Что было до Большого взрыва и откуда взялось время? Теория струн и петлевой квантовой теории гравитации
Петлевая квантовая гравитация | Gravity Wiki
Петлевая квантовая гравитация — наиболее разработанная квантовая теория гравитации. Даёт альтернативную космологическую модель в противовес теории Большого Взрыва, что считается одним из её главных достоинств.
Место в альтернативных космологических теориях Править
Альтернативной теорией устройства Вселенной является зародившаяся в Германии в 50-е годы квантовая теория Буркхарда Хайма (Burkhard Heim), которая не вступает в противоречие с общепринятой теорией относительности Эйнштейна, где ОТО выступает как частный случай. Эта теория до последнего времени была неизвестна. Альтернативы обсуждаются в рамках феноменологического сценария самовосстанавливающейся инфляционной Вселенной (Линде) и в наиболее разработанной микроскопической теории гравитации — теории струн, в частности, здесь существует так называемый prebigbang сценарий («предбольшого взрыва») (Венециано). Расчеты, проведенные в 1960-х и 1970-х гг., свидетельствовали о том, что квантовую механику и общую теорию относительности объединить невозможно. В попытках достижения компромисса родились такие направления, как теория твисторов и супергравитация. Большой популярностью у физиков пользуется теория струн, однако многие специалисты убеждены, что следует изучить имеющиеся альтернативы. Петлевая квантовая теория гравитации — наиболее развитая из них. Петлевая квантовая гравитация принципиально отличается от обычных физических теорий и даже от теории суперструн.
История возникновения Править
Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин (Lee Smolin), Абэй Аштекар (Abhay Ashtekar), Тэд Джекобсон (Ted Jacobson) и Карло Ровелли (Carlo Rovelli). Согласно этой теории, пространство и время действительно состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Но встаёт проблема выбора координат. Можно сформулировать общую теорию относительности (ОТО) в бескоординатной форме, например, с помощью внешних форм, однако, вычисления 4-формы Римана мы будем осуществлять в конкретной метрике. Любош Мотль — один из самых активных и остроумных пропагандистов теории струн — по этому поводу выразился так, что говорить, например, о «фоновой независимости» пропагатора спиновой сети петлевой теории гравитации без указания единичного состояния — то же самое, что вычислять ряд Тейлора в точке х0 без указания х0. Блог Любоша Мотля
Источники и иллюстрации Править
- Three Roads to Quantum Gravity. Lee Smolin. Basic Books, 2001.
- The Quantum of Area? John Baez. Nature, vol.421, pp. 702—703; February 2003.
- How Far Are We from the Quantum Theory of Gravity? Lee Smolin. March 2003. Препринт
- Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27-50; November 2003.
- Loop Quantum Gravity. Lee Smolin.
Доступно здесь
Теории гравитации |
ca:Teoria de la xarxa d'espín cs:Smyčková kvantová gravitacehe:כבידה קוונטית לולאתית hu:Hurok kvantumgravitáció it:Gravità quantistica a loopnl:Loop-kwantumzwaartekracht pl:Pętlowa grawitacja kwantowa pt:Gravidade quântica em loop sv:Loopkvantgravitation vi:Lý thuyết hấp dẫn lượng tử vòng
ru.gravity.wikia.com
Петлевая квантовая гравитация - Записки на полях
Написать заметку о петлевой квантовой гравитации меня побудили несколько вещей. И одна из них -- статья из Википедии на эту тему, из которого человек "не в теме" едва ли поймет вообще, о чем идет речь. Это просто гениально и совершенно для википедии бесполезно:
В своей статье 2005 года[1], С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова (M. Khovanov)[2][3]), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к интерпретации электрического заряда как топологической сущности, возникающей при перекручивании риббонов.
Первая известная теория гравитации была создана еще Аристотелем. Он считал, что тела падают с разной скоростью, прямо пропорционально массе и обратно -- плотности среды. Это почти правда при наличии трения. Впрочем, большого практического смысла в то время теория все равно не имела.
Научная же теория гравитации была создана Ньютоном, все ее проходили в школе, поэтому напоминать не буду. Ньютон описал закон, по которому тела притягиваются друг к другу. Но к 20му веку физики от выведения законов переключились на поиск причин. Стал важен вопрос не "как", а "почему". И никто иной как Энштейн предложил теорию гравитации, основанную на геометрии Римана: гравитация определяется кривизной четырехмерного пространства-времени. Физика оказалась промоделирована довольно абстрактной геометрией. Теория элегантна, и подтверждается экспериментально.
Однако, на этом физики не остановились. Дело в том, что в 20-30 годы была разработана квантовая механика, которая довольно быстро развилась в квантовую теорию поля. Суть в том, что физические величины перестали быть непрерывными, но принимающими ступенчатые, дискретные значения. Например, энергия. В квантовой теории поля "переносчиками" фундаментальных взаимодействий стали кванты, некоторые неделимые "кусочки". Самое простое -- фотоны в электродинамике (или фотоны света, например). Или глюоны -- в сильном взаимодействии кварков. Но суть похожа. Причем теории были выстроены таким образом, что на микро-уровне можно было "работать" на уровне квантов, но при непрерывном переходе к макро-уровню получались все типичные свойства поля. В физике известны 4 типа фундаментальных полей (взаимодействий), и три из них квантуются. Но не гравитация. Причем проблемы квантования гравитационного поля оказались настолько фундаментальными, что физики стали искать другие способы "связать" воедино все фундаментальные поля (зачем? чтобы объяснить, как устроен мир), и появились теории струн и другие Теории Всего, основанные на экзотических пространствах и симметриях.
У всех этих теорий было одно свойство, очень любимое математиками -- геометрия пространства считалось непрерывной и гладкой. Собственно, так оно и есть в Римановой геометрии, использованной Энштейном. В середине 80х Ли Смолин с коллегами рискнули отказаться от гладкости и непрерывности, и им впервые удалось построить непротиворечивую квантовую модель гравитации при условии, что пространство тоже квантуемо! То есть состоит из "ячеек" планковской длины (десять в минус 33 см.), причудливым образом между собой соединенных. Для удобства представления, вместо ячеек они стали рассматривать узлы, а их соединения образуют то, что стали называть спиновой сетью. Это позволяет задать любую, сколь угодно искривленную, геометрию. Неожиданно, вроде бы абстрактная математическая дисциплина -- топология -- вдруг стала востребована именно тут, так как именно она изучает подобного рода объекты.
Но спиновая сеть -- это лишь мгновенный "снимок" состояния. В реальности, каждый момент времени в мире что-то происходит, и это выражается в трансформации сети. Сеть плюс время называется спиновой пеной, потому что во времени сеть постоянно "бурлит", переживая бесконечные трансформации. Время "получилось" тоже дискретным, с интервалом между "тиками" десять в минус 43 см.
Как любая хорошая теория (и этим, кстати, она отличается от Теории Струн), квантовая теория гравитации допускает эксперименты, которые могут ее подтвердить или опровергнуть. На сегодняшний момент, современная аппаратура не позволяет поставить такие эксперименты -- слишком малы эффекты, которые дает "зернистость" пространства -- но техника и фантазия ученых не стоят на месте. Во всяком случае такие эксперименты не кажутся невозможными.
Также в последнее время доказано, что в петлевая квантовая гравитация "в пределе" приводит к энштейновской модели (впрочем, иначе она бы не имела смысла). Интересно, что в отличие от энштейновской теории, в "нашей" теории Вселенная существует и до Большого Взрыва.
Теперь настало время вернуться к тому, о чем же пишет Википедия. На самом деле, о важном. О том, что теория петлевой квантовой гравитации позволяет вывести Стандартную модель квантовой механики, которая описывает элементарные частицы и их взаимодействия и многократно подтверждена экспериментально. И это делает ее полноценным кандидатом на Теорию Всего.
* Доступное изложение теории от Ли Смолина
P.S. А Большой Андронный Коллайдер работает себе потихоньку.
ushastyi.livejournal.com
Нужна ли квантовой гравитации теория струн?
Экология познания: «Я просто думаю, что в струнной теории произошло слишком много хороших вещей, чтобы она была совершенно неправильной. Люди не очень хорошо ее понимают, но я просто не верю в гигантский космический замысел, который создал
«Я просто думаю, что в струнной теории произошло слишком много хороших вещей, чтобы она была совершенно неправильной. Люди не очень хорошо ее понимают, но я просто не верю в гигантский космический замысел, который создал эту невероятную вещь, и чтобы она не имела ничего общего с реальным миром», — сказал однажды Эдвард Уиттен.
Безо всяких сомнений, с математической точки зрения нет недостатка в невероятных, прекрасных и элегантных теориях. Но не все они подходят для нашей физической Вселенной. Кажется, что на каждую блестящую идею, которая точно описывает, что мы можем наблюдать и измерить, приходится по меньшей мере одна блестящая идея, которая пытается описать те же вещи, но остается в корне неверной. На прошлой неделе мы задались вопросом, который сводится к примерно следующей сути.
Квантовая гравитация. Мы хотели бы знать, имеется ли какой-нибудь прогресс в этой области за последние пять-десять лет. Нам, обычным смертным, кажется, что эта сфера малость подзастряла, а теория струн начала падать в забытие, поскольку ее сложно проверить и у нее имеется 10^500 возможных решений. Правда ли это, или же где-то за кулисами протекает некий прогресс, на который пресса просто не обращает внимания?
Во-первых, стоит провести большую разделительную черту между идеей квантовой гравитации, решением теории струн (или предлагаемым решением) и другими альтернативами.
Начнем со Вселенной, которую мы знаем и любим. С одной стороны, есть общая теория относительности, наша теория гравитации. Она утверждает, что вместо того, чтобы быть простым действием на расстоянии, как завещал Ньютон, когда все массы во всех местах оказывают силы друг на друга обратно пропорционально квадрату расстояния между ними, в ее основе лежит более тонкий механизм.
Масса, как установил Эйнштейн с принципом эквивалентности и E=mc^2 в 1907 году, была одной из форм энергии во Вселенной. Эта энергия, в свою очередь, искривляет саму ткань пространства-времени, изменяя путь движения всех объектов и изменяя то, что наблюдатель мог наблюдать в виде картезианской сетки. Объекты не ускоряются за счет невидимой силы, а скорее путешествуют по пути, определяемому влиянием всех различных форм энергии во Вселенной.
Это гравитация.
С другой стороны, у нас есть другие законы природы: квантовые. Есть электромагнетизм, за который отвечают электрически заряженные частицы, их движение и который описывается переносчиком силы фотоном, который выступает посредником при этих взаимодействиях и дарит нам явления, которые мы связываем с электростатикой и магнетизмом. Есть также две ядерных силы: слабая ядерная сила, ответственная за явления вроде радиоактивного распада, и сильная ядерная сила, которая удерживает атомные ядра вместе и позволяет существовать протонам и нейтронам.
Расчеты для этих сил обычно происходят в плоском пространстве-времени, с которого каждый студент начинает изучение квантовой теории поля. Но этого недостаточно, когда мы присутствуем в искривленном пространстве, как того диктует общая теория относительности.
«Итак, — скажете вы, — мы просто будем проводить вычисления нашей теории поля на фоне искривленного пространства!». Это известно как полуклассическая гравитация, и этот тип вычислений позволяет нам рассчитывать вещи вроде излучения Хокинга. Но даже это имеется только на горизонте самой черной дыры, а не там, где гравитация будет во всей своей красе. Есть много физических случаев, в которых нам пригодилась бы квантовая теория гравитации, и все они связаны с гравитационной физикой на мельчайших масштабах, на крошечных дистанциях.
Что, к примеру, происходит в центральных районах черных дыр? Вы можете подумать, мол, «о, там же сингулярность», но сингулярность — это не столько точка с бесконечной плотностью, сколько случай, где математический инструмент общей теории относительности выдает бессмысленные ответы на вопросы о потенциалах и силах. Что происходит, когда электрон проходит через двойную щель? Проходит ли гравитационное поле через обе щели? Или через одну? Общая теория относительности ничего не говорит на этот счет.
Считается, что должна быть квантовая теория гравитации, которая объяснит эти и другие проблемы, присущие в «гладкой» теории гравитации вроде ОТО. Для того чтобы объяснить, что происходит на малых дистанциях в присутствии гравитационных источников — или масс, — нам нужна квантовая, дискретная, а значит, и построенная на частицах теория гравитации.
Благодаря свойствам самой ОТО, что-то мы уже знаем.
Известные квантовые силы определяются действием частиц, известных как бозоны, или частицы с целым спином. Фотоны определяют электромагнитную силу, W- и Z-бозоны выступают посредниками для слабой ядерной силы, а глюоны — для сильного ядерной силы. У всех этих частиц спин равен 1, причем для массивных частиц спин может принимать значение -1, 0 или +1, тогда как у безмассовых частиц (вроде глюонов и фотонов) он может принимать значение только -1 или +1.
Бозон Хиггса тоже является бозоном, только не выступает посредником для сил и обладает спином 0. Насколько мы знаем гравитацию — ОТО является тензорной теорией гравитации — ее посредником должна выступать безмассовая частица со спином 2, а значит ее спин может принимать значение -2 или +2 только.
Получается, мы что-то знаем о квантовой теории гравитации еще до попытки сформулировать ее. Мы знаем это, поскольку какой бы ни была квантовая теория гравитации, она должна быть в соответствии с ОТО, когда мы имеем дело с не самыми малыми дистанциями до массивных частиц или объектов, равно как и ОТО должна сводиться к ньютоновской гравитации в режиме слабого поля.
Большой вопрос, конечно, как это сделать. Как квантовать гравитацию, чтобы она была корректна (в описании реальности), соотносилась с ОТО и КТП и приводила к вычисляемым предсказаниям новых явлений, которые могут быть наблюдаемы, измеряемы или проверямы.
Ведущий претендент, как вы знаете, это теория струн.
Теория струн
Теория струн — интереснейшее поле, которое включает все стандартные модели полей и частиц, фермионы и бозоны. Она включает 10-мерную тензор-скалярную теорию гравитации: с 9 пространственными и 1 временным измерением и параметром скалярного поля. Если мы уберем шесть из этих пространственных измерений (через не до конца понятный процесс, который люди называют компактификацией) и позволим параметру (ω), который определяет скалярное взаимодействие, уйти в бесконечность, мы сможем восстановить ОТО.
Однако у теории струн есть целый ряд феноменологических проблем. Одна из них заключается в том, что из теории вытекает огромное число новых частиц, в том числе и все суперсимметричные, которых мы до сих пор не обнаружили. Она утверждает, что нет необходимости в «свободных параметрах», которыми обладает Стандартная модель (для масс частиц), но заменяет эту проблему еще худшей. Когда мы говорим о 10^500 возможных решениях, эти решения касаются ожидаемых значений струнных полей, и нет никакого механизма восстановить их; чтобы струнная теория работала, вам придется отказаться от динамики и просто сказать, что «она должна была быть выбрана антропно».
Впрочем, струнная теория — не единственный игрок на этом поле.
Петлевая квантовая гравитация
ПКГ представляте собой интересный взгляд на проблему: вместо того чтобы пытаться квантовать частицы, ПКГ утверждает, что само пространство является дискретным. Как обычно представляют гравитацию: натянутая простыня с шаром для боулинга в центре. Мы также знаем, что обычно простынь квантуется, то есть состоит из молекул, которые состоят из атомов, которые состоят из ядер (кварков и глюонов) и электронов.
Пространство может быть таким же! Поскольку оно выступает в качестве ткани, то состоит из конечных квантованных элементов. И, возможно, соткано из «петель», откуда и берется ее название. Соедините эти петли вместе, и вы получите сеть, представляющую квантовое состояние гравитационного поля. Согласно этой картине, квантуется не только материя, но и само пространство. Эта научная область до сих пор активно разрабатывается.
Асимптотически безопасная гравитация
Асимптотическая свобода была разработана в 1970-х годах, чтобы объяснить необычный характер сильного взаимодействия: это была очень слабая сила на чрезвычайно коротких расстояниях, которая становилась сильнее по мере того, как заряженные частицы расходились дальше и дальше. В отличие от электромагнетизма, который имел небольшую константу взаимодействия, у сильного взаимодействия она была большая. Из-за некоторых интересных свойств квантовой хромодинамики, если вы связываетесь с нейтральной (цветной) системой, сила взаимодействия быстро падает. Это можно было объяснить физическими размерами барионов (протонов и нейтронов, например) и мезонов (пионов, к примеру).
Асимптотическая свобода, с другой стороны, решила фундаментальную проблему, связанную с этим: вам нужны не малые взаимодействия, связи (или связи, которые стремятся к нулю), а, скорее, связи, которые просто будут конечными при высокоэнергетическом пределе. Все константы связи меняются с энергией, и асимптотическая свобода ставит высокоэнергетическую неподвижную точку для константы (технически, для группы ренормировки, из которой извлекается константа связи), а все остальное можно рассчитывать для низких энергий.
Во всяком случае такова идея. Мы выяснили, как делать это для измерений 1 + 1 (одно пространственное и одно временное), но не для 3 + 1. Однако прогресс движется, во многом благодаря Кристофу Веттериху, который издал две грандиозных работы в 90-х годах. Не так давно Веттерих использовал асимптотическую свободу — всего шесть лет назад, — чтобы рассчитать предсказание массы бозона Хиггса еще перед тем, как БАК нашел его. Результат же?
Удивительно, но его предсказания идеально совпали с находками БАК. Это настолько прекрасное предсказание, что, если асимптотическая безопасность верна и массы топ-кварка, W-бозона и бозона Хиггса установлены окончательно, для стабильной работы вплоть до планковских величин физике не понадобятся другие фундаментальные частицы.
Хотя асимптотически безопасной гравитации не уделяют много внимания, она остается весьма привлекательной и многообещающей теорией, как и теория струн: успешно квантует гравитацию, сводит ОТО до предела низких энергией и остается УФ-конечной. Кроме того, она обходит теорию струн по одному параметру: в ней нет целой горы нового материала, который мы пока не можем доказать.
Причинная динамическая триангуляция
Эта идея довольно нова и была разработана в 2000 году Ренатой Лолл в коллаборации с другими учеными. Она сходится с петлевой квантовой гравитацией в том, что пространство дискретно, но в первую очередь озабочена тем, как это пространство развивается. Одно из интересных свойств этой идеи в том, что время тоже должно быть дискретно. В итоге мы получаем четырехмерное пространство-время в настоящем времени, но на очень высоких энергиях и малых расстояниях (в планковских масштабах) оно проявляется в виде двумерной структуры. В ее основе лежит математическая структура под названием симплекс, которая является n-мерным обобщением треугольника. 2-симплекс — это треугольник, 3-симплекс — тетраэдр, и так далее. Одна из «прекрасных» фишек этого проявляется в виде причинности — известного многим понятия — которая сохраняется в причинной динамической триангуляции. Возможно, она сможет объяснить гравитацию, но непонятно на 100%, сможет ли в эти рамки уместиться Стандартная модель элементарных частиц.
Возникающая (индуцированная) гравитация
Возможно, наиболее спорной из последних теорий квантовой гравитации является энтропийная гравитация, предложенная Эриком Верлинде в 2009 году, согласно модели которой гравитация является не фундаментальной силой, а скорее возникает как явление, связанное с энтропией. На самом деле корни возникающей гравитации уходят к открывателю условий образования асимметрии материи-антиматерии, Андрею Сахарову, который предложил эту идею еще в 1967 году. Работа по-прежнему находится в зачаточном состоянии, но за последние 5-10 лет на этом поле имеется некоторый прогресс.
Вот что у нас на сегодняшний день есть по квантовой гравитации. Мы уверены, что без нее не поймем работу Вселенной на фундаментальном уровне, но понятия не имеем, в каком направлении из представленных пяти (и других) движение будет верным. опубликовано econet.ru
P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet
econet.ru
Что было до Большого взрыва и откуда взялось время?
Вопросы, вынесенные в заголовок, обычно физиками не обсуждаются, поскольку общепринятой теории, способной на них ответить, пока нет. Однако недавно в рамках петлевой квантовой гравитации всё же удалось проследить эволюцию упрощенной модели Вселенной назад во времени, вплоть до момента Большого взрыва, и даже заглянуть за него. Попутно выяснилось, как именно в этой модели возникает время.
Наблюдения за Вселенной показывают, что и на самых больших масштабах она вовсе не неподвижна, а эволюционирует с течением времени. Если на основе современных теорий проследить эту эволюцию назад во времени, то окажется, что наблюдаемая ныне часть Вселенной была раньше горячее и компактнее, чем сейчас, а начало ей дал Большой взрыв — некий процесс возникновения Вселенной из сингулярности: особой ситуации, для которой современные законы физики неприменимы.
Физиков такое положение вещей не устраивает: им хочется понять и сам процесс Большого взрыва. Именно поэтому сейчас предпринимаются многочисленные попытки построить теорию, которая была бы применима и к этой ситуации. Поскольку в первые мгновения после Большого взрыва самой главной силой была гравитация, считается, что достичь этой цели возможно только в рамках непостроенной пока квантовой теории гравитации.
Одно время физики надеялись, что квантовая гравитация будет описана с помощью теории суперструн, но недавний кризис суперструнных теорий поколебал эту уверенность. В такой ситуации больше внимания стали привлекать иные подходы к описанию квантовогравитационных явлений, и в частности, петлевая квантовая гравитации.
Именно в рамках петлевой квантовой гравитации недавно был получен очень впечатляющий результат. Оказывается, из-за квантовых эффектов начальная сингулярность исчезает. Большой взрыв перестает быть особой точкой, и удается не только проследить его протекание, но и заглянуть в то, что было до Большого взрыва. Краткое описание этих результатов было недавно опубликовано в статье A. Ashtekar, T. Pawlowski, P. Singh, Physical Review Letters, 96, 141301 (12 April 2006), доступной также как gr-qc/0602086, а их подробный вывод изложен в вышедшем на днях препринте этих же авторов gr-qc/0604013.
Петлевая квантовая гравитация принципиально отличается от обычных физических теорий и даже от теории суперструн. Объектами теории суперструн, к примеру, являются разнообразные струны и многомерные мембраны, которые, однако, летают в заранее приготовленном для них пространстве и времени. Вопрос о том, как именно возникло это многомерное пространство-время, в такой теории не решишь.
В петлевой теории гравитации главные объекты — маленькие квантовые ячейки пространства, определенным способом соединенные друг с другом. Законом их соединения и их состоянием управляет некоторое поле, которое в них существует. Величина этого поля является для этих ячеек неким «внутренним временем»: переход от слабого поля к более сильному полю выглядит совершенно так, как если бы было некое «прошлое», которое бы влияло на некое «будущее». Закон этот устроен так, что для достаточно большой вселенной с малой концентрацией энергии (то есть далеко от сингулярности) ячейки как бы «сплавляются» друг с другом, образуя привычное нам «сплошное» пространство-время.
Авторы статьи утверждают, что всего этого уже достаточно, чтобы решить задачу о том, что происходит со вселенной при приближении к сингулярности. Решения полученных ими уравнений показали, что при экстремальном «сжатии» вселенной пространство «рассыпается», квантовая геометрия не позволяет уменьшить его объем до нуля, неизбежно происходит остановка и вновь начинается расширение. Эту последовательность состояний можно отследить как вперед, так и назад во «времени», а значит, в этой теории до Большого взрыва с неизбежностью присутствует «Большой хлопок» — коллапс «предыдущей» вселенной. При этом свойства этой предыдущей вселенной не теряются в процессе коллапса, а однозначно передаются в нашу Вселенную.
Описанные вычисления опираются, правда, на некоторые упрощающие предположения о свойствах универсального поля. По-видимому, общие выводы сохранятся и без таких предположений, но это еще нуждается в проверке. Будет крайне интересно проследить за дальнейшим развитием этих идей.
См. также: Абэй Аштекар, один из создателей теории петлевой квантовой гравитации, уделяет много времени как популяризации этой конкретной теории, так и квантовой гравитации вообще. На его сайте можно найти список научно-популярных статей и лекций, адресованных широкой аудитории.
Игорь Иванов
elementy.ru
Петлевая квантовая гравитация - это... Что такое Петлевая квантовая гравитация?
Петлевая квантовая гравитация — одна из теорий квантовой гравитации.
История возникновения
Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин, Абэй Аштекар, Тэд Джекобсон (англ.) и Карло Ровелли (англ.).
Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время.Петлевая гравитация и физика элементарных частиц
Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.
В своей статье 2005 года[1], С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова[2][3]), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к интерпретации электрического заряда как топологической сущности, возникающей при перекручивании риббонов.
Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации[4].
Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей[4].
В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций[5].
Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время[5]. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.
Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона[6].
Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны[7] и гравитоны[8][9] — независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены[7], фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов[4] (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).
Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.
Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований[10].
В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью[11], отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальные теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). В модифицированной версии его статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины, смешивание Кабиббо, а также необходимость привязки его модели к более фундаментальным теориям. Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.
В более позднем варианте статьи[12] описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves).
См. также
Источники и иллюстрации
Литература
- Lee Smolin, Three Roads to Quantum Gravity, Basic Books, 2001.
- John Baez, The Quantum of Area?, Nature, vol.421, pp. 702—703; February 2003.
- Lee Smolin, How Far Are We from the Quantum Theory of Gravity?, arxiv.org/hep-th/0303185.
- Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27-50; November 2003.
- Lee Smolin, Loop Quantum Gravity, The third culture.
Примечания
dic.academic.ru
Теория струн встречается с петлевой квантовой гравитацией
Восемьдесят лет прошло с тех пор, как физики поняли, что теории квантовой механики и гравитации несовместимы, и загадка их комбинирования остаётся неразрешённой. За последние десятилетия исследователи изучали эту задачу двумя разными путями – через теорию струн и через квантовую гравитацию – которые практикующие их учёные считают несовместимыми. Но некоторые учёные доказывают, что для продвижения необходимо объединить усилия.
Два кандидата на «теорию всего», долгое время считавшиеся несовместимыми, могут оказаться двумя сторонами одной медали.
Среди попыток объединения квантовой теории и гравитации больше всего внимания привлекла теория струн . Её предпосылка проста: всё состоит из маленьких струн. Струны могут быть замкнуты или разомкнуты; они могут вибрировать, растягиваться, объединяться или распадаться. И в этом многообразии лежат объяснения всех наблюдаемых явлений, включая материю и пространство-время.
Петлевая квантовая гравитация (ПКГ), наоборот, придаёт меньше значения материи, присутствующей в пространстве-времени, и больше концентрируется на свойствах самого пространства-времени. В теории ПКГ пространство-время – это сеть. Плавный фон теории гравитации Эйнштейна заменяется узлами и звеньями, которым назначаются квантовые свойства. Таким образом, пространство состоит из отдельных кусочков. ПКГ в основном занимается изучением этих кусочков.
Этот подход долгое время считался несовместимым с теорией струн. В самом деле, их различия очевидны и глубоки. Для начала, ПКГ изучает кусочки пространства-времени, а теория струн исследует поведения объектов в пространстве-времени. Эти области разделяют и технические проблемы. Теории струн необходимо, чтобы в пространстве было 10 измерений; ПКГ в высших измерениях не работает. Теория струн предполагает наличие суперсимметрии, в которой у всех частиц есть пока не обнаруженные партнёры. Суперсимметрия не свойственна ПКГ.
Эти и другие различия разбили сообщество физиков-теоретиков на два лагеря.
«Конференции разделяются, — говорит Дордж Пуллин, физик из Университета штата Луизиана и соавтор учебника по ПКГ . – Петлевики ездят на петлевые конфы, струнники – на струнные. Они теперь даже не ездят на конференции по „физике“. Я думаю, что это весьма прискорбно».
Но некоторые факторы могут сдвинуть эти лагеря поближе. Новые теоретические открытия выявили возможные сходства между ПКГ и теорией струн. Новое поколение струнных теоретиков вышло за пределы струнной теории и начало поиски методов и инструментов, могущих оказаться полезными для создания «теории всего». И недавний парадокс с потерей информации в чёрных дырах заставил всех почувствовать себя скромнее.
Более того, в отсутствие экспериментальных подтверждений струнной теории или ПКГ, математическое доказательство того, что они являются двумя сторонами одной монеты, послужило бы доводом в пользу того, что физики в поисках «теории всего» движутся в верном направлении. Комбинация ПКГ и струнной теории сделала бы новую теорию единственной.
Неожиданная связь
Попытки решить некоторые проблемы ПКГ привели к первой неожиданной связи с теорией струн. У изучающих ПКГ физиков нет чёткого понимания того, как перейти от кусочков сети пространства-времени к крупномасштабному описанию пространства-времени, совпадающему с ОТО Эйнштейна – нашей лучшей теорией гравитации. Более того, их теория не может примириться с тем особым случаем, в котором гравитацией можно пренебречь. Это проблема, подстерегающая любую попытку использования пространства-времени по кусочкам: в СТО линейные размеры объекта уменьшаются в зависимости от движения наблюдателя относительно объекта. Сжатие также влияет и на размер кусочков пространства-времени, которые воспринимаются по-разному наблюдателями, движущимися на разных скоростях. Это расхождение приводит к проблемам с центральным принципом теории Эйнштейна – что законы физики не зависят от скорости наблюдателя.
«Сложно вводить дискретные структуры, не испытывая проблем с СТО»,– говорит Пуллин.
В своей работе, написанной в 2014 году с коллегой Рудольфо Гамбини, физиком из Республиканского университета Уругвая в Монтевидео, Пуллин пишет, что приведение ПКГ в соответствие с СТО неизбежно влечёт за собой появление взаимодействий, похожих на присутствующие в теории струн.
То, что у этих двух подходов есть что-то общее, казалось Пуллину вероятным со времён плодотворного открытия, сделанного в конце 1990-з Хуаном Малцаденой, физиком из Института перспективных исследований в Принстоне, штат Нью-Джерси. Малцадена в антидеситтеровском пространстве-времени (AdS) привёл в соответствие теорию гравитации и конформную теорию поля (CFT) на границе пространства-времени. Используя подход AdS/CFT, теорию гравитации можно описать при помощи более понятной теории поля.
Полная версия дуализма пока является гипотезой, но у неё есть хорошо разобранный ограничивающий случай, к которому не имеет отношения теория струн. Из-за того, что струны в этом случае не играют роли, его можно использовать в любой теории квантовой гравитации. Пуллину видится здесь точка соприкосновения.
ПКГ в представлении художника
Герман Верлинде, физик-теоретик из Принстонского университета, частенько работающий с теорией струн, считает правдоподобным то, что методы ПКГ могут пролить свет на гравитационную сторону дуализма. В недавней работе он описал упрощённую модель AdS/CFT в двух измерениях для пространства и одного для времени, или, как говорят физики, в случае «2+1». Он обнаружил, что пространство AdS можно описать при помощи таких сетей, что используются в ПКГ. Несмотря на то, что вся конструкция пока работает в «2+1», она предлагает новый взгляд на гравитацию. Верлинде надеется обобщить модель для большего количества измерений. «На ПКГ смотрели слишком узко. Мой подход включает и другие области. В интеллектуальном смысле это взгляд в будущее»,– сказал он.
Но даже если удастся скомбинировать методы ПКГ и струнной теории, чтобы продвинуться вперёд с пространством AdS, останется вопрос: насколько такая комбинация окажется полезной? У пространства AdS космологическая константа отрицательная (это число описывает геометрию Вселенной на больших масштабах), а у нашей Вселенной – положительная. Мы не живём в математической конструкции, описываемой пространством AdS.
Подход Верлинде прагматичен. «Например, для положительной космологической константы нам может понадобиться новая теория. Тогда вопрос в том, насколько она будет отличаться от этой. AdS пока – наилучший намёк на искомую структуру, и нам нужно совершить какой-то трюк, чтобы прийти к положительной константе». Он считает, что учёные не теряют время с этой теорией зря: «Хотя AdS и не описывает наш мир, она даст нам уроки, которые поведут нас в нужном направлении».
Объединение на территории чёрной дыры
Верлинде и Пуллин указывают на ещё одну возможность объединения сообществ струнной теории и ПКГ: загадочная судьба информации, попадающей в чёрную дыру . В 2012 году четверо исследователей из Калифорнийского университета обратили внимание на противоречие в господствующей теории. Они утверждали, что если чёрная дыра позволит информации убегать из неё, это уничтожит тонкую структуру пустого пространства вокруг горизонта чёрной дыры, и создаст высокоэнергетический барьер – «файервол». Но такой барьер несовместим с принципом эквивалентности, лежащим в основе ОТО, утверждающим, что наблюдатель не может сказать, пересёк ли он горизонт. Эта несовместимость внесла возмущение в ряды струнных теоретиков, считавших, что понимают связь чёрных дыр с информацией, и вынужденных снова схватиться за свои записные книжки.
Но эта проблема важна не только для струнных теоретиков. «Весь этот спор вокруг файерволов вёлся в основном в сообществе струнных теоретиков, чего я не понимаю,– сказал Верлинде. – Вопросы квантовой информации, запутанности и постройки математического Гилбертова пространства – это то, над чем работали специалисты по ПКГ».
В это время произошло незамеченное большинством специалистов по струнам событие – падение барьера, возведённого суперсимметрией и дополнительными измерениями. Группа Томаса Тиманна [Thomas Thiemann] в Университете Эрлангена — Нюрнберга (Германия) распространила ПКГ на высшие измерения и включила в неё суперсимметрию – а эти понятия раньше были территорией исключительно теории струн.
Недавно Норберт Бодендорфер [Norbert Bodendorfer], бывший студент Тиманна, работающий в Варшавском университете, применилметоды петлевой квантификации из ПКГ к пространству AdS. Он утверждает, что ПКГ полезно для работы с дуальностью AdS/CFT в тех случаях, когда струнные теоретики не могут проводить гравитационные подсчёты. Бодендорфер считает, что существовавшая между ПКГ и струнами пропасть исчезает.
«Иногда у меня складывалось впечатление, что струнные теоретики очень плохо разбираются в ПКГ и не хотят говорить об этом,– сказал он. – Но более молодые специалисты демонстрируют открытость взглядов. Им очень интересно, что происходит на стыке областей».
«Самое большое различие состоит в том, как мы определяем наши вопросы,– говорит Верлинде. – Проблема больше социологическая, а не научная, к сожалению». Он не думает, что два подхода конфликтуют: «Я всегда считал струнную теорию и ПКГ частями одного описания. ПКГ это метод, а не теория. Это метод размышления над квантовой механикой и геометрией. Это метод, который струнные теоретики могут использовать, и уже используют. Эти вещи не исключают друг друга».
Но не все уверены в этом Моше Розали [Moshe Rozali, струнный теоретик из Университета Британской Колумбии, сохраняет скептицизм по поводу ПКГ: «Я не работаю над ПКГ потому, что у неё есть проблемы с СТО,– говорит он. – Если ваш подход с самого начала без уважения относится к симметриям в СТО, вам потребуется чудо на одном из промежуточных шагов». Тем не менее, по словам Розали, некоторые математические инструменты, пришедшие из ПКГ, могут пригодиться.
«Не думаю, что существует возможность объединения ПКГ и струнной теории. Но людям обычно нужны методы, и в этом смысле они похожи. Математические методы могут пересекаться».
Также и не все приверженцы ПКГ ждут слияния двух теорий.
Карло Ровелли , физик из Марсельского университета и основатель теории ПКГ верит в преобладание своей теории.
«Сообщество любителей струн уже не такое заносчивое, как десять лет назад, особенно после жестокого разочарования отсутствием суперсимметричных частиц говорит он. – Возможно, что две теории могут быть частями одного решения… но я думаю, вряд ли. По-моему, струнная теория не смогла дать то, что она обещала в 80-х годах, и представляет собою одну из тех идей, что выглядят симпатично, но не описывают реальный мир, которых в истории науки было полно. Не понимаю, как люди ещё могут возлагать на неё надежды».
Пуллин же считает, что объявлять победу преждевременно:
«Приверженцы ПКГ говорят, что их теория единственно верна. Я под этим не подпишусь. Мне кажется, что обе теории чрезвычайно неполны».
www.nanonewsnet.ru
Теорию струн и петлевую квантовую гравитацию предложили объединить
Физик-теоретик Сабина Хоссенфельдер из Стокгольма посчитала двух альтернативных претендентов на «теорию всего» (теорию струн и петлевую квантовую гравитацию) сторонами одной медали. По ее мнению, в настоящее время петлевая квантовая гравитация достигла большого прогресса. Об этом ученый рассказала на страницах онлайн-издания Quanta Magazine.
Как сообщает Хоссенфельдер, расширения петлевой квантовой гравитации в высших измерениях включают в себя, подобно теории струн, суперсимметрию. Для того, чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, первая, как полагает Родольфо Гамбини из Уругвая, требует введения взаимодействий, похожих на таковые в теории струн.
Герман Верлинде из Принстонского университета полагает, что петлевая квантовая гравитация может помочь достичь прогресса в понимании идеи AdS/CFT-соответствия (anti-de Sitter / conformal field theory correspondence) между конформной теорией поля и гравитацией. В своей недавней работе, как сообщает Хоссенфельдер, физик при помощи методов петлевой квантовой гравитации описал трехмерное пространство-время (в котором две координаты пространственные и одна — временная).
В настоящее время над теорией струн работают несколько тысяч физиков-теоретиков. Над петлевой квантовой гравитацией — в сотни раз меньшее число специалистов. Большинство струнных теоретиков не воспринимают всерьез петлевую квантовую гравитацию. Теория струн основана на предположении существования на планковских масштабах гипотетических одномерных объектов — струн, возбуждения которых интерпретируются как элементарные частицы и их взаимодействия.
Эта теория является последовательным развитием квантовой теории поля, которая в настоящее время является математическим аппаратом для современной физики элементарных частиц — Стандартной модели. В отличие от теории струн, петлевая квантовая гравитация предполагает существование дискретной сетки пространства-времени, образованной квантовыми ячейками. Динамика этих ячеек определяет структуру пространства-времени.
FavoriteТвоим друзьям это понравится!
kosmoturizm.ru