чёрная дыра. Черные дыры картинки
Жуткая красота: сверхмассивные чёрные дыры
Чёрной дырой называют область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть её не может даже свет. Разросшиеся до гигантских размером чёрные дыры образуют ядра большинства галактик.
Сверхмассивная чёрная дыра — это чёрная дыра с массой около 105—1010 масс Солнца. По состоянию на 2014 год сверхмассивные чёрные дыры обнаружены в центре многих галактик, включая наш Млечный Путь.
Самая тяжёлая сверхмассивная чёрная дыра за пределами нашей галактики находится в галактике в гигантской эллиптической галактики NGC 4889 в созвездии Волосы Вероники. Её масса — около 21 млрд солнечных масс!
На этом снимке — галактика NGC 4889 находится в центре. Где-то там притаился тот самый гигант.
Общепринятой теории образования чёрных дыр такой массы ещё нет. Существует несколько гипотез, наиболее очевидной из которых является гипотеза, описывающая постепенное наращивание массы чёрной дыры путём гравитационного притяжения материи (обычно газа) из космического окружающего пространства. Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме.
Сверхмассивная чёрная дыра и её аккреционный диск в представлении художника.
Спиральная галактика NGC 4845 (тип Sa) в созвездии Дева, находящаяся на расстоянии 65 миллионов световых лет от Земли. В центре галактики находится сверхмассивная чёрная дыра с массой около 230 000 солнечных масс.
Космическая обсерватория Chandra (Chandra X-ray Observatory, NASA) не так давно предоставила доказательства о том, что многие сверхмассивные черные дыры вращаются с огромной скоростью. Измеренная скорость вращения одной из черных дыр — 3.5 трлн. миль/час — это примерно половина скорости света, а её невероятная гравитация тянет за собой окружающее пространство на много миллионов километров.
Спиральная галактика NGC 1097 в созвездии Печь. В центре галактики находится сверхмассивная черная дыра, которая в 100 миллионов раз тяжелее нашего Солнца. Она засасывает в себя любую материю в окру́ге.
Мощнейший квазар в галактике Маркарян 231 может получать энергию от двух расположенных в центре черных дыр, которые кружатся вокруг друг друга. Согласно подсчетам ученых, масса центральной черной дыры превышает солнечную массу в 150 миллионов раз, масса черной дыры-спутника больше солнечной в 4 миллиона раз. Этот динамический дуэт поглощает галактическую материю и вырабатывает огромное количество энергии, вызывающее сияние в центре галактики, способное затмить сияние миллиардов звезд.
Квазары — самые яркие источники во Вселенной, свет которых ярче чем сияние их галактик. Есть гипотеза, что квазары представляют собой ядра далеких галактик на стадии необычно высокой активности. Квазара в центре галактики Маркарян 231 — это самый близкий к нам подобный объект и проявляет себя как компактный радиоисточник. Ученые оценивают его возраст всего в миллион лет.
Гигантская эллиптическая галактика M60 и спиральная галактика NGC 4647 выглядят очень странной парой. Они обе находятся в созвездии Дева. Яркая M60, находящаяся на расстоянии около 54 миллионов световых лет от нас, имеет простую форму яйца, которая создаётся беспорядочно роящимися старыми звёздами. NGC 4647 (вверху справа), напротив, состоит из молодых голубых звёзд, газа и пыли, которые расположены в закрученных рукавах плоского вращающегося диска.
В центре М60 находится сверхмассивная черная дыра, имеющая 4,5 млрд солнечных масс.
Галактика 4C+29.30, расположенная на расстоянии 850 миллионов световых лет от Земли. В центре находится сверхмассивная чёрная дыра. Ёе масса в 100 миллионов раз больше массы нашего Солнца.
Астрономы долгое время искали подтверждение того, что Стрелец А — наша сверхмассивная черная дыра в центре Млечного пути, является источником струи плазмы. Наконец, они нашли его, — об этом говорят новые результаты, полученные рентгеновской обсерваторией Chandra (Чандра) и радиотелескопом VLA. Эта струя или джет образуется за счет поглощения вещества сверхмассивной черной дырой и ее существование давно предсказывалось теоретиками.
Используя самые качественные рентгеновские снимки, астрономы нашли первый очевидный факт того, что массивные черные дыры были схожи в Ранней Вселенной. Исследования и наблюдения отдаленных галактик показали, что они все обладают схожими супермассивными черными дырами. В Ранней Вселенной было найдено по меньшей мере 30 миллионов супермассивных схожих черных дыр. Это в 10 000 раз больше, чем предполагалось ранее.
На рисунке художника изображена растущая супермассивная черная дыра.
Спиральная галактика NGC 4945 с перемычкой (SBc) в созвездии Центавр. Она достаточно похожа на нашу Галактику, однако рентгеновские наблюдения показывают наличие ядра, вероятно, содержащего активную сверхмассивную чёрную дыру.
Скопление PKS 0745-19. Черная дыра, находящаяся в центре, является одной из 18 крупнейших известных черных дыр во Вселенной.
Мощный поток частиц из сверхмассивной черной дыры, ударивший по расположенной рядом галактике. Астрономы наблюдали столкновения галактик и раньше, но такой «космический выстрел» зафиксирован впервые. «Инцидент» произошел в звездной системе, расположенной на расстоянии 1,4 млрд. световых лет от Земли, где в настоящее время идет процесс слияния двух галактик. «Черная дыра» большей из двух галактик, которую астрономы сравнивают со «Звездой смерти» из киноэпопеи «Звездные войны», выбросила мощный поток заряженных частиц, который угодил прямо в галактику, находящуюся по соседству.
Найдена самая молодая чёрная дыра. Прародительницей новичка стала сверхновая, вспыхнувшая всего 31 год назад.
Художественное изображение черной дыры, поглощающей космическое пространство. Со времени теоретического предсказания чёрных дыр оставался открытым вопрос об их существовании, так как наличие решения типа «чёрная дыра» ещё не гарантирует, что существуют механизмы образования подобных объектов во Вселенной.
Вспышки на черной дыре в спиральной галактике M83 (известна также под названием Южная Вертушка), полученные с помощью космической рентгеновской обсерватории НАСА «Чандра». Южная Вертушка находится на расстоянии приблизительно 15 миллионов световых лет от нас.
Спиральная галактика NGC 4639 с перемычкой в созвездии Дева. NGC 4639 скрывает массивную черную дыру, которая поглощает космический газ и пыль.
Галактика M 77 в созвездии Кит. В центре неё — сверхмассивная черная дыра.
Художники изобразили черную дыру нашей Галактики – Стрелец A*. Это объект огромной массы. По анализу элементов орбит вначале было определено, что вес объекта составляет 2.6 млн солнечных масс, причем эта масса заключена в объёме не более 17 световых часов (120 а. e.) в диаметре.
Заглянуть в жерло чёрной дыры. Получить уникальное изображение жерла черной дыры и редких явлений в ее окрестностях удалось астрономам японского аэрокосмического агентства ДЖАКСА с помощью инфракрасной космической лаборатории NASA WISE. Объектом наблюдения WISE стала черная дыра в 6 раз превышающая массу солнца и значащаяся в каталогах под названием GX 339-4. Рядом с GX 339-4, находящейся на расстоянии более 20 тыс. световых лет от Земли, обращается звезда, вещество которой затягивается в черную дыру под воздействием ее чудовищного гравитационного поля, которое в 30 тыс. раз сильнее, чем на поверхности нашей планеты. При этом часть данного вещества выбрасывается от черной дыры в обратном направлении, образуя струи частиц, движущихся на околосветовых скоростях.
Галактика NGC 3081 в созвездии Гидра. Находится на расстоянии около 86 миллионов световых лет от Солнечной системы. Как считают ученые, в центре NGC 3081 находится сверхмассивная чёрная дыра.
Спит и видит сны. Почти десять лет назад космическая рентгеновская обсерватория НАСА «Чандра» зафиксировала признаки того, что, по-видимому, является черной дырой, которая поглощает газ прямо в центре ближайшей галактики Скульптор. И вот в 2013 году космический телескоп НАСА NuSTAR, который регистрирует жесткое рентгеновское излучение, бросает беглый взгляд в том же направлении и обнаруживает мирно спящую черную дыру (за последние 10 лет перешла в неактивное состояние).
Масса спящей черной дыры примерно в 5 миллионов раз больше массы нашего Солнца. Черная дыра находится в центре галактики Скульптор, известной также как NGC 253.
Плазма, выбрасываемая сверхмассивными черными дырами в центрах галактик может переносить огромное количество энергии на гигантские расстояния. Область 3C353 в свете рентгеновских лучей телескопов Чандра и Very Large Array окружена плазмой, выброшенной одной из черных дыр. На фоне гигантских «перьев» излучения галактики выглядят крошечными точками в центре.
Так по мнению художника может выглядеть сверхмассивная черная дыра с массой от нескольких миллионов до миллиардов раз больше массы нашего Солнца. Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме.
Смотрите также Свежие фото и новости из космоса
ribalych.ru
комиксы, гиф анимация, видео, лучший интеллектуальный юмор.
Физик зафиксировал излучение Хокинга от аналоговой черной дыры
Черная дыра искажает Большое Магелланово Облако (моделирование)Джефф Штейнхауэр, физик из Израильского технологического института, зафиксировал самый достоверный на сегодняшний день аналог излучения Хокинга. В эксперименте ученый создал так называемую «глухую дыру» — акустический аналог черной дыры. Наблюдая за ее поведением, физик обнаружил, что на специальной границе, за которую не могут распространяться колебания материи «глухой дыры», рождаются пары квантов колебаний, движущихся в разные стороны. Более того, эти пары оказываются квантово-запутанными.
В отличие от предыдущих экспериментов с аналоговыми черными дырами, «запрещенное» излучение в работе Штейнхауэра возникает самопроизвольно и имеет квантовую природу: оно рождается из флуктуаций вакуума, как и излучение Хокинга. По словам Леонарда Сасскинда, если результат получит подтверждение, то он станет «триумфом Хокинга, как открытие бозона Хиггса стало триумфом для Питера Хиггса и его коллег». Исследование опубликовано в журнале Nature Physics, кратко о нем сообщает редакционный материал Nature
Традиционное объяснение природы излучения Хокинга связано с флуктуациями вакуума на горизонте событий черной дыры. Это такая область, в которой гравитационное поле объекта оказывается настолько сильным, что даже свет не может ее покинуть. Природа квантовой механики не позволяет существовать идеальному нулевому вакууму — этому мешает принцип неопределенности Гейзенберга. В результате в вакууме непрерывно рождаются и аннигилируют пары виртуальных частиц. Если одна из частиц такой пары окажется затянутой «под» горизонт, то вторая частица станет реальной и покинет черную дыру. При этом эта пара частиц — внутри и снаружи черной дыры — окажется квантово-запутанной.
Излучение Хокинга ведет к тому, что со временем черная дыра испаряется. Причем, чем меньше сверхплотный объект, тем быстрее это произойдет. С этим связан важный парадокс, указывающий на сложность объединения общей теории относительности и квантовой механики — парадокс потери информации. Подробно о нем рассказывал Эмиль Ахмедов в серии интервью N+1 (1, 2). Однако зафиксировать излучение напрямую, от известных кандидатов в черные дыры, невозможно. Оно подобно тепловому излучению, и чем массивнее звезда, тем меньше температура излучения. Так, для черной дыры с массой Солнца температура излучения Хокинга составляет 0,0000001 кельвина — на 7 порядков меньше, чем заполняющее Вселенную реликтовое излучение.
Поэтому для того, чтобы подтвердить существование излучения Хокинга, ученые используют модельные объекты — аналоговые черные дыры. Физики обратили внимание, что при правильной постановке эксперимента волны звука или других колебаний могут вести себя подобно световым волнам вблизи черной дыры.
В роли аналоговых черных дыр выступали как макро-, так и микроскопические системы. К примеру, в 2008 году физики под руководством Ульфа Леонхардта моделировали волны хокинговского излучения с помощью волн в бассейне, распространявшихся против сильного течения. Тогда ученым удалось зафиксировать следы волн, менявших свою частоту с положительной на отрицательную. Позднее та же группа использовала оптические волокна с нелинейными свойствами для тех же целей.
Автор новой работы, Джефф Штейнхауэр, пошел дальше и применил для моделирования горизонта событий конденсат Бозе-Эйнштейна из охлажденных до сверхнизких температур атомов рубидия. Эксперименты со звуковыми аналогами черных дыр — «глухими дырами» — физик начал еще в 2009 году.
joyreactor.cc
комиксы, гиф анимация, видео, лучший интеллектуальный юмор.
Генератор Пенроуза на пальцах
Все когда–то слышали фамилию Шварцшильд в разговоре о черных дырах, наряду с такими, как Шредингер, у которого кот или Гейзенберг, который никак не определится.
Карл Шварцшильд первым дал четкое математическое определение невращающихся черных дыр, то есть взял уравнения Общей Теории Относительности Эйнштейна и решил их. Вот представьте себе, что будет, если мы возьмем какую–нибудь, совершенно неважно какую, материю и сожмем до невероятной плотности?
Получится черная дыра Шварцшильда, с горизонтом событий, который находится на радиусе Шварцшильда. Короче, чувак вписал себя и свою фамилию в историю "просто решив уравнения Эйнштейна для одного конкретного случая". Ну, он не только этим всю жизнь занимался, конечно же, но вот никогда не угадаешь, каким образом попадешь в историю или как вляпаешься в нее.
Схема черной дыры Шварцшильда в пространстве и в пространстве–времениУравнения Эйнштейна — довольно серьезный матан (на самом деле просто длинный и жутко нудный, потому что его очень много, хотя ничего особо сложного там нет, 2–3 курс физики/математики профильного института), Шварцшильд решал их в течение месяца. Точнее сказать, через месяц после того, как Шварцшильд посетил лекцию Эйнштейна о Теории Относительности, он прислал Альберту письмо, в котором сообщил о том, что нашел одно из решений данных уравнений при помощи хитрого трюка/преобразования. Шварцшильд вычислял уравнения не в обычных–привычных, а в так называемых полярных координатах, это у которых в центре точка, и от нее отмеряются углы и расстояния. При соответствующем подборе коэффициентов данная точка оказывается точкой сингулярности, центром черной дыры, а радиусом черной дыры, который еще называют радиусом Шварцшильда, оказывается расстояние, на котором вторая космическая скорость равна скорости света. Все просто и гениально. Ну, не так, чтобы прям совсем просто, если хотите посмотреть вывод решений Шварцшильда, обратитесь к соответствующей статье в википедии. Статья на английском, русского перевода нет, но и так видно, что формул там предостаточно, хотя это действительно самое простое, что есть в Теории Относительности, реально детский лепет по сравнению с тем, какие заковырки можно в ней откопать.
Полярные координатыКстати говоря, через 5 месяцев после этого Шварцшильд умер. Не потому, что так перетрудился с решением. Шла Первая мировая война, Карл воевал с Россией на стороне Германии. Точнее говоря, как раз в это время он не воевал, а лежал в госпитале, но не по ранению, а по какой–то гадкой неизлечимой тогда болезни, и вот, пока лежал, развлекался решением уравнений Эйнштейна. Судьба ученых вообще очень часто загадочная и неисповедимая штука. Тебе скучно, нет возможности убивать русских солдат и реально нечем заняться? Порешай уравнения Теории Относительности, развейся немного, фашист проклятый... Короче говоря, Шварцшильд развлекался как мог, через три месяца его комиссовали, и еще через два месяца он благополучно умер дома в своей постели.
Все это я к тому, что Шварцшильд выдал решение (нашел соответствующую метрику) для простейшего случая невращающейся черной дыры. За месяц. И тогда уже сразу ученые поняли, что в случае вращающейся черной дыры решение окажется гораздо–гораздо сложней, ибо появляется масса факторов, повышающих градус матана до предела. Но насколько все окажется сложней/горячей тогда еще не догадывались. Не буду тянуть интригу, решение для вращающейся черной дыры удалось найти только через 47 лет, это сделал в 1963 году новозеландский математик Рой Керр, потому топологию вращающейся черной дыры называют метрикой Керра.
То есть почти 50 лет все мировые ученые, элита человечества, элементарно не могли решить набор готовых уравнений. Представляете, какие они тупые, эти ученые? Ну, или, что тоже может быть, какие уравнения выходят сложные?
Не будем лезть в формулы, попробуем на пальцах™ описать, чем вращающаяся черная дыра отличается от невращающейся, хотя бы визуально, хотя бы по проявляющимся эффектам.
Основная (или одна из самых трудных для восприятия) заковырка получается в том, что черная дыра "вращается не сама по себе". Пространство–время вокруг вращается вместе с ней, черная дыра увлекает пространство–время за собой. Вокруг вращающейся черной дыры появляется водоворот пространства–времени, а это вообще практически невозможно визуализировать.
Вот представьте себе, висите вы в скафандре перед черной дырой. Простой черной дырой, невращающейся. Какие есть пути? Есть путь падать в черную дыру, потому что она притягивает, есть путь попытаться избежать этого. Если в скафандре есть двигатель, можно включить его и постараться улететь от судьбы. И тут все уже знают — если ты еще не пересек горизонт событий, у тебя все еще есть такой шанс, если же провалился под него — никакого шанса, кроме как быть поглощенным черной дырой, больше не существует.
У невращающейся черной дырыА когда ты висишь перед вращающейся черной дырой, ты не можешь просто так "висеть". У черной дыры образуется что–то вроде вихря пространства–времени, который наматывает все сущее вокруг нее. Не потому, что ты "совершил маневр и вышел на орбиту" или что–то в этом роде. Тебя просто начинает тащить по кругу (точнее по сужающейся спирали) вне твоей воли. Этому можно противиться, пока ты находишься над горизонтом событий, но выбираться придется не только вдаль от черной дыры, а еще и бороться с движением вращения.
У вращающейся черной дырыЕсли хочется совсем себе мозг поломать, можно вспомнить, что в Теории Относительности у нас везде не пространство, а пространство–время, и водоворот вокруг черной дыры заворачивает не только три координаты пространства, но и координату времени. Представить себе и рассчитать закрученное в спираль время — тот еще mindfuck, у решения Керра именно потому такие формулы сложные, эффекты там совершенно непредсказуемые. Но это действительно тема для сильных духом (и мозгом) людей, не будем глубоко в нее нырять, можно не выгрести, продолжим путь по нисходящей спирали к центру вращающейся черной дыры без учета эффектов искажения времени.
Как и любой вращающийся вокруг своей оси предмет, черная дыра тоже начинает раздаваться вширь и приплющиваться со стороны полюсов. В смысле горизонт событий начинает вытягиваться, поверхности–то у черной дыры нет. Мало того, горизонт событий разделяется на два независимых горизонта, внутренний и внешний.
Два горизонта вращающейся черной дырыЛюбое залетевшее под внешний горизонт событий тело уже никогда не выберется наружу само по себе. Даже фотон со своей скоростью света не сможет. Но тут есть и существенное отличие с обычной черной дырой. Внутренний горизонт событий — это точка (в смысле поверхность) полного невозвращения, оттуда убежать невозможно. А вот из–под внешнего горизонта событий вращающейся черной дыры нельзя выбраться лишь "самому по себе", но может получиться "с чьей–то помощью". Например с помощью ракетного двигателя.
Вообще расхожий пример, что черная дыра похожа на воронку водоворота, уже заезжен до дыр, но он действительно очень хорошо описывает ситуацию. Вероятно вы слышали советы опытных пловцов: если начало засасывать в водоворот — бороться с потоком бесполезно. Начнешь грести против течения, только устанешь и все равно засосет. Наоборот, нужно устремиться вместе с потоком воды, набрать скорость и, чуть отвернув, по касательный буквально вынестись наружу.
Как выбираться из водоворотаИ у вращающейся черной дыры похожая штука. Иногда даже говорят, что пространство–время как бы втекает в черную дыру. Такая аналогия помогает в визуализации, но нужно быть осторожным. То есть не нужно думать, что черная дыра натуральным образом пожирает пространство–время, иначе могут начаться вопросы — а если оставить Вселенную на долгое время, что, черные дыры все наше пространство–время пожрут, раз оно в них постоянно втекает?
Естественно, ничего никуда не втекает. Пространство–время настолько искривлено и закручено в непосредственной близости к вращающейся черной дыре, что у падающего тела просто нет другого пути, кроме как следовать изгибам водоворота. В какую сторону ни лети, все равно вынесет к горизонту событий, как будто натуральный поток воды мешает двигаться в каком–то ином направлении. Хотя еще раз четко укажу, не стоит понимать данную аналогию, как натуральный водопад пространства–времени, само по себе оно никуда не течет.
Увлечение пространства времени вращающейся черной дыройТак вот, если находясь в правильной точке дать хороший реактивный импульс в правильном направлении (например включить ракетные двигатели на полную мощность под нужным углом к завихрению), из–под внешнего горизонта событий вращающейся черной дыры вполне можно выбраться. Мало того даже двигатель как таковой, не нужен. Достаточно разделить падающий в черную дыру предмет на две части. Одна часть продолжит падать в черную дыру, а вторая по закону сохранения импульса будет вытолкнута наружу.
А теперь самое интересное. Если провести расчеты и найти оптимальный угол, массу и прочие параметры, окажется, что импульс (масса умноженная на скорость) вылетающего из–под внешнего горизонта событий обломка получается выше импульса влетевшего в него первоначального предмета. То есть, не смотря на то, что объект разделился на две части и каждая часть меньше целого, скорость вылетающего куска становится настолько высокой, что импульс оказывается больше первоначального.
Что несколько подозрительно. Абзацем выше я упоминал закон сохранения импульса, а тут договорился до того, что впрямую нарушаю его. Естественно, на однородность пространства покушаться никто не собирался, Нётер не велит, и общее количество движения системы не изменяется. Своим хитрым маневром мы крадем энергию вращения черной дыры, и после подобного трюка она начинает вращаться чуточку медленней. Но где масса нашей ракеты и где масса черной дыры, нужно же сопоставлять! Для черной дыры это все блошиные укусы, а нам — существенная польза. Например, этот эффект использовали в фильме Интерстеллар, когда главный герой решил ценой своей жизни спасти любимую, они полетели в черную дыру, а потом часть корабля с Мэттью МакКонахи провалилась под горизонт событий, а другую часть с Энн Хэтэуэй выбросило наружу. Кто же знал, что в итоге МакКонахи попадет в книжный шкаф своей дочери, а "сила любви окажется выше сил гравитации"?
Фантазии Кристофера НоланаНо не будем о грустном. Гравитация вещь бессердечная, любовью не победить, раз у нее сердца нет. Вы лучше задумайтесь. Ведь только что я привел вам идею вечного дармового двигателя! Находим вращающуюся черную дыру (а по нашим представлениям они все подряд вращающиеся, во Вселенной вообще все вращается вокруг себя и друг друга, почему так — отдельный вопрос, придется поверить мне на слово), кидаем в нее "разделяющуюся болванку", одна ее часть падает в черную дыру, вторая вылетает назад с гораздо большим импульсом (и энергией), чем первоначальные. Теперь осталось поймать этот кусок и извлечь из него дополнительную энергию. Заставим его толкать какие–нибудь "лопасти турбины" или нагревать воду, как в атомных электростанциях, или неважно что. Главное — бесплатная энергия нахаляву.
Схема генератора ПенроузаПричем, вы бы знали, какая это энергия! Наверняка слышали, что хотя атомный взрыв это очень–очень–очень много тепла и света, в реальности энергетический выброс составляет лишь около 0.1% от вступающей в ядерную реакцию массы. У термоядерного взрыва КПД повыше, где–то около 1% изначальной массы водорода переходит в лучистую энергию. За счет этого процента светит Солнце и существует вся жизнь на планете Земля. А максимум, что можно выжать из формулы E=mc2, это полная аннигиляция вещества с антивеществом, тут можно получить выход 100% массы в виде энергии.
Максимальный теоретический КПД процесса бросания болванки во вращающуюся черную дыру около 21%. То есть если мы скинули в черную дыру тонну железа (или чего угодно, хоть мусора, хоть токсичных отходов), назад мы получим чуть меньший кусок того же железа, плюс энергию, эквивалентную аннигиляции 210 килограммов вещества. Вот это я понимаю — завод по переработке вторсырья!
Первым расчеты по извлечению энергии из вращающейся черной дыры провел Роджер Пенроуз в работе 1971 года, потому данная статья и озаглавлена "Генератор Пенроуза на пальцах™".
Теперь дело за малым. Научиться создавать миниатюрные черные дыры и паковать их в некое подобие аккумуляторов, и вот вам — движок получше термоядерного реактора на борту DeLorean–а из "Назад в будущее II"!
Фантазии Роберта ЗемекисаВообще, вращающиеся черные дыры Керра гораздо более интересные объекты, чем невращающиеся Шварцшильда. Хоть и ужасно более сложные в расчетах. Зато и дополнительных, взламывающих воображение эффектов, они порождают неизмеримо большее количество. Например, существует т.н. принцип космической цензуры того же самого Пенроуза.
Что происходит в сингулярности? Мы не знаем, есть лишь подозрение, что это место, в котором природа научилась делить на ноль, иными словами, "в матрице происходит сбой", и все перестает работать, но природа благоразумно научилась прятать свои ошибки от чересчур пытливых исследователей. Вокруг любой сингулярности всегда находится непроницаемый горизонт событий, и мы никогда не узнаем, что происходит в сингулярности, потому что природа закрылась от нас этим самым горизонтом, умело заметая свои косяки под ковер реальности.
Однако, как я написал выше, если черная дыра вращается, данный горизонт событий начинает растягивать в стороны и сплющивать сверху и снизу. Земля точно так же приплюснута с полюсов. И Солнце, и вообще любой вращающейся во Вселенной предмет. И чем выше скорость вращения, тем больше вращающийся предмет раскатывается в блин (см. например спиральные галактики). Теоретически можно рассчитать такую скорость вращения, при которой горизонт событий расплющит в тончайший диск, и если подлететь к такой черной дыре "сверху" (со стороны ее северного полюса), то появляется шанс взглянуть сингулярности прямо в лицо. Такое явление называют голая сингулярность, и пока непонятно, возможно ли подобное в принципе, или нет.
С одной стороны, в природе подобные голые сингулярности встречаться не должны, уж больно высокие скорости вращения требуются. Но ведь мы не природа, мы разумные гуманоиды! Если предположить "обратный генератор Пенроуза", и вместо того, чтобы черпать энергию из черной дыры, начать ее методично подкармливать, попутно раскручивая все быстрее, возможно мы сможем получить голую сингулярность? Или такую черную дыру разорвет от собственного вращения? С другой стороны, как ее может разорвать, там же сингулярность, там же скорость света! Непонятно...
Не говоря уже о том, что сама сингулярность во вращающейся черной дыре тоже перестает быть математической точкой, и вытягивается в структуру, чем–то похожую на кольцо или тор. И это только начало странностей. Закрученное в спираль пространство–время — это не шутки, а открытый простор для заморочек и парадоксов всех мастей.
Короче говоря — хватит морозиться в метрике Шварцшильда, любите и изучайте вращающиеся черные дыры, они гораздо интересней!
joyreactor.cc
комиксы, гиф анимация, видео, лучший интеллектуальный юмор.
Физик зафиксировал излучение Хокинга от аналоговой черной дыры
Черная дыра искажает Большое Магелланово Облако (моделирование)Джефф Штейнхауэр, физик из Израильского технологического института, зафиксировал самый достоверный на сегодняшний день аналог излучения Хокинга. В эксперименте ученый создал так называемую «глухую дыру» — акустический аналог черной дыры. Наблюдая за ее поведением, физик обнаружил, что на специальной границе, за которую не могут распространяться колебания материи «глухой дыры», рождаются пары квантов колебаний, движущихся в разные стороны. Более того, эти пары оказываются квантово-запутанными.
В отличие от предыдущих экспериментов с аналоговыми черными дырами, «запрещенное» излучение в работе Штейнхауэра возникает самопроизвольно и имеет квантовую природу: оно рождается из флуктуаций вакуума, как и излучение Хокинга. По словам Леонарда Сасскинда, если результат получит подтверждение, то он станет «триумфом Хокинга, как открытие бозона Хиггса стало триумфом для Питера Хиггса и его коллег». Исследование опубликовано в журнале Nature Physics, кратко о нем сообщает редакционный материал Nature
Традиционное объяснение природы излучения Хокинга связано с флуктуациями вакуума на горизонте событий черной дыры. Это такая область, в которой гравитационное поле объекта оказывается настолько сильным, что даже свет не может ее покинуть. Природа квантовой механики не позволяет существовать идеальному нулевому вакууму — этому мешает принцип неопределенности Гейзенберга. В результате в вакууме непрерывно рождаются и аннигилируют пары виртуальных частиц. Если одна из частиц такой пары окажется затянутой «под» горизонт, то вторая частица станет реальной и покинет черную дыру. При этом эта пара частиц — внутри и снаружи черной дыры — окажется квантово-запутанной.
Излучение Хокинга ведет к тому, что со временем черная дыра испаряется. Причем, чем меньше сверхплотный объект, тем быстрее это произойдет. С этим связан важный парадокс, указывающий на сложность объединения общей теории относительности и квантовой механики — парадокс потери информации. Подробно о нем рассказывал Эмиль Ахмедов в серии интервью N+1 (1, 2). Однако зафиксировать излучение напрямую, от известных кандидатов в черные дыры, невозможно. Оно подобно тепловому излучению, и чем массивнее звезда, тем меньше температура излучения. Так, для черной дыры с массой Солнца температура излучения Хокинга составляет 0,0000001 кельвина — на 7 порядков меньше, чем заполняющее Вселенную реликтовое излучение.
Поэтому для того, чтобы подтвердить существование излучения Хокинга, ученые используют модельные объекты — аналоговые черные дыры. Физики обратили внимание, что при правильной постановке эксперимента волны звука или других колебаний могут вести себя подобно световым волнам вблизи черной дыры.
В роли аналоговых черных дыр выступали как макро-, так и микроскопические системы. К примеру, в 2008 году физики под руководством Ульфа Леонхардта моделировали волны хокинговского излучения с помощью волн в бассейне, распространявшихся против сильного течения. Тогда ученым удалось зафиксировать следы волн, менявших свою частоту с положительной на отрицательную. Позднее та же группа использовала оптические волокна с нелинейными свойствами для тех же целей.
Автор новой работы, Джефф Штейнхауэр, пошел дальше и применил для моделирования горизонта событий конденсат Бозе-Эйнштейна из охлажденных до сверхнизких температур атомов рубидия. Эксперименты со звуковыми аналогами черных дыр — «глухими дырами» — физик начал еще в 2009 году.
joyreactor.cc
Очевидное – невероятное: 9. Черные дыры – космические "пылесосы" (+ фото и видео)
Черные дыры - это самые загадочные объекты во Вселенной. Уже само их существование можно рассматривать как невероятное. Загадочен не столько сам эффект втягивания материи черной дырой в себя, сколько факт того, куда это всё девается! И хотя физики придумали для этого слово "сингулярность", но никто до сих пор толком не знает, что это такое. И неизвестно, можно ли вообще узнать, что это такое. Ведь это находится за границей нашего мира. О всех событиях, протекающих внутри черной дыры, наблюдатель, оставшийся вне ее, знает, так сказать, только теоретически. Он не может получить о них никаких сведений, никаких сигналов из-под горизонта черной дыры.
Черные дыры — объекты совершенно фантастические по своим свойствам. “Из всех измышлений человеческого ума, от единорогов и химер до водородной бомбы, наверное, самое фантастическое — это образ черный дыры, отделенной от остального пространства определенной границей, которую ничто не может пересечь; дыры, обладающей настолько сильным гравитационным полем, что даже свет задерживается его мертвой хваткой; дыры, искривляющей пространство и тормозящей время. Подобно единорогам и химерам, черная дыра кажется более уместной в фантастических романах или в мифах древности, чем в реальной Вселенной. И тем не менее законы современной физики фактически требуют, чтобы черные дыры существовали. Возможно, только наша Галактика содержит миллионы их” — так сказал о черных дырах американский физик К. Торн.
К этому следует добавить, что внутри черной дыры удивительным образом меняются свойства пространства и времени, закручивающихся в своеобразную воронку, а в глубине находится граница, за которой время и пространство распадаются на кванты... Внутри черной дыры, за краем этой своеобразной гравитационной бездны, откуда нет выхода, текут удивительные физические процессы, проявляются новые законы природы.
Предполагаемое фото чёрной дыры. Компьютерный рисунок
Чёрная дыра́ - область в пространстве-времени, где гравитационное притяжение настолько велико, что ничто, ни вещество, ни излучение не могут её покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Таким образом, свет не сможет вырваться из этого тела и оно будет невидимым. Граница этой области называется горизонтом событий, а её характерный размер — гравитационным радиусом.
Чёрные дыры захватывают в себя газ, пыль, звёзды и любое другое приблизившееся вещество, включая другие чёрные дыры. Поглащаемое вещество становится очень горячим. Температура внутри черной дыры соответствует 2 триллионам градусов Цельсия. При такой экстремальной температуре обычное вещество полностью разрушается и превращается в "суп" из субатомных частиц. В этом состоянии вещество начинает излучать с очень высокой энергией по мере того, как погружается в черную дыру. Эта энергия включает и рентгеновское излучение, которое способны обнаруживать телескопы на околоземной орбите.
Пространство и время искривляются гравитационным полем вблизи черных дыр. Поэтому выдать черную дыру может лишь необычное поведение объектов, которые подпали под ее грандиозное поле тяготения до достижения ими горизонта событий. Как правило, «звезды смерти» определяют в двойных звездных системах по активному выбросу рентгеновского излучения, которое производится при поглощении черной дырой звезды-компаньона, а также по необычным траекториям движения звезд вокруг невидимого мощного гравитационного центра.
1. Это составное изображение галактики М81 включает рентгеновские лучи, полученные обсерваторией Чандра (синий), оптические данные, полученные телескопом Хаббл (Hubble) (зеленый), инфракрасные лучи, полученные телескопом Спитцер (Spitzer) (розовый), и ультрафиолетовые данные, полученные телескопом GALEX (пурпурный). Показан крупный план изображения из обсерватории Чандра, где спряталась сверхмассивная черная дыра, в 70 миллионов раз превышающая массу Солнца. Новое исследование в сочетании с подробными теоретическими моделями показывает, что гигантская черная дыра в галактике М81 питается так же, как и черные дыры, масса которых только в десятки раз превышает массу Солнца».2. Сверхмассивная черная дыра в центре галактики
Чёрные дыры могут вращаться очень быстро, увлекая за собой пространство вокруг них. Когда много вещества падает на чёрную дыру, оно закручивается как в водовороте. С помощью рентгеновских и радио-наблюдений астрономы могут быть свидетелями таких событий, в том числе и струй излучения из чёрных дыр, но они не могут увидеть саму чёрную дыру. Таким образом, черные дыры могут испускать вещество и излучение, и заметно это будет лишь в случае, дыры с относительно небольшой массой. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу.
Звезда, поглощаемая черной дырой, уже потеряла 10% своей массы. Небесный объект получил обозначение SW1644+57. Вспышка была зафиксирована впервые космическим телескопом SWIFT, который предназначен для поиска мощных источников гамма-лучей среди миллиардов звезд. Свет от этой звезды шел до Земли 3,8 млрд лет.
Кандидат в черные дыры Лебедь X-1
Теоретически возможность существования черных дыр следует из некоторых точных решений уравнений Эйнштейна, а в настоящее время получены подтверждающие это фактические данные. На сегодняшний день теоретическая физика черных дыр достаточно сложна, чтобы считать вопрос окончательно закрытым. Самое главное, что черные дыры невозможно наблюдать непосредственно в телескоп: они невидимы. Остается лишь довольствоваться некоторыми косвенными астрофизическими признаками, указывающими на возможность наличия этих объектов.
Как должно выглядеть падение в чёрную дыру? Тело, свободно падающее под действием сил гравитации дыры, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих - в тангенциальном. Величина этих сил растёт и стремится к бесконечности. В некоторый момент времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине, сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность – бесконечно малая точка, где достигаются бесконечно большие значения плотности и тяготения) уже нельзя, даже двигаясь со скоростью света.
Процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя будет выглядеть иначе. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Когда тело начнёт приближаться к горизонту событий, из-за гравитационного поля и эффекта гравитационного замедления времени будет казаться, что тело — в чрезвычайно сплющенном виде — будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. В итоге удалённый наблюдатель увидит, что свет и объект исчез. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Однако повлиять на падающее тело удалённый наблюдатель уже не сможет.
Черные дыры являются самыми грандиозными источниками энергии во Вселенной. Мы, вероятно, наблюдаем их в далеких квазарах, во взрывающихся ядрах галактик.
Сверхмассивные черные дыры в центре галактик
По современным представлениям, есть четыре сценария образования чёрной дыры:
- Гравитационный коллапс (катастрофическое сжатие) массивной звезды (красного на конечном этапе её эволюции. Современная теория звездной эволюции и наши знания о звездном населении Галактики указывают, что среди 100 млрд. ее звезд должно быть порядка 100 млн. черных дыр, образовавшихся при коллапсе самых массивных звезд.
- Коллапс центральной части спиральных и эллиптических галактик. Например в центре нашей Галактики находится чёрная дыра Стрелец A, вокруг которой вращается меньшая чёрная дыра.
- Формирование первичных чёрных дыр в момент Большого Взрыва.
- Возникновение микроскопических квантовых чёрных дыр в ядерных реакциях высоких энергий. Время их существования крайне мало.
Астрономы обнаружили относительно малую черную дыру в центре галактики NGC 4395 в созвездии Гончих Псов, которая излучает в рентгене так же интенсивно, как черные дыры обычных размеров. Это первая галактика, в центре которой найдена маленькая, но очень эффективная сверхмассивная черная дыра. Сверхмассивные черные дыры излучают во Вселенную гораздо больше энергии, чем все звезды вместе взятые. Многие из них сформировались не так давно. Исследователи считают, что, по крайней мере, 15 % всех сверхмассивных черных дыр сформировалось, когда возраст Вселенной составлял половину ее сегодняшнего возраста. И в настоящее время черные дыры продолжают расти. Это противоречит существовавшей до сих пор теории, основанной на связи между размерами черных дыр и содержащих их галактик и предполагающей, что черные дыры сформировались тогда, когда формировались галактики.
Массы сверхмассивных черных дыр, образующихся в результате коллапса газовых облаков, от миллионов до миллиардов раз превышают массы звезд, а их размеры сравнимы с размерами нашей Солнечной системы. Астрономы полагают, что большинство галактик, включая и нашу собственную, содержат в центре сверхмассивные черные дыры.
1. Сверхмассивная черная дыра, поглощающая звезду, в представлении художника;2. Коллапсирующая сверхмассивная черная дыра в центре галактики, в представлении художника
Таким образом, черная дыра рассматривается как область в пространстве-времени, в которой бесследно исчезает все, что только попадет внутрь. Вернуться из черной дыры на основании общепринятых законов физики невозможно. Черные дыры — совершенно исключительные объекты, не похожие ни на что, известное до сих пор. Это не тела в обычном смысле слова и не излучение. Это дыры в пространстве и времени, возникающие из-за очень сильного искривления пространства и изменения характера течения времени в стремительно нарастающем гравитационном поле.
Без сомнения, из всех известных человеку космических явлений черная дыра на сегодняшний день является самой разрушительной силой, однако, как ни удивительно, она может оказаться полезной. Довольно популярна теория о том, что черная дыра — это своего рода природное устройство для путешествия в удаленные области Вселенной, что предстоит подтвердить или опровергнуть нашим далеким потомкам.
Ниже помещаю видеоролики, которые показывают и рассказывают о черных дырах.
Как мы видим черную дыру?
Esocast 2. Исследование черной дыры в центре Млечного Пути
Эти видеоролики можно скачать с YOUTUBE по адресу http://www.youtube.com/watch?v=GHxArxeyAyQ и http://www.youtube.com/watch?v=UPrjrsyEA7w
Здесь указаны адреса еще маленьких видеороликов о черных дырах, которые также можно скачать с YOUTUBE:
Ниже для любознательных даны ссылки с более подробной информацией о черных дырах:
Книги:
Публикации:
Георгий КозулькоБеловежская пуща
(Свои отзывы, мысли, идеи, вопросы, замечания или несогласия пишите в комментариях внизу (анонимным пользователям при отправке комментария иногда необходимо еще в отдельном окошке ввести кодовый английский текст с картинки) или присылайте на мой электронный адрес: [email protected])
(Этот пост в Интернете находится по адресу http://bp21.livejournal.com/89849.html)
bp21.livejournal.com
комиксы, гиф анимация, видео, лучший интеллектуальный юмор.
Физик зафиксировал излучение Хокинга от аналоговой черной дыры
Черная дыра искажает Большое Магелланово Облако (моделирование)Джефф Штейнхауэр, физик из Израильского технологического института, зафиксировал самый достоверный на сегодняшний день аналог излучения Хокинга. В эксперименте ученый создал так называемую «глухую дыру» — акустический аналог черной дыры. Наблюдая за ее поведением, физик обнаружил, что на специальной границе, за которую не могут распространяться колебания материи «глухой дыры», рождаются пары квантов колебаний, движущихся в разные стороны. Более того, эти пары оказываются квантово-запутанными.
В отличие от предыдущих экспериментов с аналоговыми черными дырами, «запрещенное» излучение в работе Штейнхауэра возникает самопроизвольно и имеет квантовую природу: оно рождается из флуктуаций вакуума, как и излучение Хокинга. По словам Леонарда Сасскинда, если результат получит подтверждение, то он станет «триумфом Хокинга, как открытие бозона Хиггса стало триумфом для Питера Хиггса и его коллег». Исследование опубликовано в журнале Nature Physics, кратко о нем сообщает редакционный материал Nature
Традиционное объяснение природы излучения Хокинга связано с флуктуациями вакуума на горизонте событий черной дыры. Это такая область, в которой гравитационное поле объекта оказывается настолько сильным, что даже свет не может ее покинуть. Природа квантовой механики не позволяет существовать идеальному нулевому вакууму — этому мешает принцип неопределенности Гейзенберга. В результате в вакууме непрерывно рождаются и аннигилируют пары виртуальных частиц. Если одна из частиц такой пары окажется затянутой «под» горизонт, то вторая частица станет реальной и покинет черную дыру. При этом эта пара частиц — внутри и снаружи черной дыры — окажется квантово-запутанной.
Излучение Хокинга ведет к тому, что со временем черная дыра испаряется. Причем, чем меньше сверхплотный объект, тем быстрее это произойдет. С этим связан важный парадокс, указывающий на сложность объединения общей теории относительности и квантовой механики — парадокс потери информации. Подробно о нем рассказывал Эмиль Ахмедов в серии интервью N+1 (1, 2). Однако зафиксировать излучение напрямую, от известных кандидатов в черные дыры, невозможно. Оно подобно тепловому излучению, и чем массивнее звезда, тем меньше температура излучения. Так, для черной дыры с массой Солнца температура излучения Хокинга составляет 0,0000001 кельвина — на 7 порядков меньше, чем заполняющее Вселенную реликтовое излучение.
Поэтому для того, чтобы подтвердить существование излучения Хокинга, ученые используют модельные объекты — аналоговые черные дыры. Физики обратили внимание, что при правильной постановке эксперимента волны звука или других колебаний могут вести себя подобно световым волнам вблизи черной дыры.
В роли аналоговых черных дыр выступали как макро-, так и микроскопические системы. К примеру, в 2008 году физики под руководством Ульфа Леонхардта моделировали волны хокинговского излучения с помощью волн в бассейне, распространявшихся против сильного течения. Тогда ученым удалось зафиксировать следы волн, менявших свою частоту с положительной на отрицательную. Позднее та же группа использовала оптические волокна с нелинейными свойствами для тех же целей.
Автор новой работы, Джефф Штейнхауэр, пошел дальше и применил для моделирования горизонта событий конденсат Бозе-Эйнштейна из охлажденных до сверхнизких температур атомов рубидия. Эксперименты со звуковыми аналогами черных дыр — «глухими дырами» — физик начал еще в 2009 году.
joyreactor.cc
Как выглядит черная дыра? Новое удивительное изображение
Астрономы впервые опубликовали гипотетические изображения черной дыры и сообщили, что, по их представлениям, этот загадочный космический объект должен выглядеть именно так. Однако следует признать, что никто из них никогда не сможет проверить свою теорию на практике.
Черные дыры в визуальном смысле не оправдывают в полной мере свое название - эти объекты на самом деле невидимы, так как даже свет, попавший в них, не может избежать их гравитационного поля.
Однако ученые полагают, что границы черной дыры, то есть точка невозврата, которая называется горизонт событий, должна быть видимой из-за радиации, излучаемой материалом, который поглощается.
На 221-й встрече Американского Астрономического Общества ученые из Университета Калифорнии в Беркли представили изображение, сделанное с помощью компьютера, сообщив, что именно так должна выглядеть черная дыра:
Черная дыра Млечного пути (фото)
Изображение черной дыры Млечного пути, представленное Айманом Бином Камруддином из Калифорнийского Университета
Как видно на картинке, реальная черная дыра с границами имеет форму полумесяца, а вовсе не бесформенного объекта или просто черного шара, как многие изображали ее ранее.
Окружающая черную дыру среда имеет довольно интересную физику и излучает свечение, сказали астрономы. Технически мы не видим саму черную дыру, но можем представить, как выглядит горизонт событий.
Это изображение не просто догадки астрономов и их богатое воображение. Картинку создали на основе модели, которую ученые используют для интерпретации изображений, созданных с помощью нового оборудования, которое сегодня находится в процессе разработки.
Представления художников о черной дыре обычно весьма примитивны
Новый проект под названием Телескоп "Горизонт Событий" будет собирать данные по всемирной сети, полученные радио телескопами из разных уголков света, чтобы затем можно было изобразить объекты, которые являются слишком крошечными, чтобы их можно было увидеть, или вообще не доступны глазу человека.
Новый телескоп уже сделал ряд предварительных измерений и собрал первые данные относительно черной дыры в центре нашей галактики Млечного пути, известной как Стрелец A.
Исследователи проверили полученные данные с помощью разных моделей и пришли к выводу, что черная дыра, вернее, то, что ее окружает, имеет форму полумесяца, а не чего-то другого. Это форма отражает "пончикообразный" диск из материала, который вращается вокруг черной дыры и в одном месте засасывается в нее.
Газ вращается вокруг черной дыры, а сторона, которая направлена в сторону наблюдателей с Земли, будет казаться ярче с силу особых космических процессов. Другая сторона при этом будет более темной. В центре полумесяца находится темный круг, который представляет собой саму черную дыру.
Центр Млечного пути с черной дырой Стрелец А. Снимок сделан с помощью космического телескопа "Чандра" НАСА
Первые изображения черной дыры Стрельца А, по мнению астрономов, помогут им определить массу этого объекта, который находится в центре нашей галактики, а также проверить некоторые аспекты общей теории относительности, которые остаются под сомнением.
Автор снимка А. Б. Камруддин считает, что получить изображение черной дыры – уже удивительное событие, если учесть, что этого никто никогда не видел.
Другие уникальные изображения космических объектов и черных дыр
Многие космические объекты с помощью современной техники можно заснять на фото. Эти снимки и изображения представляют большую ценность для астрономов, которые с их помощью делают многие открытие. Предлагаем вам познакомиться с самыми любопытными снимками, сделанными с помощью телескопов за последние пару десятков лет.
Астрономы опубликовали снимки очень далеких уголков космоса, сделанные с помощью космического телескопа НАСА "Спицер". На снимках изображены очень далекие объекты, в том числе супермассивные черные дыры, вернее не сами дыры, а окружающий их материал.
Рентгеновское излучение, исходящее из нагретого материала, падающего в черную дыру
Следы черной дыры во Вселенной
Яркий "зигзаг" справа - вовсе не работа художника-авангардиста, а подпись супермассивной черной дыры в центре галактики М84, полученная с помощью спектрографа космического телескопа. Эта подпись представляет собой движение газа, пойманного гравитационными силами черной дыры. Слева показано изображение центра галактики, где предположительно "обитает" черная дыра.
Ядро галактики М84, снятое космическим телескопом НАСА "Хаббл"
Черная дыра в космосе
Гравитационные силы предполагаемой черной дыры образуют диск, похожий на тарелку для игры во фрисби, который состоит из холодного газа и находится в центре галактики. Позже наблюдения с помощью "Хаббла" подтвердили существование огромных черных дыр, которые поглощают все вокруг, даже свет.
Кольцо вокруг предполагаемой черной дыры галактики NGC 4261
Звездное скопление с черной дырой
На этом снимке видно звездное скопление G1, крупный шар из света, который состоит из не менее 300 тысяч старых звезд. Этот объект также часто называют скоплением Андромеды, так как оно находится в галактике Андромеда, ближайшей спиральной галактике от Млечного пути.
Шаровое звездное скопление в соседней галактике. Снимок сделан с помощью космического телескопа "Хаббл" в 1996 году
Большая черная дыра
Гигантская черная дыра может "выпускать" огромные пузыри горячего газа в космическое пространство. По крайней мере, такое странное свойство замечено у черной дыры в центре галактики NGC 4438. Эта галактика относится к группе пекулярных галактик, то есть галактик, имеющих неправильную форму. Она расположена в районе созвездия Девы и находится в 50 миллионах лет от нас. Пузыри на самом деле представляют собой диск из материала, поглощаемого черной дырой.
Черная дыра, "надувающая" невероятно горячие пузыри газа, которые являются следствием больших аппетитов черной дыры. Пузырь имеет диаметр около 800 световых лет
Эллиптическая галактика с массивной черной дырой
Этот снимок изображает центральную часть эллиптической галактики М87 с сопутствующей ей струей. Увеличение яркости галактики к центру, что можно заметить на изображении, говорит о том, что звезды сконцентрированы в районе ядра и удерживаются там гравитационным полем массивной черной дыры. Плазменная струя, которую также видно на снимке и источником которой является горячий газовый диск вокруг черной дыры, имеет длину около 5 тысяч световых лет.
Фото телескопа НАСА, сделанное 1 июня 1991 года, на котором изображен центр галактики М87 со струей
Звездное скопление с умирающей звездой
Расположенное на расстоянии около 40 тысяч световых лет от Земли в районе созвездия Пегас скопление М15 является одним из 150 известных шаровых звездных скоплений, которые образуют гигантские светящиеся кольца и окружают нашу галактику Млечный путь. Все эти скопления содержат сотни тысяч древних звезд. Если бы мы жили где-то в центре этого скопления, наше небо сияло бы тысячами звезд, которые горели бы и днем, и ночью.
Звездное скопление М15 с умирающей звездой в центре. Снимок телескопа "Хаббл", который показывает скопление в реальных цветах
Источникp-i-f.livejournal.com