Кротовые норы в космосе. Астрономические гипотезы. Дыры кротовые
Кротовые норы в космосе. Астрономические гипотезы
Звездная вселенная таит в себе множество загадок. Согласно общей теории относительности (ОТО), созданной Эйнштейном, мы живем в четырехмерном пространстве-времени. Оно искривлено, а гравитация, знакомая всем нам, является проявлением этого свойства. Материя искривляет, "прогибает" пространство вокруг себя, и тем больше, чем она плотнее. Космос, пространство и время - все это очень интересные темы. Прочитав эту статью, вы наверняка узнаете что-то новое о них.
Идея кривизны
Множество других теорий тяготения, которых существует сегодня целые сотни, в деталях отличается от ОТО. Однако все эти астрономические гипотезы сохраняют основное – идею кривизны. Если пространство кривое, то можно предположить, что оно могло принять, например, форму трубы, соединяющей области, которые разделены множеством световых лет. А возможно, даже эпохи, далекие друг от друга. Ведь мы ведем речь не о пространстве, привычном нам, а о пространстве-времени, когда рассматриваем космос. Дыра в нем может появиться лишь при определенных условиях. Предлагаем вам поближе познакомиться с таким интересным явлением, как кротовые норы.
Первые идеи о кротовых норах
Далекий космос и его загадки манят к себе. Мысли об искривлении появились сразу же после того, как была опубликована ОТО. Л. Фламм, австрийский физик, уже в 1916 году говорил о том, что пространственная геометрия может существовать в виде некоей норы, которая соединяет два мира. Математик Н. Розен и А. Эйнштейн в 1935 году заметили, что простейшие решения уравнений в рамках ОТО, описывающие изолированные электрически заряженные или нейтральные источники, создающие гравитационное поля, обладают пространственной структурой "моста". То есть они соединяют две вселенные, два почти плоских и одинаковых пространства-времени.
Позднее эти пространственные структуры стали именоваться "кротовыми норами", что является довольно вольным переводом с английского языка слова wormhole. Более близкий его перевод – "червоточина" (в космосе). Розен и Эйнштейн даже не исключали возможности использования этих "мостов" для описания с их помощью элементарных частиц. Действительно, в этом случае частица является сугубо пространственным образованием. Следовательно, необходимости моделировать источник заряда или массы специально не появится. А удаленный внешний наблюдатель в случае, если кротовая нора имеет микроскопические размеры, видит лишь точечный источник с зарядом и массой при нахождении в одном из этих пространств.
"Мосты" Эйнштейна-Розена
С одной стороны в нору входят электрические силовые линии, а с другой они выходят, не заканчиваясь и не начинаясь нигде. Дж. Уилер, американский физик, по этому поводу сказал, что получается "заряд без заряда" и "масса без массы". Вовсе не обязательно в этом случае считать, что мост служит для соединения двух разных вселенных. Не менее уместным будет и предположение о том, что у кротовой норы оба "устья" выходят в одинаковую вселенную, однако в разные времена и в разных ее точках. Получается что-то, напоминающее пустотелую "ручку", если ее пришить к практически плоскому привычному миру. Силовые линии входят в устье, которое можно понимать как отрицательный заряд (допустим, электрон). Устье, из которого они выходят, имеет положительный заряд (позитрон). Что же касается масс, они с обеих сторон будут одинаковыми.
Условия образования "мостов" Эйнштейна-Розена
Эта картина, при всей своей привлекательности, не получила распространение в физике элементарных частиц, на что было множество причин. Нелегко приписать "мостам" Эйнштейна-Розена квантовые свойства, без которых в микромире не обойтись. Такой "мост" и вовсе не образуется при известных значениях зарядов и масс частиц (протонов или электронов). "Электрическое" решение вместо этого предсказывает "голую" сингулярность, то есть точку, где электрическое поле и кривизна пространства делаются бесконечными. В таких точках понятие пространства-времени даже в случае искривления теряет смысл, так как невозможно решать уравнения, имеющие бесконечное множество слагаемых.
Когда не работает ОТО?
Сама по себе ОТО определенно заявляет, когда именно она прекращает работать. На горловине, в наиболее узком месте "моста", наблюдается нарушение гладкости соединения. И оно, следует сказать, достаточно нетривиально. С позиции удаленного наблюдателя на этой горловине останавливается время. То, что Розен и Эйнштейн считали горловиной, в настоящее время определяется как горизонт событий черной дыры (заряженной или нейтральной). Лучи или частицы с разных сторон "моста" попадают на различные "участки" горизонта. А между левой и правой его частями, условно говоря, находится нестатическая область. Для того чтобы пройти область, нельзя не преодолеть ее.
Невозможность пройти через черную дыру
Космический корабль, который приближается к горизонту довольно крупной относительно него черной дыры, как будто застывает навеки. Все реже и реже доходят сигналы от него… Напротив, горизонт по корабельным часам достигается за конечное время. Когда корабль (луч света или частица) минует его, он вскоре упрется в сингулярность. Это место, где кривизна делается бесконечной. В сингулярности (еще на подходе к ней) протяженное тело неизбежно будет разорвано и раздавлено. Такова реальность устройства черной дыры.
Дальнейшие исследования
В 1916-17 гг. были получены решения Райснера-Нордстрема и Шварцшильда. В них сферически описываются симметричные электрически заряженные и нейтральные черные дыры. Однако физики смогли до конца разобраться в непростой геометрии данных пространств только на рубеже 1950-60-х годов. Именно тогда Д. А. Уилер, известный благодаря своим работам в теории гравитации и ядерной физике, предложил термины "кротовая нора" и "черная дыра". Выяснилось, что в пространствах Райснера-Нордстрема и Шварцшильда действительно существуют кротовые норы в космосе. Они полностью не видны удаленному наблюдателю, как и черные дыры. И, подобно им, кротовые норы в космосе вечны. А вот если путешественник проникнет за горизонт, они схлопываются настолько быстро, что через них не сможет пролететь ни луч света, ни массивная частица, а не то что корабль. Чтобы пролететь к другому устью, минуя сингулярность, нужно двигаться быстрее света. В настоящее время физики считают, что сверхновые скорости перемещения энергии и материи принципиально невозможны.
Черные дыры Шварцшильда и Райснера-Нордстрема
Черная дыра Шварцшильда может считаться непроходимой кротовой норой. Что касается черной дыры Райснера-Нордстрема, она устроена несколько сложнее, однако также непроходима. Тем не менее придумать и описать четырехмерные кротовые норы в космосе, которые можно было бы пройти, не так уж сложно. Стоит лишь подобрать необходимый вид метрики. Метрический тензор, или метрика, - набор величин, используя который, можно вычислить четырехмерные интервалы, существующие между точками-событиями. Этот набор величин полностью характеризует также и поле тяготения, и геометрию пространства-времени. Геометрически проходимые кротовые норы в космосе даже проще, нежели черные дыры. В них нет горизонтов, которые ведут к катаклизмам с ходом времени. В различных точках время может идти а разном темпе, однако оно не должно при этом бесконечно останавливаться или ускоряться.
Два направления исследования кротовых нор
Природа поставила барьер на пути появления кротовых нор. Однако человек устроен так, что если находится препятствие, всегда будут желающие его преодолеть. И ученые не исключение. Труды теоретиков, которые занимаются исследованием кротовых нор, условно можно разделить на два направления, дополняющих друг друга. Первое занимается рассмотрением их следствий, заранее предполагая то, что кротовые норы действительно существуют. Представители второго направления пытаются понять, из чего и как они могут появиться, какие условия необходимы для их возникновения. Работ этого направления больше, чем первого и, пожалуй, они более интересны. К данному направлению можно отнести поиск моделей кротовых нор, а также исследование их свойств.
Достижения российских физиков
Как выяснилось, свойства материи, являющейся материалом для строительства кротовых нор, могут реализоваться за счет поляризации вакуума квантовых полей. Российские физики Сергей Сушков и Аркадий Попов совместно с испанским исследователем Давидом Хохбергом, а также Сергей Красников недавно пришли к этому выводу. Вакуум в этом случае не является пустотой. Это квантовое состояние, характеризующееся наименьшей энергией, то есть поле, в котором отсутствуют реальные частицы. В этом поле постоянно возникают пары частиц "виртуальных", исчезающие до того, как их обнаруживают приборы, однако оставляющие свой след в виде тензора энергии, то есть импульса, характеризующегося необычными свойствами. Несмотря на то что квантовые свойства материи в основном проявляются в микромире, кротовые норы, рождаемые ими, при некоторых условиях способны достигать значительных размеров. Одна из статей Красникова, кстати, называется "Угроза кротовых нор".
Вопрос философии
Если кротовые норы когда-нибудь все-таки удастся построить или обнаружить, область философии, связанная с интерпретацией науки, столкнется с новыми задачами и, нужно сказать, весьма непростыми. При всей, казалось бы, абсурдности временных петель и нелегких проблемах, касающихся причинности, данная область науки, вероятно, когда-нибудь с этим разберется. Так же, как разобрались в свое время с проблемами квантовой механики и созданной Эйнштейном теории относительности. Космос, пространство и время - все эти вопросы во все века интересовали людей и, видимо, будут интересовать нас всегда. Познать их полностью едва ли удастся. Изучение космоса вряд ли когда-либо будет завершено.
fb.ru
Кротовые норы и Черные дыры | Itera вики
Второй после растягивания пространства способ преодолеть световой барьер — это разорвать, или проколоть, пространство, т. е. пройти через кротовые норы, туннели, которые соединяют две вселенные. В литературе первое упоминание о кротовых норах принадлежит перу оксфордского математика Чарльза Доджсона, написавшего под псевдонимом Льюис Кэрролл сказку «Алиса в Зазеркалье». Зеркало Алисы и есть кротовая нора, которая соединила окрестности Оксфорда с волшебным миром Страны чудес. Протянув руку сквозь зеркало, Алиса может мгновенно перенестись из одной вселенной в другую. У математиков они называются «многократно связанными пространствами».
В физике концепция кротовых нор возникла в 1916 г. — всего через год после того, как Эйнштейн опубликовал свой великий труд — общую теорию относительности. Физик Карл Шварцшильд, служивший тогда в кайзеровской армии, нашел точное решение уравнений Эйнштейна для случая изолированной точечной звезды. Вдалеке от звезды ее гравитационное поле очень похоже на поле обычной звезды; Эйнштейн даже воспользовался решением Шварцшильда при вычислении отклонения траектории света около звезды. Результат Шварцшильда произвел немедленное и очень сильное действие на все разделы астрономии, и сегодня он по-прежнему остается одним из самых известных решений уравнений Эйнштейна. Несколько поколений физиков использовали гравитационное поле этой гипотетической точечной звезды в качестве приближенного выражения для поля вокруг реальной звезды с конечным диаметром.
Но если рассмотреть это точечное решение серьезно, то в центре его неожиданно обнаружится чудовищный точечный объект, который почти столетие изумлял и шокировал физиков, — черная дыра. Решение Шварцшильда для поля тяготения точечной звезды чем-то напоминает троянского коня. Снаружи оно выглядит как дар небес, а внутри скрывает всевозможных демонов и духов. Но если вы принимаете одно, то вынуждены принять и другое. Из решения Шварцшильда явствовало, что при приближении к пресловутой точечной звезде происходят странные вещи. Сама звезда окружена невидимой сферой (известной как «горизонт событий»), которая является своеобразной чертой невозврата. Все может проникнуть внутрь ее, но ничто не может выйти обратно. Однажды пройдя горизонт событий, вы уже не сможете вернуться назад. (Если вы находитесь внутри горизонта событий, вам, чтобы вновь оказаться снаружи, потребуется двигаться быстрее света, а это невозможно.)
При приближении к горизонту событий на атомы вашего тела начнут действовать приливные силы, растягивая их. Ваши ноги будут ощущать гораздо большую силу тяжести, чем ваша голова, поэтому вас сначала растянет до состояния спагетти, а затем просто разорвет. Точно так же произойдет с атомами вашего тела — они будут растянуты гравитацией, а затем разорваны.
Для внешнего наблюдателя ваше приближение к горизонту событий будет выглядеть так, как будто вы замедляетесь во времени. Более того, когда вы прикоснетесь к горизонту событий, наблюдателю покажется, что время остановилось!
Этого мало. Провалившись под горизонт событий, вы увидите свет, запертый внутри этой сферы и блуждающий внутри черной дыры миллиарды лет. Вы как будто увидите фильм, запечатлевший всю историю черной дыры, с самого момента ее рождения.
Наконец, если бы вам удалось пролететь черную дыру насквозь, там, с другой стороны, обнаружится иная вселенная. Это явление, впервые описанное Эйнштейном в 1935 г., носит название моста Эйнштейна-Розена; сейчас его называют еще кротовой норой.
Эйнштейн и другие физики были уверены, что ни одна звезда не сможет естественным образом превратиться в столь чудовищный объект. В1939 г. Эйнштейн даже опубликовал статью, в которой показал, что вращающаяся газопылевая масса никогда не сконденсируется в подобную черную дыру. Поэтому, несмотря на притаившуюся в центре черной дыры кротовую нору, он был уверен, что ничто подобное в природе возникнуть не может. Астрофизик Артур Эддингтон как-то сказал, что «должен существовать закон природы, не позволяющий звездам вести себя столь нелепым образом». Другими словами, черная дыра, конечно, законное решение уравнений Эйнштейна, но механизм, посредством которого такая штука могла бы сформироваться естественным путем, неизвестен.
Ситуация кардинально изменилась с выходом в том же году статьи Роберта Оппенгеимера и его ученика Хартланда Снаидера; в этой работе ученые показали, что черные дыры все же могут формироваться естественным путем. Они предположили, что умирающая звезда, которая практически полностью истратила свое ядерное топливо, коллапсирует под действием гравитационных сил, т. е. схлопывается под собственной тяжестью. Если гравитация сможет сжать звезду до размеров, меньших, чем радиус горизонта событий, то дальше уже ничто на свете не сможет помешать ей сжать звезду в точку и превратить в черную дыру. (Вполне возможно, что рассмотренный здесь механизм коллапса подсказал Оппенгеймеру идеи, которые он через несколько лет использовал при создании бомбы для Нагасаки, при детонации которой используется взрывное обжатие плутониевого шара.)
Следующий прорыв имел место в 1963 г., когда новозеландский математик Рой Керр исследовал, возможно, самый реалистичный образчик черной дыры. Сжимаясь, объекты ускоряют свое вращение — примерно так же, как фигуристы начинают вращаться быстрее, когда прижимают руки к телу. Можно сделать вывод, что черные дыры должны вращаться с фантастическими скоростями.
Керр обнаружил, что вращающаяся черная дыра не схлопнется в точечную звезду, как предполагал Шварцшильд, а сожмется и образует вращающееся кольцо. Любой, кому не повезет и кто наткнется на это кольцо, погибнет; но тот, кто угодит в отверстие кольца, не умрет, а пройдет его насквозь. И окажется при этом не по другую сторону все того же кольца, а в другой вселенной, потому что, попав в кольцо, он пройдет по мосту Эйнштейна-Розена. Другими словами, вращающаяся черная дыра — это обод зеркала, сквозь которое проходила сказочная Алиса.
Если этот человек затем обогнет кольцо и пройдет через него еще раз, он окажется в следующей вселенной. Вообще, каждое последовательное прохождение через вращающееся кольцо приведет путешественника в очередную параллельную вселенную — примерно как нажатие кнопки «вверх» в лифте. В принципе может существовать бесконечное число вселенных, одна над другой. «Пройди сквозь это волшебное кольцо и — опа! — ты уже совершенно в другой вселенной, где радиус и масса отрицательны!» — писал Керр.
Но здесь есть очень важная ловушка. Черная дыра — хороший образец «необратимой кротовой норы»; а значит, через горизонт событий можно пройти только в одном направлении. Стоит миновать горизонт событий и кольцо Керра — и вы уже не сможете вернуться назад тем же путем.
Но в 1988 г. Кип Торн и его коллеги по Калифорнийскому технологическому рассчитали обратимую кротовую нору, т. е. такую, через которую можно свободно проходить в обоих направлениях, туда и обратно. Для одного из их решений путешествие через кротовую нору не опаснее полета на самолете!
В обычных условиях сила тяжести стремится раздавить и раздавит «трубку» кротовой норы, погубив при этом астронавтов, которые попытаются в этот момент достичь другого ее конца. Этого достаточно, чтобы сделать мгновенное перемещение через кротовые норы невозможным. Но можно предположить, что сила отталкивания, присущая отрицательной энергии или отрицательному веществу, сможет удержать трубку открытой на достаточный промежуток времени, чтобы астронавты успели миновать опасную зону. Другими словами, отрицательное вещество или отрицательная энергия совершенно необходимы и для двигателя Алькубьерре, и для схемы с использованием кротовых нор.
За последние несколько лет было обнаружено поразительное число точных решений уравнений Эйнштейна, допускающих существование кротовых нор. Но существуют ли они на самом деле? Или, может быть, это просто математическая фантазия? Кроме того, с кротовыми норами связано несколько серьезных проблем.
Во-первых, для создания сильных искажений пространства-времени, необходимых для путешествия через кротовые норы, потребуется неслыханное количество положительного и отрицательного вещества — порядка громадной звезды или черной дыры. По оценке Мэтью Виссера, физика из Вашингтонского университета, для создания кротовой норы диаметром 1 м необходимо столько отрицательной энергии, что ее количество можно сравнить с массой Юпитера — и при этом она должна быть отрицательной! Виссер говорит: «Для этой работы потребуется примерно минус одна масса Юпитера. А управлять даже положительной энергией, сравнимой с массой Юпитера, мягко говоря, непросто и выходит далеко за рамки наших возможностей в пред ставимом будущем».
Кип Торн из Калифорнийского технологического института рассуждает так: «Похоже, что законы физики действительно разрешают существование экзотического вещества в количестве, достаточном для удержания в стабильном состоянии кротовой норы размером с человека. Но тут же выясняется, что технология строительства кротовых нор и удержания их в открытом состоянии для нас непредставима и находится далеко за пределами возможностей человеческой цивилизации».
Во-вторых, мы не знаем, насколько стабильными окажутся эти кротовые норы. Кроме того, излучение, которое будет в них генерироваться, может оказаться убийственным для любого, кто проникнет внутрь. А может быть, кротовые норы вообще будут нестабильны и станут схлопываться, стоит кому-нибудь или чему-нибудь попасть внутрь.
В-третьих, лучи света при проникновении в черную дыру будут испытывать синее смещение; это означает, что, подходя к горизонту событий, они будут приобретать все большую и большую энергию. Более того, на самом горизонте событий свет теоретически должен испытывать бесконечное голубое смещение и обладать бесконечной энергией, поэтому входящее излучение в черной дыре может оказаться смертельным для экипажа корабля.
Давайте обсудим эти проблемы немного подробнее. Первая проблема — накопить и собрать в одной точке достаточно энергии, чтобы разорвать ткань пространства-времени. Простейший способ добиться этого — сжать объект так, чтобы он стал меньше собственного горизонта событий. К примеру, для Солнца это означало бы сжать его до диаметра примерно в 3 км, после чего Солнце уже само коллапсирует и превратится в черную дыру. (Собственное тяготение Солнца слишком слабо, чтобы естественным путем сжать его до такого диаметра, поэтому наше светило никогда не станет черной дырой. В принципе это означает, что любое тело, даже ваше, способно превратиться в черную дыру, если его как следует сжать. Для человеческого тела это означало бы сжать все его атомы до размера, меньшего, чем субатомные расстояния, — эта операция лежит далеко за пределами возможностей современной науки.)
Чуть более практичный подход — взять батарею лазеров, собрать лучи и направить полученный мощный луч в определенную точку. Или построить гигантский ускоритель, разогнать в нем два пучка, которые затем столкнутся с выделением фантастического количества энергии, достаточного для создания крошечного разрыва пространства-времени.
ru.itera.wikia.com
Кротовая нора
Кротовая нора или червоточина — это гипотетическая топологическая особенность пространства-времени, представляющая собой “туннель” в пространстве в каждый момент времени (пространственно-временной туннель). Тем самым кротовая нора позволяет перемещаться в пространстве и времени. Области, которые связывает кротовая нора, могут представлять собой области единого пространства или быть полностью разъединенными. Во втором случае кротовая нора является единственным связующим звеном двух областей. Первый вид кротовых нор часто называют “внутримировыми”, а второй вид “межмировыми“.
Гипотетические частицы Тахионы
Как известно Общая теория относительности (ОТО) запрещает перемещение во Вселенной со скоростью превышающей скорость света. С другой стороны ОТО допускает существование пространственно-временных туннелей, но при этом необходимо, чтобы туннель был заполнен экзотической материей с отрицательной плотностью энергии, создающей сильное гравитационное отталкивание и препятствующей схлопыванию туннеля.
Материалы по теме
К подобным частицам экзотической материи чаще всего относят тахионы. Тахионы – это гипотетические частицы, которые движутся быстрее скорости света. Для того чтобы такие частицы не нарушали ОТО предполагается, что масса тахионов является отрицательной.
В настоящее время нет достоверных экспериментальных подтверждений существования тахионов в лабораторных экспериментах или астрономических наблюдениях. Физики могут похвастаться лишь “псевдоотрицательной“ массой электронов и атомов, которые получают при высокой плотности электрических полей, особой поляризации лазерных лучей или сверхнизких температурах. В последнем случае эксперименты проводились с конденсатом Бозе – Эйнштейна, агрегатным состоянием вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли кельвина). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях, и квантовые эффекты начинают проявляться на макроскопическом уровне. За получение конденсата Бозе-Эйншейна в 2001 году была вручена Нобелевская премия по физике.
Конденсат Бозе-Эйншейна
Впрочем, ряд специалистов предполагают, что тахионами могут являться нейтрино. Эти элементарные частицы обладают ненулевой массой, что было доказано с помощью обнаружения нейтринных осцилляций. Последнее открытие даже удостоилось Нобелевской премии по физике за 2015 год. С другой стороны точное значение массы нейтрино до сих пор определить не удалось. Ряд экспериментов по измерению скорости нейтрино показали, что их скорость может незначительно превышать скорость света. Эти данные постоянно подвергаются сомнению, но в 2014 году вышла новая работа по этому поводу.
Теория струн
Фундаментальная структура Вселенной по теории струн
Параллельно некоторые теоретики предполагают, что в ранней Вселенной могли сформироваться особые образования (космические струны) с отрицательной массой. Длина реликтовых космических струн может достигать как минимум несколько десятков парсек при толщине меньше диаметра атома при средней плотности 1022 грамм на см3. Существует несколько работ о том, что подобные образования наблюдались в событиях гравитационного линзирования света далеких квазаров. В целом же теория струн в настоящее время является наиболее вероятным кандидатом на “теорию всего“ или единую теорию поля, которая объединяет теорию относительности и квантовую теорию поля. Согласно ей все элементарные частицы представляют собой колеблющиеся нити энергии длиной около 10-33 метра, что сравнимо с планковской длиной (минимальным возможным размером объекта во Вселенной).
Теория единого поля предполагает, что в пространственно-временных измерениях существуют ячейки с минимальной длиной и временем. Минимальная длина должна быть равна планковской длине (примерно 1,6·10−35 метров).
Комплексное n-мерное пространство Калаби-Яу
В то же время наблюдения удаленных гамма-всплесков говорят о том, что если зернистость пространства существует, то размер этих зерен не больше 10−48 метров. Кроме того БАК не смог подтвердить некоторые следствия теории струн, что стало серьезным аргументом ошибочности этой фундаментальной теории современной физики.
Квантовая запутанность
Потенциально большим значением на пути к созданию единой теории поля и пространственно-временных туннелей является обнаружение в 2014 году теоретической связи между квантовой запутанностью и кротовыми норами. В новой теоретической работе было показано, что создание пространственно-временного туннеля возможно не только между двумя массивными черными дырами, но и между двумя квантово запутанными кварками.
Квантовая запутанность
Квантовая запутанность – это явление в квантовой механике, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий. Измерение параметра одной частицы приводит к мгновенному (выше скорости света) прекращению запутанного состояния другой, что находится в логическом противоречии с принципом локальности (при этом теория относительности не нарушается и информация не передаётся).
Кристан Дженсен из университета Виктории (Канада) и Андреас Карч из университета Вашингтона (США), описали квантово запутанную пару, состоящую из кварка и антикварка, которые мчатся прочь друг от друга с околосветовыми скоростями, что делает невозможной передачу сигналов от одного к другому. Исследователи полагают, что трехмерное пространство, в котором движутся кварки — это гипотетическая грань четырехмерного мира. В 3D-пространстве квантово запутанные частицы соединены своего рода «струной». А в 4D-пространстве эта «струна» становится кротовой норой.
Джулиан Соннер из Массачусетского технологического института (США) представил квантово-запутанную пару кварк-антикварк, рождающуюся в сильном электрическом поле, которое разлучает противоположно заряженные частицы, заставляя их ускоренно двигаться в разных направлениях. Соннер также пришел к выводу, что частицы, квантово запутанные в трехмерном пространстве, будут соединены кротовой норой в четырехмерном пространстве. При расчетах физики использовали так называемый голографический принцип — концепцию, согласно которой вся физика n-мерного мира в полной мере отражается на его «гранях» с количеством измерений (n-1). При таком “проецировании“квантовая теория, учитывающая эффекты гравитации в четырехмерном пространстве, эквивалентна квантовой теории «без гравитации» в трехмерном. Другими словами, черные дыры в 4D-пространстве и кротовая нора между ними математически эквивалентны их трехмерной голографической проекции.
Перспективы гравитационно-волновой и нейтринной астрономии
Теоретическая модель рождения нашей Вселенной
Наибольшими перспективами в изучении свойств материи на самом микроскопическом и высокоэнергетическом уровне для лучшего понимания квантовой гравитации обладает гравитационно-волновая и нейтринная астрономия за счет того что она изучает волны и частицы с наибольшей проникающей способностью. Так если микроволновое реликтовое излучение Вселенной образовалось через 380 тысяч лет после Большого взрыва, то реликтовые нейтрино в первые несколько секунд, а реликтовые гравитационные волны всего через 10-32 секунд! Кроме того большими перспективами обладают регистрации подобных излучений и частиц с горизонта событий черных дыр или у катастрофических событий (слияния нейтронных звезд и черных дыр, коллапсов массивных звезд).
Материалы по теме
С другой стороны активно развиваются традиционные астрометрические обсерватории, которые сейчас охватывают весь электромагнитный спектр. Подобные обсерватории могут обнаружить неожиданные объекты или явления в ранней Вселенной (первые межзвездные облака, звезды и галактики), в случаях гравитационного линзирования или во время наблюдений экстремальных объектов (черных дыр и нейтронных звезд). Астрономия продолжает являться наиболее эффективным направлением современной физики, так как способна изучать материю в экстремальных условиях, которые не доступны в земных лабораториях и ускорителях. В частности, существующие астрономические наблюдения в электромагнитном диапазоне привели к открытию загадочной темной материи и энергии, которые на данный момент не способна описать Стандартная модель (современная физическая теория, описывающая электромагнитное, слабое и сильное взаимодействие всех известных элементарных частиц). Другими примерами важности астрономических наблюдений в истории физики являются открытия аномального движения Меркурия, астрометрического смещения света звезд рядом с диском Солнца, а так же двойных нейтронных звезд. Эти открытия стали мотивом для создания и проверки теории относительности, а так же позволили предсказать существование гравитационных волн.
Кадр из фильма “Интерстеллар”
Пространственно-временные туннели или кротовые норы являются в научной фантастике самым популярным способом перемещения к другим звездам. Можно назвать наиболее популярные фильмы на эту тему: “Интерстеллар” (2014), “Контакт” (1997), “Сквозь горизонт” (1997), франшиза “Звездные войны” (1977-2017 годы). Первым начал широко использовать термины “черная дыра” и “кротовая дыра” американский физик Джон Уилер (1911-2008 годы). Советско-российский радиоастроном Николай Кардашев первым выдвинул идею, что черные дыры в центрах галактик являются входами в кротовые норы.
comments powered by HyperComments
Понравилась запись? Расскажи о ней друзьям!
Просмотров записи: 1424
Запись опубликована: 15.11.2017Автор: Борислав Славолюбов
spacegid.com
Черные дыры и кротовые норы
10 интересных фактов о черных дырах
Черные дыры интересовали ученых уже давно, но до сих пор мы мало, что о них знаем. Из всех объектов нашей Вселенной, они, пожалуй, являются самыми загадочными и скрывают немало тайн.
Образование черных дыр
Черная дыра рождается тогда, когда у крупной звезды начинает заканчиваться топливо и она начинает разрушаться из-за своей же собственной гравитации. Такая звезда превращается в белого карлика или нейтронную звезду, но если заезда оказывается очень массивной, она может продолжать сжиматься и в конечном итоге достигает размера крошечного атома, который называется центром черной дыры. |
Масса черной дыры
Масса этой сжатой звезды настолько велика, а гравитация ее центра настолько сильна, что, согласно теории общей относительности Эйнштейна, она на самом деле может деформировать пространство-время вокруг себя, и даже свет не может вырваться из нее. Граница, за которую свет не может вырваться, называется горизонт событий, а расстояние от центра до горизонта событий - гравитационный радиус или радиус Шварцшильда. |
Теория черных дыр
Как только частицы и солнечные лучи пересекают горизонт событий, они направляются к центру, их больше никогда никто не сможет увидеть. |
Самые странные объекты Вселенной
Для внешнего наблюдателя с телескопом кажется, что объект, который проходит через горизонт событий, начинает замедляться и замерзать и что он вовсе не прошел через эту границу. Со временем свет становится красным и более тусклым, а его длина волны - длиннее, в конечном итоге, он исчезает из поля видимости, становясь инфракрасной радиацией, а затем радиоволнами. |
Падение в черную дыру
Если бы человек мог оказаться в черной дыре, будучи в сознании и имея возможность вернуться оттуда, он бы рассказал, что вначале испытал ощущение невесомости, как будто он находится в свободном падении, но затем почувствовал бы очень мощные силы притяжения, его бы тащило ближе к центру черной дыры. Чем ближе к центру, тем сильнее гравитация, поэтому если бы его ноги были ближе к центру, чем голова, его бы начало сильно растягивать и в конечном итоге разорвало бы на части. Во время падения он бы видел искаженное изображение, как будто свет обволакивает его и он бы также увидел, как свет за пределами черной дыры направляется во внутрь. |
Сила гравитации черных дыр
Важно понимать, что гравитационное поле черной дыры точно такое же, как и у других объектов в космосе, имеющих такую же массу. Другими словами, черные дыры притягивают к себе объекты так же, как это делают обычные звезды, то есть все объекты, которые оказываются рядом с горизонтом событий, падают в них. |
Кротовые норы
Кротовая нора в теории является туннелем в пространстве-времени, который позволяет пройти коротким путем от одного конца Вселенной к другому. Однако эти объекты могут оказаться с внешней стороны очень похожими на черные дыры. |
Кто открыл черные дыры во Вселенной?
Джон Мичелл (1783 год) и Пьер-Симон Лаплас (1796 год) впервые предложили концепцию "темных звезд" или объектов, которые при сжатии имеют такую сильную силу притяжения, что скорость убегания рядом с ними будет превышать скорость света. В 20-м столетии физик Джон Уиллер предложил называть эти объекты "черными дырами", так как они поглощали все частицы света, которые оказывались поблизости, поэтому ничего отражать были не способны. |
Излучение Хокинга – испарение черной дыры
Физики в настоящее время полагают, что черные дыры на самом деле излучают небольшое количество частиц фотонов и таким образом теряют массу, поэтому сжатие постепенно ослабляется. Этот неподтвержденный пока процесс получил называние излучение Хокинга в честь профессора Стивена Хокинга, который выдвинул теорию в 1974 году. Однако этот процесс происходит невероятно медленно и только самые мелкие черные дыры имели время, чтобы испарить достаточное количество вещества за 14 миллиардов лет существования Вселенной. |
Массивные черные дыры
Считается, что большая часть галактик держится вместе за счет супермассивных черных дыр в своих центрах, которые удерживают рядом сотни звездных систем. |
Кротовые норы. Парадокс «Огненной стены»
Вместо того чтобы уничтожать абсолютно все частицы, попадающие в чёрную дыру, «огненная стена» на входе в неё действует избирательно и появляется только для того, чтобы уничтожить то, что при проникновении внутрь может привести к образованию опасных парадоксов. Словом, не очень-то это и стена... Кротовые норы — гипотетические туннели в пространстве-времени, соединяющие чёрные дыры, — предположительно, могут быть последствиями квантовой запутанности, когда квантовые состояния двух или большего числа объектов оказываются взаимозависимыми.
Теоретически путешествие между двумя точками, соединёнными кротовой норой, не имеет длительности, даже если одна точка находится на Земле, а другая — в Туманности Андромеды. Однако современные представления подвергают эти норы так называемой топологической цензуре, делающей их непроходимыми в нормальных условиях.
Суть «цензуры»: из эйнштейновских уравнений гравитационного поля следует, что если энергия, учитываемая в процессе, не является отрицательной (а мы с таковой пока не знакомы), то вход в кротовую дыру должен всё время отодвигаться от вас или бесконечно удлиняться. Так что, хотя путешествие чрез кротовину не требует времени, попадание в неё может длиться неограниченно долго.
Как вы помните, в прошлом году был представлен так называемый парадокс огненной стены на входе в чёрную дыру. Суть его в том, что фотоны, испускаемые ЧД посредством излучения Хокинга, должны быть квантово запутаны с внутренностями ЧД, а также друг с другом, что создаёт проблемы: одна частица, согласно квантовой механике, не может быть одновременно «сцепленной» с двумя другими объектами в равной мере.
Более того, чем сильнее частица Алиса запутана с частицей по имени Боб, тем в меньшей степени она способна быть спутанной с частицей Кэрри (условной третьей частицей), что часто в шутку называют квантовой моногамией.
Чтобы избежать такого парадоксального явления, как запутанность более чем с одним объектом, было выдвинуто предположение, что на границе ЧД сцепленность фотона и внутренностей дыры должна нарушаться, и, таким образом, на входе в ЧД появляется «стена», в прямом смысле уничтожающая падающие в неё объекты. Следовательно, никаких «внутренностей» у ЧД нет — по крайней мере организованных и способных содержать какую-то информацию. (Иначе говоря, сразу за горизонтом событий действительно находится огненная стена, а не, извините, «противопожарная перегородка».)
Решений этому парадоксу за прошедший год предложено множество, но чаще всего они вводят ещё больше не слишком подтверждённых сущностей, нежели сам парадокс. И вот два небезызвестных физика, Хуан Малдасена (Juan Maldacena) из Института сложных исследований в Принстоне и Леонард Саскинд (Leonard Susskind), представляющий Стэнфордский университет, предложили ещё одно решение парадокса. Основываясь на работах 2009 и 2010 гг., предполагающих, что кротовые норы могут быть проявлением квантовой запутанности, они развили эту мысль и теперь сообщают нам, что из неё вытекает.
Сперва физики показали, что кротовые норы между двумя ЧД, обычно выводимые из общей теории относительности, одновременно неизбежны и в квантовой механике. Если мы предположим, что между парой чёрных дыр существует квантовая запутанность, в этом случае кротовая нора будет просто её физическим выражением. Затем исследователи предположили, что между ЧД и буквально каждым (!) фотоном, её покидающим, есть кротовая нора — туннель, соединяющий две точки так, как если бы между ними вообще не было расстояния.
Согласно парадоксу огненной стены, Алиса, находящаяся по одну сторону горизонта событий ЧД (нашу), может воспринять условный кубит C (квантовый бит информации), испущенный ЧД в далёком прошлом, и передать его обратно, пользуясь кубитом B, извлечённым из такого же хокинговского излучения, но излучённого ЧД недавно. Падая в чёрную дыру, Алиса не сможет наблюдать спокойного вакуумного состояния, в котором А и B подвержены квантовому запутыванию. Вместо этого она столкнётся с высокоэнергетичной частицей, которая должна будет её уничтожить. До этого момента Малдасена и Зюскинд согласны с решаемым ими парадоксом.
Далее парадокс делает предположение, что действия Алисы за горизонтом событий, до того как она вошла в ЧД, не могут создать эту энергичную частицу, следовательно, эта частица существовала там в постоянном режиме и была не одна, а во множестве, угрожая уничтожением любой входящей частице, а не только Алисе с её квантовым хакерством. Значит, делают вывод авторы парадокса, на входе в ЧД есть огненная стена.
А вот и нет, говорят Малдасена и Саскинд. На самом деле огненная стена, присутствующая там в качестве «возмездия» за операции с кубитами, происходящими из чёрной дыры, ждёт только Алису. Приложение к ней энергии на входе в ЧД было создано самой Алисой, когда она начала взаимодействовать с кубитом С, найденным ею среди излучения из ЧД. Здесь возникает вопрос: как действия Алисы за пределами непреодолимого горизонта событий могли привести к возникновению какой-то частицы внутри горизонта событий? Как отмечают Малдасена и Саскинд, это очень просто: кубиты А и С всё равно были связаны изначально кротовой дырой.
Поскольку такие кротовые норы создают иную запутанность, нежели существует между самими фотонами, то «квантовая моногамия» не нарушается, и необходимости в создании огненной стены теоретически не возникает. Зато их наличие играет роль передатчика, ориентирующего внутреннюю часть ЧД на уничтожение столь неприятных носителей парадоксов, как Алиса, но процесс их уничтожения всякий раз сугубо индивидуален и не означает постоянного наличия у входа в ЧД перманентных стен из частиц высоких энергий. Следовательно, в основной массе случаев возникновение огненных стен исключено.
Рано говорить об окончательности такого решения. Тем более что, как мы видим, огненная стена в нём исключена не на 100%: у этого сценария есть интересные логические ответвления... И всё же кажется, что на сегодня это самая серьезная попытка теоретической критики парадокса огненной стены...
frontzet.ru
кротовые норы, черные дыры, пространство-время
Недавно вышедший на экраны визуально-захватывающий фильм "Интрестеллар" основывается на реальных научных понятиях, таких как вращающиеся черные дыры, кротовые норы и расширение времени.
Но если вы не знакомы с этими понятиями, то возможно, слегка запутаетесь во время просмотра.
Читайте также: 20 фильмов, над которыми придется серьезно поломать голову
В фильме команда космических исследователей отправляется во внегалактическое путешествие сквозь кротовую нору. На другой стороне они попадают в иную Солнечную систему с вращающейся черной дырой вместо звезды.
Они находятся в гонке с пространством и временем, чтобы выполнить свою миссию. Такое космическое путешествие может показаться слегка запутанным, но оно основывается на основных принципах физики.
Вот основные 5 понятий физики, которые нужно знать, чтобы понять "Интерстеллар":
Искусственная гравитация
Самой большой проблемой, с которой сталкиваемся мы, люди, при длительных космических путешествиях, является невесомость. Мы родились на Земле, и наше тело приспособилось к определенным гравитационным условиям, но когда мы находимся в космосе длительное время, наши мышцы начинают ослабевать.
Читайте также: 10 изменений, которые происходят с нашим телом в космосе
С этой проблемой сталкиваются и герои в фильме "Интерстеллар".
Чтобы справиться с этим, ученые создают искусственную гравитацию в космических кораблях. Одним из способов сделать это – раскрутить космический корабль, как в фильме. Вращение создает центробежную силу, которая отталкивает объекты к внешним стенкам корабля. Это отталкивание похоже на гравитацию, только в обратном направлении.
Такую форму искусственной гравитации вы испытываете, когда едете вокруг кривой малого радиуса и вам кажется, что вас отталкивает наружу, от центральной точки кривой. Во вращающемся космическом корабле стены для вас становятся полом.
Вращающаяся черная дыра в космосе
Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название – сингулярность.
Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр.
Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию.
- Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
- Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет. Гаргантюа вращается с поразительной скоростью 99,8 процентов от скорости света.
- Аккреционный диск Гарагантюа содержит газ и пыль с температурой поверхности Солнца. Диск снабжает планеты Гаргантюа светом и теплом.
Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней.
Кротовая нора
Кротовая нора или червоточина, которую использует экипаж в "Интерстеллар" – это одно из явлений в фильме, существование которого не доказано. Она гипотетическая, но очень удобная в сюжетах научно-фантастических историй, где нужно преодолеть большое космическое расстояние.
Просто кротовые норы – это своего рода кратчайший путь сквозь пространство. Любой объект с массой создает норку в пространстве, что означает, что пространство можно растягивать, деформировать и даже складывать.
Червоточина - это как складка на ткани пространства (и времени), которая соединяет две очень далекие области, что помогает космическим путешественникам преодолеть большое расстояние за короткий период времени.
Официальное название кротовой норы – "мост Эйнштейна-Розена", так как впервые она была предложена Альбертом Эйнштейном и его коллегой Натаном Розеном в 1935 году.
- В двухмерных диаграммах устье кротовой норы показано в виде круга. Однако, если бы мы могли увидеть кротовую нору, она бы выглядела, как сфера.
- На поверхности сферы был бы виден гравитационно искаженный вид пространства с другой стороны "норы".
- Размеры кротовой норы в фильме: 2 км в диаметре и расстояние переноса - 10 миллиардов световых лет.
Гравитационное замедление времени
Гравитационное замедление времени – это реальное явление, наблюдаемое на Земле. Оно возникает потому, что время относительно. Это означает, что оно течет по-разному для различных систем координат.
Когда вы находитесь в сильной гравитационной среде, время течет медленнее для вас по сравнению с людьми, находящимися в слабой гравитационной среде.
Читайте также: 5 поразительных фактов о времени
Если вы находитесь возле черной дыры, как в фильме, ваша система координат, а, следовательно, восприятие времени отличается от восприятия того, кто находится на Земле. Это потому, что гравитационное притяжение черной дыры тем сильнее, чем ближе вы к ней находитесь.
- Согласно уравнению Эйнштейна время течет медленнее в более высоких гравитационных полях. То же самое происходит на планете, близкой к черной дыре: часы тикают медленнее, чем на космическом корабле, вращающемся дальше.
- Присутствие массы искривляет мембрану, как резиновый лист.
- Если достаточно массы концентрируется в одной точке, формируется сингулярность. Объекты приближающиеся к сингулярности проходят через горизонт событий, из которого они никогда не возвращаются.
Для вас минута возле черной дыры будет длиться 60 секунд, но если бы вы могли взглянуть на часы на Земле, минута продлилась бы меньше 60 секунд. Это значит, что вы будете стареть медленнее людей на Земле, и чем сильнее гравитационное поле, в котором вы находитесь, тем сильнее замедляется время.
Это играет важную роль в фильме, когда исследователи встречаются с черной дырой в центре другой Солнечной системы.
Пятимерная Вселенная
Альберт Эйнштейн последние 30 лет своей жизни посвятил разработке "теории всего", которая бы сочетала математические понятия гравитации с другими тремя фундаментальными силами природы: сильную силу, слабую силу и электромагнитную силу. Ему, как впрочем, и другим физикам это не удалось.
Некоторые физики считают, что единственный способ разгадать эту загадку - это воспринимать нашу Вселенную, как 5-мерную, а не 4-мерную, как предлагал Эйнштейн в теории относительности, где сочетается трехмерное пространство с одномерным временем.
В фильме наша Вселенная представлена в 5-ти измерениях, и гравитация играет важную роль во всем этом.
Нашу трехмерную Вселенную можно представить в виде плоской мембраны (или "браны"), плавающую в четырехмерном гиперпространстве.
Трейлер "Интерстеллар" 2014
Перевод: Филипенко Л. В.
www.infoniac.ru
Поиск Лекций
Второй после растягивания пространства способ преодолеть световой барьер — это разорвать, или проколоть, пространство, т. е. пройти через кротовые норы, туннели, которые соединяют две вселенные. В литературе первое упоминание о кротовых норах принадлежит перу оксфордского математика Чарльза Доджсона, написавшего под псевдонимом Льюис Кэрролл сказку «Алиса в Зазеркалье». Зеркало Алисы и есть кротовая нора, которая соединила окрестности Оксфорда с волшебным миром Страны чудес. Протянув руку сквозь зеркало, Алиса может мгновенно перенестись из одной вселенной в другую. У математиков они называются «многократно связанными пространствами». В физике концепция кротовых нор возникла в 1916 г. — всего через год после того, как Эйнштейн опубликовал свой великий труд — общую теорию относительности. Физик Карл Шварцшильд, служивший тогда в кайзеровской армии, нашел точное решение уравнений Эйнштейна для случая изолированной точечной звезды. Вдалеке от звезды ее гравитационное поле очень похоже на поле обычной звезды; Эйнштейн даже воспользовался решением Шварцшильда при вычислении отклонения траектории света около звезды. Результат Шварцшильда произвел немедленное и очень сильное действие на все разделы астрономии, и сегодня он по-прежнему остается одним из самых известных решений уравнений Эйнштейна. Несколько поколений физиков использовали гравитационное поле этой гипотетической точечной звезды в качестве приближенного выражения для поля вокруг реальной звезды с конечным диаметром. Но если рассмотреть это точечное решение серьезно, то в центре его неожиданно обнаружится чудовищный точечный объект, который почти столетие изумлял и шокировал физиков, — черная дыра. Решение Шварцшильда для поля тяготения точечной звезды чем-то напоминает троянского коня. Снаружи оно выглядит как дар небес, а внутри скрывает всевозможных демонов и духов. Но если вы принимаете одно, то вынуждены принять и другое. Из решения Шварцшильда явствовало, что при приближении к пресловутой точечной звезде происходят странные вещи. Сама звезда окружена невидимой сферой (известной как «горизонт событий»), которая является своеобразной чертой невозврата. Все может проникнуть внутрь ее, но ничто не может выйти обратно. Однажды пройдя горизонт событий, вы уже не сможете вернуться назад. (Если вы находитесь внутри горизонта событий, вам, чтобы вновь оказаться снаружи, потребуется двигаться быстрее света, а это невозможно.) При приближении к горизонту событий на атомы вашего тела начнут действовать приливные силы, растягивая их. Ваши ноги будут ощущать гораздо большую силу тяжести, чем ваша голова, поэтому вас сначала растянет до состояния спагетти, а затем просто разорвет. Точно так же произойдет с атомами вашего тела — они будут растянуты гравитацией, а затем разорваны. Для внешнего наблюдателя ваше приближение к горизонту событий будет выглядеть так, как будто вы замедляетесь во времени. Более того, когда вы прикоснетесь к горизонту событий, наблюдателю покажется, что время остановилось! Этого мало. Провалившись под горизонт событий, вы увидите свет, запертый внутри этой сферы и блуждающий внутри черной дыры миллиарды лет. Вы как будто увидите фильм, запечатлевший всю историю черной дыры, с самого момента ее рождения. Наконец, если бы вам удалось пролететь черную дыру насквозь, там, с другой стороны, обнаружится иная вселенная. Это явление, впервые описанное Эйнштейном в 1935 г., носит название моста Эйнштейна-Розена; сейчас его называют еще кротовой норой. Эйнштейн и другие физики были уверены, что ни одна звезда не сможет естественным образом превратиться в столь чудовищный объект. В1939 г. Эйнштейн даже опубликовал статью, в которой показал, что вращающаяся газопылевая масса никогда не сконденсируется в подобную черную дыру. Поэтому, несмотря на притаившуюся в центре черной дыры кротовую нору, он был уверен, что ничто подобное в природе возникнуть не может. Астрофизик Артур Эддингтон как-то сказал, что «должен существовать закон природы, не позволяющий звездам вести себя столь нелепым образом». Другими словами, черная дыра, конечно, законное решение уравнений Эйнштейна, но механизм, посредством которого такая штука могла бы сформироваться естественным путем, неизвестен. Ситуация кардинально изменилась с выходом в том же году статьи Роберта Оппенгеимера и его ученика Хартланда Снаидера; в этой работе ученые показали, что черные дыры все же могут формироваться естественным путем. Они предположили, что умирающая звезда, которая практически полностью истратила свое ядерное топливо, коллапсирует под действием гравитационных сил, т. е. схлопывается под собственной тяжестью. Если гравитация сможет сжать звезду до размеров, меньших, чем радиус горизонта событий, то дальше уже ничто на свете не сможет помешать ей сжать звезду в точку и превратить в черную дыру. (Вполне возможно, что рассмотренный здесь механизм коллапса подсказал Оппенгеймеру идеи, которые он через несколько лет использовал при создании бомбы для Нагасаки, при детонации которой используется взрывное обжатие плутониевого шара.) Следующий прорыв имел место в 1963 г., когда новозеландский математик Рой Керр исследовал, возможно, самый реалистичный образчик черной дыры. Сжимаясь, объекты ускоряют свое вращение — примерно так же, как фигуристы начинают вращаться быстрее, когда прижимают руки к телу. Можно сделать вывод, что черные дыры должны вращаться с фантастическими скоростями. Керр обнаружил, что вращающаяся черная дыра не схлопнется в точечную звезду, как предполагал Шварцшильд, а сожмется и образует вращающееся кольцо. Любой, кому не повезет и кто наткнется на это кольцо, погибнет; но тот, кто угодит в отверстие кольца, не умрет, а пройдет его насквозь. И окажется при этом не по другую сторону все того же кольца, а в другой вселенной, потому что, попав в кольцо, он пройдет по мосту Эйнштейна-Розена. Другими словами, вращающаяся черная дыра — это обод зеркала, сквозь которое проходила сказочная Алиса. Если этот человек затем обогнет кольцо и пройдет через него еще раз, он окажется в следующей вселенной. Вообще, каждое последовательное прохождение через вращающееся кольцо приведет путешественника в очередную параллельную вселенную — примерно как нажатие кнопки «вверх» в лифте. В принципе может существовать бесконечное число вселенных, одна над другой. «Пройди сквозь это волшебное кольцо и — опа! — ты уже совершенно в другой вселенной, где радиус и масса отрицательны!» — писал Керр. Но здесь есть очень важная ловушка. Черная дыра — хороший образец «необратимой кротовой норы»; а значит, через горизонт событий можно пройти только в одном направлении. Стоит миновать горизонт событий и кольцо Керра — и вы уже не сможете вернуться назад тем же путем. Но в 1988 г. Кип Торн и его коллеги по Калифорнийскому технологическому рассчитали обратимую кротовую нору, т. е. такую, через которую можно свободно проходить в обоих направлениях, туда и обратно. Для одного из их решений путешествие через кротовую нору не опаснее полета на самолете! В обычных условиях сила тяжести стремится раздавить и раздавит «трубку» кротовой норы, погубив при этом астронавтов, которые попытаются в этот момент достичь другого ее конца. Этого достаточно, чтобы сделать мгновенное перемещение через кротовые норы невозможным. Но можно предположить, что сила отталкивания, присущая отрицательной энергии или отрицательному веществу, сможет удержать трубку открытой на достаточный промежуток времени, чтобы астронавты успели миновать опасную зону. Другими словами, отрицательное вещество или отрицательная энергия совершенно необходимы и для двигателя Алькубьерре, и для схемы с использованием кротовых нор. За последние несколько лет было обнаружено поразительное число точных решений уравнений Эйнштейна, допускающих существование кротовых нор. Но существуют ли они на самом деле? Или, может быть, это просто математическая фантазия? Кроме того, с кротовыми норами связано несколько серьезных проблем. Во-первых, для создания сильных искажений пространства-времени, необходимых для путешествия через кротовые норы, потребуется неслыханное количество положительного и отрицательного вещества — порядка громадной звезды или черной дыры. По оценке Мэтью Виссера, физика из Вашингтонского университета, для создания кротовой норы диаметром 1 м необходимо столько отрицательной энергии, что ее количество можно сравнить с массой Юпитера — и при этом она должна быть отрицательной! Виссер говорит: «Для этой работы потребуется примерно минус одна масса Юпитера. А управлять даже положительной энергией, сравнимой с массой Юпитера, мягко говоря, непросто и выходит далеко за рамки наших возможностей в пред ставимом будущем». Кип Торн из Калифорнийского технологического института рассуждает так: «Похоже, что законы физики действительно разрешают существование экзотического вещества в количестве, достаточном для удержания в стабильном состоянии кротовой норы размером с человека. Но тут же выясняется, что технология строительства кротовых нор и удержания их в открытом состоянии для нас непредставима и находится далеко за пределами возможностей человеческой цивилизации». Во-вторых, мы не знаем, насколько стабильными окажутся эти кротовые норы. Кроме того, излучение, которое будет в них генерироваться, может оказаться убийственным для любого, кто проникнет внутрь. А может быть, кротовые норы вообще будут нестабильны и станут схлопываться, стоит кому-нибудь или чему-нибудь попасть внутрь. В-третьих, лучи света при проникновении в черную дыру будут испытывать синее смещение; это означает, что, подходя к горизонту событий, они будут приобретать все большую и большую энергию. Более того, на самом горизонте событий свет теоретически должен испытывать бесконечное голубое смещение и обладать бесконечной энергией, поэтому входящее излучение в черной дыре может оказаться смертельным для экипажа корабля. Давайте обсудим эти проблемы немного подробнее. Первая проблема — накопить и собрать в одной точке достаточно энергии, чтобы разорвать ткань пространства-времени. Простейший способ добиться этого — сжать объект так, чтобы он стал меньше собственного горизонта событий. К примеру, для Солнца это означало бы сжать его до диаметра примерно в 3 км, после чего Солнце уже само коллапсирует и превратится в черную дыру. (Собственное тяготение Солнца слишком слабо, чтобы естественным путем сжать его до такого диаметра, поэтому наше светило никогда не станет черной дырой. В принципе это означает, что любое тело, даже ваше, способно превратиться в черную дыру, если его как следует сжать. Для человеческого тела это означало бы сжать все его атомы до размера, меньшего, чем субатомные расстояния, — эта операция лежит далеко за пределами возможностей современной науки.) Чуть более практичный подход — взять батарею лазеров, собрать лучи и направить полученный мощный луч в определенную точку. Или построить гигантский ускоритель, разогнать в нем два пучка, которые затем столкнутся с выделением фантастического количества энергии, достаточного для создания крошечного разрыва пространства-времени. Планковская энергия и ускорители частиц Можно заранее рассчитать энергию, необходимую для создания нестабильности пространства-времени: по порядку величины она соответствует планковской энергии, составляющей 1019 МэВ. Это поистине невообразимо большая величина; она в квадриллион раз превосходит величины энергий, достижимых на самом мощном современном ускорителе — Большом адронном коллайдере (БАК, LHC), построенном в Швейцарии возле Женевы. Этот коллайдер способен разгонять в большом «бублике» протоны до энергий в триллионы электронвольт, которых не бывало с момента Большого взрыва. Но даже этой чудовищной машине далеко до создания частиц с энергиями, которые хотя бы отдаленно приближались к планковской энергии. Следующим после Большого адронного коллайдера ускорителем станет Международный линейный коллайдер (МЛК, ILC). Вместо того чтобы гонять элементарные частицы по кругу, линейный коллайдер будет выстреливать и разгонять их на прямой, пока они не достигнут невообразимо высоких энергий. После этого поток электронов предполагается столкнуть с позитронами, создавая таким образом громадный выброс энергии. Длина МЛК составит 30-40 км и в десять раз превзойдет длину Стэнфордского линейного ускорителя, который на данный момент является крупнейшим в мире. Если все пойдет хорошо, МЯК будет сооружен где-нибудь в следующем десятилетии. Предполагается, что МЛК будет выдавать энергии от 0,5 до 1,0 ТэВ. Это меньше, чем 14 ТэВ, которые можно получить на БАК, но такое впечатление обманчиво. В БАК сталкиваются протоны, а значит, реально в столкновении участвуют кварки, из которых состоит протон. В каждом индивидуальном столкновении кварков задействовано значительно меньше 14 ТэВ. Поэтому на МЛК можно будет получить большие энергии столкновения, нежели на БАК. Кроме того, поскольку у электрона нет известных составных частей, динамика столкновения между электроном и позитроном значительно проще и «чище». Честно говоря, и МЛК будет очень далеко до энергий того уровня, который необходим, чтобы проделать дыру в пространстве-времени. Для этого потребовался бы в квадриллион раз более мощный ускоритель. Для нашей цивилизации — цивилизации нулевого типа, использующей в качестве топлива остатки растений (т. е. нефть и уголь), — эта технология совершенно недостижима. Но цивилизация III типа, возможно, сумеет овладеть ею. Вспомним, что цивилизация III типа является галактической по использованию энергии и потребляет ее в 10 млрд раз больше, чем цивилизация II типа, источником энергии которой служит одна-единственная звезда. А цивилизация II типа, в свою очередь, потребляет в 10 млрд раз больше энергии, чем цивилизация I типа, использующая лишь энергию собственной планеты. А ведь уже через 100-200 лет наша слабенькая цивилизация должна достигнуть статуса цивилизации I типа. Имея в виду наши перспективы, следует сделать вывод, что в настоящий момент мы находимся в самом начале длинного-длинного пути к получению планковской энергии. Многие физики считают, что на чрезвычайно малых расстояниях — порядка планковской длины, которая составляет 10-33 см, — пространство не пусто и не однородно, но «пенится»; оно наполнено крошечными пузырьками, которые постоянно возникают и сталкиваются с другими такими же пузырьками, а затем снова пропадают в вакууме. Пузырьки, которые возникают и пропадают в вакууме, — это «виртуальные вселенные»; они очень напоминают пары виртуальных частиц — электронов и позитронов, которые возникают и тут же аннигилируют. В обычных обстоятельствах эта квантовая пространственно-временная «пена» совершенно незаметна нам. Пузырьки формируются на таких крошечных расстояниях, что мы не в состоянии их увидеть. Но квантовая физика считает, что если сконцентрировать в одной точке достаточно энергии, вплоть до планковской энергии, то эти пузырьки могут увеличиться. Тогда мы увидим, как пространство-время пенится крошечными пузырьками, и каждый такой пузырек — кротовая нора, соединяющая наш мир с готовой родиться дочерней вселенной. В прошлом дочерние вселенные считались интеллектуальной забавой, причудливым следствием чистой математики. Но теперь физики всерьез считают, что когда-то наша Вселенная, вполне возможно, тоже начинала как одна из них. Такой вывод основан на чистых и пока довольно произвольных рассуждениях, но законы физики позволяют открыть дыру в пространстве путем концентрации в одной точке достаточного количества энергии; энергия позволяет нам добраться до пространственно-временной пены, из которой возникают кротовые норы, соединяющие нашу вселенную с другой, дочерней вселенной. Создание дыры в пространстве потребует, разумеется, технологии совершенно иного уровня, чем наша, но в то же время цивилизации III типа этот уровень вполне может оказаться доступен. К примеру, имеется такая штука под названием «настольный струйный плазменный ускоритель»; в последнее время в этом направлении получены многообещающие результаты. Несмотря на крошечные размеры — а этот ускоритель действительно может поместиться на столе, — прибор способен генерировать энергии в миллиарды электронвольт. Принцип работы струйного ускорителя состоит в том, что лазерный луч направляют на заряженные частицы, которые затем разгоняются за счет энергии лазера. Эксперименты, проведенные в научном центре Стэнфордского линейного ускорителя, в Лаборатории Резерфорда-Эпплтона в Англии и в парижской Политехнической школе показывают, что использование лазерного луча и плазмы в качестве источника энергии позволяет разгонять частицы на достаточно небольшом расстоянии до чрезвычайно высоких энергий. Еще одно чрезвычайно важное открытие было сделано в 2007 г. Физики и инженеры научного центра Стэнфордского линейного ускорителя, Университета Калифорнии в Лос-Анджелесе и Университета Южной Калифорнии продемонстрировали, что энергию громадного ускорителя частиц можно удвоить на протяжении всего 1 м. Они начали с пучка электронов, который разгоняется в двухмильной трубе Стэнфордского ускорителя до энергии в 42 МэВ. Затем эти электроны, и без того обладающие высокой энергией, пропускают через плазменную «форсажную камеру» длиной всего лишь 88 см; в ней электроны набирают еще по 42 ГэВ, удваивая таким образом свою энергию. (Эта плазменная камера заполнена газообразным литием. Электроны, проходя через газ, порождают плазменную волну и, как следствие этого, попутную струю. Этот поток, в свою очередь, как бы подхватывает следующие электроны пучка и толкает их вперед, придавая дополнительное ускорение.) Это поразительное достижение — ведь физикам удалось в 3000 раз превзойти предыдущий рекорд по количеству энергии, которое можно передать электронному пучку за 1 м. Если добавить такие плазменные «дожигатели» к уже существующим ускорителям, можно в принципе почти даром удваивать энергию получаемых частиц. На сегодняшний день мировой рекорд для настольного струйного ускорителя составляет 200 ГэВ/м. Увеличение длины такого ускорителя пока представляется проблематичным — слишком много возникает проблем (таких, как поддержание стабильности пучка при разгоне его лазерным лучом). Но если предположить, что мы научимся все же произвольно увеличивать длину такого ускорителя с сохранением уровня энергии 200 ГэВ/м, то в этом случае длина ускорителя, способного разогнать частицы до планковской энергии, должна будет составить десять световых лет. Это вполне по силам цивилизации III типа. По всей видимости, кротовые норы и растянутое пространство — самые реальные способы преодолеть световой барьер. Пока неясно, стабильны ли эти технологии; но даже если они стабильны, нам потребовалось бы сказочное количество энергии — положительной или отрицательной, — чтобы заставить их реально работать. Может быть, уже сейчас какая-нибудь цивилизация III типа обладает подобными технологиями. Но пройдут, возможно, тысячи лет, прежде чем человечество сможет хотя бы всерьез задуматься о том, чтобы обуздать подобную мощь. Кроме того, еще разрешены не все противоречия в отношении законов, которыми управляется пространство-время на квантовом уровне. Учитывая все вышесказанное, я отнес бы преодоление светового барьера ко II классу невозможности. Путешествия во времени Если путешествия во времени возможны, то где же туристы из будущего? Стивен Хокинг
— [Путешествия во времени] противоречат здравому смыслу, — произнес Филби. — Какому смыслу? — переспросил путешественник во времени. Герберт Уэллс В романе «Уравнение Януса» писатель Стивен Спрюлл исследует одну из душераздирающих личностных проблем, связанных с путешествиями во времени. В центре сюжета книги блестящий математик, поставивший себе целью разгадать тайну путешествий во времени. Он встречает необычную красавицу, они становятся любовниками, — но при этом он ничего не знает о ее прошлом. Мучимый любопытством, он пытается узнать, кто же такая его таинственная возлюбленная. Постепенно выясняется, что когда-то она изменила свою внешность при помощи пластической операции. И изменила пол, также при помощи операции. В конце концов оказывается, что на самом деле «она» — путешественник во времени, прибывший из будущего; мало того, на самом деле «она» — это он сам, только из будущего. Получается, что он занимался любовью сам с собой. Остается только гадать, что произошло бы, появись у них ребенок? И если бы этот ребенок отправился назад, в прошлое, вырос бы там и стал математиком (тем самым, который фигурировал в начале истории)? Можно ли быть самому себе и матерью, и отцом, и сыном, и дочерью? Как изменить прошлое Время — одна из величайших загадок Вселенной. Река времени уносит нас всех без исключения, независимо от нашего желания и даже против воли. Еще в 400 г. н.э. Блаженный Августин много писал о парадоксальной природе времени: «А как могут быть эти два времени, прошлое и будущее, когда прошлого уже нет, а будущего еще нет? И если бы настоящее всегда оставалось настоящим и не уходило в прошлое, то это было бы уже не время, а вечность». Если продолжить логически мысль Августина, получится, что время вообще невозможно, потому что прошлое уже ушло, будущее не существует, а настоящее существует лишь мгновение. (После этих рассуждений Блаженный Августин задается глубокими теологическими вопросами о том, как время влияет на Бога, — вопросами, которые не потеряли смысл и сегодня. Если Господь всезнающ и всемогущ, писал Блаженный Августин, то связан ли Он течением времени? Другими словами, приходится ли Богу спешить, опаздывая на важную встречу, как делаем мы, смертные? Сам Августин делает такой вывод: Господь всемогущ и потому не может быть ограничен чем бы то ни было, в том числе и течением времени; следовательно, он должен существовать «вне времени». Хотя на первый взгляд концепция существования вне времени представляется абсурдной, это одна из тех идей, которые, как мы еще убедимся, снова и снова возникают в современной физике.) Подобно Блаженному Августину, каждый из нас в какой-то момент задумывался о странной и загадочной природе времени и о том, как сильно время отличается от пространства. Если в пространстве мы можем без труда двигаться в любом направлении, то почему во времени все иначе? Каждый из нас задумывался и о том, что ждет человечество после нас. Век отдельного человека ограничен, но всем нам ужасно интересно все, что произойдет в будущем, после нас. Желание человека путешествовать во времени родилось, вероятно, одновременно с самим человеком, но первая записанная история о путешествии во времени — «Мемуары о двадцатом столетии» — принадлежит перу Сэмьюела Мэддена и относится к 1733 г. В ней рассказывается об ангеле из 1997 г., который перенесся на 250 лет назад, чтобы передать британскому послу документы с описанием мира будущего. Позже таких историй появилось множество. В 1838 г. вышло произведение анонимного автора «В ожидании дилижанса: анахронизм»; его герой, ожидая дилижанса, неожиданно переносится на тысячу лет в прошлое. Он встречает монаха древнего монастыря и пытается рассказать ему, как будет развиваться история в следующую тысячу лет, Через некоторое время он столь же неожиданно переносится обратно в настоящее; единственный результат — его дилижанс уже ушел. Путешествия во времени можно обнаружить в самых неожиданных произведениях — как, например, в романе Чарльза Диккенса «Рождественская история», написанном в 1843 г.; героя романа, Эбенезера Скруджа, переносят в прошлое и будущее и показывают мир, каким он был прежде и каким будет после его смерти. В американской литературе путешествия во времени впервые появляются у Марка Твена в романе 1889 г. «Янки из Коннектикута при дворе короля Артура». Янки XIX в. переносится назад во времени и оказывается при дворе короля Артура в 528 г. от Рождества Христова. Его берут в плен и собираются сжечь на костре, но находчивый янки объявляет, что обладает властью погасить солнце, ведь он знает, что в этот самый день должно состояться солнечное затмение. Когда луна закрывает собой солнце, толпа приходит в ужас; янки отпускают и осыпают милостями, лишь бы он вернул им солнечный свет. Но первой серьезной попыткой исследовать путешествия во времени в художественной литературе стал классический роман Герберта Уэллса «Машина времени»; в нем герой отправляется на сотни тысяч лет в будущее. Оказывается, в этом отдаленном будущем человечество генетически расколото на две расы — воинственных морлоков, которые ухаживают за мрачными подземными машинами, и беззаботных, похожих на детей элоев, которые радуются и танцуют наверху на солнечных полянах, не подозревая и не задумываясь об ожидающей их ужасной участи (быть съеденными морлоками). После Уэллса путешествия во времени стали привычной деталью научно-фантастических произведений, от «Звездного пути» до «Назад в будущее». В фильме «Супермен» главный герой, узнав о гибели Лоис Лейн, в отчаянии решает повернуть назад стрелки времени; он начинает носиться вокруг Земли и обгоняет свет, пока само время не поворачивает назад. Земля замедляет вращение, останавливается и наконец начинает вращаться в обратную сторону — и все часы на Земле начинают обратный отсчет. Воды потопа с ревом устремляются обратно, прорванные дамбы чудесным образом восстанавливаются, и Лоис Лейн возвращается к жизни. С точки зрения науки можно сказать, что путешествия во времени были решительно невозможны в ньютоновой вселенной, где время текло равномерно и прямолинейно. Однажды случившееся не могло измениться ни при каких обстоятельствах. Одна секунда на Земле равнялась одной секунде в любой другой точке Вселенной. Эйнштейн опроверг эту концепцию и показал, что время больше похоже на извилистую реку, которая пересекает Вселенную; петляя меж звезд и галактик, оно ускоряется и замедляется. Так что одна секунда на Земле вовсе не абсолютна; время в разных точках Вселенной течет по-разному. Как я уже рассказывал, согласно специальной теории относительности Эйнштейна время в ракете замедляется, причем тем сильнее, чем быстрее она движется. Писатели-фантасты любят рассуждать о том, что, если удастся преодолеть световой барьер, то можно будет вернуться назад по времени. На самом деле это невозможно — ведь чтобы достичь скорости света, вам придется обзавестись и бесконечной массой. Скорость света — непреодолимый барьер для любой ракеты. Экипаж «Энтерпрайза» в сериале «Звездный путь IV: Путешествие домой» похитил космический корабль Клинтонов, разогнал его гравитационным маневром вокруг местного солнца, преодолел световой барьер и оказался в Сан-Франциско 1960-х гг. На самом деле это противоречит законам физики. Тем не менее путешествия в будущее возможны, и это экспериментально подтверждено уже миллионы раз. Даже путешествие героя «Машины времени» в далекое будущее в принципе возможно. Если астронавт будет двигаться с околосветовой скоростью, на дорогу до одной из ближайших звезд ему может потребоваться, скажем, одна минута. На Земле при этом пройдет четыре года, но для него лично время сдвинется всего лишь на одну минуту, потому что время в корабле сильно замедлится. Получится, что астронавт при этом переместится в будущее Земли на четыре года. (Вообще говоря, наши астронавты совершают короткое путешествие в будущее каждый раз, когда летают в космос. Пока они летают вокруг Земли со скоростью 8 км/с, их часы идут чуть медленнее, чем часы на Земле. Можно подсчитать, что за время годичной экспедиции на космической станции они к моменту возвращения на Землю перемещаются в будущее на долю секунды. Мировой рекорд в путешествиях во времени принадлежит в настоящее время российскому космонавту Сергею Авдееву, который за 748 суток, проведенных на орбите, переместился в будущее уже на 0,02 с.) Итак, машина времени для путешествий в будущее не противоречит специальной теории относительности Эйнштейна. Но как обстоит дело с путешествиями в прошлое? Если бы мы могли путешествовать в прошлое, изучать историю было бы невозможно. Стоило бы историку записать прошедшие события, как кто-нибудь мог вернуться в прошлое и изменить его. Машина времени не только лишила бы историков работы, но и позволила бы нам произвольно изменять его течение. Если бы, к примеру, кто-нибудь отправился в прошлое, в эру динозавров, и случайно раздавил бы первое млекопитающее — нашего общего предка, — он мог бы стереть с лица Земли весь род человеческий. В лучшем случае история превратилась бы в бесконечный сумасшедший аттракцион, когда повсюду сновали бы туристы из будущего с фотоаппаратами и пытались получше заснять исторические события. |
|
poisk-ru.ru
Кротовые норы и черные дыры
Количество просмотров публикации Кротовые норы и черные дыры - 204
Второй после растягивания пространства способ преодолеть световой барьер — это разорвать, или проколоть, пространство, т. е. пройти через кротовые норы, туннели, которые соединяют две вселенные. В литературе первое упоминание о кротовых норах принадлежит перу оксфордского математика Чарльза Доджсона, написавшего под псевдонимом Льюис Кэрролл сказку ʼʼАлиса в Зазеркальеʼʼ. Зеркало Алисы и есть кротовая нора, которая соединила окрестности Оксфорда с волшебным миром Страны чудес. Протянув руку сквозь зеркало, Алиса может мгновенно перенестись из одной вселенной в другую. У математиков они называются ʼʼмногократно связанными пространствамиʼʼ.
В физике концепция кротовых нор возникла в 1916 ᴦ. — всего через год после того, как Эйнштейн опубликовал свой великий труд — общую теорию относительности. Физик Карл Шварцшильд, служивший тогда в кайзеровской армии, нашел точное решение уравнений Эйнштейна для случая изолированной точечной звезды. Вдалеке от звезды ее гравитационное поле очень похоже на поле обычной звезды; Эйнштейн даже воспользовался решением Шварцшильда при вычислении отклонения траектории света около звезды. Результат Шварцшильда произвел немедленное и очень сильное действие на все разделы астрономии, и сегодня он по-прежнему остается одним из самых известных решений уравнений Эйнштейна. Несколько поколений физиков использовали гравитационное поле этой гипотетической точечной звезды в качестве приближенного выражения для поля вокруг реальной звезды с конечным диаметром.
Но если рассмотреть это точечное решение серьезно, то в центре его неожиданно обнаружится чудовищный точечный объект, который почти столетие изумлял и шокировал физиков, — черная дыра. Решение Шварцшильда для поля тяготения точечной звезды чем-то напоминает троянского коня. Снаружи оно выглядит как дар небес, а внутри скрывает всевозможных демонов и духов. Но если вы принимаете одно, то вынуждены принять и другое. Из решения Шварцшильда явствовало, что при приближении к пресловутой точечной звезде происходят странные вещи. Сама звезда окружена невидимой сферой (известной как ʼʼгоризонт событийʼʼ), которая является своеобразной чертой невозврата. Все может проникнуть внутрь ее, но ничто не может выйти обратно. Однажды пройдя горизонт событий, вы уже не сможете вернуться назад. (В случае если вы находитесь внутри горизонта событий, вам, чтобы вновь оказаться снаружи, потребуется двигаться быстрее света͵ а это невозможно.)
При приближении к горизонту событий на атомы вашего тела начнут действовать приливные силы, растягивая их. Ваши ноги будут ощущать гораздо большую силу тяжести, чем ваша голова, в связи с этим вас сначала растянет до состояния спагетти, а затем просто разорвет. Точно так же произойдет с атомами вашего тела — они будут растянуты гравитацией, а затем разорваны.
Для внешнего наблюдателя ваше приближение к горизонту событий будет выглядеть так, как будто вы замедляетесь во времени. Более того, когда вы прикоснетесь к горизонту событий, наблюдателю покажется, что время остановилось!
Этого мало. Провалившись под горизонт событий, вы увидите свет, запертый внутри этой сферы и блуждающий внутри черной дыры миллиарды лет. Вы как будто увидите фильм, запечатлевший всю историю черной дыры, с самого момента ее рождения.
Наконец, в случае если бы вам удалось пролететь черную дыру насквозь, там, с другой стороны, обнаружится иная вселенная. Это явление, впервые описанное Эйнштейном в 1935 ᴦ., носит название моста Эйнштейна-Розена; сейчас его называют еще кротовой норой.
Эйнштейн и другие физики были уверены, что ни одна звезда не сможет естественным образом превратиться в столь чудовищный объект. В1939 ᴦ. Эйнштейн даже опубликовал статью, в которой показал, что вращающаяся газопылевая масса никогда не сконденсируется в подобную черную дыру. По этой причине, несмотря на притаившуюся в центре черной дыры кротовую нору, он был уверен, что ничто подобное в природе возникнуть не может. Астрофизик Артур Эддингтон как-то сказал, что ʼʼдолжен существовать закон природы, не позволяющий звездам вести себя столь нелепым образомʼʼ. Другими словами, черная дыра, конечно, законное решение уравнений Эйнштейна, но механизм, посредством которого такая штука могла бы сформироваться естественным путем, неизвестен.
Ситуация кардинально изменилась с выходом в том же году статьи Роберта Оппенгеимера и его ученика Хартланда Снаидера; в этой работе ученые показали, что черные дыры все же могут формироваться естественным путем. Οʜᴎ предположили, что умирающая звезда, которая практически полностью истратила свое ядерное топливо, коллапсирует под действием гравитационных сил, т. е. схлопывается под собственной тяжестью. В случае если гравитация сможет сжать звезду до размеров, меньших, чем радиус горизонта событий, то дальше уже ничто на свете не сможет помешать ей сжать звезду в точку и превратить в черную дыру. (Вполне возможно, что рассмотренный здесь механизм коллапса подсказал Оппенгеймеру идеи, которые он через несколько лет использовал при создании бомбы для Нагасаки, при детонации которой используется взрывное обжатие плутониевого шара.)
Следующий прорыв имел место в 1963 ᴦ., когда новозеландский математик Рой Керр исследовал, возможно, самый реалистичный образчик черной дыры. Сжимаясь, объекты ускоряют свое вращение — примерно аналогично тому, как фигуристы начинают вращаться быстрее, когда прижимают руки к телу. Можно сделать вывод, что черные дыры должны вращаться с фантастическими скоростями.
Керр обнаружил, что вращающаяся черная дыра не схлопнется в точечную звезду, как предполагал Шварцшильд, а сожмется и образует вращающееся кольцо. Любой, кому не повезет и кто наткнется на это кольцо, погибнет; но тот, кто угодит в отверстие кольца, не умрет, а пройдет его насквозь. И окажется при этом не по другую сторону все того же кольца, а в другой вселенной, потому что, попав в кольцо, он пройдет по мосту Эйнштейна-Розена. Другими словами, вращающаяся черная дыра — это обод зеркала, сквозь ĸᴏᴛᴏᴩᴏᴇ проходила сказочная Алиса.
В случае если данный человек затем обогнет кольцо и пройдет через него еще раз, он окажется в следующей вселенной. Вообще, каждое последовательное прохождение через вращающееся кольцо приведет путешественника в очередную параллельную вселенную — примерно как нажатие кнопки ʼʼвверхʼʼ в лифте. В принципе может существовать бесконечное число вселенных, одна над другой. ʼʼПройди сквозь это волшебное кольцо и — опа! — ты уже совершенно в другой вселенной, где радиус и масса отрицательны!ʼʼ — писал Керр.
Но здесь есть очень важная ловушка. Черная дыра — хороший образец ʼʼнеобратимой кротовой норыʼʼ; а значит, через горизонт событий можно пройти только в одном направлении. Стоит миновать горизонт событий и кольцо Керра — и вы уже не сможете вернуться назад тем же путем.
Но в 1988 ᴦ. Кип Торн и его коллеги по Калифорнийскому технологическому рассчитали обратимую кротовую нору, т. е. такую, через которую можно свободно проходить в обоих направлениях, туда и обратно. Для одного из их решений путешествие через кротовую нору не опаснее полета на самолете!
В обычных условиях сила тяжести стремится раздавить и раздавит ʼʼтрубкуʼʼ кротовой норы, погубив при этом астронавтов, которые попытаются в данный момент достичь другого ее конца. Этого достаточно, чтобы сделать мгновенное перемещение через кротовые норы невозможным. Но можно предположить, что сила отталкивания, присущая отрицательной энергии или отрицательному веществу, сможет удержать трубку открытой на достаточный промежуток времени, чтобы астронавты успели миновать опасную зону. Другими словами, отрицательное вещество или отрицательная энергия совершенно необходимы и для двигателя Алькубьерре, и для схемы с использованием кротовых нор.
За последние несколько лет было обнаружено поразительное число точных решений уравнений Эйнштейна, допускающих существование кротовых нор. Размещено на реф.рфНо существуют ли они на самом деле? Или, должна быть, это просто математическая фантазия? Вместе с тем, с кротовыми норами связано несколько серьезных проблем.
В первую очередь, для создания сильных искажений пространства-времени, необходимых для путешествия через кротовые норы, потребуется неслыханное количество положительного и отрицательного вещества — порядка громадной звезды или черной дыры. По оценке Мэтью Виссера, физика из Вашингтонского университета͵ для создания кротовой норы диаметром 1 м крайне важно столько отрицательной энергии, что ее количество можно сравнить с массой Юпитера — и при этом она должна быть отрицательной! Виссер говорит: ʼʼДля этой работы потребуется примерно минус одна масса Юпитера. А управлять даже положительной энергией, сравнимой с массой Юпитера, мягко говоря, непросто и выходит далеко за рамки наших возможностей в пред ставимом будущемʼʼ.
Кип Торн из Калифорнийского технологического института рассуждает так: ʼʼПохоже, что законы физики действительно разрешают существование экзотического вещества в количестве, достаточном для удержания в стабильном состоянии кротовой норы размером с человека. Но тут же выясняется, что технология строительства кротовых нор и удержания их в открытом состоянии для нас непредставима и находится далеко за пределами возможностей человеческой цивилизацииʼʼ.
Во-вторых, мы не знаем, насколько стабильными окажутся эти кротовые норы. Вместе с тем, излучение, ĸᴏᴛᴏᴩᴏᴇ будет в них генерироваться, может оказаться убийственным для любого, кто проникнет внутрь. А должна быть, кротовые норы вообще будут нестабильны и станут схлопываться, стоит кому-нибудь или чему-нибудь попасть внутрь.
В-третьих, лучи света при проникновении в черную дыру будут испытывать синее смещение; это означает, что, подходя к горизонту событий, они будут приобретать все большую и большую энергию. Более того, на самом горизонте событий свет теоретически должен испытывать бесконечное голубое смещение и обладать бесконечной энергией, в связи с этим входящее излучение в черной дыре может оказаться смертельным для экипажа корабля.
Давайте обсудим эти проблемы немного подробнее. Первая проблема — накопить и собрать в одной точке достаточно энергии, чтобы разорвать ткань пространства-времени. Простейший способ добиться этого — сжать объект так, чтобы он стал меньше собственного горизонта событий. К примеру, для Солнца это означало бы сжать его до диаметра примерно в 3 км, после чего Солнце уже само коллапсирует и превратится в черную дыру. (Собственное тяготение Солнца чересчур слабо, чтобы естественным путем сжать его до такого диаметра, в связи с этим наше светило никогда не станет черной дырой. В принципе это означает, что любое тело, даже ваше, способно превратиться в черную дыру, в случае если его как следует сжать. Для человеческого тела это означало бы сжать все его атомы до размера, меньшего, чем субатомные расстояния, — эта операция лежит далеко за пределами возможностей современной науки.)
Чуть более практичный подход — взять батарею лазеров, собрать лучи и направить полученный мощный луч в определенную точку. Или построить гигантский ускоритель, разогнать в нем два пучка, которые затем столкнутся с выделением фантастического количества энергии, достаточного для создания крошечного разрыва пространства-времени.
Планковская энергия и ускорители частиц
Можно заранее рассчитать энергию, необходимую для создания нестабильности пространства-времени: по порядку величины она соответствует планковской энергии, составляющей 1019 МэВ. Это поистине невообразимо большая величина; она в квадриллион раз превосходит величины энергий, достижимых на самом мощном современном ускорителе — Большом адронном коллайдере (БАК, LHC), построенном в Швейцарии возле Женевы. Этот коллайдер способен разгонять в большом ʼʼбубликеʼʼ протоны до энергий в триллионы электронвольт, которых не бывало с момента Большого взрыва. Но даже этой чудовищной машине далеко до создания частиц с энергиями, которые хотя бы отдаленно приближались к планковской энергии.
Следующим после Большого адронного коллайдера ускорителем станет Международный линейный коллайдер (МЛК, ILC). Вместо того чтобы гонять элементарные частицы по кругу, линейный коллайдер будет выстреливать и разгонять их на прямой, пока они не достигнут невообразимо высоких энергий. После этого поток электронов предполагается столкнуть с позитронами, создавая таким образом громадный выброс энергии. Длина МЛК составит 30-40 км и в десять раз превзойдет длину Стэнфордского линейного ускорителя, который на данный момент является крупнейшим в мире. В случае если все пойдет хорошо, МЯК будет сооружен где-нибудь в следующем десятилетии.
Предполагается, что МЛК будет выдавать энергии от 0,5 до 1,0 ТэВ. Это меньше, чем 14 ТэВ, которые можно получить на БАК, но такое впечатление обманчиво. В БАК сталкиваются протоны, а значит, реально в столкновении участвуют кварки, из которых состоит протон. В каждом индивидуальном столкновении кварков задействовано значительно меньше 14 ТэВ. По этой причине на МЛК можно будет получить большие энергии столкновения, нежели на БАК. Вместе с тем, поскольку у электрона нет известных составных частей, динамика столкновения между электроном и позитроном значительно проще и ʼʼчищеʼʼ.
Честно говоря, и МЛК будет очень далеко до энергий того уровня, который необходим, чтобы проделать дыру в пространстве-времени. Для этого потребовался бы в квадриллион раз более мощный ускоритель. Стоит сказать, что для нашей цивилизации — цивилизации нулевого типа, использующей в качестве топлива остатки растений (т. е. нефть и уголь), — эта технология совершенно недостижима. Но цивилизация III типа, возможно, сумеет овладеть ею.
Вспомним, что цивилизация III типа является галактической по использованию энергии и потребляет ее в 10 млрд раз больше, чем цивилизация II типа, источником энергии которой служит одна-единственная звезда. А цивилизация II типа, в свою очередь, потребляет в 10 млрд раз больше энергии, чем цивилизация I типа, использующая лишь энергию собственной планеты. А ведь уже через 100-200 лет наша слабенькая цивилизация должна достигнуть статуса цивилизации I типа.
Имея в виду наши перспективы, следует сделать вывод, что в настоящий момент мы находимся в самом начале длинного-длинного пути к получению планковской энергии. Многие физики считают, что на чрезвычайно малых расстояниях — порядка планковской длины, которая составляет 10-33 см, — пространство не пусто и не однородно, но ʼʼпенитсяʼʼ; оно наполнено крошечными пузырьками, которые постоянно возникают и сталкиваются с другими такими же пузырьками, а затем снова пропадают в вакууме. Пузырьки, которые возникают и пропадают в вакууме, — это ʼʼвиртуальные вселенныеʼʼ; они очень напоминают пары виртуальных частиц — электронов и позитронов, которые возникают и тут же аннигилируют.
В обычных обстоятельствах эта квантовая пространственно-временная ʼʼпенаʼʼ совершенно незаметна нам. Пузырьки формируются на таких крошечных расстояниях, что мы не в состоянии их увидеть. Но квантовая физика считает, что если сконцентрировать в одной точке достаточно энергии, вплоть до планковской энергии, то эти пузырьки могут увеличиться. Тогда мы увидим, как пространство-время пенится крошечными пузырьками, и каждый такой пузырек — кротовая нора, соединяющая наш мир с готовой родиться дочерней вселенной.
В прошлом дочерние вселенные считались интеллектуальной забавой, причудливым следствием чистой математики. Но теперь физики всерьез считают, что когда-то наша Вселенная, вполне возможно, тоже начинала как одна из них.
Такой вывод основан на чистых и пока довольно произвольных рассуждениях, но законы физики позволяют открыть дыру в пространстве путем концентрации в одной точке достаточного количества энергии; энергия позволяет нам добраться до пространственно-временной пены, из которой возникают кротовые норы, соединяющие нашу вселенную с другой, дочерней вселенной.
Создание дыры в пространстве потребует, разумеется, технологии совершенно иного уровня, чем наша, но в то же время цивилизации III типа данный уровень вполне может оказаться доступен. К примеру, имеется такая штука под названием ʼʼнастольный струйный плазменный ускорительʼʼ; в последнее время в данном направлении получены многообещающие результаты. Несмотря на крошечные размеры — а данный ускоритель действительно может поместиться на столе, — прибор способен генерировать энергии в миллиарды электронвольт. Принцип работы струйного ускорителя состоит в том, что лазерный луч направляют на заряженные частицы, которые затем разгоняются за счёт энергии лазера. Эксперименты, проведенные в научном центре Стэнфордского линейного ускорителя, в Лаборатории Резерфорда-Эпплтона в Англии и в парижской Политехнической школе показывают, что использование лазерного луча и плазмы в качестве источника энергии позволяет разгонять частицы на достаточно небольшом расстоянии до чрезвычайно высоких энергий.
Еще одно чрезвычайно важное открытие было сделано в 2007 ᴦ. Физики и инженеры научного центра Стэнфордского линейного ускорителя, Университета Калифорнии в Лос-Анджелесе и Университета Южной Калифорнии продемонстрировали, что энергию громадного ускорителя частиц можно удвоить на протяжении всего 1 м. Οʜᴎ начали с пучка электронов, который разгоняется в двухмильной трубе Стэнфордского ускорителя до энергии в 42 МэВ. Далее эти электроны, и без того обладающие высокой энергией, пропускают через плазменную ʼʼфорсажную камеруʼʼ длиной всего лишь 88 см; в ней электроны набирают еще по 42 ГэВ, удваивая таким образом свою энергию. (Эта плазменная камера заполнена газообразным литием. Электроны, проходя через газ, порождают плазменную волну и, как следствие этого, попутную струю. Этот поток, в свою очередь, как бы подхватывает следующие электроны пучка и толкает их вперед, придавая дополнительное ускорение.) Это поразительное достижение — ведь физикам удалось в 3000 раз превзойти предыдущий рекорд по количеству энергии, ĸᴏᴛᴏᴩᴏᴇ можно передать электронному пучку за 1 м. В случае если добавить такие плазменные ʼʼдожигателиʼʼ к уже существующим ускорителям, можно в принципе почти даром удваивать энергию получаемых частиц.
На сегодняшний день мировой рекорд для настольного струйного ускорителя составляет 200 ГэВ/м. Увеличение длины такого ускорителя пока представляется проблематичным — чересчур много возникает проблем (таких, как поддержание стабильности пучка при разгоне его лазерным лучом). Но если предположить, что мы научимся все же произвольно увеличивать длину такого ускорителя с сохранением уровня энергии 200 ГэВ/м, то в данном случае длина ускорителя, способного разогнать частицы до планковской энергии, должна будет составить десять световых лет. Это вполне по силам цивилизации III типа.
По всей видимости, кротовые норы и растянутое пространство — самые реальные способы преодолеть световой барьер. Размещено на реф.рфПока неясно, стабильны ли эти технологии; но даже если они стабильны, нам потребовалось бы сказочное количество энергии — положительной или отрицательной, — чтобы заставить их реально работать.
Может быть, уже сейчас какая-нибудь цивилизация III типа обладает подобными технологиями. Но пройдут, возможно, тысячи лет, прежде чем человечество сможет хотя бы всерьез задуматься о том, чтобы обуздать подобную мощь. Вместе с тем, еще разрешены не все противоречия в отношении законов, которыми управляется пространство-время на квантовом уровне. Учитывая все вышесказанное, я отнес бы преодоление светового барьера ко II классу невозможности.
referatwork.ru