Ракетное топливо: разновидности и состав. Ракетное топливо как называется


Ракетное топливо: разновидности и состав

Твердое ракетное топливо представляет собой твёрдое вещество (смесь веществ), которое способно гореть без воздуха и при этом выделять много газообразных соединений, разогретых до высокой температуры. Такие составы используют для создания реактивной тяги в двигателях ракет.

Ракетное топливоРакетное топливо используется как источник энергии для ракетных двигателей. Кроме твердого горючего, существуют ещё гелеобразные, жидкие и гибридные аналоги. У каждой разновидности горючего имеются свои преимущества и недостатки. Жидкие топлива бывают однокомпонентными и двухкомпонентными (горючее + окислитель). Гелеобразные топлива представляют собой составы, загущенные до состояния геля с помощью органических кислот. Гибридные топлива - это системы, которые включают в себя твердое горючее и жидкий окислитель.

Первые разновидности ракетного горючего были именно твердыми. В качестве рабочего вещества применялся порох и его аналоги, которые использовались в военном деле и для создания фейерверков. Сейчас эти соединения применяются лишь для изготовления небольших модельных ракет, как ракетное топливо. Состав позволяет запускать небольшие (до 0,5 м) ракеты на несколько сотен метров в высоту. Двигателем в них выступает маленький цилиндр. Он начинен твердой горючей смесью, которая поджигается раскаленной проволокой и горит всего несколько секунд.

Твердое ракетное топливоРакетное топливо твердого типа чаще всего состоит из окислителя, горючего и катализатора, позволяющего поддерживать стойкое горение после воспламенения состава. В исходном состоянии данные материалы порошкообразные. Чтобы сделать из них ракетное топливо, необходимо создать плотную и однородную смесь, которая будет гореть долго, ровно и непрерывно. В твердотопливных двигателях ракет используются: нитрат калия в качестве окислителя, древесный уголь (углерод), как горючее, и сера, как катализатор. Это состав черного пороха. Второй комбинацией материалов, которые применяются, как ракетное топливо являются: бертолетова соль, алюминиевая или магниевая пудра и хлорат натрия. Данный состав называют ещё белым порохом. Твердые горючие наполнители для военных ракет подразделяются на баллиститные (нитроглицериновые спрессованные пороха) и смесевые, которые применяют в форме канальных шашек.

Ракетное топливо состав

Твердотопливный ракетный двигатель работает следующим образом. После воспламенения топливо начинает гореть с заданной скоростью, выбрасывая через сопло горячее газообразное вещество, что обеспечивает тягу. Горючее в двигателе горит, пока не кончится. Поэтому остановить процесс и выключить двигатель невозможно, пока наполнитель не сгорит до конца. Это один из серьезных минусов твердотопливных двигателей, по сравнению с другими аналогами. Однако в настоящих космических баллистических носителях твердотопливные материалы применяются только на начальном этапе полета. На следующих этапах используются другие типы ракетного горючего, поэтому недостатки твердотопливных составов существенной проблемы не представляют.

fb.ru

Ракетное топливо: разновидности и состав

Ракетное топливо является химической смесью, которая сжигается для получения тяги в ракетах, и состоит из горючего и окислителя. Горючее – это вещество, которое сгорает в сочетании с кислородом и выделяет газ для приведения летательного аппарата в движение. Окислитель – это реагент, который позволяет кислороду вступать в реакцию с топливом. Ракетное топливо классифицируются в соответствии с его агрегатным состоянием - жидкое, твердое или гибридное.

Жидкое ракетное топливо

В ракетных двигателях на основе жидкого топлива горючее и окислитель хранятся в отдельных резервуарах. Они подаются через систему труб, клапанов и турбонасосов в камеру сгорания, где соединяются и сгорают для получения тяги. Жидкостные ракетные двигатели являются более сложными, чем их аналоги на твердых типах топлива. Однако они имеют несколько преимуществ. При помощи регулирования потоков реагентов в камеру сгорания двигатель может быть дросселирован, остановлен или перезапущен.

Жидкое топливо, используемое в ракетной промышленности, можно разделить на три типа: углеводородное (на основе нефтепродуктов), криогенное и самовоспламеняющееся.

Топливо на основе нефтепродуктов представляет собой очищенную нефть и состоит из смеси сложных углеводородов. Примером такого ракетного топлива является один из видов керосина высокой степени очистки. Он, как правило, используется в сочетании с жидким кислородом в качестве окислителя.

Криогенное ракетное топливо в большинстве случаев представляет собой жидкий водород, смешанный с жидким кислородом. Из-за низких температур такое горючее трудно хранить в течение длительного времени. Несмотря на этот недостаток, жидкое ракетное топливо обладает преимуществом: при сгорании выделяется огромное количество энергии.

Самовоспламеняющееся ракетное топливо представляет собой двухкомпонентную смесь, которая возгорается при контакте с воздухом. Быстрый запуск двигателей, построенных на таком типе топлива, делает его идеальным выбором для систем маневрирования космических кораблей. Однако такое горючее очень легко воспламеняется, поэтому при работе с ним необходимы особые меры безопасности.

Твердое ракетное топливо

Конструкция двигателей на твердом ракетном топливе является довольно простой. Она состоит из стального корпуса, заполненного смесью из твердых соединений (топлива и окислителя). Эти компоненты горят с большой скоростью, выходя из сопла и создавая тягу. Воспламенение твердого ракетного топлива происходит в центре резервуара, а затем процесс переходит к боковым сторонам корпуса. Форма центрального канала определяет скорость и характер горения, обеспечивая тем самым способ управления тягой. В отличие от жидкостных реактивных двигателей, твердотельный двигатель не может быть остановлен после запуска. После начала процесса, компоненты будут гореть, пока не кончится топливо.

Есть два вида твердого топлива: однородное и композитное. Оба типа очень стабильны при обычных температурах, а также легко хранятся.

Разница между однородным и композитным топливом состоит в том, что первый тип представляет собой вещество одного типа – зачастую это нитроцеллюлоза. Композитные типы топлива состоят из гетерогенных порошков на основе минеральных солей.

Гибридное ракетное топливо

Ракетные двигатели, работающие на таком типе топлива, составляют промежуточную группу между твердотельными и жидкостными силовыми агрегатами. В таком типе двигателя одно вещество твердое, в то время как другое – в жидком состоянии. Окислитель, как правило, это жидкость. Основным преимуществом таких двигателей является то, что они имеют высокий коэффициент полезного действия. При этом сгорание топлива можно остановить или даже перезапустить двигатель повторно.

completerepair.ru

Ракетное топливо — WiKi

Ракетное топливо — компонент веществ питания ракетного двигателя для создания им тяги и движения ракеты в заданном направлении. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например ядерный ракетный двигатель, или ионный и т. д. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое ракетное топливо делится на окислитель и горючее. Эти компоненты находятся в ракете в жидком состоянии в разных баках. Смешивание происходит в камере сгорания, обычно с помощью форсунок. Давление создается за счет работы турбонасосной или вытеснительной системы. Также компоненты топлива используются для охлаждения сопла ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в смеси твёрдых веществ.

Вывод космических аппаратов за пределы земной атмосферы и разгон до орбитальных скоростей требует огромных энергозатрат. Используемые в настоящее время топлива и конструкционные материалы ракет обеспечивают соотношение масс на старте и на орбите не лучше 30:1. Поэтому масса космической ракеты на старте составляет сотни и даже тысячи тонн. Отрыв такой массы от стартового стола требует превосходящей реактивной тяги двигателей. Поэтому основное требование к топливу первой ступени ракет - возможность создания значительной тяги при приемлемых габаритах двигателя и запасах топлива. Тяга прямо пропорциональна удельному импульсу и массовому расходу топлива. Т.е. топлива с высоким удельным импульсом требуется меньше для вывода на орбиту равной нагрузки. Удельный импульс обратно пропорционален молекулярному весу продуктов горения, что означает низкую плотность высокоэффективного топлива и, соответственно, значительный объем и вес конструкции двигателя и топливной системы. Поэтому при выборе топлив ищут компромисс между весом конструкции и весом топлива. На одном конце этого выбора находится топливная пара водород+кислород с наивысшим удельным импульсом и низкой плотностью. На другом конце находится твердое топливо на основе перхлората аммония с низким удельным импульсом, но высокой плотностью.

Помимо тяговых возможностей топлива, учитываются и другие факторы. Неустойчивость горения некоторых топлив зачастую приводила к взрывам двигателей. Высокая температура горения некоторых топлив предъявляла повышенные требования к конструированию, материалам и технологии двигателей. Криогенные топлива утяжеляли ракету теплоизоляцией, затрудняли выбор хладостойких материалов, усложняли проектирование и отработку. Поэтому на заре космической эры получило широкое распространение такое легкое в получении, хранении и использовании топливо как несимметричный диметилгидразин (НДМГ). При этом оно имело вполне приемлемые тяговые характеристики, поэтому довольно широко используется и в наше время.

Помимо технических факторов важны экономические, исторические и социальные. Криогенные топлива требуют дорогой сложной специфической инфраструктуры космодрома для получения и хранения криогенных материалов, таких как жидкие кислород и водород. Высокотоксичные топлива, такие как НДМГ, создают экологические риски для персонала и мест падения ступеней ракет, экономические риски последствий заражения территорий при аварийных ситуациях.

В ракетах для запуска космических аппаратов в настоящее время, в основном, используются четыре вида топлива:

  • Керосин + жидкий кислород. Популярное, дешевое топливо с великолепно развитой и отработанной линейкой двигателей и топливной инфраструктурой. Имеет неплохую экологичность. Лучшие двигатели обеспечивают удельный импульс (УИ) немногим выше 300 секунд при атмосферном давлении.
  • Несимметричный диметилгидразин + тетраоксид азота. Чрезвычайно токсичное топливо. Однако высокая устойчивость горения, самовоспламеняемость, относительная простота топливной арматуры, легкость хранения, хорошая плотность топлива, хорошие энергетические характеристики предопределили широкое распространение. Сегодня предпринимаются усилия по отказу от НДМГ. УИ примерно аналогичен кислород-керосиновой паре.
  • Жидкий водород + жидкий кислород. Низкая плотность и чрезвычайно низкие температуры хранения водорода делает очень сложным использование топливной пары в первой ступени ракет-носителей. Однако высокая эффективность приводит к широкому использованию в верхних ступенях ракет-носителей, где приоритет тяги уменьшается, а цена массы растет. Топливо имеет великолепную экологичность. УИ лучших двигателей на уровне моря свыше 350 секунд, в вакууме - 450 секунд.
  • Смесевое твёрдое ракетное топливо на основе перхлората аммония. Дешевое топливо, но требует высокой культуры производства. Широко используется в западном ракетостроении на первой ступени ракет благодаря легкости получения значительной тяги. Двигателями на твердом топливе сложно управлять по вектору тяги, поэтому их часто ставят в параллель с небольшими жидкостными двигателями, которые обеспечивают управляемость полета. Имеет низкую экологичность. Типовой УИ - 250 секунд.

Наблюдается также высокий интерес к перспективной топливной паре метан + жидкий кислород.[1]

ru-wiki.org

Ракетное топливо - это... Что такое Ракетное топливо?

        вещество или совокупность веществ, представляющих собой источник энергии и рабочего тела для ракетного двигателя (См. Ракетный двигатель) (РД). Р. т. должно удовлетворять следующим основным требованиям: иметь высокий удельный импульс (тяга РД при расходе топлива 1 кг/сек; см. Реактивный двигатель), высокую плотность, требуемое агрегатное состояние компонентов в условиях эксплуатации, должно быть стабильным, безопасным в обращении, нетоксичным, совместимым с конструкционными материалами, иметь сырьевые ресурсы и др.

         Известны Р. т. химические и нехимические: у первых необходимая для работы РД энергия выделяется в результате химических реакций, а образующиеся при этом газообразные продукты служат рабочим телом, т. е. обеспечивают при расширении в сопле РД преобразование тепловой энергии химических превращений в кинетическую энергию потока, истекающего из сопла РД; у вторых энергия внутриядерных превращений или электрическая энергия (например, в ядерном или электрическом РД) передаётся специальному веществу, являющемуся только рабочим телом или его источником. Удельный импульс нехимических Р. т. зависит от термодинамических свойств и допустимой рабочей температуры рабочего тела, затрат энергии на создание тяги. Принципиально же по удельному импульсу эти Р. т. могут значительно превосходить химические.

         Большинство существующих РД работает на химических Р. т. Основная энергетическая характеристика (удельный импульс) определяется количеством выделившейся при реакции окисления, разложения или рекомбинации теплоты (теплотворностью Р. т.) и химическим составом продуктов реакции, от которого зависит полнота преобразования тепловой энергии в кинетическую энергию потока (чем ниже молекулярная масса, тем выше удельный импульс).

         По числу раздельно хранимых компонентов химические Р. т. делятся на одно-(унитарные), двух-, трёх- и многокомпонентные, по агрегатному состоянию компонентов — на жидкие, твёрдые, гибридные, псевдожидкие, желеобразные и в том числе тиксотропные, т. е. загущенные желеобразные, вязкость которых резко снижается при наличии градиента давления. Агрегатное состояние определяет конструкцию РД, его характеристики и область рационального применения. Наибольшее применение получили жидкие и твёрдые Р. т.

         Все компоненты жидкого Р. т. в условиях эксплуатации находятся в баках ракеты и раздельно подаются (насосами или вытеснением сжатым газом) в камеру сгорания РД (см. также Газогенератор жидкостного ракетного двигателя). К жидким топливам предъявляются следующие специфические требования: возможно более широкий температурный интервал жидкого состояния, пригодность, по крайней мере, одного из компонентов для охлаждения жидкостного РД (термическая стабильность, высокие температура кипения и теплоёмкость), возможность получения из основных компонентов (окислителя и горючего) генераторного газа высокой работоспособности, минимальная вязкость компонентов и малая зависимость её от температуры. Наиболее широко применяют двухкомпонентные жидкие Р. т., состоящие из окислителя и горючего (см. табл.). Для улучшения характеристик РД в состав таких Р. т. можно вводить различные присадки (как добавки в виде растворов, суспензий или как третий компонент): металлы, например Be и Al, а также В, и их гидриды для повышения удельного импульса, компоненты для получения генераторного газа (если для этого не пригодны основные компоненты), ингибиторы коррозии (см. Ингибиторы химические), стабилизаторы, активаторы воспламенения, вещества (депрессаторы), понижающие температуру замерзания, и т.п. Окислитель и горючее, вступающие при контакте в жидком состоянии в химическую реакцию и вызывающие воспламенение смеси, образуют самовоспламеняющиеся топлива. Применение таких топлив упрощает конструкцию РД и позволяет наиболее просто осуществлять многоразовые запуски. Ракетно-космическая техника базируется на использовании высокоэффективных жидких Р. т.

         Для вспомогательных жидкостных РД и получения генераторного газа, необходимого для привода турбонасосных агрегатов, можно применять однокомпонентные жидкие топлива (перекись водорода, гидразин), выделяющие энергию при разложении.

         Твёрдые Р. т. представляют собой гомогенную смесь компонентов (баллиститные топлива — см. Баллиститы) или монолитную гетерогенную композицию, т. н. смесевые топлива. Последние могут состоять из органического горючего-связующего (например, каучука, полиуретана, полиэфирной или эпоксидной смолы), твёрдого окислителя (чаще всего перхлората аммония, а также перхлората калия, нитрата аммония и др.) и добавок различного назначения (например, для повышения энергетических характеристик — порошки Al, Mg, Be, В). Горючее-связующее способствует образованию монолитного топливного блока, определяет комплекс физико-химических свойств топлива и способ формования заряда. Основные специфические требования, предъявляемые к твёрдым Р. т.: равномерность распределения компонентов и, следовательно, постоянство физико-химических и энергетических свойств в блоке, устойчивость и закономерность горения в камере РД, а также комплекс физико-механических свойств, обеспечивающих работоспособность двигателя в условиях перегрузок, переменной температуры, вибраций.

         По удельному импульсу твёрдые Р. т. уступают жидким, т.к. из-за химической несовместимости не всегда удаётся использовать в составе твёрдого Р. т. энергетически эффективные компоненты.

         Основные характеристики некоторых возможных высокоэффективных двухкомпонентных жидких топлив при оптимальном соотношении компонентов (давление в камере сгорания 10 Мн/м2, или 100 кгс/см2, на срезе сопла 0,1 Мн/м2, или 1 кгс/см2)

        --------------------------------------------------------------------------------------------------------------------------------------------------

        | Окислитель      | Горючее                                     | Плотность    | Температура   | Пустотный  |

        |                         |                                                   | топлива*, г   | в камере         | удельный    |

        |                         |                                                   | /см'              | сгорания, К     | импульс**,  |

        |                         |                                                   |                     |                       | сек             |

        |-------------------------------------------------------------------------------------------------------------------------------------------------|

        | Кислород          | Водород жидкий                         | 0,3155          | 3250               | 428             |

        | жидкий             |-----------------------------------------------------------------------------------------------------------------------|

        |                         | Керосин                                      | 1,036            | 3755               | 335             |

        |                         |-----------------------------------------------------------------------------------------------------------------------|

        |                         | Диметилгидразин                        | 0,9915          | 3670               | 344             |

        |                         | несимметричный                         |                     |                       |                   |

        |                         |-----------------------------------------------------------------------------------------------------------------------|

        |                         | Гидразин                                    | 1,0715          | 3446               | 346             |

        |                         |-----------------------------------------------------------------------------------------------------------------------|

        |                         | Аммиак жидкий                           | 0,8393          | 3070               | 323             |

        |-------------------------------------------------------------------------------------------------------------------------------------------------|

        | Четырёхокись   | Керосин                                      | 1,269            | 3516               | 309             |

        | азота                |-----------------------------------------------------------------------------------------------------------------------|

        |                         | Диметилгидразин                        | 1,185            | 3469               | 318             |

        |                         | несимметричный                         |                     |                       |                   |

        |                         |-----------------------------------------------------------------------------------------------------------------------|

        |                         | Гидразин                                    | 1,228            | 3287               | 322             |

        |-------------------------------------------------------------------------------------------------------------------------------------------------|

        | Фтор жидкий     | Водород жидкий                         | 0,621            | 4707               | 449             |

        |                         |-----------------------------------------------------------------------------------------------------------------------|

        |                         | Гидразин                                    | 1,314            | 4775               | 402             |

        --------------------------------------------------------------------------------------------------------------------------------------------------

        

        * Расчётная величина — отношение суммарной массы компонентов ракетного топлива (окислителя и горючего) к их объёму. ** Удельный импульс РД при давлении окружающей среды, равном нулю.

         В гибридном Р. т. компоненты находятся в различных агрегатных состояниях (например, жидкий окислитель + твёрдое горючее, твёрдый окислитель + жидкое горючее). Все компоненты жидких и твёрдых Р. т. можно использовать как компоненты гибридных Р. т. По удельному импульсу эти топлива занимают промежуточное положение между жидкими и твёрдыми.

         Лит.: Сарнер С., Химия ракетных топлив, пер. с англ., М., 1969; Термодинамические и теплофизические свойства продуктов сгорания. Справочник, т. 1—8, под ред. академик В. П. Глушко, М., 1971—74; Космонавтика, под ред. академик В. П. Глушко, 2 изд., М., 1970 (Маленькая энциклопедия).

dic.academic.ru

Ракетное топливо Википедия

Раке́тное то́пливо — вещества, используемые в ракетных двигателях различных конструкций для получения тяги и ускорения ракеты посредством энергии химической реакции (горения).

Не следует путать ракетное топливо с рабочим телом нехимических ракетных двигателей, например ядерных или электрических.

Понятие

Ракетное топливо — компонент веществ питания ракетного двигателя для создания им тяги и движения ракеты в заданном направлении. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например ядерный ракетный двигатель, или ионный и т. д. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое ракетное топливо делится на окислитель и горючее. Эти компоненты находятся в ракете в жидком состоянии в разных баках. Смешивание происходит в камере сгорания, обычно с помощью форсунок. Давление создается за счет работы турбонасосной или вытеснительной системы. Также компоненты топлива используются для охлаждения сопла ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в смеси твёрдых веществ.

Группы (основные типы)

Ракетное топливо в достаточно условной мере может быть разделено на различные группы; в качестве основных групп обычно рассматриваются следующие:

  • Электрореактивные: электроэнергия и рабочие тела.
  • Ядерные: ядерное деление, синтез, распад изотопов.
  • Химические: химические реакции, реакции рекомбинации свободных радикалов.
  • Физические: потенциальная энергия сжатых газов.

Типы

Химические ракетные топлива
Окислители для жидких видов топлива
Свободные радикалы
  • Рабочие тела для электрореактивных двигателей.
Ядерные топлива

Топливо космических ракет и аппаратов

Вывод космических аппаратов за пределы земной атмосферы и разгон до орбитальных скоростей требует огромных энергозатрат. Используемые в настоящее время топлива и конструкционные материалы ракет обеспечивают соотношение масс на старте и на орбите не лучше 30:1. Поэтому масса космической ракеты на старте составляет сотни и даже тысячи тонн. Отрыв такой массы от стартового стола требует превосходящей реактивной тяги двигателей. Поэтому основное требование к топливу первой ступени ракет - возможность создания значительной тяги при приемлемых габаритах двигателя и запасах топлива. Тяга прямо пропорциональна удельному импульсу и массовому расходу топлива. Т.е. топлива с высоким удельным импульсом требуется меньше для вывода на орбиту равной нагрузки. Удельный импульс обратно пропорционален молекулярному весу продуктов горения, что означает низкую плотность высокоэффективного топлива и, соответственно, значительный объем и вес конструкции двигателя и топливной системы. Поэтому при выборе топлив ищут компромисс между весом конструкции и весом топлива. На одном конце этого выбора находится топливная пара водород+кислород с наивысшим удельным импульсом и низкой плотностью. На другом конце находится твердое топливо на основе перхлората аммония с низким удельным импульсом, но высокой плотностью.

Помимо тяговых возможностей топлива, учитываются и другие факторы. Неустойчивость горения некоторых топлив зачастую приводила к взрывам двигателей. Высокая температура горения некоторых топлив предъявляла повышенные требования к конструированию, материалам и технологии двигателей. Криогенные топлива утяжеляли ракету теплоизоляцией, затрудняли выбор хладостойких материалов, усложняли проектирование и отработку. Поэтому на заре космической эры получило широкое распространение такое легкое в получении, хранении и использовании топливо как несимметричный диметилгидразин (НДМГ). При этом оно имело вполне приемлемые тяговые характеристики, поэтому довольно широко используется и в наше время.

Помимо технических факторов важны экономические, исторические и социальные. Криогенные топлива требуют дорогой сложной специфической инфраструктуры космодрома для получения и хранения криогенных материалов, таких как жидкие кислород и водород. Высокотоксичные топлива, такие как НДМГ, создают экологические риски для персонала и мест падения ступеней ракет, экономические риски последствий заражения территорий при аварийных ситуациях.

В ракетах для запуска космических аппаратов в настоящее время, в основном, используются четыре вида топлива:

  • Керосин + жидкий кислород. Популярное, дешевое топливо с великолепно развитой и отработанной линейкой двигателей и топливной инфраструктурой. Имеет неплохую экологичность. Лучшие двигатели обеспечивают удельный импульс (УИ) немногим выше 300 секунд при атмосферном давлении.
  • Несимметричный диметилгидразин + тетраоксид азота. Чрезвычайно токсичное топливо. Однако высокая устойчивость горения, самовоспламеняемость, относительная простота топливной арматуры, легкость хранения, хорошая плотность топлива, хорошие энергетические характеристики предопределили широкое распространение. Сегодня предпринимаются усилия по отказу от НДМГ. УИ примерно аналогичен кислород-керосиновой паре.
  • Жидкий водород + жидкий кислород. Низкая плотность и чрезвычайно низкие температуры хранения водорода делает очень сложным использование топливной пары в первой ступени ракет-носителей. Однако высокая эффективность приводит к широкому использованию в верхних ступенях ракет-носителей, где приоритет тяги уменьшается, а цена массы растет. Топливо имеет великолепную экологичность. УИ лучших двигателей на уровне моря свыше 350 секунд, в вакууме - 450 секунд.
  • Смесевое твёрдое ракетное топливо на основе перхлората аммония. Дешевое топливо, но требует высокой культуры производства. Широко используется в западном ракетостроении на первой ступени ракет благодаря легкости получения значительной тяги. Двигателями на твердом топливе сложно управлять по вектору тяги, поэтому их часто ставят в параллель с небольшими жидкостными двигателями, которые обеспечивают управляемость полета. Имеет низкую экологичность. Типовой УИ - 250 секунд.

Наблюдается также высокий интерес к перспективной топливной паре метан + жидкий кислород, но пока нет даже готовых проектов способных работать на бытовом газу .[1]

Примечания

Литература

Ссылки

wikiredia.ru

Жидкое ракетное топливо - Большая Энциклопедия Нефти и Газа, статья, страница 1

Жидкое ракетное топливо

Cтраница 1

Жидкое ракетное топливо ( ЖРТ) - вещество или совокупность веществ-в жидком состоянии, способных в результате экзотермических химических реакций образовывать высокотемпературные продукты, создающие реактивную силу при их истечении из ракетного двигателя.  [1]

Жидкое ракетное топливо можно разделить на однокомпонентное и двухкомпонентное. Однокомпонентное топливо, например смесь, называемая нитрометан, обычно вырабатывает кислород и горючее посредством распада, и в результате образуется газовая смесь с высоким давлением и высокой температурой.  [2]

Жидкие ракетные топлива можно, аналогично твердым, классифицировать на составы, применявшиеся во время войны, и на составы, находящиеся еще в стадии исследования и развития. Далее следует отдельно рассмотреть одно - и двухком-понентные системы.  [3]

Основное жидкое ракетное топливо ( ОЖРТ) - жидкое ракетное топливо ( ЖРТ), служащее для получения всей или основной доли тяги.  [4]

Вспомогательное жидкое ракетное топливо ( ВЖРТ) - жидкое топливо, отличное от основного и применяемое только для вспомогательных целей, например, для образования продуктов газогенерации, которые выбрасываются помимо основной камеры сгорания.  [5]

Компонент жидкого ракетного топлива ( КТ) - отдельно хранимая и подводимая к жидкостному ракетному двигателю, отличающаяся по составу часть жидкого ракетного топлива. Компонент топлива может состоять из одного или из смеси индивидуальных химических веществ. В составе твердого ракетного топлива также можно различать компоненты - отдельные вещества, входящие в состав твердого топлива.  [6]

В жидких ракетных топливах, в которых вода растворяется неограниченно, выделение последней в виде кристаллов не происходит.  [7]

Окислителями для жидких ракетных топлив являются вещества, которые используются в качестве компонентов топлива и обеспечивают окисление горючего в камере ЖРД. Конструкция и энергетика ЖРД в значительной степени определяются характером окислителя при одном и том же составе горючего. Топлива, содержащие в качестве окислителя жидкий кислород с температурой кипения, равной - 183 С, отличаются от топлив на основе азотной кисл ты, которая кипит при 86 С. Перекись водорода также значительно отличается по своим свойствам от двух первых окислителей. Одно из характерных свойств перекиси водорода - способность к каталитическому распаду, который протекает в присутствии катализаторов с очень большой скоростью и с выделением значительного количества тепла. Известны окислители, которые еще более значительно отличаются по своим свойствам от первых трех, как, например, фтор и окислители на основе соединений фтора.  [8]

Окислителями для жидких ракетных топлив могут служить жидкий кислород, перекись водорода, азотная кислота с 15 - 20 % окислов азота, четырехокись азота, тетранитроме чан, фтор, его смеси с жидким кислородом, соединениями фтора с кисл.  [9]

Четырехокись азота применяется в качестве жидкого ракетного топлива.  [11]

Эти два вещества являются двумя компонентами жидкого ракетного топлива. Бак 8 предназначен для рабочего тела турбины, которое, проходя через реактор 7, приводит турбину 4 в движение.  [13]

Диоксид и О4 - окислители в жидком ракетном топливе, смесевых ВВ, при очистке нефтепродуктов от сераорг.  [14]

Основное жидкое ракетное топливо ( ОЖРТ) - жидкое ракетное топливо ( ЖРТ), служащее для получения всей или основной доли тяги.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Ракетное топливо — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Раке́тное то́пливо — вещества, используемые в ракетных двигателях различных конструкций для получения тяги и ускорения ракеты посредством энергии химической реакции (горения).

Не следует путать ракетное топливо с рабочим телом нехимических ракетных двигателей, например ядерных или электрических.

Понятие

Ракетное топливо — компонент веществ питания ракетного двигателя для создания им тяги и движения ракеты в заданном направлении. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например ядерный ракетный двигатель, или ионный и т. д. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое ракетное топливо делится на окислитель и горючее. Эти компоненты находятся в ракете в жидком состоянии в разных баках. Смешивание происходит в камере сгорания, обычно с помощью форсунок. Давление создается за счет работы турбонасосной или вытеснительной системы. Также компоненты топлива используются для охлаждения сопла ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в смеси твёрдых веществ.

Группы

Ракетное топливо в достаточно условной мере может быть разделено на различные группы; в качестве основных групп обычно рассматриваются следующие:

  • Электрореактивные: электроэнергия и рабочие тела.
  • Ядерные: ядерное деление, синтез, распад изотопов.
  • Химические: химические реакции, реакции рекомбинации свободных радикалов.
  • Физические: потенциальная энергия сжатых газов.

Типы

Химические ракетные топлива Окислители для жидких видов топлива
  • Гелеобразное.
  • Гибридное.
Свободные радикалы
  • Рабочие тела для электрореактивных двигателей.
Ядерные топлива

Топливо космических ракет и аппаратов

Вывод космических аппаратов за пределы земной атмосферы и разгон до орбитальных скоростей требует огромных энергозатрат. Используемые в настоящее время топлива и конструкционные материалы ракет обеспечивают соотношение масс на старте и на орбите не лучше 30:1. Поэтому масса космической ракеты на старте составляет сотни и даже тысячи тонн. Отрыв такой массы от стартового стола требует превосходящей реактивной тяги двигателей. Поэтому основное требование к топливу первой ступени ракет - возможность создания значительной тяги при приемлемых габаритах двигателя и запасах топлива. Тяга прямо пропорциональна удельному импульсу и массовому расходу топлива. Т.е. топлива с высоким удельным импульсом требуется меньше для вывода на орбиту равной нагрузки. Удельный импульс обратно пропорционален молекулярному весу продуктов горения, что означает низкую плотность высокоэффективного топлива и, соответственно, значительный объем и вес конструкции двигателя и топливной системы. Поэтому при выборе топлив ищут компромисс между весом конструкции и весом топлива. На одном конце этого выбора находится топливная пара водород+кислород с наивысшим удельным импульсом и низкой плотностью. На другом конце находится твердое топливо на основе перхлората аммония с низким удельным импульсом, но высокой плотностью.

Помимо тяговых возможностей топлива, учитываются и другие факторы. Неустойчивость горения некоторых топлив зачастую приводила к взрывам двигателей. Высокая температура горения некоторых топлив предъявляла повышенные требования к конструированию, материалам и технологии двигателей. Криогенные топлива утяжеляли ракету теплоизоляцией, затрудняли выбор хладостойких материалов, усложняли проектирование и отработку. Поэтому на заре космической эры получило широкое распространение такое легкое в получении, хранении и использовании топливо как несимметричный диметилгидразин (НДМГ). При этом оно имело вполне приемлемые тяговые характеристики, поэтому довольно широко используется и в наше время.

Помимо технических факторов важны экономические, исторические и социальные. Криогенные топлива требуют дорогой сложной специфической инфраструктуры космодрома для получения и хранения криогенных материалов, таких как жидкие кислород и водород. Высокотоксичные топлива, такие как НДМГ, создают экологические риски для персонала и мест падения ступеней ракет, экономические риски последствий заражения территорий при аварийных ситуациях.

В ракетах для запуска космических аппаратов в настоящее время, в основном, используются четыре вида топлива:

  • Керосин + жидкий кислород. Популярное, дешевое топливо с великолепно развитой и отработанной линейкой двигателей и топливной инфраструктурой. Имеет неплохую экологичность. Лучшие двигатели обеспечивают удельный импульс (УИ) немногим выше 300 секунд при атмосферном давлении.
  • Несимметричный диметилгидразин + тетраоксид азота. Чрезвычайно токсичное топливо. Однако высокая устойчивость горения, относительная простота топливной арматуры, легкость хранения, хорошая плотность топлива, хорошие энергетические характеристики предопределили широкое распространение. Сегодня предпринимаются усилия по отказу от НДМГ. УИ примерно аналогичен кислород-керосиновой паре.
  • Жидкий водород + жидкий кислород. Низкая плотность и чрезвычайно низкие температуры хранения водорода делает очень сложным использование топливной пары в первой ступени ракет-носителей. Однако высокая эффективность приводит к широкому использованию в верхних ступенях ракет-носителей, где приоритет тяги уменьшается, а цена массы растет. Топливо имеет великолепную экологичность. УИ лучших двигателей на уровне моря свыше 350 секунд, в вакууме - 450 секунд.
  • Смесевое твёрдое ракетное топливо на основе перхлората аммония. Дешевое топливо, но требует высокой культуры производства. Широко используется в западном ракетостроении на первой ступени ракет благодаря легкости получения значительной тяги. Двигателями на твердом топливе сложно управлять по вектору тяги, поэтому их часто ставят в параллель с небольшими жидкостными двигателями, которые обеспечивают управляемость полета. Имеет низкую экологичность. Типовой УИ - 250 секунд.

Наблюдается также высокий интерес к перспективной топливной паре метан + жидкий кислород.[1]

Напишите отзыв о статье "Ракетное топливо"

Примечания

  1. ↑ [epizodsspace.airbase.ru/bibl/nk/1998/17-18/17-18-1998-3.html Метан - последняя надежда?]

Ссылки

  • [warfares.info/content/raketnoe-oruzhie РАКЕТНОЕ ОРУЖИЕ]
  • [www.astro.websib.ru/kosmo/Glav/Glava_2 Космонавтика. История. Глава 2 (1901—1956)]
  • [www-pao.ksc.nasa.gov/kscpao/nasafact/count2.htm NASA page on propellants]
  • [www.braeunig.us/space/propel.htm Rocket Propellants]
  • [www.astronautix.com/props/index.htm Detailed list of rocket fuels, practical and theoretical]

Отрывок, характеризующий Ракетное топливо

– Они! Батюшки родимые!.. Ей богу, они. Четверо, конные!.. – кричала она. Герасим и дворник выпустили из рук Макар Алексеича, и в затихшем коридоре ясно послышался стук нескольких рук во входную дверь.

Пьер, решивший сам с собою, что ему до исполнения своего намерения не надо было открывать ни своего звания, ни знания французского языка, стоял в полураскрытых дверях коридора, намереваясь тотчас же скрыться, как скоро войдут французы. Но французы вошли, и Пьер все не отходил от двери: непреодолимое любопытство удерживало его. Их было двое. Один – офицер, высокий, бравый и красивый мужчина, другой – очевидно, солдат или денщик, приземистый, худой загорелый человек с ввалившимися щеками и тупым выражением лица. Офицер, опираясь на палку и прихрамывая, шел впереди. Сделав несколько шагов, офицер, как бы решив сам с собою, что квартира эта хороша, остановился, обернулся назад к стоявшим в дверях солдатам и громким начальническим голосом крикнул им, чтобы они вводили лошадей. Окончив это дело, офицер молодецким жестом, высоко подняв локоть руки, расправил усы и дотронулся рукой до шляпы. – Bonjour la compagnie! [Почтение всей компании!] – весело проговорил он, улыбаясь и оглядываясь вокруг себя. Никто ничего не отвечал. – Vous etes le bourgeois? [Вы хозяин?] – обратился офицер к Герасиму. Герасим испуганно вопросительно смотрел на офицера. – Quartire, quartire, logement, – сказал офицер, сверху вниз, с снисходительной и добродушной улыбкой глядя на маленького человека. – Les Francais sont de bons enfants. Que diable! Voyons! Ne nous fachons pas, mon vieux, [Квартир, квартир… Французы добрые ребята. Черт возьми, не будем ссориться, дедушка.] – прибавил он, трепля по плечу испуганного и молчаливого Герасима. – A ca! Dites donc, on ne parle donc pas francais dans cette boutique? [Что ж, неужели и тут никто не говорит по французски?] – прибавил он, оглядываясь кругом и встречаясь глазами с Пьером. Пьер отстранился от двери. Офицер опять обратился к Герасиму. Он требовал, чтобы Герасим показал ему комнаты в доме. – Барин нету – не понимай… моя ваш… – говорил Герасим, стараясь делать свои слова понятнее тем, что он их говорил навыворот. Французский офицер, улыбаясь, развел руками перед носом Герасима, давая чувствовать, что и он не понимает его, и, прихрамывая, пошел к двери, у которой стоял Пьер. Пьер хотел отойти, чтобы скрыться от него, но в это самое время он увидал из отворившейся двери кухни высунувшегося Макара Алексеича с пистолетом в руках. С хитростью безумного Макар Алексеич оглядел француза и, приподняв пистолет, прицелился. – На абордаж!!! – закричал пьяный, нажимая спуск пистолета. Французский офицер обернулся на крик, и в то же мгновенье Пьер бросился на пьяного. В то время как Пьер схватил и приподнял пистолет, Макар Алексеич попал, наконец, пальцем на спуск, и раздался оглушивший и обдавший всех пороховым дымом выстрел. Француз побледнел и бросился назад к двери. Забывший свое намерение не открывать своего знания французского языка, Пьер, вырвав пистолет и бросив его, подбежал к офицеру и по французски заговорил с ним. – Vous n'etes pas blesse? [Вы не ранены?] – сказал он. – Je crois que non, – отвечал офицер, ощупывая себя, – mais je l'ai manque belle cette fois ci, – прибавил он, указывая на отбившуюся штукатурку в стене. – Quel est cet homme? [Кажется, нет… но на этот раз близко было. Кто этот человек?] – строго взглянув на Пьера, сказал офицер. – Ah, je suis vraiment au desespoir de ce qui vient d'arriver, [Ах, я, право, в отчаянии от того, что случилось,] – быстро говорил Пьер, совершенно забыв свою роль. – C'est un fou, un malheureux qui ne savait pas ce qu'il faisait. [Это несчастный сумасшедший, который не знал, что делал.] Офицер подошел к Макару Алексеичу и схватил его за ворот. Макар Алексеич, распустив губы, как бы засыпая, качался, прислонившись к стене. – Brigand, tu me la payeras, – сказал француз, отнимая руку. – Nous autres nous sommes clements apres la victoire: mais nous ne pardonnons pas aux traitres, [Разбойник, ты мне поплатишься за это. Наш брат милосерд после победы, но мы не прощаем изменникам,] – прибавил он с мрачной торжественностью в лице и с красивым энергическим жестом. Пьер продолжал по французски уговаривать офицера не взыскивать с этого пьяного, безумного человека. Француз молча слушал, не изменяя мрачного вида, и вдруг с улыбкой обратился к Пьеру. Он несколько секунд молча посмотрел на него. Красивое лицо его приняло трагически нежное выражение, и он протянул руку. – Vous m'avez sauve la vie! Vous etes Francais, [Вы спасли мне жизнь. Вы француз,] – сказал он. Для француза вывод этот был несомненен. Совершить великое дело мог только француз, а спасение жизни его, m r Ramball'я capitaine du 13 me leger [мосье Рамбаля, капитана 13 го легкого полка] – было, без сомнения, самым великим делом. Но как ни несомненен был этот вывод и основанное на нем убеждение офицера, Пьер счел нужным разочаровать его. – Je suis Russe, [Я русский,] – быстро сказал Пьер. – Ти ти ти, a d'autres, [рассказывайте это другим,] – сказал француз, махая пальцем себе перед носом и улыбаясь. – Tout a l'heure vous allez me conter tout ca, – сказал он. – Charme de rencontrer un compatriote. Eh bien! qu'allons nous faire de cet homme? [Сейчас вы мне все это расскажете. Очень приятно встретить соотечественника. Ну! что же нам делать с этим человеком?] – прибавил он, обращаясь к Пьеру, уже как к своему брату. Ежели бы даже Пьер не был француз, получив раз это высшее в свете наименование, не мог же он отречься от него, говорило выражение лица и тон французского офицера. На последний вопрос Пьер еще раз объяснил, кто был Макар Алексеич, объяснил, что пред самым их приходом этот пьяный, безумный человек утащил заряженный пистолет, который не успели отнять у него, и просил оставить его поступок без наказания. Француз выставил грудь и сделал царский жест рукой. – Vous m'avez sauve la vie. Vous etes Francais. Vous me demandez sa grace? Je vous l'accorde. Qu'on emmene cet homme, [Вы спасли мне жизнь. Вы француз. Вы хотите, чтоб я простил его? Я прощаю его. Увести этого человека,] – быстро и энергично проговорил французский офицер, взяв под руку произведенного им за спасение его жизни во французы Пьера, и пошел с ним в дом. Солдаты, бывшие на дворе, услыхав выстрел, вошли в сени, спрашивая, что случилось, и изъявляя готовность наказать виновных; но офицер строго остановил их. – On vous demandera quand on aura besoin de vous, [Когда будет нужно, вас позовут,] – сказал он. Солдаты вышли. Денщик, успевший между тем побывать в кухне, подошел к офицеру. – Capitaine, ils ont de la soupe et du gigot de mouton dans la cuisine, – сказал он. – Faut il vous l'apporter? [Капитан у них в кухне есть суп и жареная баранина. Прикажете принести?] – Oui, et le vin, [Да, и вино,] – сказал капитан.

Французский офицер вместе с Пьером вошли в дом. Пьер счел своим долгом опять уверить капитана, что он был не француз, и хотел уйти, но французский офицер и слышать не хотел об этом. Он был до такой степени учтив, любезен, добродушен и истинно благодарен за спасение своей жизни, что Пьер не имел духа отказать ему и присел вместе с ним в зале, в первой комнате, в которую они вошли. На утверждение Пьера, что он не француз, капитан, очевидно не понимая, как можно было отказываться от такого лестного звания, пожал плечами и сказал, что ежели он непременно хочет слыть за русского, то пускай это так будет, но что он, несмотря на то, все так же навеки связан с ним чувством благодарности за спасение жизни. Ежели бы этот человек был одарен хоть сколько нибудь способностью понимать чувства других и догадывался бы об ощущениях Пьера, Пьер, вероятно, ушел бы от него; но оживленная непроницаемость этого человека ко всему тому, что не было он сам, победила Пьера.

wiki-org.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики