Как связаны между собой хромосомы, ДНК, гены? Днк ген


Молекула ДНК, ген, хромосома | натуральная медицина и здоровье человека

молекула ДНКВсе живые существа на нашей планете существенно отличаются друг от друга из-за того, что каждому виду пришлось приспосабливаться, выживать и размножаться в разных условиях: на суше и в воде, в тропиках или во льдах. Но при этом все внутренние базовые механизмы, определяющие строение всех живых существ, во многом очень похожи между собой.

Все живые организмы состоят их клеток. Примитивные организмы состоят из одной клетки, другие из большого количества. В каждой клетке любого из живых существ содержится информация, которая необходима для создания клетки, размножения или видоизменения. Эта информация содержится в нуклеиновых кислотах, которые находятся в каждой клетке. Клетка – это структурная единица организма. Организм человека состоит примерно из 1014 клеток. Все клетки имеют принципиально одинаковое строение, но функции у них разные. Именно нуклеиновые кислоты определяют нормальную жизнедеятельность клеток и всего организма. Любые отклонения в строении нуклеиновых кислот приводят к изменению клеточной организации, к изменению физиологических процессов и жизнеспособности клеток в целом. Нуклеиновая кислота это биологический полимер, который состоит из «кирпичиков» — нуклеотидов.

Структура нуклеотида

молекула ДНКНуклеотиды представляют собой тоже сложные строение, которое состоит из трех частей. Это азотистые соединения, углеводная единица (сахар) и фосфорная кислота. Различают 4 вида нуклеотидов по количеству азотистых оснований — аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Между собой нуклеотиды соединяются химической связью, которая называется фосфорэфирная связь.   Соединенные фосфорэфирной связью нуклеотиды формируют длинную нить. Соединенные в определенном порядке две такие линии, состоящие из нуклеотидов, формируют большую спиральную молекулу дезоксирибонуклеиновой кислоты – ДНК.

Строение молекулы ДНК

Как было отмечено выше молекула ДНК состоит из двух цепей нуклеотидов, которые закручены спирально друг против друга. Спиральное закручивание нитей нуклеотидов дает возможность компактно разместить их на небольшом участке. Интересным есть и тот факт, что нуклеотиды в двух цепях расположены комплементарно. Напротив друг от друга могут располагаться только определенные типы нуклеотидов (перед аденином всегда стоит тимин, а цитозин всегда напротив гуанина). Такие пары нуклеотидов называют комплементарными. Комплементарные пары образуют химическую связь.

В развернутом виде длина всей ДНК, заключенной в ядро клетки составляет 5 метров. Кроме этого, спиральные нити нуклеотидов закручиваются на «катушки» — гистоновые белки. Считывание генетической (наследственной) информации всегда происходит только с развернутых нитей ДНК! В случае возникновения считывания информации с молекулы ДНК происходит процесс раскручивания спиральных нитей нуклеотидов с гистоновых белков. ДНК — это библиотека информации. Предположим, организму требуется определенный белок – инсулин. Для его синтеза определенные клетки высвобождают в кровь определенные белки, которые достигают фабрики инсулина поджелудочной железы. Эти сигнальные белки получают другие белки, находящиеся в ядре клетки и дают команду расплести тот участок молекулы ДНК, который кодирует инсулин и начинается процесс синтеза этого фермента. При поступлении нужного количества инсулина в клетки поджелудочной железы поступают другие белки. Они дают сигнал об остановке сигнала синтеза инсулина. Другими словами ген это книга, которую читатель изучил и выполнил определенную инструкцию и после этого вернул ее в библиотеку. В состав ДНК входят гены.

Что такое ген

Строго определенный участок молекулы ДНК, в котором находится строго определенное число нуклеотидов, расположенных в свою очередь в строго определенной комбинации называется геном. Следует отметить, что конкретному гену отведено конкретное место в молекуле ДНК, которое поменять нельзя. Для каждого гена определенная последовательность нуклеотидов является уникальной. Гены определяют цвет глаз, волос, группу крови и множество других функций организма человека.

ДНК человека содержит от 25 до 40 тысяч генов. ДНК червяка, к примеру, от 12 до 20 тысяч генов.

Последовательность нуклеотидов в генах разных видов живых существ существенно отличается друг от друга. Влияние внешней среды и ряд других факторов, многие из которых пока остаются неизвестными, могут менять  последовательность нуклеотидов, а следовательно изменять и гены. Гены в свою очередь влияют на кодирование белков. Данный процесс принято называть мутацией. Некоторые мутации повышают приспособленность к окружающей среде, а некоторые представляют опасность для жизни: это может быть недоразвитие внутренних органов или деформация скелета

Что такое хромосома?

Совокупность всех генов, какого либо живого существа называют геномом. Для более компактного расположения генома в ДНК Природа разбила геном на своеобразные молекулы ДНК. Геном клетки человека разбит на 46 пар молекул ДНК. Одна такая пара молекул ДНК называется хромосомой. Каждой такой паре молекул ДНК (хромосоме) присущ определенный набор генов. Различают хромосомы по длине и форме. Наиболее распространенные формы хромосом бывают в виде Х или Y.  Две одинаковые хромосомы по форме называются парными.  Таких в клетке организма человека насчитывается 23 пары.  из рисунка видно, что относительно после точки пересечения одни концы нитей длиннее, а другие короче. Хромосомы между собой отличаются по выполняемым функциям и размерам. Часть хромосом определяют поведенческие и внешние признаки особи. Другие – определяют, кем будет человек мужчиной или женщиной. Такие хромосомы называют половыми–  Х (икс) и У (игрек). Сочетание хромосом ХХ (икс — икс) – создают женщину, а если ХУ (икс — игрек) – получается мужчина. Повреждения хромосом называют мутациями. Мутации, которые приводят к болезням, называют отрицательными, к образованию полезных свойств – положительными.

Что такое РНК (рибонуклеиновая кислота)

молекула ДНКВ природе существует еще один вид нуклеиновых кислот – РНК (рибонуклеиновая кислота). По строению РНК отличается от ДНК тем, что она представлена одной нитью нуклеотидов. Значение РНК в клетке заключается в том, что она служит для переноса информации с ДНК в определенные места клетки, где происходит синтез белков. РНК, в отличие от ДНК, может проходить через мембрану ядра клетки. ДНК может находиться только в ядре клетки. 

Related posts:

muvrasil.ru

ДНК - ген - геном

В «домолекулярную» эпоху развития биологии наследственную основу отождествляли с кариотипом - набором хромосом. Ныне сочли возможным приравнять процессы наследственности к процессам синтеза белка, осуществляющимся на базе нуклеиновых кислот - ДНК и РНК. Совокупности ДНК стали рассматривать в качестве материального субстрата наследственности.

Насколько правомочно отождествлять субстраты для синтеза белка и процессы их синтеза с субстратами и процессами наследственности - это особый вопрос. Но не вызывает сомнения, что правильные представления о строении комплексов нуклеиновых кислот, содержащихся в клетках или в неклеточных организмах, имеют важное значение для теории наследственного осуществления. Поэтому уместно специально упомянуть об изменениях, которые претерпели представления в этой области.

Напомним, что шифр о различных типах белков закодирован в разнообразии мономеров ДНК - нуклеотидов. Группа нуклеотидов, кодирующая информацию об одном белке, получила наименование «ген». Совокупность всей ДНК (всех генов) клетки образует генотип (геном) и является, по общепринятым представлениям, наследственной основой клетки.

В настоящее время термин «геном» (генотип) употребляют в узком и в широком смыслах. В первом случае имеют в виду генетическую формулу определенного организма - перечень генов со всеми их вариантами (аллелями). В более широком смысле генотип - это вся наследственная основа клетки, то есть вся ее ДНК. А как быть с генотипом организмов, состоящих из комплексов клеток?

Выделяют четыре основных типа организмов, соответствующих четырем уровням организации живой материи,- доклеточные, одноклеточные, многоклеточные и кормусные. В первых двух случаях генотип однозначно соответствует сумме ДНК, имеющихся у вируса, фага, одноклеточного организма. (У ряда вирусов «молекулой наследственности» является РНК.) Любая содержащая ядро клетка многоклеточного или кормусного организма тотипотентна - содержит полностью аналогичную информацию о белках, о формообразовательных началах. Поэтому понятие «генотип» в одном и том же объеме применимо и к отдельной клетке, и ко всему организму, из этих клеток состоящему.

Любое научное понятие нуждается в анализе и конкретизации. Не обошли своим вниманием исследователи и представление о генотипе. Еще недавно ограничивались делением его элементов - ДНК и РНК на два основных комплекса: ядерный (нуклеотип) и цитоплазматический (цитотип). Со временем было осознано, что такая классификация недостаточно гибка. Исходя из новых данных, полученных к середине 70-х годов, М. Д. Голубовский, Л. И. Корочкин, С. Г. Инге-Вечтомов и другие обосновывают представления об облигатном (ОК) и факультативном (ФК) компонентах генома. Каждый из них можно обнаружить как в пределах нуклеотипа, так и в цито-типе.

mirgenetiki.ru

Как связаны между собой хромосомы, ДНК, гены?

ДНК - это химическое вещество, тот материал, из которого состоят хромосомы. Каждая хромосома состоит из одной молекулы ДНК. Таким образом в ядре соматической клетки человека имеется 46 молекул ДНК. Однако ДНК и хромосомы - это не тождественные понятия. Помимо ядра, ДНК содержится  в митохондриях, а у растений - ещё и в хлоропластах. Такая ДНК организована не в виде хромосом, а в виде мелких кольцеобразных структур, как у бактерий (сходство с организацией генома бактерий там прослеживается ещё по ряду признаков, вообще, считается, что нынешние митохондрии и пластиды - это бывшие бактерии, которые сначала существовали в эукариотической клетке на правах её симбионта, а со временем стали её частью), при этом в митохондии или пластиде может содержаться от 1 до нескольких десятков таких кольцеобразных ДНК.

В любой молекуле ДНК - линейной хромосоме или кольцевой из митохондрий или пластид - зашифрована информация о последовательности какого-то полипептида (упрощённо можно сказать, что белка, хотя это не совсем так, поскольку синтезированный белок, чтобы обрести свою функцию, после синтеза ещё "дозревает", при этом из молекулы могут ферментативно вырезаться какие-то участки белка, то есть та последовательность, которая зашифрована в ДНК, - это не редактированная последовательность исходного полипептида, из которого белок потом ещё будет формироваться с помощью некоторых химических преобразований). Так вот участок ДНК, с которого синтезируется какой-то конкретный полипептид, - это ген. В каждой хромосоме и в каждой кольцевой молекуле ДНК имеется разное количество генов: в Х-хромосоме человека (одна из самых крупных), к примеру, около 1500 генов, в Y-хромосоме человека их меньше сотни.

Также нужно понимать, что хромосома (либо кольцевая ДНК) - это отнюдь не только гены. Помимо них в любой молекуле ДНК есть и некодирующие участки, причём доля этих некодирующих участков различна у разных видов. Например у бактерий на некодирующую часть генома приходится где-то 20%, а у человека - 97-98%. Причём некодирующие участки есть и посреди генов (интроны) - когда информация с генов переписывается на м-РНК, участки РНК, синтезированные с интронов, вырезаются, и белок синтезируется уже с отредактированных молекул РНК. Но большая часть некодирующей ДНК сосредоточена между генами. Роль этой некодирующей ДНК не до конца изучена (тут, если нужно настолько подробно, можно глянуть в википедию), но считается, что совсем без неё клетка не может. Ну и мутации эта некодирующая часть накапливает гораздо быстрее, чем кодирующая, и поэтому в судебной медицине для идентификации личности используется некодирующая ДНК (поскольку гены - довольно консервативные участки ДНК, мутации в них тоже происходят, но не с такой частотой, чтобы там накапливалось достаточное количество нуклеотидных замен для достоверное идентификации двух индивидуумов).

thequestion.ru

что такое гены, ДНК, в каком году расшифровали

Что такое геном человека: расшифровка

Принципы наследственности были обозначены впервые в 1900-х годах, когда естественные науки получили развитие и ввели в обиход (с полным определением) понятия геном человека и ген, в частности. Их исследование дало возможность ученым открыть секрет наследственности, и стало толчком для изучения наследственных болезней и их природы.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Геном человека: общие понятия

Что такое геном человека: расшифровкаЧтобы разобраться, что такое гены и процессы наследования организмом определенных свойств и качеств, следует знать и понимать термины и основные положения. Краткое изложение основных понятий даст возможность более глубоко вникнуть в данную тему.

Гены человека – это части цепи ДНК (дезоксирибонуклеиновая кислота в виде макромолекул), которая задает последовательность определенных полипептидов (семейства аминокислот) и несет основную наследственную информацию от родителей к детям.

Говоря простым языком, определенный ген содержит информацию о строении белка и несет ее от родительского организма к детскому, повторяя строение полипептидов и передавая наследственность.

Геном человека – это обобщающее понятие, обозначающее некоторое количество определённых генов. Впервые его ввел Ганс Винклер в 1920-м, однако спустя время несколько изменилось его изначальное значение.

Вначале он обозначал определенное количество хромосом (непарных и одинарных), а спустя время выяснилось, что в геноме 23 парных хромосомы и митохондриальная дезоксирибонуклеиновая кислота.

Генетическая информация – это данные которые заключены в ДНК, и несущие порядок построения белков в виде кода из нуклеотидов. Стоит также упомянуть, что подобная информация находится внутри и вне границ клетки.

Что такое геном человека: расшифровкаГены человека исследовались на протяжении многих лет, за которые было претворено в жизнь множество экспериментов. До сих пор проводятся опыты, которые дают ученым новую информацию.

Благодаря последним исследованиям стало ясно, что не всегда четкая и последовательная структура наблюдается в дезоксирибонуклеиновых кислотах.

Существуют так называемые прерывистые гены, связи которых прерываются, что делает неверными все предыдущее теории о постоянстве этих частиц. В них время от времени происходят изменения, которые влекут за собой изменения и в структуре дезоксирибонуклеиновых кислот.

История открытия

Впервые научный термин был обозначен только в 1909 году ученым Вильгельмом Иогансеном, который был выдающимся ботаником в Дании.

Важно! В 1912 году появилось слово «генетика», которое стало названием целого отдела биологии. Именно он занимается изучением генов человека.

Исследование частицы началось задолго до 20 века (данных в каком точно году нет), и складывалось из нескольких этапов:

  1. В 1868 году известный ученый Дарвин выдвинул гипотезу о пангенезе. В ней он описывал отделение геммулы. Дарвин считал, что геммула – это определенная часть клетки, из которой затем образовываются половые клетки.
  2. Через несколько лет Гуго де Фриз сформировал свою собственную теорию, отличную от дарвиновской, в которой описал процесс пангенеза внутри клеток. Он считал, что в каждой клетке есть частица, и она ответственна за некоторые свойства наследования вида. Он обозначил эти частицы как «пангены». Отличия двух гипотез заключается в том, что Дарвин считал геммулы частями тканей и внутренних органов, независимо от вида животного, а де Фриз представлял свои пангены как признаки наследования внутри конкретного вида.
  3. В. Иогансен в 1900 году определил наследственный фактор как ген, взяв вторую часть от термина, использованного де Фризом. Он использовал слово для определения «зачатка», той частицы, которая является наследственной. При этом ученый подчеркивал независимость термина от ранее выдвинутых теорий.

Изучением наследственного фактора уже достаточно давно занимались биологи и зоологи, но только с начала 20-го века генетика начала развиваться с огромной скоростью, открывая для людей тайны наследования.

Расшифровка генома человека

С того момента, как ученые открыли наличие в организме человека гена, они стали исследовать вопрос информации, заключенной в нем. Уже более 80 лет ученые пытаются расшифровать ее. На сегодняшний день они добились в этом значительных успехов, что дало возможность влиять на наследственные процессы и менять структуру клеток у следующего поколения.

История расшифровки ДНК состоит из нескольких определяющих моментов:

  1. 19 век – начало изучения нуклеиновых кислот.
  2. 1868 год – Ф. Мишер впервые выделяет из клеток нуклеин или ДНК.
  3. В середине 20 века О. Эвери и Ф. Гриффит выясняют при помощи опыта, проведенного на мышах, что за процесс трансформации бактерий отвечает именно нуклеиновая кислота.
  4. Первый человеком, кто показал миру ДНК стал Р. Франклин. Спустя несколько лет после открытия нуклеиновой кислоты он делает фотографию ДНК, случайным образом используя рентген при исследовании структуры кристаллов.
  5. В 1953 году дано точное определение принципу воспроизводства жизни у всех видов.

Внимание! С того времени, как впервые общественности предоставили двойную спираль ДНК, произошло множество открытий, давших возможность понять природу ДНК и механизмы ее работы.

Что такое геном человека: расшифровкаЧеловеком, который открыл ген, принято считать Грегора Менделя, впервые обнаружившего определенные закономерности в наследственной цепи.

А вот расшифровка ДНК человека произошла на основе открытия другого ученого – Фредерика Сенгера, который разработал методы чтения последовательностей белковых аминокислот и последовательность построения самой ДНК.

Благодаря работе множества ученых за три последних века были выяснены процессы формирования, особенности, и сколько генов находится в геноме человека.

Содержание программы «Геном человека»

В 1990 году начался международный проект «Геном человека», которым руководил Джеймс Уотсон. Его целью было выяснить, в какой последовательности выстраиваются нуклеотиды в ДНК, и выявить около 25 000 генов в человеке. Благодаря этому проекту человек должен был получить полное представление о формировании ДНК и расположению всех его составляющих частей, а также механизм построения гена.

Стоит уточнить, что программа не ставила своей задачей определить всю последовательность нуклеиновой кислоты в клетках, а лишь только некоторых областей. Началась она в 1990 году, но только в 2000 был выпущен черновик работы, а полное исследование завершено — в 2003 году. Исследование последовательности длиться до сих пор и 8% гетерохроматиновых областей все еще не определены.

Цели и задачи

Как любой научный проект, «Геном человека» ставил перед собой конкретные цели и задачи. Изначально ученые собирались выявить последовательности 3 млрд нуклеотидов и более. Затем отдельные группы исследователей выразили желание попутно определить также последовательность биополимеров, которая бывает аминокислотной или нуклеотидной. В итоге главные цели проекта выглядели следующим образом:

  1. Создать карту генома;
  2. Создать карту человеческих хромосом;
  3. Выявить последовательность формирования полипептидов;
  4. Сформировать методологию хранения и анализа собранной информации;
  5. Создать технологию, которая поможет в достижении всех указанных выше целей.

Данный список задач упускает не менее важную, но не такую очевидную – это изучение этических, правовых и социальных последствий подобных исследований. Вопрос наследственности может вызывать разногласия среди людей и повлечь серьезные конфликты, поэтому ученые поставили за цель обнаружить решения этих конфликтов до их возникновения.

Достижения

Что такое геном человека: расшифровкаНаследственные последовательности – это уникальное явление, которое наблюдается в организме каждого человека в той или иной форме.

Именно поэтому все данные, которые опубликовали исследователи проекта, не имеют точной и определенной последовательности. Несмотря на это, главным достижением является выполнение всех поставленных целей.

Проект достиг всех поставленных задач раньше, чем исследователи предполагали. К концу проекта они расшифровали около 99,99 % ДНК, хотя ученые ставили перед собой задачу секвенировать только 95% данных. Сегодня, несмотря на успех проекта, остаются все еще неисследованные участки дезоксирибонуклеиновых кислот.

В итоге исследовательской работы было определено сколько генов в организме человека (около 20—25 тыс. генов в геноме), и все они охарактеризованы:

  • количество;
  • расположение;
  • структурно-функциональные особенности.

Геном человека — исследования, расшифровка

 

Расшифровка человеческого генома

Вывод

Все данные будут подробно изложены в генетической карте человеческого организма. Претворение в жизнь такого сложного научного проекта дало не только колоссальные теоретические знания для фундаментальных наук, но и оказало невероятное влияние на само понимание наследственности. Это в свою очередь, не могло не отразиться на процессах предупреждения и лечения наследственных болезней.

Данные, полученные учеными, помогли ускорить другие молекулярные исследования и способствовать эффективному поиску генетической основы в заболеваниях, передающихся по наследству, и предрасположенности к ним. Результаты смогут повлиять на обнаружение соответствующих лекарств для профилактики множества заболеваний: атеросклероза, сердечной ишемии, болезней психического и онкологического характера.

uchim.guru

Гены, ДНК и РНК: понятие, структура, репликация, мутации

Понятие ДНК

Дезоксирибонуклеиновая кислота (ДНК) присутствует в клетках почти всех живых существ и образует сложные последовательности — гены, которые программируют и регулируют функционирование организма.

Молекулу ДНК впервые обнаружил в 1869 году швейцарский биохимик Фридрих Мишер. Поскольку он выделил эту молекулу из ядра клетки, Мишер назвал её нуклеином (от латинского nucleus — «ядро»). Спустя несколько лет была открыта кислотная природа нуклеина, и молекула получила название нуклеиновая кислота. Но прошло ещё почти 80 лет, прежде чем двое молодых учёных поняли, как действует ДНК, раскрыв тайну её структуры.

Речь идёт об англичанине Фрэнсисе Крике (1916-2004) и американце Джеймсе Уотсоне (р. 1928), которые сделали свои революционные открытия в 1950-е годы в Кембриджском университете (Англия).

Джеймс Уотсон (слева) и Фрэнсис Крик — первооткрыватели структуры молекулы ДНК. В знак признания их заслуг в 1962 году им обоим была присуждена Нобелевская премия в области медицины

В то время ДНК являлась предметом многочисленных исследований, но никому до конца не удавалось расшифровать её структуру. Из результатов, полученных их коллегами, Крик и Уотсон знали, какие химические элементы входят в состав ДНК, но не могли уяснить, как они соединяются друг с другом. Ответ на этот вопрос дала англичанка Розалинда Франклин (1920-1958).

Розалинда Франклин была кристаллографом, а её работы по получению изображения ДНК сыграли решающую роль в расшифровке структуры «молекулы жизни»

В 1951 году Франклин работала в биофизической лаборатории Кингс-колледжа (Лондон), исследуя дифракцию рентгеновских лучей — метод, позволяющий получить молекулярное изображение химических веществ. Она использовала данный приём для изучения ДНК и расшифровала базовое строение этого химического соединения. На основе этой информации и данных, взятых из других источников, Крик и Уотсон построили первую подробную модель молекулы ДНК. Они опубликовали полученные результаты в 1953 году.

С помощью увеличительного стекла учёный изучает авторадиограмму последовательности ДНК, на основании которой он сможет определить уникальный генетический «отпечаток» данного человека

Структура ДНК

Уотсон и Крик продемонстрировали, что по своей форме молекула ДНК напоминает винтовую лестницу, образующую двойную спираль. Каждая боковина «лестницы» состоит из многочисленных молекул сахара (дезоксирибозы), соединённых группами фосфатов. Эта сахарофосфатная цепь играет роль «кирпичика» в молекуле ДНК. «Перекладины» разделены надвое, при этом каждую половинку представляет один из четырёх химических элементов, называемых основаниями: аденин (А), гуанин (Г), цитозин (Ц) или тимин (Т). Основания прочно крепятся к боковинам, но очень слабо — к середине перекладин.

Соединения аденин и гуанин имеют два кольца и относятся к пуринам, имеющим отношение к мочевой кислоте (они присутствуют в моче). Цитозин и тимин — однокольцевые соединения, называемые пиримидинами (некоторые витамины группы В имеют структуру пиримидинов). Аденин всегда объединяется в пары с тимином, а гуанин — с цитозином, формируя полные поперечины лестницы ДНК. Вместе с сахарофосфатным «каркасом» каждая пара образует нуклеотид — основную единицу ДНК.

Указанные четыре основания — важнейшая часть молекулы ДНК, так как они содержат генетический код каждой клетки. Комбинации оснований определяют время формирования различных белков и задают функции клеток организма.

Хромосомы

На этой фотографии с усиленной расцветкой показаны хромосомы человека, состоящие из цепочек ДНК и белков (изображение увеличено примерно в 4000 раз). Эти нитевидные структуры присутствуют в каждой клетке человеческого организма

Хромосомы представляют собой длинные цепочки ДНК и белков, которые, соединяясь, образуют хроматин. ДНК плотно сжата в ядре клетки, а связующие белки (гистоны) образуют структуру, известную как нуклеосома. Нуклеосомы соединяются дополнительными цепями ДНК — так называемыми связующими ДНК. Хромосомы постоянно присутствуют в ядре, но обнаруживаются только в процессе деления клетки.

Гены

Определённые последовательности пар оснований молекулы ДНК в хромосомах образуют гены. Эти единицы наследственности определяют, что новое поколение унаследует от своих предков. Например, конкретный ген отвечает за цвет глаз человека или окраску цветка у растений. Эти структуры также регулируют клеточную активность — они определяют, какие белки и когда формируются, а также количество и тип белков.

Разные клетки содержат одинаковые наборы генов, но только отдельные гены активны в каждой клетке. Так, мышечная клетка содержит те же гены, что и клетка мозга, но использует только те, что необходимы для её нормального функционирования.

Репликация

Клеточное деление происходит непрерывно. Но перед делением клетки копируют свои ДНК, чтобы обе дочерние клетки имели точно такое же количество ДНК, что и родительская. Этот процесс — репликация ДНК — включает раскручивание «лестницы» ДНК и разделение по центру каждой её «поперечины» — аналогично расстёгиванию застёжки-молнии. После этого каждая половинка может образовывать пару с комплементарными основаниями, присутствующими в протоплазме клетки в виде свободно плавающих нуклеотидов. Пары оснований соединяются, как указано выше (А с Т и Г с Ц), формируя две идентичные двойные спирали, наполовину состоящие из старой и наполовину — из новой ДНК.

Следуя инструкциям, закодированным последовательностью пар оснований на молекуле ДНК, клетки создают белки, состоящие из длинных цепочек аминокислот — полипептид, образующих сложные трёхмерные структуры. Определённые последовательности пар оснований действуют как коды для простых молекул, называемых аминокислотами.

Организм человека содержит около 20 аминокислот. Три пары оснований составляют кодон, представляющий разные аминокислоты. Поскольку имеется четыре вида связанных друг с другом оснований, число кодонов составляет 4х4х4 = 64. Аминокислоты кодируются 61 из 64 кодонов. То есть кодонов больше, чем требуется для имеющихся аминокислот, хотя все они задействованы. Одни аминокислоты (например, метионин) представлены единственным кодоном — последовательностью основания тимин-аденин-цитозин (ТАЦ). Другие — несколькими (максимум шестью) кодонами. Так, аминокислоте аргинин соответствуют кодоны ГЦА, ГЦГ, ГЦТ, ГЦЦ, ТЦТ и ТЦЦ. Три оставшихся кодона (АТТ, АТЦ и АЦТ) означают конец белковой цепочки.

Матричные РНК

Клетка следует генетическому коду в процессе транскрипции, во время которой ДНК «расстёгивается», как при описанном выше делении клетки. Однако в этом случае репликации не происходит, а закодированные в цепи ДНК инструкции передаются матричной, или информационной, рибонуклеиновой кислоте (мРНК), молекула которой подобна молекуле ДНК, но содержит другой сахар — рибозу. Кроме того, у неё иная комбинация оснований: те же пурины, что и у ДНК (аденин и гуанин), но, в отличие от последнего, здесь основание урацил заменяет пиримидиновое основание тимин.

После окончания синтеза цепь мРНК переходит из ядра в органоиды клетки — рибосомы. Здесь белки формируются из аминокислот, которые кодируются в молекуле мРНК в процессе трансляции. Фактически при синтезе белков используется РНК другого типа — транспортная (тРНК). Эта молекула соединяется с каждой отдельной аминокислотой, образуя всё удлиняющуюся цепь, которая затем становится новой молекулой белка.

Центральная догма биологии

Фрэнсис Крик назвал совокупность транскрипции и трансляции «центральной догмой биологии». Несмотря на прогресс в молекулярной биологии, его представление в целом остаётся справедливым.

Поражает способность ДНК в точности копировать себя, если учесть, например, что ядро каждой клетки организма человека содержит более 3,3 млрд. пар оснований. Но иногда ДНК не воспроизводит свою точную копию. В результате живые существа могут приобрести новые физические признаки, что в конечном итоге приводит к эволюции совершенно нового вида. Это не всегда желательно, и многие изменения ДНК (мутации) являются причинами таких болезней, как неуправляемое размножение клеток (рак), и различных генетических нарушений.

Мутации могут вызывать разные причины — от простых замен оснований в репликации ДНК до экологических факторов, таких как ультрафиолетовое излучение солнца и курение. Хотя у ДНК есть механизмы обнаружения и репарации (восстановления) повреждённых ДНК, считается, что у каждого человека присутствуют сотни унаследованных от родителей мутаций плюс в среднем ещё 30 приобретённых в течение жизни. К счастью, большинство мутаций мало влияют на наш организм, а некоторые из них могут даже улучшить его функционирование.

Раскрытие преступлений

«Отпечатки» ДНК позволяют идентифицировать комбинации оснований в её молекуле. Повторяющиеся последовательности ДНК уникальны у людей (исключение — однояйцовые близнецы), поэтому образцы ДНК могут служить средством идентификации: индивидуальные последовательности ДНК, обнаруженной на месте преступления, можно сравнить с образцами подозреваемого и почти в 100 % случаев узнать, был ли он там.

При взятии «отпечатка» ДНК очищают от образца материала-источника — лейкоцитов, спермы, костной ткани. Затем с помощью ферментов ДНК «нарезается» на фрагменты разной длины. Их кладут раздельно на слой прозрачного геля, после чего туда подаётся электрический ток.

Поскольку фрагменты ДНК имеют небольшой отрицательный заряд, они смещаются к положительному электроду. При этом чем меньше длина фрагментов, тем быстрее они двигаются, оказываясь разбросанными по поверхности геля.

Эти фрагменты попадают на нейлоновую мембрану, где их маркируют радиоактивными метками. Если к мембране поднести рентгеновскую плёнку, тёмные участки на ней будут соответствовать меченым ДНК. На проявленной плёнке чёрные полосы покажут точное расположение фрагментов ДНК на нейлоновой мембране. Подозреваемого в совершении преступления можно попросить дать образец его ДНК для сравнительного анализа. Если оба «отпечатка» совпадают, следствие получит важнейшие улики.

Проект изучения генома человека

Эти фрагменты ДНК, полученные в центре Сангера, используются сегодня для классификации генов человека

В октябре 1990 года была создана Организация по изучению генома человека (HUGO) — огромный научный институт, где работают исследователи из Европейского сообщества, США, России, Канады, Японии, Китая и ряда стран Южной Америки. Их цель — идентификация полного генетического состава, или генома, организма человека.

В ноябре 1999 года удалось достичь большого успеха, когда группа учёных центра Сангера в Кембридже (Англия) объявила о прочтении всех 34 млн. оснований, составляющих генетический материал хромосомы 22. Они опубликовали полученные данные в научном журнале «Нейчур» и поместили результаты исследований в Интернете. После завершения проекта в 2003 году учёные могли обнаруживать и описывать 99 % генсодержащих ДНК человека. Это выдающееся достижение должно помочь в лечении наследственных болезней.

Знаете ли вы?

  • Если вытянуть в линию ДНК всего лишь одной клетки человека, получится отрезок длиной 2 метра. Ширина ДНК составляет триллионные доли сантиметра, но её длина в миллионы раз превышает диаметр ядра клетки.
  • ДНК каждой клетки человека содержит около 3,3 млрд. пар оснований. Комбинации этих пар образуют гены различной величины. Длина некоторых из них равна длине примерно 1000 пар оснований, а других — до 2 миллионов пар.
  • ДНК человека почти идентична в каждой клетке его организма. Но есть два важных исключения из этого общего правила. Первое из них — эритроциты: у этих клеток нет ядра. Второе исключение — половые клетки (яйцеклетки и сперматозоиды). В них содержится вдвое меньшее количество ДНК по сравнению с другими клетками. В процессе размножения половые клетки объединяются для обеспечения полного комплекта ДНК (набора хромосом) у будущего зародыша.

Читайте также:

Гены или воспитание: что важнее

12 факторов, определяющих ум человека

Можно ли определить беременность до задержки

Медицина Аюрведа

glazastik.com

ДНК — Медицинская википедия

ДНК (Дезоксирибонуклеиновая кислота) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии. В целом структура молекулы ДНК получила традиционное, но ошибочное название «двойной спирали», на самом же деле она является «двойным винтом». Винтовая линия может быть правой (A- и B-формы ДНК) или левой (Z-форма ДНК).

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам.

Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 г. Розалинд Франклин, которая получила рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 г. от рака (Нобелевскую премию не дают посмертно).

История изучения

ДНК как химическое вещество была выделена Иоганном Фридрихом Мишером в 1869 году из остатков клеток, содержащихся в гное. Он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты Освальда Эвери, Колина Маклауда и Маклина Маккарти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечает выделенная из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (эксперимент Херши — Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени от рака Розалинд Франклин, так как премия не присуждается посмертно.

Интересно, что в 1957 году американцы Александер Рич, Гэри Фелзенфелд и Дэйвид Дэйвис описали нуклеиновую кислоту, составленную тремя спиралями. А в 1985—1986 годах Максим Давидович Франк-Каменецкий в Москве показал, как двухспиральная ДНК складывается в так называемую H-форму, составленную уже не двумя, а тремя нитями ДНК.

Структура молекулы

Нуклеотиды

Структуры оснований, наиболее часто встречающихся в составе ДНК

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид.

Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5'-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза). Пример нуклеотида — аденозинмонофосфат, у которого основанием, присоединённым к фосфату и рибозе, является аденин (показан на рисунке).

Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) — шестичленным гетероциклом.

В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований — урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК.

Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК.

Двойная спираль

В зависимости от концентрации ионов и нуклеотидного состава молекулы, двойная спираль ДНК в живых организмах существует в разных формах. На рисунке представлены формы A, B и Z (слева направо)

Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали. Остов каждой из цепей состоит из чередующихся фосфатов и сахаров. Внутри одной цепи ДНК соседние нуклеотиды соединены фосфодиэфирными связями, которые формируются в результате взаимодействия между 3'-гидроксильной (3'—ОН) группой молекулы дезоксирибозы одного нуклеотида и 5'-фосфатной группой (5'—РО3) другого. Асимметричные концы цепи ДНК называются 3' (три прайм) и 5' (пять прайм). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу).

Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу).

Ширина двойной спирали составляет от 22 до 24 Å, или 2,2—2,4 нм, длина каждого нуклеотида 3,3 Å (0,33 нм). Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы.

В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки. Белки, например, факторы транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны.

Образование связей между основаниями

Шаблон:Смотри также Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется комплементарным. Пурины комплементарны пиримидинам (то есть способны к образованию водородных связей с ними): аденин образует связи только с тимином, а цитозин — с гуанином. В двойной спирали цепочки также связаны с помощью гидрофобных взаимодействий и стэкинга, которые не зависят от последовательности оснований ДНК.

Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах.

Так как водородные связи нековалентны, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов (хеликазы) или при высокой температуре. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ — тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки.

Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например, ТАТА последовательность в бактериальных промоторах, обычно содержат большое количество А и Т.

Химические модификации оснований

Структура цитозина, 5-метилцитозина и тимина. Тимин может возникать путём деаминирования 5-метилцитозина

Азотистые основания в составе ДНК могут быть ковалентно модифицированы, что используется при регуляции экспрессии генов. Например, в клетках позвоночных метилирование цитозина с образованием 5-метилцитозина используется соматическими клетками для передачи профиля генной экспрессии дочерним клеткам. Метилирование цитозина не влияет на спаривание оснований в двойной спирали ДНК. У позвоночных метилирование ДНК в соматических клетках ограничивается метилированием цитозина в последовательности ЦГ. Средний уровень метилирования отличается у разных организмов, так, у нематоды Caenorhabditis elegans метилирование цитозина не наблюдается, а у позвоночных обнаружен высокий уровень метилирования — до 1 %. Другие модификации оснований включают метилирование аденина у бактерий и гликозилирование урацила с образованием «J-основания» в кинетопластах.

Метилирование цитозина с образованием 5-метилцитозина в промоторной части гена коррелирует с его неактивным состоянием. Метилирование цитозина важно также для инактивации Х-хромосомы у млекопитающих. Метилирование ДНК используется в геномном импринтинге. Значительные нарушения профиля метилирования ДНК происходят при канцерогенезе>.

Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать аминную группу (деаминироваться), превращаясь в тимин, поэтому метилированные цитозины являются источником повышенного числа мутаций.

Повреждения ДНК

Интеркалированное химическое соединение, которое находится в середине спирали — бензопирен, основной мутаген табачного дыма

ДНК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация — ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями.

Оксиданты, такие как свободные радикалы или пероксид водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований. Среди разных типов повреждений наиболее опасные — это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям.

Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например, бромистый этидий, даунорубицин, доксорубицин и талидомид, имеет ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают транскрипции и репликации, вызывая мутации. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых — бензопирен, акридины, афлатоксин и бромистый этидий. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака.

Суперскрученность

Если взяться за концы верёвки и начать скручивать их в разные стороны, она становится короче и на верёвке образуются «супервитки». Так же может быть суперскручена и ДНК. В обычном состоянии цепочка ДНК делает один оборот на каждые 10,4 основания, но в суперскрученном состоянии спираль может быть свёрнута туже или расплетена. Выделяют два типа суперскручивания: положительное — в направлении нормальных витков, при котором основания расположены ближе друг к другу; и отрицательное — в противоположном направлении. В природе молекулы ДНК обычно находятся в отрицательном суперскручивании, которое вносится ферментами — топоизомеразами. Эти ферменты удаляют дополнительное скручивание, возникающее в ДНК в результате транскрипции и репликации.

Структура теломер. Зелёным цветом показан ион металла, хелатированный в центре структуры

Структуры на концах хромосом

На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Основная функция этих участков — поддержание целостности концов хромосом. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации. Поскольку обычные ДНК-полимеразы не могут реплицировать 3' концы хромосом, это делает специальный фермент — теломераза.

В клетках человека теломеры часто представлены одноцепочечной ДНК и состоят из нескольких тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G-квадруплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом>.

На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля (от англ. displacement loop).

Биологические функции

ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов — наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, отсюда следует, что образовавшиеся клетки оказываются генетически идентичны исходной.

Генетическая информация реализуется при экспрессии генов в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).

Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых — сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков — в активный центр рибосомы, «ползущей» по иРНК.

Структура генома

Большинство природных ДНК имеет двухцепочечную структуру, линейную (эукариоты, некоторые вирусы и отдельные роды бактерий) или кольцевую (прокариоты, хлоропласты и митохондрии). Линейную одноцепочечную ДНК содержат некоторые вирусы и бактериофаги. Молекулы ДНК находятся in vivo в плотно упакованном, конденсированном состоянии. В клетках эукариот ДНК располагается главным образом в ядре и на стадии профазы, метафазы или анафазы митоза доступны для наблюдения с помощью светового микроскопа в виде набора хромосом. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым нуклеоидом. Генетическая информация генома состоит из генов. Ген — единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит открытую рамку считывания, которая транскрибируется, а также регуляторные последовательности (англ.)русск., например, промотор и энхансер, которые контролируют экспрессию открытых рамок считывания.

У многих видов только малая часть общей последовательности генома кодирует белки. Так, только около 1,5 % генома человека состоит из кодирующих белок экзонов, а больше 50 % ДНК человека состоит из некодирующих повторяющихся последовательностей ДНК. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) — одна из неразрешённых научных загадок; исследования в этой области также указывают на большое количество фрагментов реликтовых вирусов в этой части ДНК.

Последовательности генома, не кодирующие белок

В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК» (англ. junk DNA). Теломеры и центромеры содержат малое число генов, но они важны для функционирования и стабильности хромосом. Часто встречающаяся форма некодирующих последовательностей человека — псевдогены, копии генов, инактивированные в результате мутаций. Эти последовательности нечто вроде молекулярных ископаемых, хотя иногда они могут служить исходным материалом для дупликации и последующей дивергенции генов. Другой источник разнообразия белков в организме — это использование интронов в качестве «линий разреза и склеивания» в альтернативном сплайсинге. Наконец, не кодирующие белок последовательности могут кодировать вспомогательные клеточные РНК, например, мяРНК. Недавнее исследование транскрипции генома человека показало, что 10 % генома даёт начало полиаденилированным РНК, а исследование генома мыши показало, что 62 % его транскрибируется.

Транскрипция и трансляция

Генетическая информация, закодированная в ДНК, должна быть прочитана и в конечном итоге выражена в синтезе различных биополимеров, из которых состоят клетки. Последовательность оснований в цепочке ДНК напрямую определяет последовательность оснований в РНК, на которую она «переписывается» в процессе, называемом транскрипцией. В случае мРНК эта последовательность определяет аминокислоты белка. Соотношение между нуклеотидной последовательностью мРНК и аминокислотной последовательностью определяется правилами трансляции, которые называются генетическим кодом. Генетический код состоит из трёхбуквенных «слов», называемых кодонами, состоящих из трёх нуклеотидов (то есть ACT, CAG, TTT и т. п.). Во время транскрипции нуклеотиды гена копируются на синтезируемую РНК РНК-полимеразой. Эта копия в случае мРНК декодируется рибосомой, которая «читает» последовательность мРНК, осуществляя спаривание матричной РНК с транспортными РНК, которые присоединены к аминокислотам. Поскольку в трёхбуквенных комбинациях используются 4 основания, всего возможны 64 кодона (4³ комбинации). Кодоны кодируют 20 стандартных аминокислот, каждой из которых соответствует в большинстве случаев более одного кодона. Один из трёх кодонов, которые располагаются в конце мРНК, не означает аминокислоту и определяет конец белка, это «стоп» или «нонсенс» кодоны — TAA, TGA, TAG.

Репликация

Деление клеток необходимо для размножения одноклеточного и роста многоклеточного организма, но до деления клетка должна удвоить геном, чтобы дочерние клетки содержали ту же генетическую информацию, что и исходная клетка. Из нескольких теоретически возможных механизмов удвоения (репликации) ДНК реализуется полуконсервативный. Две цепочки разделяются, а затем каждая недостающая комплементарная последовательность ДНК воспроизводится ферментом ДНК-полимеразой. Этот фермент строит полинуклеотидную цепь, находя правильное основание через комплементарное спаривание оснований и присоединяя его к растущей цепочке. ДНК-полимераза не может начинать новую цепь, а только лишь наращивать уже существующую, поэтому она нуждается в короткой цепочке нуклеотидов (праймере), синтезируемой праймазой. Так как ДНК-полимеразы могут строить цепочку только в направлении 5' --> 3', для копирования антипараллельных цепей используются разные механизмы.

Взаимодействие с белками

Все функции ДНК зависят от её взаимодействия с белками. Взаимодействия могут быть неспецифическими, когда белок присоединяется к любой молекуле ДНК, или зависеть от наличия особой последовательности. Ферменты также могут взаимодействовать с ДНК, из них наиболее важные — это РНК-полимеразы, которые копируют последовательность оснований ДНК на РНК в транскрипции или при синтезе новой цепи ДНК — репликации.

Структурные и регуляторные белки

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков — гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру — нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям — белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка.

Особая группа белков, присоединяющихся к ДНК, — это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека — репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.

В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков — различные классы факторов транскрипции, то есть белки, регулирующие транскрипцию. Каждый из этих белков узнаёт свою последовательность, часто в промоторе, и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с РНК-полимеразой либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию. В других случаях факторы транскрипции могут присоединяться к ферментам, которые модифицируют находящиеся на промоторах гистоны, что изменяет доступность ДНК для полимераз.

Так как специфические последовательности встречаются во многих местах генома, изменения в активности одного типа фактора транскрипции могут изменить активность тысяч генов. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и дифференцировки клеток. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны.

Ферменты, модифицирующие ДНК

Топоизомеразы и хеликазы

В клетке ДНК находится в компактном, т. н. суперскрученном состоянии, иначе она не смогла бы в ней уместиться. Для протекания жизненно важных процессов ДНК должна быть раскручена, что производится двумя группами белков — топоизомеразами и хеликазами.

Топоизомеразы — ферменты, которые имеют и нуклеазную, и лигазную активности. Они изменяют степень суперскрученности в ДНК. Некоторые из этих ферментов разрезают спираль ДНК и позволяют вращаться одной из цепей, тем самым уменьшая уровень суперскрученности, после чего фермент заделывает разрыв. Другие ферменты могут разрезать одну из цепей и проводить вторую цепь через разрыв, а потом лигировать разрыв в первой цепи. Топоизомеразы необходимы во многих процессах, связанных с ДНК, таких как репликация и транскрипция.

Хеликазы — белки, которые являются одним из молекулярных моторов. Они используют химическую энергию нуклеотидтрифосфатов, чаще всего АТФ, для разрыва водородных связей между основаниями, раскручивая двойную спираль на отдельные цепочки. Эти ферменты важны для большинства процессов, где белкам необходим доступ к основаниям ДНК.

Нуклеазы и лигазы

В различных процессах, происходящих в клетке, например, рекомбинации и репарации, участвуют ферменты, способные разрезать и восстанавливать целостность нитей ДНК. Ферменты, разрезающие ДНК, носят название нуклеаз. Нуклеазы, которые гидролизуют нуклеотиды на концах молекулы ДНК, называются экзонуклеазами, а эндонуклеазы разрезают ДНК внутри цепи. Наиболее часто используемые в молекулярной биологии и генетической инженерии нуклеазы — это эндонуклеазы рестрикции (рестриктазы), которые разрезают ДНК около специфических последовательностей. Например, фермент EcoRV (рестрикционный фермент № 5 из E. coli) узнаёт шестинуклеотидную последовательность 5'-GAT|ATC-3' и разрезает ДНК в месте, указанном вертикальной линией. В природе эти ферменты защищают бактерии от заражения бактериофагами, разрезая ДНК фага, когда она вводится в бактериальную клетку. В этом случае нуклеазы — часть системы модификации-рестрикции. ДНК-лигазы «сшивают» концы фрагментов ДНК между собой, катализируя формирование фосфодиэфирной связи с использованием энергии АТФ. Рестрикционные нуклеазы и лигазы используются в клонировании и фингерпринтинге.

ДНК-лигаза I (кольцеобразная структура, состоящая из нескольких одинаковых молекул белка, показанных разными цветами), лигирующая повреждённую цепь ДНК
Полимеразы

Существует также важная для метаболизма ДНК группа ферментов, которые синтезируют цепи полинуклеотидов из нуклеозидтрифосфатов — ДНК-полимеразы. Они добавляют нуклеотиды к 3'-гидроксильной группе предыдущего нуклеотида в цепи ДНК, поэтому все полимеразы работают в направлении 5'--> 3'. В активном центре этих ферментов субстрат — нуклеозидтрифосфат — спаривается с комплементарным основанием в составе одноцепочечной полинуклеотидной цепочки — матрицы.

В процессе репликации ДНК ДНК-зависимая ДНК-полимераза синтезирует копию исходной последовательности ДНК. Точность очень важна в этом процессе, так как ошибки в полимеризации приведут к мутациям, поэтому многие полимеразы обладают способностью к «редактированию» — исправлению ошибок. Полимераза узнаёт ошибки в синтезе по отсутствию спаривания между неправильными нуклеотидами. После определения отсутствия спаривания активируется 3'--> 5' экзонуклеазная активность полимеразы, и неправильное основание удаляется. В большинстве организмов ДНК-полимеразы работают в виде большого комплекса, называемого реплисомой, которая содержит многочисленные дополнительные субъединицы, например, хеликазы.

РНК-зависимые ДНК-полимеразы — специализированный тип полимераз, которые копируют последовательность РНК на ДНК. К этому типу относится вирусный фермент обратная транскриптаза, который используется ретровирусами при инфекции клеток, а также теломераза, необходимая для репликации теломер. Теломераза — необычный фермент, потому что она содержит собственную матричную РНК.

Транскрипция осуществляется ДНК-зависимой РНК-полимеразой, которая копирует последовательность ДНК одной цепочки на мРНК. В начале транскрипции гена РНК-полимераза присоединяется к последовательности в начале гена, называемой промотором, и расплетает спираль ДНК. Потом она копирует последовательность гена на матричную РНК до тех пор, пока не дойдёт до участка ДНК в конце гена — терминатора, где она останавливается и отсоединяется от ДНК. Также как ДНК-зависимая ДНК-полимераза человека, РНК-полимераза II, которая транскрибирует большую часть генов в геноме человека, работает в составе большого белкового комплекса, содержащего регуляторные и дополнительные единицы.

Генетическая рекомбинация

Рекомбинация происходит в результате физического разрыва в хромосомах (М) и (F) и их последующего соединения с образованием двух новых хромосом (C1 и C2)

Двойная спираль ДНК обычно не взаимодействует с другими сегментами ДНК, и в человеческих клетках разные хромосомы пространственно разделены в ядре. Это расстояние между разными хромосомами важно для способности ДНК действовать в качестве стабильного носителя информации. В процессе рекомбинации с помощью ферментов две спирали ДНК разрываются, обмениваются участками, после чего непрерывность спиралей восстанавливается, поэтому обмен участками негомологичных хромосом может привести к повреждению целостности генетического материала.

Рекомбинация позволяет хромосомам обмениваться генетической информацией, в результате этого образуются новые комбинации генов, что увеличивает эффективность естественного отбора и важно для быстрой эволюции новых белков. Генетическая рекомбинация также играет роль в репарации, особенно в ответе клетки на разрыв обеих цепей ДНК.

Самая распространённая форма кроссинговера — это гомологичная рекомбинация, когда принимающие участие в рекомбинации хромосомы имеют очень похожие последовательности. Иногда в качестве участков гомологии выступают транспозоны. Негомологичная рекомбинация может привести к повреждению клетки, поскольку в результате такой рекомбинации возникают транслокации. Реакция рекомбинации катализируется ферментами, которые называются рекомбиназы, например, Cre. На первом этапе реакции рекомбиназа делает разрыв в одной из цепей ДНК, позволяя этой цепи отделиться от комплементарной цепи и присоединиться к одной из цепей второй хроматиды. Второй разрыв в цепи второй хроматиды позволяет ей также отделиться и присоединиться к оставшейся без пары цепи из первой хроматиды, формируя структуру Холлидея. Структура Холлидея может передвигаться вдоль соединённой пары хромосом, меняя цепи местами. Реакция рекомбинации завершается, когда фермент разрезает соединение, а две цепи лигируются.

Эволюция метаболизма, основанного на ДНК

ДНК содержит генетическую информацию, которая делает возможной жизнедеятельность, рост, развитие и размножение всех современных организмов. Однако как долго в течение четырёх миллиардов лет истории жизни на Земле ДНК была главным носителем генетической информации, неизвестно. Существуют гипотезы, что РНК играла центральную роль в обмене веществ, поскольку она может и переносить генетическую информацию, и осуществлять катализ с помощью рибозимов. Кроме того, РНК — один из основных компонентов «фабрик белка» — рибосом. Древний РНК-мир, где нуклеиновая кислота была использована и для катализа, и для переноса информации, мог послужить источником современного генетического кода, состоящего из четырёх оснований. Это могло произойти в результате того, что число оснований в организме было компромиссом между небольшим числом оснований, увеличивавшим точность репликации, и большим числом оснований, увеличивающим каталитическую активность рибозимов.

К сожалению, древние генетические системы не дошли до наших дней. ДНК в окружающей среде в среднем сохраняется в течение 1 миллиона лет, а потом деградирует до коротких фрагментов. Извлечение ДНК и определение последовательности их 16S рРНК генов из бактериальных спор, заключённых в кристаллах соли 250 млн лет назад, служит темой оживлённой дискуссии в научной среде.

См. также

Литература

  • Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки в 3-х томах. — М.: Мир, 1994. — 1558 с.
  • Докинз Р. Эгоистичный ген. — М.: Мир.
  • История биологии с начала XX века до наших дней. — М.: Наука, 1975. — 660 с.
  • Льюин Б. Гены. — М.: Мир, 1987. — 1064 с.
  • Пташне М. Переключение генов. Регуляция генной активности и фаг лямбда. — М.: Мир, 1989. — 160 с. Все форумы > Книга «переключение генов» М. Пташне
  • Уотсон Дж. Д. Двойная спираль: воспоминания об открытии структуры ДНК. — М.: Мир, 1969. — 152 с.

Шаблон:Нуклеиновые кислоты

medviki.com

ДНК, ХРОМОСОМЫ И ГЕНЫ

Весь механизм управления развитием и активностью организма заключен в дезоксирибонуклеиновой кислоте (ДНК), из которой состоят хромосомы клеточных ядер и их основные функциональные единицы — гены. ДНК состоит из двух длинных параллельных макромолекулярных цепочек, свернутых в виде спирали; молекулы ДНК состоят из трех основных элементов: фосфатных молекул, молекул сахара — дезоксирибозы и четырех азотистых оснований: аденина, гуанина, тимина и цитозина. Каждая цепочка ДНК состоит из последовательных звеньев, которые называются нуклеотидами: волокна азотистых оснований соединены водородными связями друг с другом таким образом, что двойная спираль ДНК по форме похожа на винтовую лестницу.

hromosomi.gif

Деление всех клеток организма, за исключением клеток зародыша, происходит путем удваивания хромосомного материала, поскольку каждая из дочерних клеток должна получить точную копию ДНК от материнской клетки. В ходе этого процесса, который называется репликацией, две цепи ДНК разъединяются и благодаря воздействию особого фермента формируются две новые комплементарные цепи. Каждая исходная цепь служит прообразом для новой цепи, в которой азотистые основания соединяются (соединяться между собой могут только аденин и тимин или цитозин и гуанин), — в результате каждая из двух цепей получается дополненной. Таким образом, воссоздаются две идентичные макромолекулы ДНК, поскольку каждая цепь состоит из исходной и новой цепи.

СТРУКТУРА ХРОМОСОМ

Хотя многие хромосомы отличаются по размеру, все они имеют одинаковую форму маленькой палочки, которую сжимает центромера, разделяющая хромосому на два плеча, часто неодинаковой длины. Однако типичное изображение хромосом соответствует стадии процесса клеточного деления, когда ДНК уже дублировалась, — момент, в который хромосома похожа на букву X с двумя длинными и двумя короткими плечами.

ДНК, ХРОМОСОМЫ И ГЕНЫ

Количество хромосом человека со всеми генами определяющими развитие и функционирование нашего организма, соответствует количеству хромосом материнской яйцеклетки и отцовского сперматозойда, которые соединяются в момент оплодотворения.Это возможно из-за того, что, в отличие от остальных клеток человеческого организма, в которых содержится по 46 хромосом, гаметы содержат всего по 23 хромосомы: слияние яйцеклетки и сперматозоида образует зиготу с 46 хромосомами (23 пары родительских хромосом), клетки зиготы постоянно делятся, и в результате их деления образуется эмбрион человека с набором хромосом, идентичным родительским. Таким образом, каждый человек получает половину материнского и половину отцовского хромосомного набора.

tardokanatomy.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики