоткрывать и закрывать крышку ящика, пока не убедится, что у наблюдателя Б кот окажется в нужном состоянии. [52] [53] [54]

    Открытие возможности «обратного коллапса» во многом перевернуло представления о базовых принципах квантовой механики:

    Профессор Влатко Ведрал, Оксфордский университет : «Теперь мы даже не можем сказать, что измерения формируют реальность, — ведь можно элиминировать эффекты замеров и начать всё заново»

    Профессор Шлоссхауэр, университет Мельбурна : «Квантовый мир стал ещё более хрупким, а реальность ещё более таинственной».

    Возникла идея не просто передачи потоков запутанных частиц в разнесённые в пространстве приёмники, но и хранения таких частиц неопределённо долгое время в приёмниках в состоянии суперпозиции для «последующего использования». Ещё из работ Раньяды 1990 года [55] было известно о таких расслоениях Хопфа , которые могли быть топологическими решениями уравнений Максвелла . В переводе на обычный язык это означало, что теоретически ( математически ) могут существовать ситуации, при которых пучок фотонов или отдельный фотон будет бесконечно циркулировать по сложной замкнутой траектории, выписывая тор в пространстве. До недавнего времени это оставалось просто ещё одной математической абстракцией . В 2008 году американские исследователи занялись анализом получаемых расслоений и их возможной физической реализацией. В результате были найдены [ уточнить ] стабильные решения и технические способы [ источник не указан 1656 дней ] , позволяющие реализовать такие решения. Оказалось, что пучок света действительно можно «свернуть в бублик» (точнее — в замкнутый тороидальный узел ) и «положить на место», и такое состояние останется стабильным и самоподдерживающимся. На сентябрь 2011 об успешных лабораторных реализациях не сообщалось, но теперь это вопрос технических трудностей [ уточнить ] , а не физических ограничений [56] [57] .

    Помимо проблемы «складирования» запутанных частиц остаётся нерешённой проблема декогеренции , то есть утраты частицами запутанности со временем из-за взаимодействия с окружающей средой. Даже в физическом вакууме остаются виртуальные частицы , которые вполне успешно деформируют физические тела, как показывает эффект Казимира , и, следовательно, теоретически могут влиять на запутанные частицы.

    Квантовая телепортация

    Квантовая телепортация (не путать с телепортацией ), основанная на запутанных квантовых состояниях, используется в таких интенсивно исследуемых областях, как квантовые вычисления и квантовая криптография .

    Идея квантовых вычислений была впервые предложена Ю. И. Маниным в 1980 году [58] . На сентябрь 2011 года полномасштабный квантовый компьютер является пока гипотетическим устройством, построение которого связано со многими вопросами квантовой теории и с решением проблемы декогеренции . Ограниченные (в несколько кубитов ) квантовые «мини-компьютеры» уже создаются в лабораториях. Первое удачное применение с полезным результатом продемонстрировано международным коллективом учёных в 2009 году. По квантовому алгоритму была определена энергия молекулы водорода [59] [60] . Впрочем, некоторыми исследователями высказывается мнение, что для квантовых компьютеров запутанность является, наоборот, нежелательным побочным фактором [61] [62] .

    Квантовая криптография используется для пересылки зашифрованных сообщений по двум каналам связи, квантовому и традиционному. Первый протокол квантового распределения ключа BB84 был предложен [63] Беннетом   (англ.) русск. и Брассардом   (англ.) русск. в 1984 году. С тех пор квантовая криптография являлась одним из бурно развивающихся прикладных направлений квантовой физики, и к 2011 году несколькими лабораториями и коммерческими фирмами были созданы работающие прототипы передатчиков и приёмников [64] .

    Идея и привлекательность квантовой криптографии базируется не на «абсолютной» криптостойкости , а на гарантированном уведомлении, как только кто-либо попытается перехватить сообщение. Последнее же базируется на известных к началу разработок законах квантовой физики и в первую очередь на необратимости коллапса волновой функции [65] . В связи с открытием и успешным тестированием обратимых слабых квантовых измерений основы надёжности квантовой криптографии оказались под большим вопросом [66] [67] . Возможно, квантовая криптография войдёт в историю, как система, для которой прототип «абсолютно надёжного» передатчика и прототип перехватчика сообщений были созданы почти одновременно и до начала практического использования самой системы.

    Квантовая запутанность и структура пространства-времени

    Согласно Хироси Оогури [en] , M. Mарколли и др., квантовая запутанность порождает дополнительные измерения для гравитационной теории. Использование данных о квантовой запутанности в двух измерениях позволяет вычислить плотность вакуумной энергии, которая в трёхмерном пространстве проявляет себя в гравитационном взаимодействии. Это даёт возможность интерпретировать квантовую запутанность как условие, налагаемое на плотность энергии. Эти условия должны удовлетворяться в любой квантовой теории гравитации, согласованной и не противоречащей как ОТО , так и квантовой механике [68] [69] .

    Физическая интерпретация явления

    Копенгагенская интерпретация

    Интерпретация Бома

    Многомировая интерпретация

    Многомировая интерпретация позволяет [70] [71] представить запутанные частицы как проекции всех возможных состояний одной и той же частицы из параллельных вселенных .

    Объективная редукция Гирарди — Римини — Вебера

    Основная статья: Объективная редукция Гирарди — Римини — Вебера [en]

    Транзакционная интерпретация

    Транзакционная интерпретация (TI), предложенная Крамером   (англ.) русск. в 1986 году [72] , предполагает наличие исходящих от частиц симметричных стоячих волн , направленных в прошлое и будущее по оси времени. Тогда взаимодействие распространяется по волнам без нарушения лимита скорости света, но для временно́го фрейма наблюдателя событие (транзакция) происходит «мгновенно».

    Явление в религии и в массовой культуре

    • Экспериментальный теологический символ, автор которого решил использовать узор, иногда ассоциируемый с феноменом квантовой запутанности [74]

    • Книга «Будда и Квант», книжный магазин в Ванкувере . Из предисловия: «… мы сможем понять современную физику, только если поместим пространство и время внутрь сознания».

    См. также

    Примечания

    1. ↑ 1 2 Альтернативный термин «квантовая сцепленность» вместо переводного «запутанность», предлагается, в частности, профессором А. С. Холево ( МИАН ): Холево А. С. Квантовая информатика: прошлое, настоящее, будущее // В мире науки : журнал. — 2008. — № 7 .
    2. ↑ Квантовый секрет Полишинеля . Газета.Ru (21 июля 2011). Проверено 12 сентября 2011. Архивировано 5 февраля 2012 года.
    3. ↑ Бор Н. Сольвеевские конгрессы и развитие квантовой физики  // Успехи физических наук : журнал. — 1967. — Т. 91 , вып. 4 . — С. 744—747 .
    4. ↑ Heisenberg W. Criticisms and Counterproposals to the Copenhagen Interpretation of Quantum Theory // Physics and Philosophy: The Revolution in Modern Science. — 2007. — С. 102. — ISBN 9780061209192 .
    5. ↑ Дословно Эйнштейн сказал «I like to believe that the moon is still there even if we don’t look at it» (Я хотел бы верить, что Луна всё там же, даже если мы на неё не смотрим).
    6. ↑ Einstein A. , Podolsky B. , Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? // Phys. Rev. / G. D. Sprouse — American Physical Society , 1935. — Vol. 47, Iss. 10. — P. 777–780. — ISSN 0031-899X ; 1536-6065 — doi:10.1103/PHYSREV.47.777
    7. ↑ Schrödinger E. Discussion of Probability Relations between Separated Systems // Proceedings of the Cambridge Philosophical Society : журнал. — 1935. — № 31 . — С. 555 .
    8. ↑ 1 2 3 4 5 Bub J. Quantum Entanglement and Information . The Stanford Encyclopedia of Philosophy . Стэнфордский университет . Проверено 13 сентября 2011. Архивировано 5 февраля 2012 года.
    9. ↑ Felder G. Spooky Action at a Distance . NCSU. Проверено 13 сентября 2011. Архивировано 17 сентября 2011 года.
    10. ↑ Audretsch J. 7.5.2 Non-Local Effects: „Spooky Action at a Distance“? // Entangled systems: new directions in quantum physics. — Bonn: Wiley-VCH, 2007. — С. 130. — ISBN 9783527406845 .
    11. ↑ Bohr N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete?  // Physical Review : журнал. — 1935. — Т. 48 .
    12. ↑ Gribbin J. Introduction // Q is for QUANTUM: An Encyclopedia of Particle Physics. — 2000. — С. 7. — ISBN 978-0684863153 .
    13. ↑ Sheldon G. Bohmian Mechanics . The Stanford Encyclopedia of Philosophy . Стэнфордский университет . Проверено 13 сентября 2011. Архивировано 5 февраля 2012 года.
    14. ↑ Bell J. S. On the Einstein Podolsky Rosen Paradox // Physics / G. D. Sprouse — American Physical Society , 1964. — Vol. 1, Iss. 3. — P. 195–200. — 6 p. — ISSN 1943-2879 — doi:10.1103/PHYSICSPHYSIQUEFIZIKA.1.195
    15. ↑ Парадокс Эйнштейна Подольского Розена . Квантовая Магия. Проверено 13 сентября 2011. Архивировано 17 сентября 2011 года.
    16. ↑ 1 2 ЭПР-парадокс. Опыты Фридмана–Клаузера и Аспэ. Копенгагенская интерпретация квантовой механики . Финам.Ru. Проверено 13 сентября 2011. Архивировано 17 сентября 2011 года.
    17. ↑ Greenberger D., Horne M., Zeilinger A. (2007), "Going Beyond Bell's Theorem", arΧiv : 0712.0921v1 [quant-ph]  
    18. ↑ Wolf Foundation: Physics . Проверено 13 сентября 2011. Архивировано 5 февраля 2012 года.
    19. ↑ Moehring D. L., et al. Entanglement of single-atom quantum bits at a distance // Nature : журнал. — 2007. — № 449 . — DOI : 10.1038/nature06118 .
    20. ↑ Физики „запутали“ два атома на расстоянии метра друг от друга . Лента.Ру. Проверено 13 сентября 2011. Архивировано 5 февраля 2012 года.
    21. ↑ Salart D., et al. Testing the speed of „spooky action at a distance“ // Nature : журнал. — 2008. — № 454 . — DOI : 10.1038/nature07121 .
    22. ↑ Коняев А. Коты в ящиках и квантовые скорости . Лента.Ру. Проверено 13 сентября 2011. Архивировано 5 февраля 2012 года.
    23. ↑ Scheidl T. & al. (2010), "Violation of local realism with freedom of choice", arΧiv : 0811.3129v2 [quant-ph]  
    24. ↑ Попов Л. Физики проявили нелокальную природу реальности . Membrana . Проверено 13 сентября 2011. Архивировано 5 февраля 2012 года.
    25. ↑ Herrmann L. G., et al. Carbon Nanotubes as Cooper-Pair Beam Splitters // Physical Review Letters : журнал. — 2010. — Т. 104 , вып. 2 . — DOI : 10.1103/PhysRevLett.104.026801 .

    www.cruer.com

    Квантовая запутанность — Википедия (с комментариями)

    Материал из Википедии — свободной энциклопедии

    Ква́нтовая запу́танность[1][2] (см. раздел «Название явления в русскоязычных источниках») — квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий, что находится в логическом противоречии с принципом локальности. Например, можно получить пару фотонов, находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот.

    История изучения

    Спор Бора и Эйнштейна, ЭПР-Парадокс

    На Пятом Сольвеевском конгрессе 1927 года одним из центров дискуссии стал спор Бора и Эйнштейна о принципах Копенгагенской интерпретации квантовой механики[3], которая, впрочем, ещё не имела этого названия, закрепившегося только в 50-е годы XX века[4]. Эйнштейн настаивал на сохранении в квантовой физике принципов детерминизма классической физики и на трактовке результатов измерения с точки зрения «несвязанного наблюдателя» (англ. «detached observer»). С другой стороны, Бор настаивал на принципиально недетерминированном (статистическом) характере квантовых явлений и на неустранимости эффекта влияния измерения на само состояние. Как квинтэссенция этих споров часто приводится диалог Эйнштейна с Бором: «— Бог не играет в кости. — Альберт, не указывай Богу, что ему делать.», а также саркастический вопрос Эйнштейна: «Вы действительно считаете, что Луна существует, только когда вы на неё смотрите?»[5]

    В продолжение начавшихся споров в 1935 году Эйнштейн, Подольский и Розен сформулировали ЭПР-парадокс, который должен был показать неполноту предлагаемой модели квантовой механики. Их статья «Можно ли считать квантово-механическое описание физической реальности полным?» была опубликована в № 47 журнала «Physical Review»[6].

    В ЭПР-парадоксе мысленно нарушался принцип неопределённости Гейзенберга: при наличии двух частиц, имеющих общее происхождение, можно измерить состояние одной частицы и по нему предсказать состояние другой, над которой измерение ещё не производилось. Анализируя в том же году подобные теоретически взаимозависимые системы, Шрёдингер назвал их «спутанными» (англ. entangled)[7]. Позднее англ. entangled и англ. entanglement стали общепринятыми терминами в англоязычных публикациях[8]. Следует отметить, что сам Шрёдингер считал частицы запутанными, только пока они физически взаимодействовали друг с другом. При удалении за пределы возможных взаимодействий запутанность исчезала[8]. То есть значение термина у Шрёдингера отличается от того, которое подразумевается в настоящее время.

    Эйнштейн не рассматривал ЭПР-парадокс как описание какого-либо действительного физического феномена. Это была именно мысленная конструкция, созданная для демонстрации противоречий принципа неопределённости. В 1947 году в письме Максу Борну он назвал подобную связь между запутанными частицами «жутким дальнодействием» (нем. spukhafte Fernwirkung, англ. spooky action at a distance в переводе Борна)[9]:

    Поэтому я не могу в это поверить, так как (эта) теория непримирима с принципом того, что физика должна отражать реальность во времени и пространстве, без (неких) жутких дальнодействий.

    Оригинальный текст (нем.)  

    Ich kann aber deshalb nicht ernsthaft daran glauben, weil die Theorie mit dem Grundsatz unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum darstellen soll, ohne spukhafte Fernwirkungen.

    — «Entangled systems: new directions in quantum physics»[10]

    Уже в следующем номере «Physical Review» Бор опубликовал свой ответ в статье с таким же заголовком, как и у авторов парадокса[11]. Сторонники Бора посчитали его ответ удовлетворительным, а сам ЭПР-парадокс — вызванным неправильным пониманием сути «наблюдателя» в квантовой физике Эйнштейном и его сторонниками[8]. В целом большинство физиков просто устранилось от философских сложностей Копенгагенской интерпретации. Уравнение Шрёдингера работало, предсказания совпадали с результатами, и в рамках позитивизма этого было достаточно. Гриббин (англ.)русск. пишет по этому поводу[12]: «чтобы добраться из точки А в точку Б, водителю необязательно знать, что происходит под капотом его машины». Эпиграфом же к своей книге Гриббин поставил слова Фейнмана:

    Думаю, я могу ответственно заявить, что никто не понимает квантовую механику. Если есть возможность, прекратите спрашивать себя «Да как же это возможно?» — так как вас занесёт в тупик, из которого ещё никто не выбирался.

    Неравенства Белла, экспериментальные проверки неравенств

    Такое состояние дел оказалось не слишком удачным для развития физической теории и практики. «Запутанность» и «жуткие дальнодействия» игнорировались почти 30 лет[8], пока ими не заинтересовался ирландский физик Джон Белл. Вдохновлённый идеями Бома[13] (Теория де Бройля — Бома), Белл продолжил анализ ЭПР-парадокса и в 1964 сформулировал свои неравенства[14][15]. Весьма упрощая математические и физические составляющие, можно сказать, что из работы Белла следовали две однозначно распознаваемые ситуации при статистических измерениях состояний запутанных частиц. Если состояния двух запутанных частиц определены в момент разделения, то должно выполняться одно неравенство Белла. Если состояния двух запутанных частиц неопределены до измерения состояния одной из них, то должно выполняться другое неравенство.

    Неравенства Белла предоставили теоретическую базу для возможных физических экспериментов, однако по состоянию на 1964 год техническая база не позволяла ещё их поставить. Первые успешные эксперименты по проверке неравенств Белла были осуществлены Клаузером и Фридманом в 1972 году[16]. Из результатов следовала неопределённость состояния пары запутанных частиц до проведения измерения над одной из них. И всё же до 80-х годов XX века квантовая сцепленность рассматривалась большинством физиков «не как новый неклассический ресурс, который можно использовать, а скорее как конфуз, ждущий окончательного разъяснения»[8].

    Однако за экспериментами группы Клаузера последовали эксперименты Аспэ в 1981 году[16]. В классическом эксперименте Аспэ (см. схему) два потока фотонов с нулевым суммарным спином, вылетавшие из источника S, направлялись на призмы Николя a и b. В них за счёт двойного лучепреломления происходило разделение поляризаций каждого из фотонов на элементарные, после чего пучки направлялись на детекторы D+ и D-. Сигналы от детекторов через фотоумножители поступали в регистрирующее устройство R, где вычислялось неравенство Белла.

    Результаты, полученные как в опытах Фридмана-Клаузера, так и в опытах Аспэ, чётко говорили в пользу отсутствия эйнштейновского локального реализма. «Жуткое дальнодействие» из мысленного эксперимента окончательно стало физической реальностью. Последний удар по локальности был нанесён в 1989 году многосвязными состояниями Гринбергера — Хорна — Цайлингера (англ.)русск.[17], заложившими базис квантовой телепортации. В 2010 году Джон Клаузер, Ален Аспе и Антон Цайлингер стали лауреатами премии Вольфа по физике «за фундаментальный концептуальный и экспериментальный вклад в основы квантовой физики, в частности за серию возрастающих по сложности проверок неравенств Белла (или расширенных версий этих неравенств) с использованием запутанных квантовых состояний»[18].

    • Лауреаты премии Вольфа по физике 2010 года
    • John Clauser conversing with Mike Nauenberg.jpg

      Джон Клаузер (слева)

    • Alain Aspect in Tel Aviv University.jpg

    • Anton-zeilinger-godany-porträt.jpg

      Антон Цайлингер

    Современный этап

    Современные версии описанного выше эксперимента создают сегменты Sa и Sb такой длины, чтобы регистрация фотонов происходила в заведомо не связанных известными взаимодействиями областях пространства-времени. В 2007 году исследователям из Мичиганского университета удалось разнести запутанные фотоны на рекордное в тот момент расстояние в 1 м[19][20].

    В 2008 году группе швейцарских исследователей из Университета Женевы удалось разнести два потока запутанных фотонов на расстояние 18 километров. Помимо прочего, это позволило произвести временны́е измерения с недостижимой ранее точностью. В результате было установлено, что если некое скрытое взаимодействие и происходит, то скорость его распространения должна как минимум в 100 000 раз превышать скорость света в вакууме. При меньшей скорости временные задержки были бы замечены[21][22].

    Летом того же года другой группе исследователей из австрийского Института квантовой оптики и квантовой информации (англ.)русск., включая Цайлингера, удалось поставить ещё более масштабный эксперимент, разнеся потоки запутанных фотонов на 144 километра, между лабораториями на островах Пальма и Тенерифе. Обработка и анализ столь масштабного эксперимента продолжаются, последняя версия отчёта была опубликована в 2010 году[23][24]. В данном эксперименте удалось исключить возможное влияние недостаточного расстояния между объектами в момент измерения и недостаточной свободы выбора настроек измерения. В результате были ещё раз подтверждены квантовая запутанность и, соответственно, нелокальная природа реальности. Правда, осталось третье возможное влияние — недостаточно полной выборки. Эксперимент, в котором все три потенциальных влияния будут исключены одновременно, на сентябрь 2011 года является вопросом будущего.

    В большинстве экспериментов с запутанными частицами используются фотоны. Это объясняется относительной простотой получения запутанных фотонов и их передачи в детекторы, а также бинарной природой измеряемого состояния (положительная или отрицательная спиральность). Однако явление квантовой запутанности существует и для других частиц и их состояний. В 2010 году международный коллектив учёных из Франции, Германии и Испании получил и исследовал[25][26] запутанные квантовые состояния электронов, то есть частиц с массой, в твёрдом сверхпроводнике из углеродных нанотрубок. В 2011 году исследователям из Института квантовой оптики общества Макса Планка удалось создать состояние квантовой запутанности между отдельным атомом рубидия и конденсатом Бозе-Эйнштейна, разнесёнными на расстояние 30 м[27][28].

    Название явления в русскоязычных источниках

    При устойчивом английском термине Quantum entanglement, достаточно последовательно использующимся в англоязычных публикациях, русскоязычные работы демонстрируют широкое разнообразие узуса. Из встречающихся в источниках по теме терминов можно назвать (в алфавитном порядке):

    1. Запутанные квантовые состояния[29]
    2. Квантовая запутанность
    3. Квантовая зацепленность[30]
    4. Квантовые корреляции[31][32] (термин неудачен из-за неоднозначности[33][34])
    5. Квантовая нелокальность[35]
    6. Квантовая перепутанность[36]
    7. Несепарабельность[37] (как уточнение к «квантовым корреляциям»)
    8. Квантовая сцепленность[1]

    В популярной прессе употребляется также выражение «квантовая спутанность»[38].

    Такое разнообразие можно объяснить несколькими причинами, в том числе объективным наличием двух обозначаемых объектов: а) само состояние (англ. quantum entanglement) и б) наблюдаемые эффекты в этом состоянии (англ. spooky action at a distance), которые во многих русскоязычных работах различаются по контексту, а не терминологически.

    Математическая формулировка

    Получение запутанных квантовых состояний

    В простейшем случае источником S потоков запутанных фотонов служит определённый нелинейный материал, на который направляется лазерный поток определённой частоты и интенсивности (схема с одним эмиттером)[39]. В результате спонтанного параметрического рассеяния (СПР) на выходе получаются два конуса

    wiki-org.ru

    Квантовая запутанность

    Ква́нтовая запу́танность (спутанность, реже — сцепление) (entanglement) — квантовомеханическое явление, при котором квантовое состояние двух или большего количества объектов должно описываться во взаимосвязи друг с другом, даже если отдельные объекты разнесены в пространстве. Вследствие этого возникают корреляции между наблюдаемыми физическими свойствами объектов. Например, можно приготовить две частицы, находящиеся в едином квантовом состоянии так, что когда одна частица наблюдается в состоянии со спином, направленным вверх, то спин другой оказывается направленным вниз, и наоборот, и это несмотря на то, что согласно квантовой механике, предсказать, какие фактически каждый раз получатся направления, невозможно. Иными словами, создаётся впечатление, что измерения, проводимые над одной системой, оказывают мгновенное воздействие на запутанную с ней. Однако то, что понимается под информацией в классическом смысле, всё-таки не может быть передано через запутанность быстрее, чем со скоростью света.

    Квантовая запутанность является основой таких будущих технологий, как квантовый компьютер и квантовая криптография, а также она была использована в опытах по квантовой телепортации. В теоретическом и философском плане данное явление представляет собой одно из наиболее революционных свойств квантовой теории, так как можно видеть, что корреляции, предсказываемые квантовой механикой, совершенно несовместимы с представлениями о, казалось бы, очевидной локальности реального мира, при которой информация о состоянии системы может передаваться только посредством её ближайшего окружения. Различные взгляды на то, что в действительности происходит во время процесса квантовомеханического запутывания, ведут к различным интерпретациям квантовой механики.

    Истоки

    Запутывание — это одно из тех свойств квантовой теории, за которое её не любил А. Эйнштейн и некоторые другие учёные. В 1935 г. Эйнштейн, Подольский и Розен сформулировали знаменитый ЭПР парадокс, который показал, что из-за запутывания квантовая механика становится нелокальной теорией. Известно, как Эйнштейн высмеивал запутывание, называя его «кошмарным дальнодействием».

    С другой стороны, квантовая механика отлично зарекомендовала себя в предсказании экспериментальных результатов, и фактически наблюдались даже сильные корреляции, происходящие благодаря феномену запутывания. Есть способ, который позволяет, казалось бы, успешно объяснить квантовое запутывание — подход «теории скрытых параметров» при котором за корреляции отвечают определённые, но неизвестные микроскопические параметры. Однако, в 1964 г. Дж. С. Белл показал, что «хорошую» локальную теорию таким образом построить всё равно не удастся, то есть, запутывание, предсказываемое квантовой механикой, можно экспериментально отличить от результатов, предсказываемых широким классом теорий с локальными скрытыми параметрами. Результаты последующих экспериментов дали ошеломляющее подтверждение квантовой механики. Некоторые проверки показывают, что в этих экспериментах есть ряд узких мест, но общепризнано, что они несущественны.

    Запутывание приводит к интересным взаимоотношениям с принципом относительности, который утверждает, что информация не может переноситься с места на место быстрее, чем со скоростью света. Хотя две системы могут быть разделены большим расстоянием и быть при этом запутанными, передать через их связь полезную информацию невозможно, поэтому причинность не нарушается из-за запутанности. Это происходит по двум причинам: (1) результаты измерений в квантовой механике носят принципиально вероятностный характер и (2) теорема о клонировании квантового состояния запрещает статистическую проверку запутанных состояний.

    См. также

    mediaknowledge.ru

    Квантовая запутанность: теория, принцип, эффект

    Образование 13 апреля 2017

    Ярко блестела золотистая осенняя листва деревьев. Лучи вечернего солнца коснулись поредевших верхушек. Свет пробился сквозь ветки и устроил спектакль из причудливых фигур, мелькавших на стене университетской «каптёрки».

    Задумчивый взгляд сэра Гамильтона медленно скользил, наблюдая за игрой светотени. В голове ирландского математика шла настоящая плавильня мыслей, идей и выводов. Он прекрасно понимал, что объяснение многих явлений с помощью Ньютоновской механики подобно игре теней на стене, обманчиво сплетающих фигуры и оставляющих без ответа многие вопросы. «Возможно, это волна… а может быть, поток частиц, - размышлял учёный, - или свет является проявлением обоих явлений. Подобно фигурам, сотканным из тени и света».

    Начало квантовой физики

    Интересно наблюдать за великими людьми и пытаться осознать, как рождаются великие идеи, изменяющие ход эволюции всего человечества. Гамильтон - один из тех, кто стоял у истоков зарождения квантовой физики. Спустя пятьдесят лет, в начале двадцатого века, изучением элементарных частиц занимались многие учёные. Полученные знания были противоречивы и нескомпилированы. Однако первые шаткие шаги были сделаны.

    Понимание микромира в начале ХХ века

    В 1901 году была представлена первая модель атома и показана её несостоятельность, с позиции обычной электродинамики. В этот же период Макс Планк и Нильс Бор публикуют множество трудов о природе атома. Несмотря на их кропотливый труд, полного понимания структуры атома не существовало.

    Спустя несколько лет, в 1905 году, малоизвестный немецкий учёный Альберт Эйнштейн опубликовал доклад о возможности существования светового кванта в двух состояниях – волнового и корпускулярного (частицы). В его труде приводились доводы, поясняющие причину несостоятельности модели. Однако видение Эйнштейна было ограничено старым пониманием модели атома.квантовая запутанность частиц

    После многочисленных трудов Нильса Бора и его коллег в 1925 году зародилось новое направление – некое подобие квантовой механики. Распространённое выражение - «квантовая механика» появилось спустя тридцать лет.

    Видео по теме

    Что мы знаем о квантах и их причудах?

    На сегодня квантовая физика ушла достаточно далеко. Открыто много различных явлений. Но что мы знаем на самом деле? Ответ представлен одним учёным современности. "В квантовую физику можно либо верить, либо ее не понимать", - таково определение Ричарда Фейнмана. Подумайте над этим сами. Достаточно будет упомянуть такое явление, как квантовая запутанность частиц. Это явление ввергло научный мир в положение полного недоумения. Ещё большим шоком стало то, что возникший парадокс несовместим с законами Ньютона и Эйнштейна.

    Впервые эффект квантовой запутанности фотонов обсуждался в 1927 году на пятом Солвеевском Конгрессе. Между Нильсом Бором и Эйнштейном возник жаркий спор. Парадокс квантовой спутанности полностью изменил понимание сути материального мира.

    теория квантовой запутанности

    Известно, что все тела состоят из элементарных частиц. Соответственно, все явления квантовой механики отражаются в обычном мире. Нильс Бор говорил, что если мы не смотрим на Луну, то её не существует. Эйнштейн считал это неразумным и полагал, что объект существует независимо от наблюдателя.

    При изучении проблем квантовой механики следует понимать, что её механизмы и законы взаимосвязаны между собой и не подчиняются классической физике. Попробуем разобраться в самой противоречивой области – квантовой запутанности частиц.

    Теория квантовой запутанности

    Для начала стоит понимать, что квантовая физика подобна бездонному колодцу, в котором можно обнаружить все, что угодно. Явление квантовой запутанности в начале прошлого века изучалось Эйнштейном, Бором, Максвеллом, Бойлем, Беллом, Планком и многими другими физиками. На протяжении двадцатого века по всему миру активно изучали это и экспериментировали тысячи учёных.

    Мир подчинён строгим законам физики

    Почему такой интерес к парадоксам квантовой механики? Все очень просто: мы живём, подчиняясь определённым законам физического мира. Умение «обходить» предопределённость открывает магическую дверь, за которой все становится возможным. К примеру, концепция «Кота Шрёдингера» ведёт к управлению материей. Также станет возможна телепортация информации, которую вызывает квантовая запутанность. Передача информации станет мгновенной, независимо от расстояния.Этот вопрос пока находится в стадии изучения, однако имеет положительную тенденцию.

    Аналогия и понимание

    Чем же уникальна квантовая запутанность, как её понять и что происходит при этом? Попробуем разобраться. Для этого потребуется провести некий мысленный эксперимент. Представьте, что у вас в руках две коробки. В каждой из них лежит по одному мячу с полосой. Теперь одну коробку отдаём космонавту, и он улетает на Марс. Как только вы открываете коробку и видите, что полоса на мяче горизонтальна, то в другой коробке мяч автоматически будет иметь вертикальную полосу. Это и будет квантовая запутанность простыми словами выраженная: один объект предопределяет положение другого.квантовая запутанность простыми словами

    Однако следует понимать, что это лишь поверхностное объяснение. Для того чтобы получить квантовую запутанность, необходимо, чтобы частицы имели одинаковое происхождение, подобно близнецам.запутанность квантовых состояний Очень важно понимать, что эксперимент будет сорван, если до вас кто-то имел возможность посмотреть хотя бы на один из объектов.

    Где может быть использована квантовая спутанность?

    Принцип квантовой запутанности может быть использован для передачи информации на большие расстояния мгновенно. Подобный вывод противоречит теории относительности Эйнштейна. Она гласит, что максимальная скорость перемещения присуща только свету – триста тысяч километров в секунду. Подобная передача информации даёт возможность существования физической телепортации.

    Все в мире - информация, в том числе и материя. К такому выводу пришли квантовые физики. В 2008 году на основании теоретической базы данных удалось увидеть квантовую спутанность невооружённым глазом.

    квантовая запутанностьЭто в очередной раз говорит о том, что мы стоим на пороге великих открытий – перемещения в пространстве и во времени. Время во Вселенной дискретно, поэтому мгновенное перемещение на огромные расстояния даёт возможность попадать в различную плотность времени (на основании гипотез Эйнштейна, Бора). Возможно, в будущем это будет реальностью так же, как мобильный телефон сегодня.

    Эфиродинамика и квантовая запутанность

    По мнению некоторых ведущих учёных, квантовая спутанность поясняется тем, что пространство заполнено неким эфиром - чёрной материей. Любая элементарная частица, как нам известно, пребывает в виде волны и корпускулы (частицы). Некоторые учёные считают, что все частицы находятся на «полотне» тёмной энергии. Понять это непросто. Давайте попробуем разобраться другим путём – методом ассоциации.

    Представьте себя на берегу моря. Лёгкий бриз и слабое дуновение ветра. Видите волны? А где-то вдалеке, в отблесках лучей солнца, виден парусник.Корабль будет нашей элементарной частицей, а море – эфиром (тёмной энергией). Море может находиться в движении в виде видимых волн и капель воды. Точно так же и все элементарные частицы могут быть просто морем (её составляющей неотъемлемой частью) или же отдельной частицей – каплей.

    Это упрощённый пример, все несколько сложнее. Частицы без присутствия наблюдателя находятся в виде волны и не имеют определённого местоположения.

    эфиродинамика и квантовая запутанность Белый парусник - это выделенный объект, он отличается от глади и структуры воды моря. Точно так же существуют «пики» в океане энергии, которые мы можем воспринимать как проявление известных нам сил, сформировавших материальную часть мира.

    Микромир живёт по своим законам

    Принцип квантовой запутанности можно понять, если брать в учёт то, что элементарные частицы находятся в виде волн. Не имея определённого местоположения и характеристик, обе частицы пребывают в океане энергии. В момент появления наблюдателя волна «превращается» в доступный осязанию объект. Вторая частица, соблюдая систему равновесия, приобретает противоположные свойства.

    Описанная статья не направлена на ёмкие научные описания квантового мира. Возможность осмысления обычного человека базируется на доступности понимания изложенного материала.

    Физика элементарных частиц изучает запутанность квантовых состояний на основании спина (вращения) элементарной частицы.

    квантовая запутанность передача информации Научным языком (упрощённо) - квантовая спутанность определяется по разному спину. В процессе наблюдения за объектами учёные увидели, что может существовать только два спина – вдоль и поперёк. Как ни странно, в других положениях частицы наблюдателю не «позируют».

    Новая гипотеза - новый взгляд на мир

    Изучение микрокосмоса - пространства элементарных частиц - породило множество гипотез и предположений. Эффект квантовой запутанности натолкнул учёных на мысль о существовании некой квантовой микрорешётки. По их мнению, в каждом узле - точке пересечения - находится квант. Вся энергия – целостная решётка, а проявление и движение частиц возможно только через узлы решётки.

    Размер «окна» такой решётки достаточно мал, и измерение современным оборудованием невозможно. Однако, чтобы подтвердить или опровергнуть данную гипотезу, учёные решили изучить движение фотонов в пространственной квантовой решётке. Суть в том, что фотон может двигаться либо прямо, либо зигзагами – по диагонали решётки. Во втором случае, преодолев большую дистанцию, он потратит больше энергии. Соответственно, будет отличаться от фотона, движущегося по прямой линии.

    Возможно, со временем мы узнаем, что живём в пространственной квантовой решётке. Или же это предположение может оказаться неверным. Однако именно принцип квантовой запутанности указывает на возможность существования решётки.

    принцип квантовой запутанности Если говорить простым языком, то в гипотетическом пространственном «кубе» определение одной грани несёт за собой чёткое противоположное значение другой. Таков принцип сохранения структуры пространство – время.

    Эпилог

    Чтобы понимать волшебный и загадочный мир квантовой физики, стоит внимательно всмотреться в ход развития науки за последние пятьсот лет. Раньше считалось, что Земля имеет плоскую форму, а не сферическую. Причина очевидна: если принять её форму круглой, то вода и люди не смогут удержаться.

    Как мы видим, проблема существовала в отсутствии полного видения всех действующих сил. Возможно, что современной науке для понимания квантовой физики не хватает видения всех действующих сил. Пробелы видения порождают систему противоречий и парадоксов. Возможно, магический мир квантовой механики хранит в себе ответы на поставленные вопросы.

    Источник: fb.ru

    Комментарии

    Идёт загрузка...

    Похожие материалы

    Принципы разделения властей как политико-правовая теорияЗакон Принципы разделения властей как политико-правовая теория

    Разделение власти – это доктрина, которая исходит из утверждения необходимости деления государственной (в широком понимании – любой иной) власти на автономные и взаимоконтролирующие ветви. Применительно им...

    АСИТ-терапия - что это такое? Принцип действия, схема, побочные эффекты, отзывыЗдоровье АСИТ-терапия - что это такое? Принцип действия, схема, побочные эффекты, отзывы

    Увеличение числа аллергических реакций у людей растёт с каждым годом. Виной тому - генетическая наследственность, загрязнение окружающей среды, употребление ненатуральных продуктов, использование химических товаров в ...

    Биорезонансная терапия – квантовый эффектЗдоровье Биорезонансная терапия – квантовый эффект

    Биорезонансная терапия является методом лечебно-профилактического воздействия на человеческий организм, при котором используются его собственные электромагнитные колебания. Известно, что каждый орган нашего тела имеет...

    Теория контрактов в институциональной экономике: суть, основные принципыНовости и общество Теория контрактов в институциональной экономике: суть, основные принципы

    Теория контрактов появилась в 70-х годах. Именно тогда всемирно известные экономисты принялись за поиск новых стимулов для эффективной работы в условиях свободного рынка. Мало известная широкой общественности т...

    Почему возникает эффект дежавю? Теории и предположенияНовости и общество Почему возникает эффект дежавю? Теории и предположения

    Феномен дежавю знаком каждому из нас. Согласитесь, хоть однажды, попав в незнакомое место или беседуя с незнакомым человеком, вы были уверены, что такая ситуация и такой разговор уже были в вашей жизни. Вы точно ...

    Квантовый двигатель: принцип действия и устройство. Квантовый двигатель ЛеоноваОбразование Квантовый двигатель: принцип действия и устройство. Квантовый двигатель Леонова

    Тематика покорения космоса в наше время уже не такая популярная, как во времена СССР. На это влияет огромное количество факторов, но основным можно назвать именно отсутствие эволюции в техническом сегменте. Однако рус...

    Зонная теория твердых тел. Квантовая механика для чайниковОбразование Зонная теория твердых тел. Квантовая механика для чайников

    Эта статья рассказывает, что такое зонная теория твердых тел. Показано, чем обусловлено именно такое представление строения вещества. Приведены отличия металлов от диэлектриков и полупроводников.Розетка и кноп...

    Основатель рефлекторной теории. Развитие и принципы рефлекторной теорииОбразование Основатель рефлекторной теории. Развитие и принципы рефлекторной теории

    В каждом учебнике биологии говорится, что основатель рефлекторной теории - Иван Павлов. Это действительно так, однако еще до знаменитого русского физиолога нервную систему изучали многие исследователи. Из них самый бо...

    Наука об основах и принципах коммуникации. Теория коммуникации как наука и учебная дисциплинаОбразование Наука об основах и принципах коммуникации. Теория коммуникации как наука и учебная дисциплина

    Теория коммуникации в рамках гуманитарного знания рассматривает данное понятие прежде всего с точки зрения разновидности массового общения людей. Как свидетельствует наука об основах и принципах коммуникации (это линг...

    Что такое самоорганизация? Процессы, принципы и теория самоорганизацииОбразование Что такое самоорганизация? Процессы, принципы и теория самоорганизации

    Вопрос о том, что такое самоорганизация, является очень интересным. Рассмотрим его в данной статье. Самоорганизация систем - это необратимый процесс, который приводит в результате взаимодействия различных его участник...

    monateka.com

    Доказательства существования явления квантовой запутанности

    Понятие квантовой запутанности, "призрачного действия на расстоянии" по словам Альберта Эйнштейна, является одним из самых экзотических понятий квантовой физики. Согласно имеющимся теориям, запутанные на квантовом уровне объекты, несмотря на разделяющее их расстояние, которое может исчисляться огромным количеством световых лет, могут моментально оказывать влияние друг на друга. И некоторые из видных ученых высказывали сомнения в возможности существования такого явления, которое, по их мнению, нарушает все основные принципы традиционной физики.

    Ученые уже создали математические модели квантовой запутанности и наблюдали некоторые проявления этого феномена. Но никогда прежде факт существования явления не был доказан в строгом понимании этого научного термина. И буквально на прошлой неделе исследователи из Технологического университета Дельфта (Delft University of Technology), Нидерланды, опубликовали работу, в которой, согласно их мнению, приведены неопровержимые и достаточные доказательства существования квантовой запутанности.

    Эти ученые провели ряд экспериментов, в которых использовались два кристалла алмаза, находящиеся в противоположных уголках научного городка на расстоянии 1.3 километра друг от друга. Каждый из этих кристаллов облучался синхронными вспышками микроволнового излучения и лазерного света с определенными параметрами импульса. Энергия этих вспышек заставила электроны внутри этих "алмазных ловушек" возбудиться и испустить фотоны света, который, пройдя через оптоволокно, попадали внутрь регистрирующего прибора, удаленного от обоих алмазов на равное расстояние. Когда фотоны света, прибывшие от двух кристаллов, взаимодействовали друг с другом, это приводило к возникновению квантовой запутанности между электронами, которые были источниками этих фотонов.

    Квантовая запутанность электронов была зафиксирована при помощи измерений направления вращения этих электронов. Измерения всех параметров электронов производились настолько быстро, что электроны не успели бы обменяться информацией, передаваемой сигналами, перемещающимися со скоростью света. Однако, оказалось, что спины двух электронов были синхронизированы друг с другом, и электроны успели обменяться информацией при помощи чего-то, распространяющегося гораздо быстрее скорости света. Это является нарушением так называемого принципа локальности, который объясняет квантовую запутанность более просто, нежели это существует на самом деле. По нескольким измеренным параметрам электронов ученые рассчитали их волновую функцию, которая оказалась абсолютно одинакова в обоих случаях, и именно это является наиболее неоспоримым доказательством существования квантовой запутанности, нежели чем более простое совпадение спинов этих электронов.

    Исследователи провели в течение 18 дней 245 идентичных экспериментов, а количество собранных данных и ряд предпринятых мер позволили им устранить все возможные "лазейки", через которые в результаты могли проникнуть ошибки, связанные с неточностью измерений, влиянием факторов внешней среды и т.п. "Ученые уже проводили множество экспериментов в области квантовой физики, но наш эксперимент был изначально задуман так, чтобы избежать даже возможности возникновения различного рода "лазеек"" - рассказывает Рональд Хэнсон (Ronald Hanson), ученый из Института нанотехнологий Кавли (Kavli Institute of Nanoscience), - "Эксперименты с квантовой запутанностью производились с конца 1970-х годов, но их результаты всегда требовали дополнительных подтверждений. Теперь же нам удалось получить неопровержимые доказательства существования квантовой запутанности".

    tech.indexdirectory.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики