H Квантовые флуктуации и их энергия Перевод. Квантовые флуктуации


Квантовые флуктуации и их энергия / Хабр

В этой статье я расскажу вам кое-что о том, как работает квантовая механика, в частности, об удивительном явлении под названием «квантовые флуктуации», и как оно применяется в квантовой теории поля, примером которой служит Стандартная Модель (уравнения, используемые нами для предсказания поведения известных элементарных частиц и взаимодействий). Глубокое понимание этого явления и связанной с ним энергии ведёт нас прямиком к одному из самых серьёзных и неразрешённых конфликтов в науке: проблеме космологической постоянной. Также оно ведёт нас к загадке естественности, или к проблеме иерархии.

В квантовой теории поля квантовые флуктуации иногда называют или описывают, как «появление и исчезновение двух или более виртуальных частиц». Этот технический жаргон оказывается очень неудачным, поскольку эти штуки (как бы мы их ни называли), однозначно не являются частицами – к примеру, у них нет определённой массы – а также, поскольку понятие «виртуальной частицы» точно определяется только в присутствии относительно слабых взаимодействий.

Рис. 1 Квантовые флуктуации тесно связаны с принципом неопределённости Гейзенберга. Вот классический, простейший пример (рис. 1). Если поместить шарик на дно чаши, он бесконечно останется там в покое. Этого можно ожидать на основании повседневного опыта. И в отсутствии квантовой механики так бы всё и было. Но если вы поместите очень лёгкую частицу в крохотную чашу или в ловушку другого типа, вы обнаружите, что ей не сидится на дне. Если бы она неподвижно находилась внизу, это нарушило бы принцип неопределённости – гарантирующий, что вы не можете одновременно узнать точно, где находится частица (то есть, на дне) и как она движется (в нашем случае – не движется). Это можно представлять, пусть неидеально, зато практично, как некое постоянное дрожание, влияющее на частицу и не дающее ей успокоиться так, как вам подсказывает интуиция на примере шариков и чаш. Один полезный аспект этой несовершенной картины – она даёт понять, что с этим дрожанием может быть связана энергия.

В квантовой теории поля – квантовых уравнениях для полей, таких, как электрическое, наблюдается схожий эффект. Давайте я его объясню.

Флуктуации квантовых полей

Каждая элементарная частица (а я сейчас говорю о реальных частицах) в нашей Вселенной – это рябь, небольшая волна, волна минимальной возможной интенсивности, идущая по соответствующему элементарному квантовому полю (рис. 2). Частица W – это волна в поле W; фотон – волна в электрическом поле; верхний кварк – волна в поле верхнего кварка.

А если частиц нет? Даже там, где, как мы считаем, есть только пустое пространство, поля всё равно существуют – сидит себе тихонечко, так же, как в пруду есть вода, даже если ни ветер, ни камешки не порождают рябь на его поверхности, и как в комнате есть воздух, даже если там нет никаких звуков.

Рис. 2

Однако штука в том, что эти поля никогда не ведут себя абсолютно тихо. Квантовые поля не поддерживают постоянное значение; их значение в любой точке пространства всегда немного подрагивает. Дрожание называют «квантовыми флуктуациями», и точно так же, как для частицы в крохотной чаше, оно – последствие знаменитого «принципа неопределённости Гейзенберга». Вы не можете узнать значение поля и одновременно его изменение; ваше знание одной из этих величин, а обычно, двух, должно быть несовершенным. И эти флуктуации тоже иногда объясняют как причину наличия двух или более «виртуальных частиц», но это название связано только с техническими аспектами (с подсчётами свойств флуктуаций при помощи знаменитых диаграмм Фейнмана), и не говорит о том, как вам нужно себе это представлять.

Очевидный вопрос: а уверены ли вы в наличии квантовых флуктуаций полей? Ответ: да, хотя пока я объяснять это не буду. Один пример: квантовые флуктуации приводят к тому, что сила взаимодействий плавает, когда вы измеряете её на всё более и более коротких расстояниях – и мы не только наблюдаем этот эффект, он ещё и с высокой точностью совпадает с тем, что мы можем подсчитать при помощи Стандартной Модели. Этот успех подтверждает не только наличие квантовых флуктуаций, но и детальную структуру Стандартной Модели, вплоть до дистанций порядка одной миллионной миллионной миллионной доли метра. Ещё пример: реакцию электрона на магнитное поле можно измерить с точностью до одной триллионной; также её можно подсчитать через Стандартную Модель с точностью до одной триллионной, предполагая наличие флуктуаций в известных нам полях. Удивительно, но измерения совпадают с подсчётами Стандартной Модели.

Что важно, это дрожание порождает определённое количество энергии – довольно много. Сколько? Чем лучше ваш микроскоп (или ускоритель частиц), тем больше дрожания вы видите, и тем больше энергии дрожания вы обнаруживаете.

Рассмотрим коробку с ребром в один метр и спросим: сколько энергии, связанной с дрожанием одного квантового поля, можно насчитать в этой коробке (рис. 3)?

Подсчёт 1: допустим, как показывают наши экспериментальные измерения на Большом Адронном Коллайдере, Стандартная Модель – рабочее описание всех процессов, происходящих на расстояниях больших, чем одна миллионная миллионной миллионной доли метра – назовём это «БАКовым расстоянием», равным примерно 1/1000 радиуса протона, поскольку примерно такой масштаб экспериментов можно проводить на БАК – там доступны процессы, включающие столкновения элементарных частиц с энергиями меньше, чем 1000 массовых энергий протона (той энергии, что E = mc2). Эта энергия – типичная энергия массы самой тяжёлой частицы, которую можно надеяться обнаружить при столкновениях протонов в БАК, так что назовём её «БАКовой энергией». Тода количество энергии флуктуаций каждого поля в Стандартной Модели (допустим, электрического поля) таково: в каждом кубе с размером рёбер, равным БАКовому расстоянию содержится БАКовая энергия. Иначе говоря, плотность энергии составляет одну БАКовую энергию на один БАКовый объём.

Сравните это с обычной материей, чья плотность энергии равна нескольким энергиям массы протона или нейтрона (то есть энергиям массы атомного ядра) на каждый атом, чей объём, поскольку протон или нейтрон в 100 000 раз меньше радиуса атома, в 1 000 000 000 000 000 раз больше объёма протона. (Вспомните, что атом относительно гораздо более пустой, чем Солнечная система). Это значит, что плотность энергии квантовых флуктуаций электрического поля грубо в миллион миллионов миллионов раз больше, чем у обычной материи, поэтому энергия массы флуктуаций электрического поля с ребром в метр примерно в миллион миллионов миллионов раз больше энергии, содержащейся в кубическом метре твёрдой материи. А сколько это энергии? Достаточно, чтобы взорвать всю планету, или даже звезду! Она сравнима по величине с общей энергией Солнца. Конечно, эту энергию из вакуума высвободить нельзя, ни на зло, ни на добро, поэтому волноваться не нужно – она не опасна. Но этого достаточно для того, чтобы понять масштабы проблемы космологической постоянной.

Подсчёт 2: допустим, как это связано с вопросом о проблеме иерархии и естественности Вселенной, что Стандартная Модель описывает все процессы физики частиц вплоть до масштабов, на которых гравитация становится сильным взаимодействием – на т.н. планковской длине, которая, в свою очередь, ещё в тысячу миллионов миллионов раз меньше, чем расстояния из подсчёта 1. Тогда количество энергии флуктуаций электрического поля, содержащееся в кубическом метре, больше, чем в подсчёте 1 в

(1 000 000 000 000 000)4 = 1 с 60 нулями

раз.

Если взять это число и перемножить его с числом из подсчёта 1, у вас будет достаточно энергии, чтобы взорвать все звёзды во всех галактиках в видимой части Вселенной много много много раз. И именно столько энергии содержится в каждом кубическом метре – если Стандартная Модель правильно описывает физические процессы на масштабах вплоть до планковской длины.

Рис. 3

В общем, если Стандартная Модель (или любая типичная квантовая теория поля без особых симметрий) верна вплоть до масштабов длины L, то энергия флуктуаций в кубе размером L3 примерно равна hc/L для каждого поля, где h – постоянная Планка, а c – универсальный предел скорости, известный, как «скорость света». Это значит, что плотность энергии примерно равна hc/L4 — если L уменьшается в 10 раз, то плотность энергии растёт в 10 000 раз! Именно поэтому числа в подсчётах 1 и 2 получились такими огромными.

Эти утверждения могут показаться вам странными. Они и есть странные – но ведь квантовая физика полна странностей. Более того, ни квантовая механика, ни квантовая теория поля пока нас не подводили. Как я упоминал ранее, у нас есть полно доказательств того, что простейшие подсчёты, аналогичные приведённым, прекрасно работают в квантовой теории поля. Факт существования квантовых флуктуаций вместе с их энергией так глубоко встроен в квантовую механику, что для того, чтобы объявить их ложными, вам нужно будет объяснить целую библиотеку экспериментальных результатов, которым квантовая механика сделала правильные предсказания. Так что, как у учёных, у нас нет другого выхода, как относиться к этим расчётам серьёзно, и пытаться их понять.

У вас может появиться пара очевидных вопросов: почему мы не можем просто определить, есть там эта энергия или нет? Почему вся эта огромная энергия никак не действует на обычную материю и на нас самих? Первая часть ответа: поскольку в каждом кубическом метре пространства содержится одно и то же количество энергии, внутри и снаружи любого куба (рис. 4), который вы сможете нарисовать. Аналогия: внутри дома есть давление воздуха, но дом из-за этого не взрывается, пока снаружи дома находится равное давление воздуха. Точно так же, тот факт, что эта энергия плотности крохотных квантовых флуктуаций постоянна во всём пространстве и времени, означает, что она не оказывает никакого влияния на объекты, покоящиеся или движущиеся сквозь неё. Только изменения энергии во времени или в пространстве будут действовать на частицы, на атомы, состоящие из этих частиц, на людей и планеты, состоящих из этих атомов. И действительно, эта энергия квантовых флуктуаций одинакова везде и всегда, поэтому её невозможно ощутить, попробовать или воспользоваться ею.

Рис. 4

Однако! Ответ, часть 2: хотя в ньютоновской гравитации, в которой гравитация притягивает массы, эта энергия пустого пространства никак себя не проявит, в версии Эйнштейна, где гравитация притягивает энергию и импульс, это уже будет не так. Будет ли правильным подсчёт 1, или подсчёт 2, или нечто среднее, такое огромное количество энергии в каждом кубическом метре пространства – то, что часто называют «тёмной энергией» – должно заставлять Вселенную расширяться с огромной скоростью! Этот механизм привёл к «космической инфляции», фазе, через которую Вселенная, возможно, прошла очень давно, что и сделало её такой равномерной, какой мы видим её сегодня. То, что Вселенная не расширяется с огромной скоростью, говорит о том, что плотность энергии пространства должна быть гораздо меньше плотности энергии обычной материи, а не гораздо больше. В каждом кубическом метре пустого пространства есть только энергия массы одного атома, а в кубическом метре твёрдой материи содержится энергия массы множества атомов – примерно 1 с 30 нулями. То, что в пустом пространстве плотность энергии, по-видимому, очень мала, несмотря на все наши подсчёты того, сколько её должно быть из-за квантовых флуктуаций полей, о которых мы знаем – и есть отец и мать всех великих загадок квантовой физики: проблема космологической постоянной.

Следующий очевидный вопрос: а вы уверены, что у квантовых флуктуаций на самом деле есть энергия, или же, возможно, её там нет, что могло бы устранить проблему космологической постоянной? Ответ: да, я уверен, что у квантовых флуктуаций есть энергия. Она называется нулевой энергией, и она фундаментальна для квантовой механики, благодаря опять-таки принципу неопределённости. И это можно проверить: в хитроумном эксперименте энергию можно заставить работать благодаря эффекту Казимира, который был предсказан в 1940-х, впервые наблюдался в 1970-х и более точно проверен в 1990-х. Однако существуют споры по поводу того, связан ли он на самом деле с нашей темой.

Проблема космологической постоянной весьма серьёзна. Экспериментально нам известно, что Вселенная не расширяется с невероятной скоростью; она делает это довольно медленно; это будет измерение 0 на рис. 3 (снизу). Поэтому:

• Либо этот подсчёт (и даже подсчёт 1, который не делает никаких предположений о том, что нам неизвестно из Стандартной Модели) в чём-то ошибочен, и этой энергии нет, • Либо действие этой энергии на расширение Вселенной не такое, как мы думаем, поскольку мы неправильно понимаем гравитацию, • Либо подсчёт правильный, но он отвечает не на тот вопрос каким-то непонятным нам образом.

Этого точно никто не знает. Я расскажу о возможных решениях этой проблемы в отдельной статье о космологической постоянной. Но я упомянул одно интересное решение, которое однозначно не работает, поскольку оно будет связано с другой темой.

Может ли энергия различных полей взаимно уничтожаться?

Есть такая хитрая идея о том, как избавиться от этой энергии. Оказывается, что:

• Энергия флуктуаций бозонных полей (полей для фотона, глюона, W, Z и Хиггса, и даже гравитона) положительна, • Энергия флуктуаций фермионных полей (полей для электрона, мюона, тау, трёх нейтрино и 6 кварков) отрицательна!

Так что, возможно, хотя энергия каждого поля огромна, когда вы просуммируете энергию всех полей, то общая энергия окажется нулевой – или хотя бы очень малой?

Вы можете провести такие расчёты, и в Стандартной Модели вы увидите, что это не работает; есть слишком много фермионов, и в пустом пространстве должно существовать огромное количество отрицательной энергии.

Одна из крутых вещей теории суперсимметрии в том, что она заставляет вас добавлять именно те частицы, что нужно (суперпартнёры для каждого из известных типов частиц) так, что вы автоматически получаете это взаимное уничтожение! И, на самом деле, это единственный вид теории, известной человечеству, в которой это возможно.

К сожалению, на самом деле это не решает проблемы космологической константы. Если суперсимметрия не проявляется явно [а в нашем мире это невозможно – массы всех известных частиц должны быть идентичны массам их гипотетических суперпартнёров, и тогда мы бы их уже давным-давно нашли], тогда это взаимное уничтожение работает только частично. Частичное уничтожение, способное опровергнуть подсчёт 2, всё равно оставляет вам огромное количество энергии из подсчёта 1. Как отмечено на рис. 3, этого гигантского количества энергии достаточно, чтобы Вселенная вела себя совсем не так, как мы видим, если только с теорией гравитации Эйнштейна что-то не так.

Короче говоря, на сегодня никто не знает хитрого способа автоматически взаимно уничтожить плотность энергии флуктуаций различных полей в мире, описываемом Стандартной Моделью вплоть до БАКовских расстояний. На самом деле, никто даже не знает, как это сделать в любой немного несуперсимметричной квантовой теории поля (и всё равно, комбинирование суперсимметрии с гравитацией возрождает эту проблему).

Иначе говоря: даже если допустить существование особого взаимного уничтожения между бозонными полями природы и фермионными полями природы, судя по всему, такое взаимное уничтожение может произойти только случайно, и в очень-очень малой доле квантовых теорий поля или квантовых теорий любого типа (включая струнную теорию). Таким образом, только очень-очень крохотная часть вселенных, которые можно себе представить, могут хотя бы приблизительно напоминать нашу с вами (или хотя бы ту её часть, которую мы можем наблюдать при помощи глаз и телескопов). В этом смысле, проблема космологической постоянной является проблемой естественности, как этот термин понимают специалисты по физике частиц и их коллеги: поскольку во Вселенной, в которой мы живём, содержится так мало тёмной энергии по сравнению с тем, что мы ожидаем, наша Вселенная очень необычна и нетипична.

habr.com

Вселенная как квантовая флуктуация

⇐ ПредыдущаяСтр 14 из 14

 

Моя модель вселенной, туннелирующей из ничего, не возникла на пустом месте — у меня были предшественники. Первое предположение такого рода восходит к Эдварду Трайону (Edward Tryon) из Хантеровского колледжа при Университете Нью-Йорка. Он выдвинул идею, что Вселенная возникла из вакуума благодаря квантовой флуктуации.

Эта мысль впервые пришла к нему в 1970 году во время физического семинара. Трайон сказал, что она поразила его подобно вспышке света — как будто перед ним раскрылась некая глубочайшая истина. Когда докладчик сделал паузу, чтобы собраться с мыслями, Трайон выпалил: "Может быть, Вселенная — это вакуумная флуктуация!" Аудитория разразилась хохотом.

Как уже говорилось раньше, вакуум вовсе не мертвый и статичный; это арена бешеной деятельности. В субатомных масштабах электрическое, магнитное и другие поля постоянно флуктуируют из-за непредсказуемых квантовых толчков. Геометрия пространства-времени также флуктуирует, неистово взбивая пространственно-временную пену на планковском масштабе расстояний. Вдобавок пространство полно так называемых виртуальных частиц, которые спонтанно появляются то здесь, то там и немедленно исчезают. Виртуальные частицы существуют очень недолго, поскольку живут за счет заемной энергии. Энергетические кредиты приходится отдавать, и, согласно принципу неопределенности Гейзенберга, чем больше энергии заимствуется у вакуума, тем быстрее ее надо вернуть. Виртуальные электроны и позитроны обычно появляются и исчезают примерно за одну триллионную долю наносекунды. Более тяжелые частицы живут и того меньше, поскольку для их материализации требуется больше энергии. И вот Трайон предполагает, что вся наша Вселенная с ее колоссальным количеством материи является лишь огромной квантовой флуктуацией, которая почему-то не может исчезнуть вот уже более десяти миллиардов лет. Все подумали, что это просто очень смешная шутка.

Трайон, однако, не шутил. Он был настолько подавлен реакцией коллег, что забыл о своей идее и выбросил из памяти весь этот инцидент. Но мысль продолжала вариться в глубине его сознания и вновь появилась на поверхности три года спустя. В тот раз Трайон решил ее опубликовать. Его статья вышла в 1973 году в британском научном журнале Nature под заголовком "Является ли Вселенная вакуумной флуктуацией?"

Предположение Трайона основывалось на хорошо известном математическом факте: энергия замкнутой вселенной всегда равна нулю. Энергия материи положительна, гравитационная энергия — отрицательна, и оказывается, что в замкнутой вселенной их вклады в точности сокращаются. Так что, если замкнутая вселенная возникнет как квантовая флуктуация, вакууму ничего не понадобится отдавать, а время жизни флуктуации может быть сколь угодно большим.

Создание замкнутой вселенной из вакуума проиллюстрировано на рисунке 17.3. Область плоского пространства начинает вспучиваться, пока не приобретает форму шара. В тот же самый момент в этой области рождается колоссальное количество частиц. Наконец шар отделяется, и — вуаля! — мы получили замкнутую вселенную, которая совершенно не связана с исходным пространством.[156]Трайон предположил, что наша Вселенная могла возникнуть именно таким образом, и подчеркнул, что подобное творение не требует причины. "На вопрос, почему это случилось, — писал он, — я отвечу скромным предположением, что наша Вселенная — из числа тех вещей, что время от времени случаются".[157]

 

Рис. 17.3. Замкнутая вселенная отделяется от большой области пространства.

 

Главная проблема с трайоновской идеей состоит в том, что она не объясняет, почему Вселенная такая большая. Крошечные замкнутые вселенные постоянно отделяются от любой крупной области пространства, но вся эта деятельность протекает в планковском масштабе размеров в форме пространственно-временной пены, изображенной на рисунке 12.1. Образование большой замкнутой вселенной в принципе возможно, но вероятность того, что это случится, гораздо ниже, чем вероятность для обезьяны случайно напечатать полный текст шекспировского "Гамлета".

В своей статье Трайон доказывал, что, даже если большинство вселенных чрезвычайно малы, наблюдатели могут появиться только в больших вселенных, а значит, мы не должны удивляться, что живем в одной из них. Но этого недостаточно, чтобы справиться с данным затруднением, поскольку наша Вселенная гораздо больше, чем нужно для развития жизни.

Более глубокая проблема трайоновского сценария состоит в том, что он в действительности не объясняет происхождение Вселенной. Квантовая флуктуация вакуума предполагает наличие вакуума в некоем исходно существующем пространстве. А мы теперь знаем, что понятия "вакуум" и "ничто" очень сильно различаются. Вакуум, или пустое пространство, обладает энергией и натяжением, он может сгибаться и искривляться, а значит, это, безусловно, нечто .[158]Как писал Алан Гут, "в данном контексте предположение о том, что Вселенная была создана из пустого пространства, не более фундаментально, чем предположение, что она была выдута из куска резины. Это может оказаться правдой, но люди все равно будут спрашивать, откуда появился этот кусок резины".[159]

В картине квантового туннелирования из ничего нет ни одной из этих проблем. Сразу после туннелирования Вселенная имеет крошечные размеры, но она заполнена ложным вакуумом и немедленно начинает инфляционно расширяться. За долю секунды она раздувается до гигантских размеров.

До туннелирования пространства и времени не существует, так что вопрос о том, что было раньше, не имеет смысла. Ничто — состояние без материи, без пространства и без времени — по-видимому, единственное, что удовлетворяет требованиям к начальной точке творения.

 

Через несколько лет после публикации моей статьи о туннелировании из ничего я узнал, что упустил в ней важную ссылку. Обычно такие вещи всплывают гораздо быстрее в электронных письмах от авторов, которых забыли упомянуть. Но этот автор не написал мне, и на то была уважительная причина: он умер более 1500 лет назад. Его звали Блаженным Августином, и он был епископом Гиппо, одного из крупнейших городов Северной Африки.

Августина чрезвычайно интересовал вопрос, что делал Бог до творения, — поиски ответа он красноречиво описал в своей "Исповеди". "Если Он ничем не был занят... и ни над чем не трудился, почему на всё время и впредь не остался Он в состоянии покоя, в каком всё время пребывал и раньше?" Августин полагал, что для ответа на этот вопрос он сначала должен понять, что такое время: "Что же такое время? Если никто меня об этом не спрашивает, я знаю, что такое время; если бы я захотел объяснить спрашивающему — нет, не знаю". Четкий анализ привел его к пониманию, что время может быть определено только через движение, а значит, не может существовать прежде Вселенной. Окончательный вывод Августина: "Мир был создан не во времени, но вместе со временем. Не было времени до мира". А потому бессмысленно спрашивать, что тогда делал Бог. "Если не было времени, то не было "тогда".[160]Это очень близко к тому, что я обосновывал в своем сценарии туннелирования из ничего.

Об идеях Августина мне стало известно случайно, из беседы с моей коллегой по Тафтсу Кэтрин Маккарти (Kathryn McCarthy). Я прочел "Исповедь" и сослался на святого Августина в моей следующей статье.[161]

 

Множество миров

 

Вселенная, возникающая в результате квантового туннелирования, не будет идеально сферической. Она может иметь множество различных форм и быть заполнена разными типами ложного вакуума. Как обычно, в квантовой теории нельзя сказать, какие из этих возможностей реализовались, а можно только подсчитать их вероятности. Может ли тогда оказаться, что существует множество других вселенных, которые стартовали иначе, чем наша?

Этот вопрос тесно связан с острейшей проблемой интерпретации квантовых вероятностей. В главе и были описаны две основные альтернативы. Согласно копенгагенской интерпретации, квантовая механика приписывает вероятности всем возможным исходам эксперимента, но лишь один из них на самом деле реализуется. Напротив, эвереттовская интерпретация утверждает, что все возможные исходы реализуются в несвязанных "параллельных" вселенных.

Если принимать копенгагенскую интерпретацию, то творение было однократным событием, в котором из ничего появилась единственная Вселенная. Это, однако, приводит к проблеме. С наибольшей вероятностью из ничего возникает крошечная вселенная планковских размеров, которая не станет туннелировать, а немедленно сколлапсирует и исчезнет. Туннелирование в большие размеры имеет низкую вероятность, а значит, требует большого числа попыток. По-видимому, это совместимо только с интерпретацией Эверетта.

В эвереттовской картине мира существует ансамбль вселенных со всеми начальными состояниями. Большинство из них — "мерцающие" вселенные планковского размера, мгновенно возникающие и прекращающие существование. Но помимо них есть и вселенные, которые туннелировали в большие размеры и стали инфляционно расширяться. Ключевое отличие от копенгагенской интерпретации состоит в том, что все эти вселенные не просто возможные, a реальные.[162]Однако наблюдаться могут только большие вселенные, поскольку в "мерцающих" невозможно появление наблюдателей.

Все входящие в ансамбль вселенные совершенно независимы друг от друга. Каждая имеет собственное пространство и собственное время. Вычисления показывают, что наиболее вероятными — а значит, и самыми многочисленными — среди туннелирующих вселенных являются те, что имеют наименьший начальный радиус и наивысшую плотность энергии ложного вакуума. Есть все основания предполагать, что наша Вселенная зародилась как раз такой.

В моделях инфляции со скалярным полем наивысший уровень плотности энергии вакуума достигается на вершине энергетического холма, и потому в большинстве зарождающихся вселенных скалярное поле будет находиться в этой области. Это самая предпочтительная стартовая точка для инфляции. Помните, я обещал объяснить, как поле попадает на вершину холма? В сценарии туннелирования из ничего это как раз то состояние, в котором Вселенная обретает существование.

Зарождение Вселенной по сути есть квантовая флуктуация, и ее вероятность быстро убывает с ростом охваченного ею объема. Вселенные, имеющие при возникновении больший начальный радиус, менее вероятны, а в пределе бесконечного радиуса вероятность стремится к нулю. Бесконечная открытая вселенная имеет строго нулевую вероятность зарождения, а значит, в ансамбле должны быть только замкнутые вселенные.

 

Фактор Хокинга

 

В июле 1983 года несколько сотен физиков со всего мира собрались в итальянском городе Падуе на 10-ю конференцию по общей теории относительности и гравитации. Конференция проходила в Палаццо делла Раджоне — старинном здании суда XIII века в самом сердце Падуи. Первый его этаж занят знаменитым базаром, который продолжается снаружи на прилегающей площади. На верхнем этаже располагается вместительный зал, украшенный по периметру фресками со знаками Зодиака. В нем-то и проходили выступления. Гвоздем программы был доклад Стивена Хокинга, озаглавленный "Квантовое состояние Вселенной". Чтобы попасть в лекционный зал, нужно подняться по длинной лестнице, так что доставить туда Хокинга в его инвалидном кресле было непростой задачей. Мне повезло, что я пришел заранее, поскольку к началу доклада зал был полностью забит.

В своем выступлении Хокинг предложил совершенно новый взгляд на квантовое происхождение Вселенной, основанное на работе, выполненной им совместно с Джеймсом Хартлом Games Hartle) из Университета Калифорнии в Санта-Барбаре.[163]Вместо того чтобы сконцентрироваться на первых моментах творения, он задался более общим вопросом: как вычислить квантовую вероятность пребывания Вселенной в некотором конкретном состоянии? К данному состоянию Вселенная может прийти посредством огромного множества возможных историй, и квантовая механика позволяет определить, каков вклад каждой из них в его вероятность.[164]Итоговое значение вероятности зависит оттого, какие классы историй включены в расчет. Хартл и Хокинг предложили включать только истории, в которых пространство-время не имеет границ в прошлом.

Пространство без границ нетрудно себе представить: это просто означает замкнутую вселенную. Но Хартл и Хокинг потребовали, чтобы пространство-время не имело также границы или края во времени со стороны прошлого. Оно должно быть замкнуто во всех четырех измерениях, за исключением границы, соответствующей настоящему моменту (рис. 17.4).

 

Рис. 17.4. Двумерное пространство-время без границ в прошлом.

 

Граница в пространстве означает, что существует нечто за пределами вселенной, так что вещи могут уходить за границу и появляться из-за нее. Граница во времени соответствует началу вселенной, где должны быть заданы начальные условия. Согласно предложению Хартла и Хокинга, Вселенная не имеет таких границ; она "полностью самодостаточна и не испытывает никаких воздействий извне". Это кажется очень простой и привлекательной идеей. Единственная проблема состоит в том, что пространств-времен, замкнутых со стороны прошлого — таких, как на рисунке 17.4, — не существует. У пространства-времени должно быть три пространственно-подобных и одно времени-подобное измерение в каждой точке, а в замкнутом пространстве-времени обязательно есть аномальные точки с более чем одним времени-подобным направлением (рис. 17.5).

 

Рис. 17.5. То же, что и на рис. 17.4, с времени- и пространственно-подобными направлениями, отмеченными соответственно сплошными и пунктирными линиями. Точка P является аномальной, поскольку все направления в ней являются времени-подобными.

 

Чтобы справиться с этим затруднением, Хартл и Хокинг предложили перейти от реального времени к евклидовому. Как говорилось в прошлой главе, евклидово время не отличается от других пространственных измерений, так что пространство-время просто становится четырехмерным пространством, и его без проблем можно сделать замкнутым. Таким образом, предложение состояло в том, чтобы вычислять вероятности суммированием вклада всех евклидовых пространств-времен без границ. Хокинг подчеркивал, что это было лишь предложение. У него не было доказательства его корректности, и единственным способом получить его была проверка: удастся или нет сделать на данном пути разумные предсказания.

Предложение Хартла-Хокинга обладает определенной математической красотой, но я думаю, что после перехода к евклидовому времени оно в значительной мере теряет свою интуитивную привлекательность. Вместо суммирования по всем возможным историям Вселенной нам предлагается суммировать по историям, которые заведомо невозможны, поскольку мы не живем в евклидовом времени. Так что после того, как убираются строительные леса первоначальной мотивации, мы остаемся с довольно формальным рецептом вычисления вероятностей.[165]

В конце своего доклада Хокинг коснулся тех следствий, которые вытекали из нового предложения для инфляционной вселенной. Он показал, что основной вклад в сумму по историям дается евклидовым пространством-временем, имеющим форму полусферы, — точно так же, как и в моих расчетах туннелирования, — и что последующая эволюция описывается инфляционным расширением в обычном времени. (Переключение от евклидова формализма обратно к обычному времени — довольно хитрая процедура, которую я не стану пытаться здесь описать.) Результатом была такая же история пространства-времени, как и на моем рисунке 17.3, но полученная из совершенно других посылок.

Я ожидал, что Хокинг упомянет мою работу по квантовому туннелированию из ничего, и был разочарован, когда он этого не сделал. Но я был уверен, что теперь, когда на площадку вышел Хокинг, вся тема квантовой космологии, в том числе и моя работа, получит значительно больше внимания, чем прежде.

 

Много шума из ничего

 

Важное различие между "туннелированием из ничего" и предложением об "отсутствии границ" состоит в том, что они дают сильно различающиеся, в некотором смысле противоположные, предсказания для вероятностей. Предположение о туннелировании благоприятствует зарождению вселенной наименьшего размера и с наивысшей энергией вакуума. Из требования отсутствия границ, наоборот, вытекает, что наиболее вероятной стартовой точкой является вселенная с наименьшей энергией вакуума и наибольшим возможным размером. Самым вероятным будет появление из ничего бесконечного пустого плоского пространства. Мне кажется, в это очень трудно поверить!

Конфликт между этими двумя подходами стал очевиден только после одного первоначального недоразумения. В моей статье 1982 года делался вывод, что крупные вселенные имеют более высокую вероятность зарождения, так что казалось, будто два предложения согласуются друг с другом. Я продолжал возвращаться к тем своим выкладкам, поскольку этот вывод резко противоречил интуиции. В 1984 году я обнаружил ошибку, которая изменила расклад вероятностей на противоположный. Когда Хокинг посетил Гарвард, я поспешил переговорить с ним и поделиться своим новым пониманием. Однако переубедить Стивена не удалось, и он по-прежнему считал, что правильным является мой первоначальный результат.[166]

Хокинг стал настоящей легендой в кругу физиков, да и за его пределами. Я восхищаюсь как его научными результатами, так и его силой духа и очень дорожу возможностями побеседовать с ним. Поскольку общение требует от него столь больших усилий, люди часто стесняются к нему обращаться. Мне потребовалось время, чтобы понять: Стивен действительно получает удовольствие от диалога и даже не обижается, когда над ним подшучивают. У нас очень разные взгляды на вечную инфляцию и квантовую космологию, но это делает дискуссию только интереснее.

В 1988 году я вступил в схватку на хокинговской территории и сделал доклад перед его группой в Кембриджском университете, подчеркивая преимущества моего подхода. Когда выступление закончилось, Хокинг подкатился ко мне на своем кресле. Я ожидал критических замечаний, но вместо этого он пригласил меня поужинать вместе... После утки с картошкой и пирога со сливами, приготовленных его матерью, мы заговорили об использовании "кротовых нор" — туннелей в пространстве-времени — для межгалактических путешествий. Таково представление физиков о светской беседе после ужина. Что же касается предложения об отсутствии границ, Стивен не изменил своего мнения.

Спор между сторонниками этих двух подходов продолжается до сих пор. Состоялись даже "официальные" дебаты на конференции COSMO-98 в Монтеррее, Калифорния, где Хокинг защищал предложение об отсутствии границ, а я — о туннелировании.[167]Правда, большой полемики в действительности не получилось. Хокингу требовалось много времени, чтобы составить фразу при помощи своего синтезатора речи, так что мы не смогли далеко уйти от заранее заготовленных тезисов.

 

Рис. 17.6. Дискуссия с Хокингом о квантовой космологии. Слева направо: автор, Билл Анрух (Bill Unruh) из Университета Британской Колумбии и Стивен Хокинг (пьющий чай с помощью своей сиделки).

фото: Анна Житков

 

Разрешить этот спор удалось бы, если изобрести наблюдательный тест, позволяющий выбрать между двумя предположениями. Это, однако, весьма маловероятно по причине вечной инфляции. Квантовая космология дает предсказания о начальном состоянии Вселенной, но в ходе вечной инфляции любые проявления начальных условий полностью стираются. Возьмем, к примеру, ландшафт теории струн, который мы обсуждали выше. Можно начать с одного инфляционного вакуума или с другого, но неизбежно станут образовываться пузыри иных вакуумов, так что задействованным окажется весь ландшафт. Свойства результирующего мультиверса не будут зависеть от того, как началась инфляция.[168]

Таким образом, квантовая космология пока не собирается становиться наблюдательной наукой. Дискуссия о двух подходах, возможно, разрешится теоретическими выкладками, а не наблюдательными данными. Например, если окажется, что квантовое состояние Вселенной определяется неким новым, еще не открытым принципом теории струн. И оно может, конечно, оказаться отличным от обоих нынешних предложений. Но определенность с этим вопросом вряд ли будет достигнута в скором времени.

 

 

Глава 18

Конец света

 

Одни говорят, мир погибнет в огне,

Другие — во льдах.

Роберт Фрост

 

Мое описание Вселенной было бы неполным без рассказа о том, какой конец ее ждет. Теория инфляции говорит нам, что Вселенная как целое будет существовать вечно, но наша местная область — наблюдаемая Вселенная — вполне может иметь конец. Этот вопрос был в центре внимания космологов на протяжении большей части прошлого столетия, и за это время наши представления о конце света несколько раз менялись. Я не буду касаться истории данного вопроса, а изложу современное состояние космической эсхатологии.

 

Безжалостные варианты

 

После того как Эйнштейн отказался от космологической постоянной в начале 1930-х годов, предсказания фридмановских однородных и изотропных моделей стали простыми и понятными: Вселенная подвергнется коллапсу и большому сжатию, если ее плотность больше критической, и продолжит вечно расширяться в противном случае. Все, что нужно сделать для определения судьбы Вселенной, — это тщательно измерить среднюю плотность материи и посмотреть, превосходит ли она критическую. Если да, то расширение Вселенной будет постепенно замедляться и затем сменится сжатием. Сначала медленным, потом все ускоряющимся. Галактики станут сходиться все ближе, пока не сольются в огромный конгломерат звезд. Небо будет делаться все ярче, но не из-за звезд — все они, скорее всего, умрут к тому времени, — а из-за растущей интенсивности космического микроволнового излучения. Оно разогреет остатки звезд и планет до весьма неприятных температур, и любые существа, ухитрившиеся дожить до этих последних дней, почувствуют себя лобстерами в кипящей воде.

Наконец, звезды разрушатся в столкновениях друг с другом или испарятся под действием мощного теплового излучения. Образовавшийся горячий огненный шар будет похож на тот, что существовал в ранней Вселенной, за исключением того, что теперь он станет сжиматься, а не расширяться. Еще одно отличие от Большого взрыва состоит в том, что сжимающийся огненный шар сильно неоднороден. Сначала более плотные области сожмутся в черные дыры, которые затем будут сливаться и укрупняться, пока все они не объединятся в одном большом сжатии.

В противоположном варианте — при плотности меньше критической — гравитационное притяжение вещества слишком слабо, чтобы обратить расширение вспять. Вселенная будет расширяться вечно. Менее чем через триллион лет все звезды исчерпают свое ядерное топливо, и галактики превратятся в скопища холодных звездных остатков — белых карликов, нейтронных звезд и черных дыр. Вселенная станет совершенно темной, с призрачными галактиками, разлетающимися прочь в расширяющейся пустоте.

Такое положение дел сохранится по меньшей мере 1031 лет, но в конце концов нуклоны, из которых состоят звездные остатки, распадутся, превратившись в легкие частицы — позитроны, электроны и нейтрино. Электроны и позитроны аннигилируют в фотоны, и мертвые звезды медленно растворятся. Даже черные дыры не существуют вечно. Согласно знаменитой хокинговской догадке, из них должна происходить утечка излучения, а значит, они постепенно потеряют свою массу или, как говорят физики, "испарятся". Так или иначе, менее чем через гугол лет все знакомые нам структуры во Вселенной перестанут существовать. Звезды, галактики и их скопления исчезнут без следа, оставив после себя лишь становящуюся все более разреженной смесь нейтрино и излучения.[169]

Судьба Вселенной закодирована параметром, называемым омега, который определяется как отношение средней плотности Вселенной к критической плотности. Если омега больше 1 , Вселенная завершит свое существование большим сжатием; если он меньше 1 , следует ожидать замерзания и медленного распада. При пограничном значении, если параметр омега равен 1 , расширение будет бесконечно замедляться, но никогда полностью не остановится. Вселенная на пределе избежит большого сжатия, но лишь затем, чтобы превратиться в замерзшее кладбище.

Более полувека астрономы пытались измерить значение омега. Однако природа была не склонна раскрывать свои долгосрочные планы. Параметр омега был на удивление близок к 1 , но точности измерений не хватало, чтобы сказать, больше он или меньше.

 

Инфляционный поворот

 

Представления о конце Вселенной изменились в 1980-х годах, когда на сцену вышла идея инфляции. Прежде большое сжатие и неограниченное расширение априори казались равновероятными, но теперь новая теория инфляции дала весьма определенные предсказания.

Во время инфляции плотность Вселенной становится предельно близкой к критической. В зависимости от квантовых флуктуации скалярного поля некоторые области приобретают плотность выше или ниже критической, но в среднем она почти точно критическая. Те, кого мучают кошмары, вызванные грядущим через несколько триллионов лет большим сжатием, могут расслабиться. Конец будет медленным и невпечатляющим: холодный остаток Солнца будет целые эоны висеть в пустоте, дожидаясь, пока распадутся все его нуклоны.

Характерная особенность критической плотности состоит в том, что процесс образования структур растягивается на огромный отрезок времени, поскольку более крупные структуры требуют больше времени на формирование. Сначала возникают галактики, затем они сбиваются в скопления, а те впоследствии образуют сверхскопления. Если средняя плотность в наблюдаемой части Вселенной выше критической, то примерно через сотню триллионов лет вся эта область превратится в огромное супер-пупер-скопление. К этому времени все звезды уже прогорят, а все наблюдатели, вероятно, вымрут, но образование структур будет продолжаться, охватывая все большие и большие масштабы. Оно остановится, только когда космические структуры исчезнут из-за распада нуклонов и испарения черных дыр.

Другое изменение, связанное с инфляцией, состоит в том, что конец Вселенной в целом никогда не наступит. Инфляция вечна. В других частях инфлирующего пространства-времени будут формироваться бесчисленные области, похожие на нашу, а их обитатели будут пытаться понять, как все это началось и чем закончится.

 

Галактическое одиночество

 

Фридмановская взаимосвязь между плотностью Вселенной и ее окончательной судьбой работает, только если плотность энергии вакуума (космологическая постоянная) равна нулю. Это было стандартным предположением до 1998 года, но когда были обнаружены свидетельства обратного, все прежние предсказания будущего Вселенной пришлось пересмотреть. Главный прогноз, согласно которому конец света (локальный) будет ледяным, а не огненным, сохранился, но некоторые детали изменились.

Как уже отмечалось, расширение Вселенной начинает ускоряться, как только плотность вещества становится ниже, чем у вакуума. В этот момент всякое гравитационное скучивание останавливается. Скопления галактик, которые уже связаны друг с другом гравитационно, сохраняются, но более рыхлые группы рассеиваются отталкивающей гравитацией вакуума.

Наш Млечный Путь связан с так называемой Местной Группой, включающей гигантскую спиральную галактику в Андромеде и около 20 карликовых галактик. Туманность Андромеды держит курс на столкновение с Млечным Путем; они сольются примерно через 10 миллиардов лет. Галактики за пределами Местной Группы, двигаясь все быстрее и быстрее, улетят прочь. Одна за другой они будут пересекать наш горизонт и исчезать из виду. Этот процесс завершится через несколько сотен миллиардов лет. В ту далекую эпоху астрономия станет очень скучным делом. Кроме гигантской галактики, образовавшейся после слияния Туманности Андромеды с ее карликовыми спутниками, на небе не будет практически ничего.[170]Так что порадуемся небесному шоу, пока еще есть такая возможность!

 

Окончательный вердикт

 

Наш прогноз для Вселенной был бы завершен, если бы космологическая постоянная действительно была константой. Но, как мы знаем, есть серьезные основания считать, что плотность энергии вакуума меняется в очень широком диапазоне, принимая различные значения в разных частях Вселенной. В некоторых областях она имеет большое положительное значение, в других — большое отрицательное, и лишь в редких местах, где она близка к нулю, есть существа, которые знают об этом.

Таким образом, наблюдаемое нами значение не является наименьшей возможной плотностью энергии, а значит, в будущем она неизбежно станет меньше. Рассмотрим, например, модель Линде, в которой энергия вакуума объясняется скалярным полем с очень пологим энергетическим ландшафтом (см. рис. 13.1). Уклон столь мал, что поле очень незначительно изменилось за 14 миллиардов лет, прошедших после Большого взрыва. Но в конце концов оно начнет катиться вниз, и космическое ускорение станет замедляться. В некоторый момент поле опустится ниже нулевой отметки, к отрицательным значениям плотности энергии. Отрицательная энергия вакуума дает гравитационное притяжение, так что долгое космическое расширение остановится и сменится сжатием.

Другой сценарий, вытекающий из представления о ландшафте теории струн, говорит, что в классическом смысле наш вакуум стабилен и имеет постоянную плотность энергии, но квантово-механически он может распадаться, образуя пузырьки. Те из них, в которых вакуум имеет отрицательную энергию, однажды появившись, будут расширяться с околосветовой скоростью. Стенка пузыря может надвигаться на нас прямо сейчас. Мы не узнаем о ее подходе: она движется так быстро, что свет не намного ее опережает. Приход стенки приведет к полному уничтожению нашего мира. Даже частицы, составляющие звезды, планеты и наши тела, не смогут существовать в новом типе вакуума. Все знакомые объекты мгновенно разрушатся и превратятся в сгустки какой-то неизвестной нам материи.

Так или иначе, но энергия вакуума станет в конце концов отрицательной в нашей области Вселенной. Тогда здесь начнется уплотнение с последующим коллапсом большого сжатия.[171]

Вряд ли можно предсказать, когда именно это случится. Темп зарождения пузырьков может быть очень низким, поэтому не исключено, что пройдут гуголы лет, пока на наши окрестности надвинется стенка пузыря. В моделях скалярного поля время апокалипсиса зависит от уклона энергетического холма и может наступить довольно скоро, всего, например, через 20 миллиардов лет.

 

 

Глава 19

Огонь в уравнениях

 

Что вдыхает огонь в уравнения и создает вселенную, чтобы они описывали ее?

Стивен Хокинг

 

Совет Альфонса

 

Альфонс Мудрый, правивший Кастилией в XIII веке, глубоко уважал астрономию. На то имелись совершенно прагматические причины: знание точного положения планет на небе было жизненно необходимо для составления точных гороскопов. Для повышения их качества Альфонс заказал новые астрономические таблицы, основанные на теории Птолемея — последнем слове тогдашней космологии. Но когда ему объяснили тонкости птолемеевой системы, он отреагировал весьма скептически: "Если бы Всемогущий Бог посоветовался со мной перед творением, я бы порекомендовал что-нибудь попроще".[172]

Король Альфонс мог бы сказать то же самое и о той картине мира, которую я нарисовал в этой книге. Она говорит о существовании бесконечного ансамбля вселенных, каждая из которых пестрит областями с разной физикой элементарных частиц. Области, где могут жить разумные существа, редки и разделены громадными расстояниями. Еще реже встречаются области, совершенно идентичные между собой, но даже их существует бесконечное множество. Какое расточительство пространства, материи и вселенных!

Однако нам не стоит слишком беспокоиться о количестве вселенных. Новая картина мира экономит куда более ценный товар: она значительно снижает число произвольных предположений, которые делаются о Вселенной. Лучшая теория — та, которая объясняет мир, опираясь на минимальные и простейшие предположения.

Ранние космологические модели исходили из того, что Творец тщательно сконструировал и тонко настроил Вселенную. Каждая деталь в физике элементарных частиц, каждая фундаментальная постоянная и все первичные возмущения нужно было выставить строго определенным образом. Представьте только бесчисленные тома спецификаций, которые Творец вручал своим ассистентам для выполнения работы! Новая картина мира предлагает совершенно иной образ Творца. После некоторого раздумья он пришел к набору уравнений фундаментальной теории всей природы. Этим запускается процесс неудержимого творения. Никаких дальнейших инструкций не требуется: теория описывает квантовое зарождение вселенных из ничего, процесс вечной инфляции и создание областей со всеми возможными типами физики элементарных частиц — до бесконечности . Каждый конкретный элемент ансамбля вселенных невероятно сложен, и для его описания понадобилось бы огромное количество информации. Но весь ансамбль в целом можно закодировать относительно простым набором уравнений.[173]

 

Бог как математик

 

Как узнать, что наш портрет Творца близок к истине? Пытался ли он оптимизировать использование "ресурсов", таких как пространство и материя, или больше заботился о сжатости математического описания природы? К сожалению, он не дает интервью, но продукт его работы — Вселенная — не оставляет сомнений на этот счет.

Поверхностного взгляда на Вселенную достаточно, чтобы убедиться, с какой великой расточительностью растрачивались материя и пространство. Бесчисленные галактики разбросаны в пустом космосе на колоссальных расстояниях друг от друга. Галактики делятся на несколько типов, среди которых спиральные и эллиптические, карликовые и гигантские. Но за исключением этого все они очень похожи друг на друга. Творец ясно дает понять, что не стесняется бесконечно повторять свои работы.

Более внимательный анализ открывает нам, что Творец без ума от математики. Пифагор в VI веке до нашей эры, вероятно, впервые предположил, что математические соотношения лежат в основе всех физических явлений. Его догадка была подтверждена веками научных исследований, и теперь мы считаем само собой разумеющимся, что природа подчиняется математическим законам. Но если остановиться и задуматься, то тот факт выглядит крайне странным.

Математика кажется продуктом чистого мышления, очень слабо связанным с опытом. Но почему же тогда она так идеально подходит для описания физической Вселенной? Это именно то, что физик Юджин Вигнер называл "непостижимой эффективностью математики в естественных науках". Рассмотрим в качестве простого примера эллипс . Он был известен древним грекам как кривая, которая получается при разрезании конуса плоскостью под определенным углом. Архимед и другие греческие математики изучали свойства эллипса просто из интереса к геометрии. Затем, более 2000 лет спустя, Иоганн Кеплер открыл, что планеты в своем движении вокруг Солнца с высокой точностью описывают эллипсы. Но что общего у движений Марса и Венеры с коническими сечениями?

Читайте также:

lektsia.com

Какова роль квантовых флуктуаций в происхождении Вселенной?

Данные, собранные телескопом Планка, подтвердили несомненную теорию квантового происхождения структуры Вселенной. Что именно произошло после рождения Вселенной? Почему сформировались звезды, планеты и гигантские галактики? На эти вопросы пытается ответить Вячеслав Муханов, космолог из Университета Людвига Максимилиана в Мюнхене, эксперт в области теоретической космологии.

Муханов использовал понятие так называемых квантовых флуктуаций, чтобы построить теорию, которая обеспечивает точную картину важнейшей начальной стадии эволюции нашей Вселенной: без минимальных вариаций в плотности энергии, которые появляются из крошечных, но неизбежных квантовых флуктуаций, невозможно представить образование звезд, планет и галактик, представляющих известную нам Вселенную.

Plank Consortium опубликовал новые анализы данных, собранных космическим телескопом Планка, который измеряет распределение космического микроволнового фонового излучения (CMB). Оно подсказывает нам, как в сущности выглядела Вселенная спустя 400 000 лет после Большого Взрыва. Последние данные находятся в полном соответствии с предсказаниями теории Муханова — например, расчета значения так называемого спектрального индекса начальных неоднородностей.

«Данные Планка подтверждают основные предсказания, что квантовые флуктуации лежат в основе происхождения всех структур Вселенной, — говорит Жан-Лу Пьюджет, главный исследователь инструмента HFI на спутнике Планка. Муханов, впервые опубликовавший свою модель в 1981 году и присоединившийся к факультету физики университета в 1997 году, говорит, что «не мог и рассчитывать на лучшее подтверждение своей теории».

Идея того, что квантовые флуктуации должны были сыграть свою роль на самом раннем этапе истории Вселенной, вытекает из принципа неопределенности Гейзенберга. Гейзенберг показал, что существует конкретный предел точности, с которой можно определить положение и импульс частицы в любой определенный момент. Это, в свою очередь, предполагает, что изначальное распределение материи будет проявлять минутные неоднородности в плотности. Расчеты Муханова первыми показали, что такие квантовые флуктуации могут повлиять на разницу плотностей в ранней Вселенной, что, в свою очередь, может стать своего рода зернами для галактик и их скоплений. В действительности, без квантовых флуктуаций, природу и величину которых количественно охарактеризовал Муханов, наблюдаемое распределение материи во Вселенной было бы необъяснимо.

Последнее изучение наборов данных Планка более детально и информативно, чем предварительный анализ, опубликованный около двух лет назад. Оно показывает узоры, отпечатанные первичными флуктуациями на распределении радиации юной Вселенной, с беспрецедентной точностью. Инструменты вроде телескопа Планка смогли записать эти депеши из невообразимо далекого прошлого, зашифрованные в микроволновом фоне, которые идут через весь космос уже 13,8 миллиарда лет. Из этой информации, которую смогла реконструировать команда Планка, вылилась подробная картина распределения материи во время рождения Вселенной.

Кроме того, данные Планка показывают, что сигнал, подтверждающий возможное существование первичных гравитационных волн, полученный ранее, может быть серьезно связан с пылью в нашей собственной галактике. Команда BICEP2 использует наземный телескоп в Антарктиде для поиска признаков гравитационных волн, родившихся сразу после Большого Взрыва.

В марте 2014 года эта группа сообщила об обнаружении долгожданного паттерна. Однако вскоре эта интерпретация утонула под грузом сомнений. Совместный анализ команд Планка и BICEP2 привел ученых к выводу, что данных, непосредственно подтверждающих существование гравитационных волн, пока нет. Весной 2014 года Муханов пришел к выводу, что если его теория верна, команды BICEP2 и Планк могут ошибаться обе.

Этот последний анализ Планка — BICEP2 показывает, что теоретическая база вполне обоснована. «Гравитационные волны могут быть там, — сказал Муханов, — но наши инструменты могут быть недостаточно чувствительны, чтобы их уловить». Вне зависимости от того, чем обернется поиск первичных гравитационных волн, ни одна из моделей, которая пытается уловить состояние Вселенной после Большого Взрыва, не может обойтись без квантового происхождения структур Вселенной.

hi-news.ru

Тайная жизнь абсолютной пустоты

Как эти флуктуации повлияли на структуру Вселенной и есть ли от них практическая польза, «Чердаку» рассказали coавторы работы в журнале Science Андрей Москаленко и Денис Селецкий.

Фотоны в вакуумной упаковке

В обыденном понимании вакуум — это отсутствие воздуха. По крайней мере, это имеют в виду производители сосисок и прочей еды в вакуумной упаковке. Однако физики понимают под вакуумом также нечто иное.

В своей работе Ляйтенсторфер и его коллеги наблюдали флуктуации вакуума на примере фотонов. Фотоны — это частицы электромагнитного поля, и они обладают некоторой энергией. Однако если добиться того, чтобы в некотором объеме была полная темнота без единого фотона, энергия электромагнитного поля все равно не будет нулевой. Квантовый вакуум вовсе не спокойная структура. В нем постоянно рождаются фотоны, которые живут очень короткое время и исчезают также внезапно. Эти фотоны называют виртуальными, а их постоянное и спонтанное появление и исчезновение — квантовыми флуктуациями.

Случайная структура Вселенной

Квантовые флуктуации особенно интересны тем, что они могли сыграть решающую роль при формировании Вселенной после Большого взрыва.

«Согласно инфляционной модели Вселенной, в первые моменты после Большого взрыва большое количество энергии было сосредоточено на короткое время в (говоря условно) небольшом объеме. В таких условиях квантовые флуктуации имеют очень большое влияние, благодаря им сразу после Большого взрыва сформировалась структура вещества: где-то его оказалось больше, где-то — меньше. С расширением Вселенной эта структура «отпечаталась» в неоднородном распределении «классического» вещества (галактики, планеты и мы с Вами) в космосе. Если бы мы могли повторить Большой взрыв, то, поскольку квантовые флуктуации случайны, мы бы получили другую структуру Вселенной», — поясняет Селецкий.

Следы квантовых флуктуаций

Для того чтобы «уловить» квантовые флуктуации в вакууме, Ляйтенсторфер и его коллеги использовали лазеры со сверхкороткими импульсами, сфокусированными в пучок микронного размера. «Мы направили сверхкороткие лазерные импульсы в особый электрооптический кристалл и мерили изменения их поляризации под действием вакуума. В общем, поляризацию фотона можно представить в двух состояниях: условно можно сказать, что в одном фотоны вращаются вправо, в другом — влево. Мы подбирали поляризацию импульса так, чтобы количество «правых» и «левых» фотонов было одинаковым. Затем мы замеряли разницу между этими состояниями, то есть изменения поляризации, после прохождения через кристалл», — рассказывает Селецкий.

Ученые увидели, что баланс между «правыми» и «левыми» фотонами в каждом отдельном случае немного нарушался, хотя при измерении большого количества импульсов количество фотонов обоих типов совпадало.

«Если бы у нас не было никаких квантовых взаимодействий, то количество «правых» и «левых» фотонов на выходе было бы всегда одинаковым. При «включении» вакуума мы получим такую ситуацию, в которой, хотя в среднем разница поляризационных состояний будет оставаться равной нулю, ее колебания заметно увеличатся», — говорит Селецкий. Ученые «включали» и «выключали» вакуум при помощи изменения четырехмерного объема пространства—времени, который занимал фемтосекундный импульс при взаимодействии с вакуумом. По вышеприведенной аналогии с Большим взрывом только при малых объемах измеряемого пространства—времени физики заметили существенные колебания сигнала, напрямую связанные с флуктуациями вакуума.

Как рассказывают исследователи, они получили самые разные отзывы на свою работу: от «этого не может быть!» до «это же совершенно очевидно!»

«Физики провели ряд экспериментов, в которых результаты соответствовали теоретическим предсказаниям — количественно и качественно, — считает Александр Львовский из Российского квантового центра. — Конечно, это вполне может быть и результатом совпадения — таких случаев в истории науки множество. Сомнение — вечный спутник науки, а когда речь заходит о чем-то принципиально новом, как в данном случае, оно имеет особенно веское право на существование. Конечно, результаты измерений будут перепроверяться и улучшаться — как самим Лайтенсторфером, так и в других лабораториях. Однако что касается меня лично, то имеющиеся результаты представляются вполне убедительными».

Сверхпроводимость и квантовые компьютеры

У экспериментов с квантовыми флуктуациями есть и практическое применение. При использовании этого нового метода прямого измерения квантовых флуктуаций полей физики надеются получить качественно новый взгляд на комплексные взаимодействия, протекающие в самых различных материалах. Например, их методика может помочь лучше понять физику высокотемпературных сверхпроводников.

Известно, что при температурах ниже так называемой «критической» некоторые материалы начинают пропускать ток без сопротивления, а значит, из них можно создать, например, провода, которые будут передавать ток на огромные расстояния без потерь. С 60-х годов прошлого века существует теория, которая с точностью описывает взаимодействия, участвующие в сверхпроводимости. Одно из предсказаний этой теории заключается в том, что это экзотическое состояние можно получить при температурах не выше минус 240 градусов Цельсия. Однако с середины 1980-х годов ученые обнаружили целый новый класс материалов с критической температурой, превышающей минус 140 градусов Цельсия.

«На данный момент нет общепринятой теории, которая бы описывала формирование высокотемпературной сверхпроводимости, но мы знаем, что она может объясняться сложными квантовыми взаимодействиями между многими компонентами. Например, между электронами и кристаллической решеткой. И все эти квантовые взаимодействия, формирующиеся на сверхкоротких временных интервалах, настолько переплетены друг с другом, что «распутать» их очень сложно. Если это удастся, то можно будет понять что-то новое о высокотемпературной сверхпроводимости и способах ее достижения даже при комнатной температуре», — считает Москаленко.

Львовский полагает, что с практической точки зрения полученные результаты могут также использоваться в квантовых компьютерах и системах связи.

«Начну с того, что Ляйтенсторфер далеко не первый, кто наблюдал флуктуации вакуума. Новизна его эксперимента в том, что он пронаблюдал их новым, необычным и интересным способом. Что касается важности измерения флуктуаций вакуума, правильнее было бы сформулировать вопрос так: насколько важно уметь измерять напряженность электромагнитного поля с точностью, превышающей размер вакуумных флуктуаций? Ответ — это умение принципиально необходимо для целого ряда квантовых технологий. Например, оно позволяет точно измерить квантовое состояние света (именно этим мы занимаемся в лаборатории квантовой оптики Российского квантового центра). Кроме того, в напряженности поля можно кодировать квантовую информацию для защищенной передачи на расстояние, а также между регистрами квантового компьютера, в том числе имеющими разную физическую природу», — пояснил ученый.

chrdk.ru

Квантовые флуктуации и их энергия / СоХабр

В этой статье я расскажу вам кое-что о том, как работает квантовая механика, в частности, об удивительном явлении под названием «квантовые флуктуации», и как оно применяется в квантовой теории поля, примером которой служит Стандартная Модель (уравнения, используемые нами для предсказания поведения известных элементарных частиц и взаимодействий). Глубокое понимание этого явления и связанной с ним энергии ведёт нас прямиком к одному из самых серьёзных и неразрешённых конфликтов в науке: проблеме космологической постоянной. Также оно ведёт нас к загадке естественности, или к проблеме иерархии.

В квантовой теории поля квантовые флуктуации иногда называют или описывают, как «появление и исчезновение двух или более виртуальных частиц». Этот технический жаргон оказывается очень неудачным, поскольку эти штуки (как бы мы их ни называли), однозначно не являются частицами – к примеру, у них нет определённой массы – а также, поскольку понятие «виртуальной частицы» точно определяется только в присутствии относительно слабых взаимодействий.

Рис. 1 Квантовые флуктуации тесно связаны с принципом неопределённости Гейзенберга. Вот классический, простейший пример (рис. 1). Если поместить шарик на дно чаши, он бесконечно останется там в покое. Этого можно ожидать на основании повседневного опыта. И в отсутствии квантовой механики так бы всё и было. Но если вы поместите очень лёгкую частицу в крохотную чашу или в ловушку другого типа, вы обнаружите, что ей не сидится на дне. Если бы она неподвижно находилась внизу, это нарушило бы принцип неопределённости – гарантирующий, что вы не можете одновременно узнать точно, где находится частица (то есть, на дне) и как она движется (в нашем случае – не движется). Это можно представлять, пусть неидеально, зато практично, как некое постоянное дрожание, влияющее на частицу и не дающее ей успокоиться так, как вам подсказывает интуиция на примере шариков и чаш. Один полезный аспект этой несовершенной картины – она даёт понять, что с этим дрожанием может быть связана энергия.

В квантовой теории поля – квантовых уравнениях для полей, таких, как электрическое, наблюдается схожий эффект. Давайте я его объясню.

Флуктуации квантовых полей

Каждая элементарная частица (а я сейчас говорю о реальных частицах) в нашей Вселенной – это рябь, небольшая волна, волна минимальной возможной интенсивности, идущая по соответствующему элементарному квантовому полю (рис. 2). Частица W – это волна в поле W; фотон – волна в электрическом поле; верхний кварк – волна в поле верхнего кварка.

А если частиц нет? Даже там, где, как мы считаем, есть только пустое пространство, поля всё равно существуют – сидит себе тихонечко, так же, как в пруду есть вода, даже если ни ветер, ни камешки не порождают рябь на его поверхности, и как в комнате есть воздух, даже если там нет никаких звуков.

Рис. 2

Однако штука в том, что эти поля никогда не ведут себя абсолютно тихо. Квантовые поля не поддерживают постоянное значение; их значение в любой точке пространства всегда немного подрагивает. Дрожание называют «квантовыми флуктуациями», и точно так же, как для частицы в крохотной чаше, оно – последствие знаменитого «принципа неопределённости Гейзенберга». Вы не можете узнать значение поля и одновременно его изменение; ваше знание одной из этих величин, а обычно, двух, должно быть несовершенным. И эти флуктуации тоже иногда объясняют как причину наличия двух или более «виртуальных частиц», но это название связано только с техническими аспектами (с подсчётами свойств флуктуаций при помощи знаменитых диаграмм Фейнмана), и не говорит о том, как вам нужно себе это представлять.

Очевидный вопрос: а уверены ли вы в наличии квантовых флуктуаций полей? Ответ: да, хотя пока я объяснять это не буду. Один пример: квантовые флуктуации приводят к тому, что сила взаимодействий плавает, когда вы измеряете её на всё более и более коротких расстояниях – и мы не только наблюдаем этот эффект, он ещё и с высокой точностью совпадает с тем, что мы можем подсчитать при помощи Стандартной Модели. Этот успех подтверждает не только наличие квантовых флуктуаций, но и детальную структуру Стандартной Модели, вплоть до дистанций порядка одной миллионной миллионной миллионной доли метра. Ещё пример: реакцию электрона на магнитное поле можно измерить с точностью до одной триллионной; также её можно подсчитать через Стандартную Модель с точностью до одной триллионной, предполагая наличие флуктуаций в известных нам полях. Удивительно, но измерения совпадают с подсчётами Стандартной Модели.

Что важно, это дрожание порождает определённое количество энергии – довольно много. Сколько? Чем лучше ваш микроскоп (или ускоритель частиц), тем больше дрожания вы видите, и тем больше энергии дрожания вы обнаруживаете.

Рассмотрим коробку с ребром в один метр и спросим: сколько энергии, связанной с дрожанием одного квантового поля, можно насчитать в этой коробке (рис. 3)?

Подсчёт 1: допустим, как показывают наши экспериментальные измерения на Большом Адронном Коллайдере, Стандартная Модель – рабочее описание всех процессов, происходящих на расстояниях больших, чем одна миллионная миллионной миллионной доли метра – назовём это «БАКовым расстоянием», равным примерно 1/1000 радиуса протона, поскольку примерно такой масштаб экспериментов можно проводить на БАК – там доступны процессы, включающие столкновения элементарных частиц с энергиями меньше, чем 1000 массовых энергий протона (той энергии, что E = mc2). Эта энергия – типичная энергия массы самой тяжёлой частицы, которую можно надеяться обнаружить при столкновениях протонов в БАК, так что назовём её «БАКовой энергией». Тода количество энергии флуктуаций каждого поля в Стандартной Модели (допустим, электрического поля) таково: в каждом кубе с размером рёбер, равным БАКовому расстоянию содержится БАКовая энергия. Иначе говоря, плотность энергии составляет одну БАКовую энергию на один БАКовый объём.

Сравните это с обычной материей, чья плотность энергии равна нескольким энергиям массы протона или нейтрона (то есть энергиям массы атомного ядра) на каждый атом, чей объём, поскольку протон или нейтрон в 100 000 раз меньше радиуса атома, в 1 000 000 000 000 000 раз больше объёма протона. (Вспомните, что атом относительно гораздо более пустой, чем Солнечная система). Это значит, что плотность энергии квантовых флуктуаций электрического поля грубо в миллион миллионов миллионов раз больше, чем у обычной материи, поэтому энергия массы флуктуаций электрического поля с ребром в метр примерно в миллион миллионов миллионов раз больше энергии, содержащейся в кубическом метре твёрдой материи. А сколько это энергии? Достаточно, чтобы взорвать всю планету, или даже звезду! Она сравнима по величине с общей энергией Солнца. Конечно, эту энергию из вакуума высвободить нельзя, ни на зло, ни на добро, поэтому волноваться не нужно – она не опасна. Но этого достаточно для того, чтобы понять масштабы проблемы космологической постоянной.

Подсчёт 2: допустим, как это связано с вопросом о проблеме иерархии и естественности Вселенной, что Стандартная Модель описывает все процессы физики частиц вплоть до масштабов, на которых гравитация становится сильным взаимодействием – на т.н. планковской длине, которая, в свою очередь, ещё в тысячу миллионов миллионов раз меньше, чем расстояния из подсчёта 1. Тогда количество энергии флуктуаций электрического поля, содержащееся в кубическом метре, больше, чем в подсчёте 1 в

(1 000 000 000 000 000)4 = 1 с 60 нулями

раз.

Если взять это число и перемножить его с числом из подсчёта 1, у вас будет достаточно энергии, чтобы взорвать все звёзды во всех галактиках в видимой части Вселенной много много много раз. И именно столько энергии содержится в каждом кубическом метре – если Стандартная Модель правильно описывает физические процессы на масштабах вплоть до планковской длины.

Рис. 3

В общем, если Стандартная Модель (или любая типичная квантовая теория поля без особых симметрий) верна вплоть до масштабов длины L, то энергия флуктуаций в кубе размером L3 примерно равна hc/L для каждого поля, где h – постоянная Планка, а c – универсальный предел скорости, известный, как «скорость света». Это значит, что плотность энергии примерно равна hc/L4 — если L уменьшается в 10 раз, то плотность энергии растёт в 10 000 раз! Именно поэтому числа в подсчётах 1 и 2 получились такими огромными.

Эти утверждения могут показаться вам странными. Они и есть странные – но ведь квантовая физика полна странностей. Более того, ни квантовая механика, ни квантовая теория поля пока нас не подводили. Как я упоминал ранее, у нас есть полно доказательств того, что простейшие подсчёты, аналогичные приведённым, прекрасно работают в квантовой теории поля. Факт существования квантовых флуктуаций вместе с их энергией так глубоко встроен в квантовую механику, что для того, чтобы объявить их ложными, вам нужно будет объяснить целую библиотеку экспериментальных результатов, которым квантовая механика сделала правильные предсказания. Так что, как у учёных, у нас нет другого выхода, как относиться к этим расчётам серьёзно, и пытаться их понять.

У вас может появиться пара очевидных вопросов: почему мы не можем просто определить, есть там эта энергия или нет? Почему вся эта огромная энергия никак не действует на обычную материю и на нас самих? Первая часть ответа: поскольку в каждом кубическом метре пространства содержится одно и то же количество энергии, внутри и снаружи любого куба (рис. 4), который вы сможете нарисовать. Аналогия: внутри дома есть давление воздуха, но дом из-за этого не взрывается, пока снаружи дома находится равное давление воздуха. Точно так же, тот факт, что эта энергия плотности крохотных квантовых флуктуаций постоянна во всём пространстве и времени, означает, что она не оказывает никакого влияния на объекты, покоящиеся или движущиеся сквозь неё. Только изменения энергии во времени или в пространстве будут действовать на частицы, на атомы, состоящие из этих частиц, на людей и планеты, состоящих из этих атомов. И действительно, эта энергия квантовых флуктуаций одинакова везде и всегда, поэтому её невозможно ощутить, попробовать или воспользоваться ею.

Рис. 4

Однако! Ответ, часть 2: хотя в ньютоновской гравитации, в которой гравитация притягивает массы, эта энергия пустого пространства никак себя не проявит, в версии Эйнштейна, где гравитация притягивает энергию и импульс, это уже будет не так. Будет ли правильным подсчёт 1, или подсчёт 2, или нечто среднее, такое огромное количество энергии в каждом кубическом метре пространства – то, что часто называют «тёмной энергией» – должно заставлять Вселенную расширяться с огромной скоростью! Этот механизм привёл к «космической инфляции», фазе, через которую Вселенная, возможно, прошла очень давно, что и сделало её такой равномерной, какой мы видим её сегодня. То, что Вселенная не расширяется с огромной скоростью, говорит о том, что плотность энергии пространства должна быть гораздо меньше плотности энергии обычной материи, а не гораздо больше. В каждом кубическом метре пустого пространства есть только энергия массы одного атома, а в кубическом метре твёрдой материи содержится энергия массы множества атомов – примерно 1 с 30 нулями. То, что в пустом пространстве плотность энергии, по-видимому, очень мала, несмотря на все наши подсчёты того, сколько её должно быть из-за квантовых флуктуаций полей, о которых мы знаем – и есть отец и мать всех великих загадок квантовой физики: проблема космологической постоянной.

Следующий очевидный вопрос: а вы уверены, что у квантовых флуктуаций на самом деле есть энергия, или же, возможно, её там нет, что могло бы устранить проблему космологической постоянной? Ответ: да, я уверен, что у квантовых флуктуаций есть энергия. Она называется нулевой энергией, и она фундаментальна для квантовой механики, благодаря опять-таки принципу неопределённости. И это можно проверить: в хитроумном эксперименте энергию можно заставить работать благодаря эффекту Казимира, который был предсказан в 1940-х, впервые наблюдался в 1970-х и более точно проверен в 1990-х. Однако существуют споры по поводу того, связан ли он на самом деле с нашей темой.

Проблема космологической постоянной весьма серьёзна. Экспериментально нам известно, что Вселенная не расширяется с невероятной скоростью; она делает это довольно медленно; это будет измерение 0 на рис. 3 (снизу). Поэтому:

• Либо этот подсчёт (и даже подсчёт 1, который не делает никаких предположений о том, что нам неизвестно из Стандартной Модели) в чём-то ошибочен, и этой энергии нет, • Либо действие этой энергии на расширение Вселенной не такое, как мы думаем, поскольку мы неправильно понимаем гравитацию, • Либо подсчёт правильный, но он отвечает не на тот вопрос каким-то непонятным нам образом.

Этого точно никто не знает. Я расскажу о возможных решениях этой проблемы в отдельной статье о космологической постоянной. Но я упомянул одно интересное решение, которое однозначно не работает, поскольку оно будет связано с другой темой.

Может ли энергия различных полей взаимно уничтожаться?

Есть такая хитрая идея о том, как избавиться от этой энергии. Оказывается, что:

• Энергия флуктуаций бозонных полей (полей для фотона, глюона, W, Z и Хиггса, и даже гравитона) положительна, • Энергия флуктуаций фермионных полей (полей для электрона, мюона, тау, трёх нейтрино и 6 кварков) отрицательна!

Так что, возможно, хотя энергия каждого поля огромна, когда вы просуммируете энергию всех полей, то общая энергия окажется нулевой – или хотя бы очень малой?

Вы можете провести такие расчёты, и в Стандартной Модели вы увидите, что это не работает; есть слишком много фермионов, и в пустом пространстве должно существовать огромное количество отрицательной энергии.

Одна из крутых вещей теории суперсимметрии в том, что она заставляет вас добавлять именно те частицы, что нужно (суперпартнёры для каждого из известных типов частиц) так, что вы автоматически получаете это взаимное уничтожение! И, на самом деле, это единственный вид теории, известной человечеству, в которой это возможно.

К сожалению, на самом деле это не решает проблемы космологической константы. Если суперсимметрия не проявляется явно [а в нашем мире это невозможно – массы всех известных частиц должны быть идентичны массам их гипотетических суперпартнёров, и тогда мы бы их уже давным-давно нашли], тогда это взаимное уничтожение работает только частично. Частичное уничтожение, способное опровергнуть подсчёт 2, всё равно оставляет вам огромное количество энергии из подсчёта 1. Как отмечено на рис. 3, этого гигантского количества энергии достаточно, чтобы Вселенная вела себя совсем не так, как мы видим, если только с теорией гравитации Эйнштейна что-то не так.

Короче говоря, на сегодня никто не знает хитрого способа автоматически взаимно уничтожить плотность энергии флуктуаций различных полей в мире, описываемом Стандартной Моделью вплоть до БАКовских расстояний. На самом деле, никто даже не знает, как это сделать в любой немного несуперсимметричной квантовой теории поля (и всё равно, комбинирование суперсимметрии с гравитацией возрождает эту проблему).

Иначе говоря: даже если допустить существование особого взаимного уничтожения между бозонными полями природы и фермионными полями природы, судя по всему, такое взаимное уничтожение может произойти только случайно, и в очень-очень малой доле квантовых теорий поля или квантовых теорий любого типа (включая струнную теорию). Таким образом, только очень-очень крохотная часть вселенных, которые можно себе представить, могут хотя бы приблизительно напоминать нашу с вами (или хотя бы ту её часть, которую мы можем наблюдать при помощи глаз и телескопов). В этом смысле, проблема космологической постоянной является проблемой естественности, как этот термин понимают специалисты по физике частиц и их коллеги: поскольку во Вселенной, в которой мы живём, содержится так мало тёмной энергии по сравнению с тем, что мы ожидаем, наша Вселенная очень необычна и нетипична.

sohabr.net

Квантовые флуктуации Википедия

Нулевые колебания — флуктуации квантовой системы в основном состоянии, наинизшем по энергии, обязанные своим существованием принципу неопределённости.

Впервые были обнаружены при квантовании гармонических осцилляторов, и обычно термин используется по отношению к системам, представимым как их совокупность, например, к свободным квантовым полям. Различают нулевые колебания вакуума и нулевые колебания атомов конденсированной среды, устанавливающиеся после «выморожения» нормальных тепловых колебаний кристаллической решётки. Таким образом, энергия нулевых колебаний есть ни что иное, как энергия основного состояния системы. Энергия нулевого колебания одного осциллятора равна

E0=hν2,{\displaystyle E_{0}={\frac {h\nu }{2}},}

где h{\displaystyle h} — постоянная Планка, ν{\displaystyle \nu } — частота нулевого колебания.

Этой же формулой определяется и энергия нулевых колебаний физического вакуума, которая называется нулевой энергией[1]. Формально, суммарная энергия нулевых колебаний конечного объёма физического вакуума бесконечна, однако с точки зрения квантовой механики её практически невозможно использовать, хотя она приводит к тонким эффектам типа лэмбовского сдвига и эффекта Казимира.

Нулевые колебания электромагнитного поля

Вакуум в современной квантовой теории поля означает основное, наинизшее состояние полей, описывающих соответствующие элементарные частицы. В квантовой электродинамике различают вакуум электромагнитного поля и вакуум электронно-позитронного поля. Из соотношения неопределённостей следует, что в состоянии вакуума поля совершают нулевые колебания, которые рассматриваются как состояния с виртуально возникающими парами частица-античастица.

Математически это явление для электромагнитного поля может быть представлено как совокупность независимых гармонических осцилляторов со всеми возможными значениями волнового вектора. При этом напряжённость электрического поля играет роль скорости, а напряжённость магнитного поля — координаты. Из квантовой механики следует, что осциллятор может находиться только в состояниях с дискретными значениями энергии:

W=∑k(nk+12)ℏωk,{\displaystyle W=\sum _{k}{\Bigl (}n_{k}+{\frac {1}{2}}{\Bigr )}\hbar \omega _{k},}

где nk{\displaystyle n_{k}} — число фотонов с волновым вектором k{\displaystyle k}. В основном, наинизшем, состоянии электромагнитного поля фотоны отсутствуют, то есть nk=0.{\displaystyle n_{k}=0.} При этом энергия электромагнитного поля в вакуумном состоянии оказывается бесконечно большой величиной

W0=ℏ2∑kωk{\displaystyle W_{0}={\frac {\hbar }{2}}\sum _{k}\omega _{k}}.

В квантовой электродинамике переходят к отсчёту энергии не с нуля, а с нулевого уровня вакуумного состояния электромагнитного поля. Средние значения электрического и магнитного полей в вакуумном состоянии равны нулю, но средние значения квадратов этих величин больше нуля.

В экспериментах

Наличие «бесконечной энергии» нулевых колебаний электромагнитного поля вакуума приводит к конечным следствиям в эксперименте. Одним из наблюдаемых проявлений нулевых колебаний электромагнитного поля вакуума является эффект Казимира[2][3].

См. также

Примечания

  1. ↑ А. М. Прохоров. Физическая энциклопедия, статья «Нулевые колебания» (электронная версия).
  2. ↑ Мартыненко А. П. Вакуум в современной квантовой теории, Соросовский образовательный журнал, т. 7, ном. 5, 2001, с. 86-91
  3. ↑ Садовский М. В. Лекции по квантовой теории поля, Москва-Ижевск: Институт компьютерных исследований, 2003, 480 стр., ISBN 5-93972-241-5, 800 экз.

Литература

wikiredia.ru

Ученые обнаружили квантовые флуктуации в вакууме

Международная группа ученых впервые непосредственно зарегистрировала существование колебаний электромагнитного поля в вакууме.

Ученые из университета Констанц (Германия) под руководством профессора Альфреда Ляйтенсторфера впервые непосредственно зарегистрировали явление квантовой флуктуации (колебаний электромагнитного поля) в вакууме. С помощью новейшей оптической установки с использованием особых световых импульсов в заданном диапазоне физики смогли пронаблюдать это явление. Полученные выводы позволяют вплотную подойти к пониманию свойств «абсолютного ничто» и, безусловно, являются важным шагом в развитии квантовой физики. Результаты исследования опубликованы в журнале Science.

О существовании вакуумных флуктуаций теоретически было известно достаточно давно, однако никому еще не удавалось увидеть это явление непосредственно. Говоря простым языком, существование вакуумных флуктуаций означает, что даже в абсолютной темноте и тишине все же происходят некоторые колебания электромагнитного поля. До сих пор считалось, что это явление проявляется себя лишь косвенно: например, в спонтанном свечении, издаваемом атомами газа в люминесцентной лампе.

Международная группа физиков, в которую входили и российские исследователи Денис Селетский и Андрей Москаленко, сконструировала экспериментальную установку, которая может проводить измерение электрических полей со сверхвысоким временным разрешением и чувствительностью. Ученые использовали опыт передовых достижений в области оптических технологий. Установка включает новейшую лазерную установку, способную производить сверхкороткие лучи очень высокой стабильности.

Благодаря своему изобретению исследователям удалось измерить колебания поля в абсолютной пустоте, происходящие за миллионные доли одной миллиардной секунды (фемтосекунду). Важно, что время наблюдения было короче периода колебаний световых волн. Естественным ограничением в ходе эксперимента выступала лишь квантовая природа поля. Ученые составили теоретическое описание своего эксперимента на основе квантовой теории.

Профессор Ляйтенсторфер рассказал, что проведение эксперимента и проверка полученных выводов стоили команде пары лет бессонных ночей — ученым нужно было исключить все возможные факторы проникновения паразитных сигналов.

Значимо, что этот эксперимент открывает доступ к основному состоянию квантовой системы в его естественном состоянии, без использования специальных усилений и других видоизменений. Теперь у исследователей появился ключ к миру сверхкоротких событий, происходящих в квантовом мире.

Ранее портал Научная Россия писал, что квантовый вакуум может быть источником темной энергии во Вселенной.

scientificrussia.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики