Samsung выпускает мониторы на квантовых точках. Чем они хороши? Дисплей на квантовых точках


Samsung выпускает мониторы на квантовых точках. Чем они хороши?

На этой неделе компания Samsung представила несколько игровых мониторов, матрицы которых выполнены по технологии квантовых точек (QLED). Чем эта технология отличается от других и стоит ли покупать такие мониторы?

Samsung будет выпускать изогнутые мониторы модели CH711 с экраном 27 и 31,5 дюйма, оба с разрешением 2560×1440 пикселей, 178-градусным углом обзора и 125-процентным охватом спектра sRGB. Для Samsung это не первые мониторы с квантовыми точками, хотя компания до сих пор в основном использует в своих мониторах и телевизорах технологии PLS (аналог IPS) и OLED. Первые мониторы Samsung с квантовыми точками были представлены в сентябре 2016 года на выставке IFA в Берлине, а модель CH711 будет продемонстрирована в начале января 2017 года на CES в Лас-Вегасе.

Стоимость мониторов с QLED-матрицами довольно высокая: CFG70 с 27-дюймовым экраном стоит 450 долларов, а CF791 с 34-дюймовым экраном — 1000 долларов.

По словам Samsung, экраны на квантовых точках лишены недостатков матриц, созданных на основе других технологий, хотя и не обладают таким глубоким чёрным цветом, как OLED-мониторы.

Технологию QLED следует считать разновидностью LCD, поскольку в ней тоже используется светодиодная подсветка, хотя диоды созданы на основе квантовых точек. До сих пор ни одному производителю не удалось создать матрицу, которая состояла бы только из квантовых точек и не содержала светодиоды, однако такие экраны могут появиться в будущем.

Квантовые точки — это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока. Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. По словам исследователей, дисплеи могут потреблять в пять раз меньше энергии в сравнении с обычными ЖК-дисплеями, а также обладают более продолжительным сроком службы по сравнению с OLED-дисплеями. Стоимость производства QLED-матриц может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев.

Идея использования квантовых точек в качестве источника света впервые была предложена в 1990-х годах, однако первый прототип QLED-экрана был создан компанией Samsung лишь в 2011 году. Ещё несколько лет назад считалось, что дисплеи на основе этой технологии неоправданно сложны в производстве, поскольку требуют опасного для людей кадмия. Сейчас эта проблема решена — опасными процессами занимаются химические компании.

Сейчас производством мониторов на квантовых точках занимается преимущественно Samsung, однако первый коммерчески доступный дисплей на основе этой технологии был выпущен гонконгской компанией TPV Technology под брендом Philips — модель 276E6ADS с 27-дюймовой FullHD-панелью. Ажиотажа вокруг технологии QLED не наблюдается. По всей видимости, она мало кого интересует и вряд ли можно считать её перспективной.

www.iguides.ru

Дисплей на квантовых точках — Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

QD-LED, QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК экранов от компании Samsung

Квантовые точки — это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями. Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[1].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях). При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Технология QLED

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно используя технологию штамповки. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного гафний-индий-цинкового оксида, способного проводить более высокие токи и обладающего большей стабильностью, чем обычные аморфные кремниевые (a-Si) транзисторы. В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов[1].

Видео по теме

История

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 438 дней]. В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев.

В феврале 2011 года исследователи из Samsung Electronics представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку.

В июне 2013 года в Physical Review Letters была опубликована статья с результатами открытия, сделанного учёными из индийского Института науки в Бангалоре. Согласно ему, квантовые точки, созданные на базе сплава цинка, кадмия и серы, легированного марганцем, светятся не только оранжевым цветом, как считалось до сих пор, а люминесцируют в диапазоне от тёмно-зелёного до красного. Практическая значимость открытия состоит в том, что квантовые точки из легированных марганцем сплавов прочнее, эффективнее и не требуют высокотоксичного кадмия, который в основном применялся в производстве квантовых точек.

Ещё несколько лет назад дисплеи на базе этой технологии считались сложными в производстве, так как требовали использования опасного для людей кадмия. Однако Samsung отмечает, что благодаря сотрудничеству с химическими компаниями эта проблема была решена[когда?].

Путаница в терминах

Все существующие дисплеи, которые заявляются как QLED, по факту являются LCD-матрицей со светодиодной подсветкой на квантовых точках, т. е. единственное их преимущество перед LCD — это расширенный цветовой охват. По сравнению с OLED-телевизорами (где сами пиксели являются маленькими светодиодами), у телевизоров на QLED нет настоящего черного цвета и бесконечной контрастности. По аналогии, LED-телевизоры — это также совсем не то, что OLED.

Технология «квантовых точек» представляет собой решение для получения чистого спектрального цвета: красного и зелёного (из спектра излучения синих светодиодов). Как оказалось, это сравнительно недорогой способ обеспечить близкую к естественной цветопередачу для жидкокристаллических матриц.

Производство

Дистрибьютор MMD (Philips Monitors) и компания QD Vision сообщили, что в Китае начались продажи первого в мире монитора на квантовых точках. Выпускает мониторы гонконгская компания TPV Technology, выкупившая несколько лет назад бренд «Philips». Речь идёт о 27-дюймовом мониторе 276E6ADS, который, благодаря технологии QD Vision, позволяет говорить о появлении профессиональных дисплеев по цене потребительских моделей. В пресс-релизе нет подробной информации о новинке. Ранее сообщалось, что разрешение панели равно 1920х1080 пикселей, время отклика находится на уровне 5 мс, максимальная яркость 300 кд/м² и охватывает 99 % пространства Adobe RGB.[источник не указан 438 дней]

2016: телевизоры от Samsung серий Q9F и Q7F (75-, 65- и 55-дюймовые модели).

Критика

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективны, как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10 000 часов[1].

Ссылки

Примечания

wikipedia.green

Дисплей на квантовых точках - это... Что такое Дисплей на квантовых точках?

Квантовые точки облученные ультрафиолетовым светом. Различные размеры квантовых точек излучают различные цвета.

QD-LED, QLED(от англ. quantum dot «квантовая точка») — технология создания дисплеев, основанная на использовании квантовых точек. Как и электронная бумага и OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях. При этом декларируется гораздо более высокие, чем у конкурирующих технологий, яркость, контрастность, глубина цвета и более низкое энергопотребление. Разработана американской компанией QD Vision.

Технология QLED

В феврале 2011 года исследователи из Samsung Electronics представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-х дюймовый дисплей управляется активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкопленочным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Квантовые точки — это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока или света.

Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями, а также более продолжительный срок службы по сравнению с OLED-дисплеями. Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления жидкокристаллических и OLED дисплеев.[1]

Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем в слой квантовых точек аккуратно запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зеленый или синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зеленых и синих полосок, многократно используя технологию штамповки. Полоски наносятся непосредственно на матрицу тонкопленочных транзисторов. Транзисторы сделаны из аморфного гафний-индий-цинкового оксида, способного проводить более высокие токи и обладающего большей стабильностью, чем обычные аморфные кремниевые (a-Si) транзисторы. В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов.[1]

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективные как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10000 часов.[1]

История

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах. В начале 2000-х, ученые начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев.

Примечания

dic.academic.ru

Разработан дисплей на квантовых точках, передающий миллиард цветов

Это открытие было сделано учеными Университета Квинс в Белфасте (Великобритания) вместе с коллегами из Швейцарии, США и Тайваня, которые изготовили квантовые точки с содержанием перовскитового материала MAPbBr3. Они обнаружили, что если расположить материалы в ламеллярной структуре — тонкими, перемежающимися слоями — человеческий глаз будет реагировать на видимый свет очень активно. По мнению исследователей, это означает, что материал переизлучает большой объем абсорбированного света и создает очень яркие цвета. Такой процесс они назвали излучением, вызванным агрегацией.

Благодаря этому открытию число цветов дисплея может увеличиться многократно. На практике это означает возникновение нового типа HD-дисплеев, до появления которых на полках магазинов осталось 3-4 года, считает Элтон Сантос, руководитель исследовательской группы. Кроме того, перовскитовые наноструктуры излучают свет очень быстро и позволяют значительно снизить потребление энергии.

«Процесс AIE может совершить революцию в цветопередаче телевизоров, поскольку базовыми цветами являются красный, синий и зеленый. При помощи AIE мы можем создать самый яркий зеленый цвет, который только был доступен для наноматериалов. Как только он будет интегрирован в остальные два цвета, число новых цветовых комбинаций превысит возможности современных дисплеев. Новейшая технология квантовых точек, которая скоро появится на рынке, позволяет передавать один миллиард цветов, что в 64 раза больше, чем обеспечивает нынешний телевизор», — считает Сантос.

Сейчас ученые изучают возможность повторить тот же процесс для синего и красного цветов, чтобы можно было создать экран, который отображает все цвета, доступные человеческому глазу, пишет Engineer.

С помощью технологии квантовых точек можно не только изготавливать мониторы и телевизоры с высоким разрешением. Как показали американские ученые, их можно использовать в качестве «фотоокислительно-восстановительного катализа» для создания углеродно-углеродных связей, то есть дешевле синтезировать химические вещества, не прибегая к редким металлам, которые используются для этих целей сейчас.

hightech.fm

Дисплей на квантовых точках Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

QD-LED, QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК экранов от компании Samsung

Квантовые точки — это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями. Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[1].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях). При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Технология QLED

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно используя технологию штамповки. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного гафний-индий-цинкового оксида, способного проводить более высокие токи и обладающего большей стабильностью, чем обычные аморфные кремниевые (a-Si) транзисторы. В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов[1].

История

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 440 дней]. В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев.

В феврале 2011 года исследователи из Samsung Electronics представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку.

В июне 2013 года в Physical Review Letters была опубликована статья с результатами открытия, сделанного учёными из индийского Института науки в Бангалоре. Согласно ему, квантовые точки, созданные на базе сплава цинка, кадмия и серы, легированного марганцем, светятся не только оранжевым цветом, как считалось до сих пор, а люминесцируют в диапазоне от тёмно-зелёного до красного. Практическая значимость открытия состоит в том, что квантовые точки из легированных марганцем сплавов прочнее, эффективнее и не требуют высокотоксичного кадмия, который в основном применялся в производстве квантовых точек.

Ещё несколько лет назад дисплеи на базе этой технологии считались сложными в производстве, так как требовали использования опасного для людей кадмия. Однако Samsung отмечает, что благодаря сотрудничеству с химическими компаниями эта проблема была решена[когда?].

Путаница в терминах

Все существующие дисплеи, которые заявляются как QLED, по факту являются LCD-матрицей со светодиодной подсветкой на квантовых точках, т. е. единственное их преимущество перед LCD — это расширенный цветовой охват. По сравнению с OLED-телевизорами (где сами пиксели являются маленькими светодиодами), у телевизоров на QLED нет настоящего черного цвета и бесконечной контрастности. По аналогии, LED-телевизоры — это также совсем не то, что OLED.

Технология «квантовых точек» представляет собой решение для получения чистого спектрального цвета: красного и зелёного (из спектра излучения синих светодиодов). Как оказалось, это сравнительно недорогой способ обеспечить близкую к естественной цветопередачу для жидкокристаллических матриц.

Производство

Дистрибьютор MMD (Philips Monitors) и компания QD Vision сообщили, что в Китае начались продажи первого в мире монитора на квантовых точках. Выпускает мониторы гонконгская компания TPV Technology, выкупившая несколько лет назад бренд «Philips». Речь идёт о 27-дюймовом мониторе 276E6ADS, который, благодаря технологии QD Vision, позволяет говорить о появлении профессиональных дисплеев по цене потребительских моделей. В пресс-релизе нет подробной информации о новинке. Ранее сообщалось, что разрешение панели равно 1920х1080 пикселей, время отклика находится на уровне 5 мс, максимальная яркость 300 кд/м² и охватывает 99 % пространства Adobe RGB.[источник не указан 440 дней]

2016: телевизоры от Samsung серий Q9F и Q7F (75-, 65- и 55-дюймовые модели).

Критика

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективны, как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10 000 часов[1].

Ссылки

Примечания

wikiredia.ru

Дисплей на квантовых точках — WiKi

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

QD-LED, QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК экранов от компании Samsung

Квантовые точки — это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями. Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[1].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях). При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Технология QLED

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно используя технологию штамповки. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного гафний-индий-цинкового оксида, способного проводить более высокие токи и обладающего большей стабильностью, чем обычные аморфные кремниевые (a-Si) транзисторы. В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов[1].

История

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 395 дней]. В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев.

В феврале 2011 года исследователи из Samsung Electronics представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку.

В июне 2013 года в Physical Review Letters была опубликована статья с результатами открытия, сделанного учёными из индийского Института науки в Бангалоре. Согласно ему, квантовые точки, созданные на базе сплава цинка, кадмия и серы, легированного марганцем, светятся не только оранжевым цветом, как считалось до сих пор, а люминесцируют в диапазоне от тёмно-зелёного до красного. Практическая значимость открытия состоит в том, что квантовые точки из легированных марганцем сплавов прочнее, эффективнее и не требуют высокотоксичного кадмия, который в основном применялся в производстве квантовых точек.

Ещё несколько лет назад дисплеи на базе этой технологии считались сложными в производстве, так как требовали использования опасного для людей кадмия. Однако Samsung отмечает, что благодаря сотрудничеству с химическими компаниями эта проблема была решена[когда?].

Путаница в терминах

Все существующие дисплеи, которые заявляются как QLED, по факту являются LCD-матрицей со светодиодной подсветкой на квантовых точках, т. е. единственное их преимущество перед LCD — это расширенный цветовой охват. По сравнению с OLED-телевизорами (где сами пиксели являются маленькими светодиодами), у телевизоров на QLED нет настоящего черного цвета и бесконечной контрастности. По аналогии, LED-телевизоры — это также совсем не то, что OLED.

Технология «квантовых точек» представляет собой решение для получения чистого спектрального цвета: красного и зелёного (из спектра излучения синих светодиодов). Как оказалось, это сравнительно недорогой способ обеспечить близкую к естественной цветопередачу для жидкокристаллических матриц.

Производство

Дистрибьютор MMD (Philips Monitors) и компания QD Vision сообщили, что в Китае начались продажи первого в мире монитора на квантовых точках. Выпускает мониторы гонконгская компания TPV Technology, выкупившая несколько лет назад бренд «Philips». Речь идёт о 27-дюймовом мониторе 276E6ADS, который, благодаря технологии QD Vision, позволяет говорить о появлении профессиональных дисплеев по цене потребительских моделей. В пресс-релизе нет подробной информации о новинке. Ранее сообщалось, что разрешение панели равно 1920х1080 пикселей, время отклика находится на уровне 5 мс, максимальная яркость 300 кд/м² и охватывает 99 % пространства Adobe RGB.[источник не указан 395 дней]

2016: телевизоры от Samsung серий Q9F и Q7F (75-, 65- и 55-дюймовые модели).

Критика

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективны, как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10 000 часов[1].

Ссылки

Примечания

ru-wiki.org

Дисплей на квантовых точках Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

QD-LED, QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК экранов от компании Samsung

Квантовые точки — это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями. Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[1].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях). При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Технология QLED[ | код]

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно используя технологию штамповки. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного гафний-индий-цинкового оксида, способного проводить более высокие токи и обладающего большей стабильностью, чем обычные аморфные кремниевые (a-Si) транзисторы. В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов[1].

История[ | код]

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 440 дней]. В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев.

В феврале 2011 года исследователи из Samsung Electronics представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку.

В июне 2013 года в Physical Review Letters была опубликована статья с результатами открытия, сделанного учёными из индийского Института науки в Бангалоре. Согласно ему, квантовые точки, созданные на базе сплава цинка, кадмия и серы, легированного марганцем, светятся не только оранжевым цветом, как считалось до сих пор, а люминесцируют в диапазоне от тёмно-зелёного до красного. Практическая значимость открытия состоит в том, что квантовые точки из легированных марганцем сплавов прочнее, эффективнее и не требуют высокотоксичного кадмия, который в основном применялся в производстве квантовых точек.

Ещё несколько лет назад дисплеи на базе этой технологии считались сложными в производстве, так как требовали использования опасного для людей кадмия. Однако Samsung отмечает, что благодаря сотрудничеству с химическими компаниями эта проблема была решена[

ru-wiki.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики