Нейробиология: что это за наука и что она изучает? Её история развития и современные методы. Нейробиология что изучает


Нейробиология: современные методы, история развития

Нейробиология: что это за наука и что она изучает? Её история развития и современные методы

Ответ на вопрос, что изучает нейробиология, довольно краток. Нейробиология – это отрасль биологии и наука, изучающая строение, функции и физиологию мозга. Само название данной науки говорит, что главными объектами изучения служат нервные клетки – нейроны, из которых состоит вся нервная система.

Содержание статьи

  • Из чего состоит мозг помимо нейронов?
  • История развития нейробиологии
  • Нейробиологические методы исследования

Из чего состоит мозг помимо нейронов?

Мозг состоит из нейронов и разнообразных клеточных глиев

В строении нервной системы помимо собственно нейронов принимают ещё участие разнообразные клеточные глии, на долю которых приходится большая часть объёма мозга и других участков нервной системы. Глии предназначены для обслуживания и тесного взаимодействия с нейронами, обеспечивая их нормальное функционирование и жизнедеятельность. Поэтому современная нейробиология мозга изучает также нейроглии, и их разнообразные функции по обеспечению нейронов.

История развития нейробиологии

Современная история развития нейробиологии как науки началась с цепочки открытий на рубеже 19-20 веков:

  1. Представители и сторонники основанной в первой половине XIX века Й.-П. Мюллером немецкой школы физиологии (Г. фон Гельмгольц, К. Людвиг, Л. Герман, Э. Дюбуа-Реймон, Ю. Бернштейн, К. Бернар и пр.) смогли доказать электрический характер передаваемых нервными волокнами сигналов.
  2. Ю. Бернштейн в 1902 году предложил мембранную теорию, описывающую возбуждение нервной ткани, где определяющая роль отводилась ионам калия.
  3. Его современник Е. Овертон в том же году открыл, что натрий необходим для генерации возбуждения в нерве. Но современники не оценили по достоинству работ Овертона.
  4. К. Бернар и Э.Дюбуа-Реймон предположили, что мозговые сигналы передаются через химические вещества.
  5. Российский учёный В.Ю.Чаговец чуть раньше опубликования мембранной теории Бернштейна выдвинул в 1896 году собственную ионную теорию возникновения биоэлектрических явлений. Он также экспериментально подтвердил, что электрический ток оказывает раздражающее физико-химическое действие.
  6. У истоков электроэнцефалографии стоял В.В. Правдич-Неминский, который в 1913 году смог впервые зафиксировать с поверхности черепа собаки электрическую активность её мозга. А первую запись человеческой электроэнцефалограммы удалось сделать в 1928 году австрийскому психиатру Г. Бергеру.
  7. В исследованиях Э.Хаксли, А.Ходжкина и К.Коула были раскрыты механизмы возбудимости нейронов на клеточном и молекулярном уровне. Первый в 1939 году смог измерить, как при возбуждении мембраны гигантских аксонов кальмара меняется её ионная проводимость.
  8. В 60-е годы в институте физиологии АН УССР под руководством ак. П.Костюка были впервые зарегистрированы ионные токи в момент возбуждения мембран нейронов позвоночных и беспозвоночных животных.

Затем история развития нейробиологии пополнилась открытием многих компонентов, принимающих участие в процессе внутриклеточной сигнализации:

  • фосфатазы;
  • киназы;
  • ферменты, участвующие в синтезе вторичных посредников;
  • многочисленные G-белки и другие.

В работе Э.Нэера и Б.Сакмана были описаны исследования одиночных ионных каналов в мышечных волокнах лягушки, которые активировались ацетилхолином. Дальнейшее развитие методов исследования позволило изучить активность всевозможных одиночных ионных каналов, имеющихся в клеточных мембранах. В последние 20 лет в основы нейробиологии стали широко внедряться методы молекулярной биологии, что позволило понять химическое строение различных белков, участвующих в процессах внутриклеточной и межклеточной сигнализации. С помощью электронной и усовершенствованной оптической микроскопии, а также лазерных технологий стало возможным изучение основ физиологии нервных клеток и органелл на макро- и микроуровнях.

Видео о нейробиологии – науке о мозге:

Нейробиологические методы исследования

Теоретические методы исследования в нейробиологии головного мозга человека во многом опираются на изучение ЦНС животных. Человеческий мозг является продуктом длительной общей эволюции жизни на планете, которая началась в архейский период и продолжается до сих пор. Природа перебрала бесчисленные варианты устройства ЦНС и составляющих её элементов. Так, подмечено, что нейроны с отростками и протекающие в них процессы у человека остались точно такими же, как у намного более примитивных животных (рыб, членистоногих, рептилий, амфибий и т. д.).

В развитии нейробиологии последних лет всё чаще используются прижизненные срезы головного мозга морских свинок и новорожденных крысят. Часто употребляется нервная ткань, культивированная искусственно.

Что же могут показать современные методы нейробиологии? Прежде всего, это механизмы работы отдельных нейронов и их отростков. Чтобы зарегистрировать биоэлектрическую активность отростков или самих нейронов, используются особые приёмы микроэлектродной техники. Она, в зависимости от задач и предметов исследования, может выглядеть по-разному.

Современные методы нейробиологии

Чаще всего используется два вида микроэлектродов: стеклянные и металлические. Для последних часто берётся вольфрамовая проволока толщиной от 0,3 до 1 мм. Чтобы зафиксировать активность одиночного нейрона, микроэлектрод вставляется в манипулятор, способный очень точно продвигать его в мозге животного. Манипулятор может работать отдельно или будучи прикреплённым к черепу объекта в зависимости от решаемых задач. В последнем случае устройство должно быть миниатюрным, поэтому получило название микроманипулятора.

Регистрируемая биоэлектрическая активность зависит от величины радиуса кончика микроэлектрода. Если этот диаметр не превышает 5 микронов, то становится возможным регистрировать потенциал единичного нейрона, если при этом кончик электрода приблизится к исследуемой нервной клетке примерно на 100 микрон. Если у кончика микроэлектрода вдвое больший диаметр, то фиксируется одновременная активность десятков или даже сотен нейронов. Также широко распространены микроэлектроды, изготовленные из стеклянных капилляров, диаметры которых колеблются в пределах от 1 до 3 мм.

Что интересного Вы знаете о нейробиологии? Что Вы думаете об этой науке? Расскажите об этом .

dr-znai.com

Нейробиология

НЕЙРОБИОЛОГИЯ.

Нейробиология — наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы. Изучение поведения является также разделом нейробиологии.

За рубежом, а в последние 5-6 лет также и в России всё чаще используется альтернативный термин «нейронаука» (neuroscience), в основном в связи с тем, что нейробиология всё сильнее проникает в сферы психологии и другие науки. В результате возникли прикладные нейронауки. Тем не менее, в России большинство представителей нейронауки — по-прежнему выпускники биологических факультетов.

Изучение человеческого мозга является междисциплинарной наукой и включает в себя много уровней изучения, от молекулярного до клеточного уровня (отдельные нейроны), от уровня относительно небольших объединений нейронов, до больших систем, таких как кора головного мозга или мозжечок, и на самом высоком уровне нервная система в целом.

Темами нейробиологии являются:

  • деятельность нейротрансмитеров в синапсах;
  • как гены способствуют развитию нервной системы в зародыше и в течение жизни;
  • деятельность относительно простых структур нервной системы;
  • структура и функционирование сложных нервных цепей — восприятие, память, речь.

Мозг революции

Марина Муравьёва, STRF.ru

Для наук XXI века исследования мозга и природы разума будут играть такую же объединяющую роль, какую сыграло для наук прошлого века изучение генов и наследственности. За нейрокогнитивными технологиями будущее, утверждают многие известные учёные. Однако шестая технологическая революция, с которой они связаны, уже подступает…

Нейробиология займёт главное место среди наук XXI века, заявил на Научной сессии МИФИ—2009 (26—30 января, Москва) заведующий лабораторией нейробиологии памяти Научно-исследовательского института нормальной физиологии им. П.К. Анохина РАМН, член-корреспондент РАН и РАМН Константин Анохин. В своём докладе он представил обзор наиболее заметных исследований мозга.

Последнее десятилетие прошлого века было объявлено конгрессом США и Евросоюзом декадой исследования мозга. Фонд Кавли, названный в честь норвежского физика и промышленника, учредил премию, которая вручается за достижения в трёх ведущих научных областях: астрофизике, нанонауках и науках о мозге.

Представители фонда полагают, что в отмеченных областях науки произойдут наиболее крупные открытия XXI века. Данная премия в некоторой степени сопоставима с Нобелевской — как по размеру (составляет миллион евро), так и по значимости. Награды первым лауреатам вручал норвежский король летом 2008 года.

Немецкий физик Кристоф Кох, один из ведущих специалистов в области нейробиологии сознания, как-то сказал, что мы живём в уникальный период истории науки, когда реальностью становятся технологии, позволяющие выяснить, как деятельность объективного мозга приводит к появлению субъективного разума.

Долгое время мозг изучали как обычный орган, а то, как он генерирует мысли и регулирует поведение, не было объектом серьёзных исследований. Сейчас данное направление становится центральной линией для работающих в этой области учёных. Более того, любые исследования когнитивных процессов рассматриваются через изучение принципов работы мозга.

Нейрокогнитивные технологии неслучайно называют технологиями будущего. Понимание принципов работы мозга приведёт к следующей научно-технологической революции, утверждают многие видные учёные. А некоторые эксперты связывают с ними шестую волну технологического развития, которая начнётся с 2010 года и завершится в 2060-м.

Прогнозы учёных были положены в основу известного отчёта о конвергентных технологиях NBIC, подготовленного несколько лет назад Национальным научным фондом США и американским министерством экономики. В отчёте говорится, что из четырёх областей (N — нано, B — био, I — инфо и C — когно) когнитивные технологии являются наименее зрелой, но при этом самой многообещающей сферой: их развитие может иметь наиболее заметные последствия для общества в целом.

Ещё в 1998 году, до появления американского отчёта, Михаил Ковальчук предложил собственную идеологию объединения тех же четырёх областей знания. Так что Россия в этом направлении не отстаёт от Запада. Сейчас в возглавляемом им Курчатовском институте организуется Центр конвергентных технологий, где когнитивные исследования будут развиваться в тесном взаимодействии с работами в области клеточной и молекулярной биологии, биотехнологии, физики, химии, нано- и информационных технологий.

Мы живём в уникальный период истории науки, когда реальностью становятся технологии, позволяющие выяснить, как деятельность объективного мозга приводит к появлению субъективного разума.

«Для наук XXI века изучение мозга и разума будет играть такую же объединяющую роль, какую сыграло для наук прошлого века изучение генов и наследственности, — подчеркнул в своём выступлении Константин Анохин. — Расшифровка ДНК связала большое количество дисциплин: микробиологию, иммунологию, биологию развития, нейробиологию.

Ожидается, что исследование мозга также объединит многие науки, в том числе социальные и общественные, а кроме того послужит цементирующим фактором для создания новых технологий».

К наиболее перспективным направлениям исследований в области изучения мозга, по мнению Константина Анохина, относятся: нейробиология памяти, нейробиология интеллекта и нейробиология сознания. О памяти

В изучении процессов памяти был достигнут большой прогресс. Выявление механизма, благодаря которому клетки способны надолго запоминать информацию, стало основой для разработки различных методов и препаратов, используемых для регуляции памяти.

Вместо психотропных веществ, которые влияют на процессы передачи нервных импульсов и в той или иной степени способны изменять восприятие, эмоции, поведение человека, учёные начали создавать ноотропные лекарства, которые оказывают избирательное действие на внутриклеточные механизмы запоминания информации.

Таким образом данные препараты могут служить мягкими модуляторами процессов запоминания. Многие учёные придерживаются того мнения, что в перспективе препараты, специфически улучшающие свойства памяти, станут применять не только больные с нарушенной памятью, но и люди разных возрастных категорий с ослабевающей памятью.

«Крупнейшие нейробиологи мира прогнозируют, что через несколько лет таблетки для стимуляции памяти могут оказаться такими же привычными для здоровых людей, как витамины», — отметил Константин Анохин.

В разработке ноотропных лекарств Россия занимает сильные позиции в мире. Так, осенью 2008 года отечественный препарат «Димебон» был продан зарубежной компании за 750 миллионов долларов.

Ещё одно направление нейробиологии памяти связано с разработкой нейрочипов, имплантируемых в головной мозг. Это может показаться фантастикой, но уже сейчас проводятся серьёзные исследования. Например, группа Теодора Бергера, известного нейробиолога из Университета Южной Калифорнии, занимается созданием электронного гиппокампа для замены повреждённого.

Как известно, гиппокамп отвечает за перекодировку информации из краткосрочной памяти в долговременную. Предполагается, что такой микрочип, внедрённый в мозг, сможет выполнять те же функции. Авторы планируют в следующем году имплантировать чип в мозг крысы, через два года — обезьяны, а к 2015 году — и в мозг человека.

Об интеллекте.

Учёные, которые занимаются нейробиологией интеллекта, исходят из того, что по эффективности мозг превосходит ныне существующие адаптивные искусственные системы: по разным подсчётам, в миллион или миллиард раз. Правда, по формальным показателям, количество вычислений, которые производит современный компьютер, уже приближается к количеству «вычислений» в мозге.

В настоящее время учёные пытаются применить принципы работы нервной системы для адаптивного управления в искусственных устройствах. Один из ведущих исследователей в данной области, американец Стив Поттер, попробовал несколько лет назад создать нейрогибридный интеллект. Он сделал робот, который управляется не набором микросхем и с помощью программного обеспечения, а несколькими тысячами нейронов, взятых из крысиного мозга.

Для управления роботом Поттер использовал микроэлектронные подложки в виде пластин с энным количеством электродов. На каждой такой подложке он выращивал культуру нервных клеток, из которых далее образовывалась сеть. В ходе экспериментов оказалось, что в создаваемых условиях клеточные культуры проявляют свойства самоорганизации.

«Поттеру удалось добиться, чтобы эти культуры жили около двух лет, — пояснил Константин Анохин. — Но такие гибридные устройства не могут полностью заменить искусственный интеллект. Поэтому учёные пытаются определить, как работает реальная нервная сеть, чтобы симулировать её деятельность в искусственных условиях».

Один из лидеров в этом направлении — компания IBM. Её специалисты совместно с учёными из Института мозга и разума Швейцарской высшей политехнической школы (Лозанна) проводят исследования по симуляции коры головного мозга на суперкомпьютере.

В ноябре 2008 года компания начала проект по разработке новых принципов вычислений, основанных на принципах работы нервной системы. Выходя на этот уровень моделирования искусственного интеллекта и создания вычислительных систем новейшего поколения, авторы полагаются на успехи в нейро- и нанонауках, а также на развитие суперкомпьютеров.

Проект компании IBM позиционируется как разработка принципиально новой компьютерной архитектуры, которая через год-два будет сопоставима по своим возможностям с интеллектом крысы.

О сознании.

Нейробиология сознания — для учёных самая сложная, гроссмейстерская задача, отметил Константин Анохин. В практической плоскости целью таких исследований является создание прямых нейронных «мозгомашинных» и «мозгокомпьютерных» интерфейсов.

В своей работе учёные опираются на феномен специализации клеток мозга, суть которого в том, что даже рядом расположенные мозговые клетки могут иметь совершенно разную связь с когнитивными аспектами поведения.Описал этот феномен российский учёный Вячеслав Швырков в 1970-е годы, а позднее американские нейрофизиологи и нейрохирурги во главе с Уильямом Фреем доказали его экспериментально.

У пациентов, страдающих эпилепсией, которым в терапевтических целях в мозг были имплантированы микроэлектроды, регистрировали работу отдельных нервных клеток. Когда им показывали сотни разных фотографий, выяснилось, что в передней области гипоталамуса клетки очень специализированы. Например, у одного пациента наблюдалась активация определённого нейрона в момент узнавания изображения актрисы Холли Берри.

Причём пациенту предъявлялись её снимки в той или иной одежде, в различных ролях, карикатуры и даже кадр, на котором была просто надпись «Холли Берри» на экране компьютера. При взгляде ни на чьи другие фотографии данный конкретный нейрон не реагировал. При этом соседний с ним нейрон у того же пациента активизировался только на образ матери Терезы.

Для объяснения принципов организации сознания нельзя использовать какие-то усредняющие сигналы. Если бы учёные умели быстро и эффективно определять «специализацию» клеток мозга и могли управлять ими, то получили бы ключ к исследованию субъективных процессов в сознании человека.

Подобные исследования, по мнению Константина Анохина, свидетельствуют о том, что для объяснения принципов организации сознания нельзя использовать какие-то усредняющие сигналы. Если бы учёные умели быстро и эффективно определять «специализацию» клеток мозга и могли управлять ими, то получили бы ключ к исследованию субъективных процессов в сознании человека. «Такие технологии постепенно развиваются и за ними определённо будущее», — отметил г-н Анохин.

Наибольшую известность в области разработки «мозгомашинных» интерфейсов получил эксперимент американского нейробиолога Мигеля Николелиса. Внедряя в мозг обезьяны несколько электродов, учёный добился поразительной синхронизации движения настоящей руки животного и её роботизированного аналога. Стоило мартышке сжать в своей руке игрушку, как рука робота в точности повторяла её жест.

В мозг человека электрод, выполняющий аналогичную функцию, вживили в 2005 году. Это сделала группа учёных во главе с Джоном Донахью, известным физиологом из Университета Брауна (США) и основателем компании Cyberkinetics. Пациенту, парализованному после инсульта, прямо в мозг ввели микроэлектроды, при помощи которых компьютер измерял электрические импульсы его мозга и преобразовывал их в команды для управления курсором.

Больной представлял, что двигает правой или левой рукой, и курсор на экране монитора перемещался в ту или иную сторону. Функциональность устройства навела учёных на мысль попробовать изготовить механические протезы, управляемые мозгом посредством вживлённых в него электродов.

Дальнейшие исследования в этом направлении связаны с достижением большей точности в регистрации деятельности нервных клеток. Решение данной задачи, в свою очередь, напрямую зависит от развития новых технологий, в первую очередь в области нано. В частности, отметил Константин Анохин, сейчас разрабатываются «специальные наноэлектроды, которые способны существовать в нервной системе несколько лет без потери эффективности сигнала».

источник:   strf.ru/science.aspx?CatalogId=222&d_no=17627

www.modo-novum.ru

Нейробиолог

Нейробиология изучает нервную систему человека и животных, рассматривая вопросы устройства, функционирования, развития, физиологии, патологии нервной системы и мозга. Нейробиология – очень широкая научная область, охватывающая многие направления, например, нейрофизиологию, нейрохимию, нейрогенетику. Нейробиология тесно соприкасается с когнитивными науками, психологией, и оказывает все большее влияние при исследовании социо-психологических явлений.

Изучение нервной системы в целом и мозга в частности может проходить на молекулярном или клеточном уровне, когда исследуется строение и функционирование отдельных нейронов, на уровне отдельных скоплений нейронов, а также на уровне отдельных систем (кора головного мозга, гипоталамус и т.д.) и всей нервной системы в целом, включая и головной мозг, и спинной, и всю сеть нейронов в организме человека.

Ученые-нейробиологи могут решать совершенно разные задачи и отвечать, порой, на самые неожиданные вопросы. Как восстановить работу мозга после перенесенного инсульта и какие клетки в ткани мозга человека оказывали влияние на его эволюцию – все эти вопросы в компетенции нейробиологов. А еще: почему кофе бодрит, почему мы видим сны и можно ли управлять ими, как гены определяют наш характер и строение психики, как работа нервной системы человека влияет на восприятие вкусов и запахов, и многие-многие другие.

Одним из перспективных направлений исследований в нейробиологии сегодня является изучение связи сознания и действия, то есть, как мысль о совершении действия приводит к его совершению. Эти разработки являются базой для создания принципиально новых технологий, о которых мы сейчас в принципе не догадываемся или таких, которые начинают усиленно развиваться. Примером таковых можно назвать создание чувствительных протезов конечностей, которые могут полностью восстановить функционал потерянной конечности.

По оценкам экспертов, помимо решения «серьезных» задач разработки нейробиологов скоро могут быть использованы в развлекательных целях, например, в индустрии компьютерных игр, чтобы сделать их еще более реалистичными для игрока, при создании специальных спортивных экзоскелетов, а также в военной промышленности.

Тем для изучения в нейробиологии, несмотря на множество исследований в этой области и повышенный интерес со стороны научного сообщества, меньше не становится. Поэтому еще нескольким поколениям ученых предстоит разгадывать загадки, которые таит в себе человеческий мозг и нервная система.

Нейробиолог – это ученый, который работает в одной из областей нейробиологии. Он может заниматься фундаментальной наукой, то есть проводить исследования, наблюдения и эксперименты, формируя новые теоретические подходы, находя новые общие закономерности, которые могут объяснить происхождение частных случаев. В этом случае ученый интересуется общими вопросами о строении мозга, особенностях взаимодействия нейронов, изучает причины возникновения неврологических заболеваний и т.д.

С другой стороны ученый может посвятить себя практике, решая, как применить известные фундаментальные знания для решения конкретных задач, например, при лечении заболеваний, связанных с нарушениями работы нервной системы.

Ежедневно специалисты сталкиваются с решением следующих вопросов:

1.     как работает мозг и нейронные сети на разных уровнях взаимодействия, от клеточного до системного уровней;

2.     как можно достоверно измерить реакции мозга;

3.     какие связи, функциональные, анатомические и генетические, можно проследить в работе нейронов на разных уровнях взаимодействия;

4.     какие из показателей работы мозга можно считать диагностическими или прогностическими в медицине;

5.     какие лекарственные средства надо разрабатывать для лечения и протекции патологических состояний и нейродегенеративных заболеваний нервной системы.

Основное профессиональное образование

Проценты отражают распределение специалистов с определенным уровнем образования на рынке труда. Ключевые специализации для освоения професии отмечены зеленым цветом.

Интересные факты

Вес мозга составляет 3-5% от общего веса человека. И это самое большое соотношение веса мозга и тела в животном мире.В профессию можно прийти с техническим и математическим образованием, так как все чаще требуются специалисты, знающие сложные методы статистического анализа больших объемов данных, умеющие работать с Big Data.Нейробиологи могут найти работу в отделениях неврологии, психоневрологии и т.п. московских городских клиник и поликлиник. В научных организациях специалисты в области нейробиологии повысят уровень научных исследований функционирования нервной системы в норме и при заболеваниях; в лечебных заведениях улучшат качество диагностики заболеваний и сократят время постановки диагнозов; будут способствовать разработке прогрессивной стратегии лечения.Мозг и нервная система в целом, пожалуй, самая сложная система организма. 70% генома человека обеспечивают формирование и функционирование мозга. Более 100 миллиардов клеточных ядер находится в мозга человека, это больше чем звезд в видимой для человека области космоса.Сегодня ученые и медики научились пересаживать, заменять практически любую ткань и любой орган в организме человека. Каждый день проводится множество операций по трансплантации почек, печени, даже сердца. Однако операция по пересадке головы прошла успешно всего один раз, когда советский хирург В.Демихов пересадил здоровой собаке вторую голову. Известно, что он проводил множество подобных экспериментов на собаках, и в одном случае такое двухголовое существо прожило почти месяц. Сегодня также проводятся подобные опыты на животных, ищутся способы сращивания головного и спинного мозга при пересадке, что является важнейшей проблемой в такого рода операциях, однако пока ученые далеки от проведения таких операциях на людях. Пересадка головы или мозга могла бы помочь парализованным людям, тем, кто не может управлять своим телом, однако открытым остается также и вопрос этики проведения операций по трансплантации головы.

Видео о профессии

tomorrow.moscow

нейробиолог Анатолий Бучин о кальмарах, моделировании мозга и ежедневной пользе нейронауки — T&P

Анатолий Бучин изучал вычислительную нейробиологию в России и во Франции, посвятил диссертацию исследованию причин эпилептического приступа, а после уехал в США, где работает над проектом о нервной системе гидры, знакомой всем со школы, но на самом деле малоизученной и представляющей большой интерес для нейронауки.

Анатолий Бучин

Где учился: физико-механический факультет Политехнического университета, Высшая нормальная школа в Париже. На данный момент — постдок в Вашингтонском университете.

Что изучает: вычислительную нейробиологию

Особые приметы: играет на саксофоне и флейте, занимается йогой, много путешествует

Интерес к науке возник у меня в детстве: я увлекался насекомыми, собирал их, изучал их образ жизни и биологию. Мама заметила это и привела меня в Лабораторию экологии морского бентоса (ЛЭМБ) (бентос — совокупность организмов, обитающих на грунте и в грунте дна водоемов. — Прим. ред.) при Санкт-Петербургском городском Дворце творчества юных. Каждое лето, с 6-го по 11-й класс, мы уезжали в экспедиции на Белое море в Кандалакшский заповедник — наблюдать за беспозвоночными животными и измерять их численность. Параллельно я участвовал в биологических олимпиадах для школьников и в качестве научных исследований представлял результаты работы в экспедициях. В старших классах меня заинтересовало программирование, но заниматься исключительно этим было не слишком интересно. Мне неплохо давалась физика, и я решил найти специализацию, которая объединяла бы физику и биологию. Так я оказался в Политехе.

Первый раз во Францию я попал после бакалавриата, когда выиграл стипендию для обучения на магистерской программе в университете Рене Декарта в Париже. Я много стажировался в лабораториях, научился записывать активность нейронов в срезах мозга и анализировать ответы нервных клеток в зрительной коре кошки во время предъявления визуального стимула. Получив степень магистра, я вернулся в Петербург, чтобы завершить свое обучение в Политехе. На последнем курсе магистратуры мы с моим руководителем подготовили российско-французский проект для написания диссертации, и я выиграл финансирование, приняв участие в конкурсе Высшей нормальной школы. Последние четыре года я работал под двойным научным руководством — Бориса Гуткина в Париже и Антона Чижова в Санкт-Петербурге. Незадолго до окончания работы над диссертацией я съездил на конференцию в Чикаго и узнал о позиции постдока в Вашингтонском университете. После собеседования я решил ближайшие два-три года работать именно здесь: мне понравился проект, а с моим новым руководителем Эдриенн Фэйрхолл у нас оказались схожие научные интересы.

О вычислительной нейробиологии

Объектом исследования вычислительной нейробиологии является нервная система, а также самая интересная ее часть — головной мозг. Чтобы объяснить, при чем здесь математическое моделирование, нужно немного рассказать об истории этой молодой науки. В конце 80-х в журнале Science вышла статья, в которой впервые заговорили о вычислительной нейробиологии — новой междисциплинарной области нейронауки, которая занимается описанием информационных и динамических процессов в нервной системе.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

Во многом фундамент этой науки заложили еще биофизик Алан Ходжкин и нейрофизиолог Эндрю Хаксли (брат Олдоса Хаксли. — Прим. ред.). Они изучали механизмы генерации и передачи нервных импульсов в нейронах, выбрав в качестве модельного организма кальмаров. В то время микроскопам и электродам было далеко до современных, а у кальмаров настолько толстые аксоны (отростки, по которым распространяется нервный импульс), что они были видны даже невооруженным глазом. Это помогло аксонам кальмара стать удобной экспериментальной моделью. Открытие Ходжкина и Хаксли заключалось в том, что они объяснили с помощью эксперимента и математической модели, что генерация нервного импульса осуществляется за счет изменения концентрации ионов натрия и калия, проходящих через мембраны нейронов. Впоследствии оказалось, что этот механизм универсален для нейронов многих животных, включая человека. Звучит необычно, но, изучая кальмара, ученые смогли узнать, как нейроны передают информацию у человека. За свое открытие в 1963 году Ходжкин и Хаксли получили Нобелевскую премию.

Задача вычислительной нейробиологии — систематизация огромного количества биологических данных об информационных и динамических процессах, происходящих в нервной системе. С развитием новых методов регистрации нервной активности количество данных о работе мозга растет с каждым днем. Объем книги нобелевского лауреата Эрика Кандела «Principles of Neural Science», в которой изложены базовые сведения о работе мозга, увеличивается с каждым новым тиражом: начиналась книга с 470 страниц, а сейчас ее размер — более 1 700 страниц. Для того чтобы систематизировать такой огромный набор фактов, и нужны теории.

Об эпилепсии

Эпилепсией болеет порядка 1% населения Земли — это 50–60 миллионов человек. Один из радикальных методов лечения — удаление участка мозга, в котором зарождается приступ. Но здесь не все так просто. Примерно в половине случаев эпилепсия у взрослых людей развивается в височной доле мозга, связанной с гиппокампом. Эта структура отвечает за формирование новых воспоминаний. Если у человека вырезать два гиппокампа с обеих сторон мозга, он потеряет способность запоминать новое. Получится такой непрерывный день сурка, поскольку человек будет способен запомнить что-либо только на 10 минут. Суть моих исследований заключалась в том, чтобы предсказать не такие радикальные, но другие возможные и эффективные способы борьбы с эпилепсией. В диссертации я пытался понять, как начинается эпилептический приступ.

Чтобы разобраться, что происходит с мозгом во время приступа, представьте, что вы пришли на концерт и в какой-то момент зал взорвался аплодисментами. Вы хлопаете в своем ритме, а люди вокруг вас — в другом. Если достаточно большое количество людей начинают хлопать одинаково, вам сложно будет продолжать следовать своему ритму и вы, скорее всего, начнете хлопать вместе со всеми. Схожим образом работает эпилепсия, когда нейроны головного мозга начинают сильно синхронизироваться, то есть генерировать импульсы в одно и то же время. Такой процесс синхронизации может вовлекать целые области мозга — в том числе те, что контролируют движение, и тогда возникает припадок. Хотя большая часть приступов характеризуется отсутствием припадков, потому что эпилепсия не всегда возникает в моторных областях.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

Допустим, два нейрона связаны между собой возбуждающими связями в обе стороны. Один нейрон пересылает импульс другому, что возбуждает его, и тот пересылает импульс обратно. Если возбуждающие связи слишком сильные, это приведет к увеличению активности за счет обмена импульсами. В норме этого не происходит, поскольку существуют тормозящие нейроны, которые уменьшают активность слишком активных клеток. Но если торможение перестает нормально работать, это может привести к эпилепсии. Зачастую это связано с излишним накоплением хлора в нейронах. В своей работе я разрабатывал математическую модель сети нейронов, которая может переходить в режим эпилепсии при патологии торможения, связанной с накоплением хлора внутри нейронов. В этом мне помогали записи активности нейронов человеческой ткани, полученной после операций на эпилептических больных. Построенная модель позволяет тестировать гипотезы относительно механизмов эпилепсии, чтобы прояснить детали этой патологии. Оказалось, что восстановление баланса хлора в пирамидных нейронах может помочь остановить эпилептический приступ за счет восстановления баланса возбуждения — торможения в сети нейронов. Мой второй научный руководитель, Антон Чижов в Физико-техническом институте в Петербурге, недавно получил грант российского научного фонда по исследованию эпилепсии, так что это направление исследований будет продолжаться в России.

Про интересные проекты

Сегодня немало интересных работ в области вычислительной нейробиологии. Например, в Швейцарии есть проект Blue Brain Project, цель которого — максимально детально описать небольшой участка мозга — соматосенсорной коры крысы, которая отвечает за выполнение движений. Даже в небольшом мозге крысы — миллиарды нейронов, и все они связаны между собой определенным образом. Например, в области коры один пирамидный нейрон образует связи приблизительно с 10 000 других нейронов. В проекте Blue Brain Project записали активность около 14 000 нервных клеток, охарактеризовали их форму и реконструировали около 8 000 000 связей между ними. Затем с помощью специальных алгоритмов они соединили нейроны вместе биологически правдоподобным образом, чтобы в такой сети могла появиться активность. Модель подтвердила теоретически найденные принципы организации коры — например, баланс между возбуждением и торможением. И сейчас в Европе есть большой проект, который называется Human Brain Project. Он должен описать весь человеческий мозг с учетом всех тех данных, которые имеются на сегодняшний день. Этот международный проект — своего рода Большой адронный коллайдер от нейронауки, поскольку в нем участвует около сотни лабораторий из более чем 20 стран.

Критики Blue Brain Project и Human Brain Project задаются вопросом, насколько важно огромное количество деталей, чтобы описать принципы работы мозга. Для сравнения — насколько важно описание Невского проспекта в Петербурге на карте, где видны только континенты? Тем не менее попытка собрать воедино огромное количество данных, безусловно, важна. В худшем случае, даже если мы до конца не поймем, как работает мозг, построив такую модель, мы сможем использовать ее в медицине. Например, для изучения механизмов различных заболеваний и моделирования действия новых лекарств.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

В США мой проект посвящен изучению нервной системы гидры. Несмотря на то что даже в школьных учебниках биологии ее изучают одной из первых, ее нервная система до сих пор плохо исследована. Гидра — родственница медузы, поэтому она такая же прозрачная и обладает сравнительно небольшим числом нейронов — от 2 до 5 тысяч. Поэтому можно одновременно записать активность из практически всех клеток нервной системы. Для этого используется такой инструмент, как «кальциевый имиджинг». Дело в том, что каждый раз, когда нейрон разряжается, у него изменяется концентрация кальция внутри клетки. Если добавить специальную краску, которая начинает светиться при повышении концентрации кальция, то каждый раз при генерации нервного импульса мы будем видеть характерное свечение, по которому можно определить активность нейрона. Это позволяет записывать активность в живом животном во время поведения. Анализ такой активности позволит понять, как нервная система гидры управляет ее движением. Аналогии, полученные в ходе таких исследований, можно будет использовать для описания движения более сложных животных — таких как млекопитающие. А в дальней перспективе — в нейроинжиниринге для создания новых систем контроля нервной активности.

О важности нейронауки для общества

Почему нейронаука так важна для современного общества? Во-первых, это возможность разработки новых методов лечения нейрологических заболеваний. Как можно найти лекарство, если не понимаешь, как оно работает на уровне целого мозга? Мой научный руководитель в Париже Борис Гуткин, который также работает в Высшей школе экономики в Москве, занимается изучением кокаиновой и алкогольной зависимости. Его работа посвящена описанию тех перестроек в системе подкрепления, которые приводят к зависимости. Во-вторых, это новые технологии — в частности, нейропротезирование. Например, человек, который остался без руки, благодаря вживленному в мозг импланту сможет контролировать искусственные конечности. Алексей Осадчий в ВШЭ активно занимается этим направлением в России. В-третьих, в дальней перспективе это выход в IT, а именно в технологии машинного обучения. В-четвертых, это сфера образования. Почему, например, мы считаем, что 45 минут — это самая эффективная продолжительность урока в школе? Возможно, этот вопрос стоит лучше изучить, используя знания когнитивной нейронауки. Так мы сможем лучше понять, как нам эффективнее преподавать в школах, университетах и как эффективнее планировать рабочий день.

О нетворкинге в науке

В науке очень важен вопрос коммуникации между учеными. Для нетворкинга необходимо участие в научных школах и конференциях, чтобы быть в курсе текущего положения дел. Научная школа — это такая большая тусовка: на месяц вы оказываетесь среди других PhD-студентов и постдоков. Во время обучения к вам приезжают известные ученые, которые рассказывают о своей работе. Параллельно вы занимаетесь индивидуальным проектом, и вами руководит кто-то более опытный. Не менее важно поддерживать хорошие отношения со своим руководителем. Если у студента-магистра нет хороших рекомендательных писем, его вряд ли возьмут на стажировку. От стажировки зависит, возьмут ли его для написания диссертации. От результатов диссертации — дальнейшая научная жизнь. На каждом из этих этапов обязательно спрашивают отзыв руководителя, и если человек не слишком хорошо работал, то это довольно быстро станет известно, поэтому важно дорожить своей репутацией.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

Если говорить о долгосрочных планах, я планирую пройти несколько постдоков, прежде чем найти постоянную позицию в университете или исследовательской лаборатории. Для этого необходимо достаточное количество публикаций, которые сейчас в процессе. Если все сложится, у меня есть мысли вернуться в Россию через несколько лет, чтобы организовать здесь свою лабораторию или научную группу.

Книги, которые рекомендует Анатолий:

  • Крис Фрит. «Мозг и душа. Как нервная деятельность формирует наш внутренний мир»
  • Оливер Сакс. «Человек, который принял жену за шляпу»
  • Александр Марков. «Эволюция человека. Книга 2. Обезьяны, нейроны и душа»
  • Steven J. Schiff. «Neural Control Engineering»
  • Eugene M. Izhikevich. «Dynamical Systems in Neuroscience»

theoryandpractice.ru

Нейробиология | Наука | FANDOM powered by Wikia

https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%B1%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F

Нейробиология — наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы. Изучение поведения является также разделом нейробиологии, которая всё сильнее проникает в сферы психологии и другие науки.

Изучение человеческого мозга является междисциплинарной наукой и включает в себя много уровней изучения, от молекулярного до клеточного уровня (отдельные нейроны), от уровня относительно небольших объединений нейронов, до больших систем, таких как кора головного мозга или мозжечок, и на самом высоком уровне нервная система в целом.

Нейробиологов несведущие люди часто путают с психологами[1]. В отличие от психологии, нейробиология является точной наукой, объект её исследования — нервная система. Нейробиология связана также с нейрофизиологией, последняя изучает особенности протекания физиологических процессов в мозге человека и порождаемое ими изменение в психической деятельности.

Темами нейробиологии являются:

Взаимосвязь когнитивной психологии и нейробиологии Править

Существует точка зрения[кто?], согласно которой когнитивная психология и нейробиология в настоящее время развиваются параллельно, активно взаимодействуя друг с другом, но со временем когнитивная психология будет полностью редуцирована к нейробиологии. Ряд учёных и философов[кто?] на основании теоретических и исторических аргументов подвергает сомнению подобную возможность редукции когнитивной психологии к нейробиологии. При этом часть из них[кто?], отстаивая теоретический и практический приоритет когнитивной психологии, утверждает, что достижения нейробиологии полностью иррелевантны по отношению к когнитивным моделям психики[2].

  • Шеперд Г. Нейробиология. В двух томах. Пер. с англ. — М.: Мир, 1987.
  • Фрит К. Мозг и душа. Пер. с англ. — М.: Corpus, 2012.
В другом языковом разделе есть более полная статья Neuroscience (англ.)

Вы можете помочь проекту, расширив текущую статью с помощью перевода.

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Нейробиология 1», чтобы сохранить ее

ru.science.wikia.com

Пять главных вопросов нейробиологии ≪ Scisne?

Изменит ли прогресс науки о мозге наше представление о самом себе? Уйдёт ли старая мораль, основанная на принципе свободной воли и умозрительных категориях добра, чести, совести?..

Благодаря прогрессу в изучении мозга нейробиология оказалась на переднем крае науки и этики. Вы не поверите, но на этой неделе Президентская комиссия США по вопросам биоэтики собиралась для обсуждения нравственной стороны науки о мозге. Специалисты встречались по просьбе президента Обамы, который ранее в этом году призвал выделить из федерального бюджета $100 млн на программу Brain Research through Advancing Innovative Neurotechnologies («Исследование мозга посредством развития новаторских нейротехнологий», BRAIN).

Обама предложил совету подумать над тем, какие моральные дилеммы могут возникнуть в связи с новыми возможностями, которые откроются перед исследователями человеческого разума благодаря его проекту и развитию нейробиологии в целом.

Журнал National Geographic попросил специалиста по биоэтике и генетике Хэнка Грили с юридического факультета Стэнфордского университета (США) назвать пятёрку самых «горячих» вопросов нейробиологии. В ответ учёный подчеркнул, что нейробиология изучает не сознание, а мозг. Какую бы технологию она ни породила, к ней приложимы все те вопросы, которые обычно задаются в схожих случаях.

Работает ли нейробиология? Увлечься научной фантастикой легко, но надо твёрдо знать пределы возможностей технологии.

Если она работает, что тогда? Тогда появятся и новые возможности, и новые опасности. Важно уделить внимание и тем и другим.

1. Прогнозирование: нейробиология предсказывает судьбу

Огромное количество средств уходит на то, чтобы научиться предугадывать, приобретёт ли тот или иной человек, скажем, болезнь Альцгеймера. Что произойдёт, когда будущее всё-таки начнут предсказывать? Очевидно, это будет иметь огромное значение и для отдельных людей, и для всей системы здравоохранения в целом, ведь на иной уровень выйдут и профилактика, и лечение деменции.

С другой стороны, однажды учёные по результатам сканирования мозга смогут определять, в какой степени человек предрасположен к совершению преступлений. Будет ли это использоваться как улика? Повлияет ли это на определение степени вины и вида наказания? Станут ли этот момент принимать во внимание при освобождении из тюрьмы? Г-н Грили рекомендует ограничиться использованием полученных таким образом сведений для психологической профилактики заключённых.

2. «Чтение мыслей»: детектор лжи и определение эмоциональных состояний

Когда-то «чтение мыслей» казалось фантастикой, но теперь нейробиологи полны оптимизма. Речь идёт, конечно, не о восприятии чужого сознания, а о распознавании закономерностей деятельности мозга. В ходе одного из нашумевших исследований сотрудники Массачусетского технологического института (США) сумели с точностью до 85% определить, когда участник эксперимента видит человеческое лицо.

Подобная технология очень пригодится для общения с парализованными людьми и даже с теми, кто находится в вегетативном состоянии.

С другой стороны, возникает ряд правовых, этических и социальных вопросов, связанных с детекцией лжи. Сейчас только одна компания занимается разоблачением лжецов по данным сканирования мозга — NoLieMRI. Поскольку она не публикует своих результатов и никому не открывает методов, её деятельность не признаётся научным сообществом. В то же время большой интерес к этой технологии проявляет, например, Министерство обороны США, которое мечтает уйти от ненадёжного полиграфа.

Если всё-таки правомерность притязаний на «чтение мыслей» окажется доказанной, то технологию можно будет использовать, например, для определения того, действительно ли люди, претендующие на инвалидность и социальную страховку, испытывают дикие боли в пояснице.

3. Ответственность: существует ли свобода воли?

Некоторые нейробиологи убеждены в том, что со временем развитие неврологии приведёт к ликвидации судебной системы. По их мнению, рано или поздно наука докажет, что никакой свободы воли нет и люди на самом деле не отвечают за свои действия: «Это не я, мой мозг заставил меня сделать это». Что интересно, г-н Грили не знает юристов, которые держались бы такой точки зрения.

Эксперт рассказывает об одном показательном случае с 40-летним мужчиной из Шарлоттсвиля (штат Виргиния). Он внезапно заинтересовался порнографией, постепенно добрался до детской порнографии и кончил тем, что «пощупал» свою 12-летнюю падчерицу. Перед вынесением приговора он жаловался на головные боли, не мог читать, потерял сознание и оказался в больнице, где у него обнаружили опухоль размером с куриное яйцо в левой лобной доле (показано, что она вовлечена в процессы принятия решений и познания). Её удалили, и тяга к порнографии исчезла.

Онкожертву осудили условно. Десять месяцев спустя он пожаловался инспектору, что желание возвращается. Рентген показал, что опухоль снова на месте. Её опять вырезали, и с тех пор — а прошло уже два или три года — всё в порядке.

Г-н Грили опасается, что в ближайшее время подсудимые начнут просить о снисхождении, ссылаясь на аномалии мозга.

4. Лечение: нейробиология помогает медицине

Нейробиологи много чего хотели бы изучать, но деньги им дают прежде всего для того, чтобы они разбирались с болезнью Паркинсона и подобными ей недугами. Именно это приводит сейчас в движение данную область.

Но насколько заслуживают доверия утверждения о возможности предотвратить или вылечить, скажем, зависимость от опиатов? Позволительно ли судье приговорить человека к принудительному лечению на основании результатов сканирования мозга? Или же мозг неприкосновенен? До какой степени родители могут навязывать детям лечение, основанное на данных нейробиологии?

5. Доработка: нейробиология расширяет возможности человека

Некоторые студенты крепко сидят на адерале и риталине, считая, что эти препараты повышают умственные способности. В действительности они всего лишь добавляют бодрости, не более того.

Но что если однажды появится средство, которое действительно позволит сделаться умнее? Честно ли это будет по отношению к студенту, который не воспользовался им в сессию? А что если хитрюга-отличник после экзаменов перестанет принимать препарат — хорошим он будет врачом? Введут ли допинг-пробы в университетах?

Г-н Грили считает, что прежде всего это направление развития нейробиологии скажется на профилактике и лечении потери памяти в связи с болезнью Альцгеймера и просто с возрастом. Достаточно одной таблетки!

Подготовлено по материалам National Geographic. Изображение на заставке принадлежит adnrey.

Дмитрий Целиковcompulenta

scisne.net

Основы нейробиологии

Термины «нейробиология» и «нейронауки» вошли в обиход в 60-е годы XX в., когда Стивен Куффлер создал в медицинской школе Гарвардского университета первый факультет, сотрудниками которого стали физиологи, анатомы и биохимики. Работая вместе, они решали проблемы функционирования и развития нервной системы, исследовали молекулярные механизмы работы мозга.

Мозг — центральный отдел нервной системы животных, обычно расположенный в головном (переднем) отделе тела и представляющий собой компактное скопление нервных клеток и их отростков. У многих животных содержит также глиальные клетки, может быть окружен оболочкой из соединительной ткани. У позвоночных животных (в том числе и у человека) различают головной мозг, размещённый в полости черепа, и спинной, находящийся в позвоночном канале.

Схема строения мозга Схема строения мозга

Центральная нервная система представляет собой непрерывно работающий конгломерат клеток, которые постоянно получают информацию, анализируют ее, перерабатывают и принимают решения. Мозг способен также брать инициативу на себя и производить координированные, эффективные мышечные сокращения для ходьбы, глотания или пения. Для регуляции многих аспектов поведения и для прямого или непрямого контроля всего тела, нервная система обладает огромным количеством линий коммуникаций, обеспечиваемых нервными клетками (нейронами). Нейроны представляют собой основную единицу, или составной блок, мозга

Взаимосвязи в простых нервных системах

Не́рвная систе́ма — целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с эндокринной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система действует как интегративная система, связывая в одно целое чувствительность, двигательную активность и работу других регуляторных систем (эндокринной и иммунной).

Центральная нервная система человека Центральная нервная система человека

События, которые происходят при реализации простых рефлексов, могут быть прослежены и проанализированы детально. Например, когда по коленной связке ударяют маленьким молоточком, мышцы и сухожилия бедра растягиваются и электрические импульсы по сенсорным нервным волокнам идут в спинной мозг, в котором возбуждаются моторные клетки, производя импульсы и активируя мышечные сокращения. Конечным результатом является распрямление ноги в коленном суставе. Такие упрощенные схемы очень важны для регулировки мышечных сокращений, управляющих движениями конечностей. В таком простом рефлексе, в котором стимул ведет к определенному выходу, роль сигналов и взаимодействий всего двух видов клеток может быть успешно проанализирована.

Сложные нейронные сети и высшие функции мозга

Анализ взаимодействия нейронов в сложных путях, вовлекающих в буквальном смысле миллионы нейронов, существенно более труден, чем анализ простых рефлексов. Передача информации в мозг при восприятии звука, прикосновения, запаха или зрительного образа требует последовательного вовлечения нейрона за нейроном, так же как и при выполнении простого произвольного движения. Серьезная проблема при анализе взаимодействия нейронов и структуры сети возникает из-за плотной упаковки нервных клеток, сложности их взаимосвязей и обилия типов клеток. Мозг устроен не так, как печень, которая состоит из одинаковых популяций клеток. Если вы обнаружили, как работает одна область печени, то вы знаете очень много о печени в целом. Знания о мозжечке, однако, ничего не скажут вам о работе сетчатки или любой другой части центральной нервной системы.

Несмотря на огромную сложность нервной системы, сейчас возможно проанализировать много способов взаимодействия нейронов при восприятии. Например, записывая активность нейронов в пути от глаза к мозгу, можно проследить сигналы сначала в клетках, специфически отвечающих на свет, и затем, шаг за шагом, по последовательным переключениям, до высших центров мозга.

Интересной особенностью работы зрительной системы является способность выделять контрастные образы, цвета и движения в огромном диапазоне интенсивностей цвета. Когда вы читаете эту страницу, сигналы внутри глаза обеспечивают возможность для черных букв выделяться на белой странице в слабоосвещенной комнате или при ярком солнечном освещении Специфические связи в мозге образуют единую картину, несмотря на то, что два глаза расположены раздельно и сканируют отличающиеся области внешнего мира. Более того, существуют механизмы, обеспечивающие постоянство образа (хотя наши глаза непрерывно двигаются) и дающие точную информацию о расстоянии до страницы.

Каким образом связи нервных клеток обеспечивают подобные явления? Несмотря на то, что мы еще не способны дать полное объяснение, сейчас многое известно о том, как эти свойства зрения обеспечиваются простыми нейрональными сетями в глазе и на начальных стадиях переключения в мозге. Конечно, остается много вопросов о том, каковы связи между свойствами нейронов и поведением. Так, для того чтобы прочесть страницу, вы должны сохранять определенное положение тела, головы и рук. Далее, мозг должен обеспечить постоянное увлажнение глазного яблока, постоянство дыхания и многие другие непроизвольные и неподконтрольные сознанию функции.

Функционирование сетчатки является хорошим примером основных принципов работы нервной системы.



biofile.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики