Всё, что вам нужно знать о Геостационарной спутниковой орбите. Расстояние до спутника от земли
На каком расстоянии в среднем летают искуственные спутники Земли?
Искусственные спутники Земли летают, как правило, на высотах более 200 километров и поэтому всегда видны как звезды средней или малой яркости. ИСЗ обычно имеют не правильную форму, и в пространстве их положение стабилизируется вращением, что приводит к периодически повторяющимся колебаниям их яркости.
Для экономии топлива спутники запускают преимущественно в направлении вращения Земли вокруг своей оси, то есть с запада на восток. Поэтому они перемещаются по небу навстречу видимому движению небосвода. Движутся спутники по прямой линии со скоростью около трех градусов в секунду (об угловых измерениях см. соответствующий раздел) . Такая скорость позволяет, например, пересечь весь ковш Большой Медведицы примерно за восемь секунд.
Свет спутника это отраженный от него свет Солнца. Для нас оно уже давно зашло, а с высоты полета спутника еще видно. Но и он в какой-то момент переходит в тень Земли, для него тоже наступает ночь. Очевидец наблюдает следующее: спутник, мерцая, движется по небу, и вдруг его яркость начинает быстро уменьшаться, и он пропадает из виду. Возможна и обратная картина: неожиданно на небе (бывает и высоко над горизонтом) появляется светящаяся точка, которая начинает двигаться к востоку, ровно меняя свой блеск, это спутник вышел из тени, и его осветили солнечные лучи. Очевидно, что первая ситуация характерна для времени после захода Солнца, а вторая, наоборот, для второй половины ночи. Причем, чем ближе к заходу или восходу Солнца, тем меньшую область неба занимает зона тени и, соответственно, большую часть неба составляет то пространство, где спутник будет виден.
За почти три с половиной десятилетия космической эры с Земли было запущено около 20 тысяч искусственных космических объектов. Основная часть этих объектов ИСЗ. Многие из них до сих пор находятся на своих орбитах и доступны наблюдению. Так что каждую ночь можно увидеть не один десяток спутников.
Из-за трения о воздух ИСЗ с каждым витком постепенно опускаются все ниже и ниже, и большинство из них заканчивает свою жизнь, сгорая в плотных слоях атмосферы. Тогда возникает яркое, красочное явление искусственного болида.
Если пристально смотреть на движущийся по темному небу спутник, то порой может показаться, что он на короткое мгновение остановился или же резко изменил свою траекторию. Эта иллюзия восприятия, хорошо известная психологам, лишний раз напоминает о несовершенстве наших органов чувств и заставляет тщательно проверять сообщения о наблюдении загадочных ночных огней, которые зигзагообразно двигались по небу.
info-4all.ru
Расстояние от Земли до Луны
Луна с незапамятных времен была постоянным спутником нашей планеты и самым близким к ней небесным телом. Естественно, человеку всегда хотелось там побывать. Но далеко ли туда лететь и какое до нее расстояние?
Что такое
Расстояние от Земли до Луны теоретически измеряется от центра Луны до центра Земли. Измерить это расстояние обычными методами, используемыми в обычной жизни, невозможно. Поэтому дистанция до земного спутника вычислялась по тригонометрическим формулам.
Перигей и апогей Луны
Аналогично Солнцу, Луна испытывает постоянное движение на земном небе вблизи эклиптики. Тем не менее, это движение значительно отличается от движения Солнца. Так плоскости орбит Солнца и Луны различаются на 5 градусов. Казалось бы, вследствие этого траектория Луны на земном небе должна быть похожа в общих чертах на эклиптику, отличаясь от нее только сдвигом на 5 градусов:
В этом движение Луна напоминает движение Солнца – с запада на восток, в противоположном направлении суточному вращению Земли. Но кроме того Луна движется по земному небу гораздо быстрее Солнца. Это связано с тем, что Земля совершает оборот вокруг Солнца примерно за 365 суток (земной год), а Луна вокруг Земли всего за 29 суток (лунный месяц). Это различие и стало стимулом к разбивке эклиптики на 12 зодиакальных созвездий (за один месяц Солнце смещается по эклиптике на 30 градусов). За время лунного месяца происходит полная смена фаз Луны:
Лунные фазы
В дополнение к траектории движения Луны добавляется ещё и фактор сильной вытянутости орбиты. Эксцентриситет орбиты Луны составляет 0.05 (для сравнения у Земли этот параметр равен 0.017). Отличие от круговой орбиты Луны приводит к тому, что видимый диаметр Луны постоянно меняется от 29 до 32 угловых минут.
В конечном итоге траектория положения Луны на земном небе постоянно мигрирует относительно фоновых звезд и эклиптики
За сутки Луна смещается относительно звезд на 13 градусов, за час примерно на 0.5 градусов. Современные астрономы часто используют покрытия Луны для оценок угловых диаметров звезд вблизи эклиптики.
От чего зависит движение Луны
Важным моментом теории движения Луны является факт того, что орбита Луны в космическом пространстве не является неизменной и стабильной. По причине сравнительно небольшой массы Луны, она подвержена постоянным возмущениям от более массивных объектов Солнечной Системы (прежде всего Солнца и Луны). Кроме того, на орбиту Луны оказывают влияние сплюснутость Солнца и гравитационные поля других планет Солнечной Системы. В результате этого величина эксцентриситета орбиты Луны испытывает колебания между 0.04 и 0.07 с периодом в 9 лет. Следствием этих изменений стало такое явление, как суперлуние. Суперлунием называется астрономическое явление, в ходе которого полная луна в несколько раз больше по угловым размерам, чем обычно. Так во время полнолуния 14 ноября 2016 года Луна находилась на рекордно близком расстоянии с 1948 года. В 1948 году Луна была на 50 км ближе, чем в 2016 году.
Сравнение видимого диаметра Луны на земном небе в перицентре и апоцентре лунной орбиты
Кроме того наблюдаются и колебания наклонения лунной орбиты к эклиптике: примерно на 18 угловых минут каждые 19 лет.
График изменения расстояния между Землей и Луной за 2 года
Чему равно
Свет от Земли до нашего спутника доберется очень быстро – за 1,255 секунд
Космическим кораблям придется потратить на полет к земному спутнику немало времени. До Луны нельзя лететь по прямой – планета будет уходить по орбите в сторону от точки назначения, и путь придется корректировать. При второй космической скорости в 11 км/с (40 000 км/ч) полет теоретически займет около 10 часов, но на деле это будет происходить дольше. Все потому, что корабль на старте постепенно наращивает скорость в атмосфере, доводя ее до значения в 11 км/с, чтобы вырваться из поля тяготения Земли. Затем кораблю придется тормозить при подлете к Луне. Кстати, эта скорость- максимум, чего удалось добиться современным космическим кораблям.
Пресловутый полет американцев на Луну в 1969 году, согласно официальным данным, занял 76 часов. Быстрее всех до Луны удалось долететь аппарату НАСА «Новые горизонты» — за 8 часов 35 минут. Правда, он не приземлился на планетоид, а пролетел мимо – у него была другая миссия.
Свет от Земли до нашего спутника доберется очень быстро – за 1,255 секунд. Но полеты на световых скоростях – пока что из области фантастики.
Можно попытаться представить путь до Луны в привычных величинах. Пешком при скорости 5 км/ч дорога до Луны займет порядка девяти лет. Если поехать на машине на скорость в 100 км/ч, то добираться до земного спутника придется 160 дней. Если бы на Луну летали самолеты, то рейс до нее продлился бы где-то 20 дней.
Как в древней Греции астрономы рассчитывали расстояние до Луны
Расстояние от Земли до Луны
Луна стала первым небесным телом, до которого удалось рассчитать расстояние от Земли. Считается, что первыми это сделали астрономы в Древней Греции.
Измерить расстояние до Луны пытались с незапамятных времен – первым это попытался сделать Аристарх Самосский. Он оценил угол между Луной и Солнцем в 87 градусов, поэтому вышло, что Луна ближе Солнца в 20 раз (косинус угла равного 87 градуса равен 1/20). Ошибка измерений угла привела к 20-кратной ошибке, сегодня известно, что это отношение на самом деле равно 1 к 400 (угол равен примерно 89.8 градусов). Большая ошибка была вызвана трудностью оценок точного углового расстояния между Солнцем и Луной с помощью примитивных астрономических инструментов Древнего мира. Регулярные солнечные затмения к этому времени уже позволили древнегреческим астрономам сделать вывод о том, что угловые диаметры Луны и Солнца примерно одинаковы. В связи с этим Аристарх сделал вывод, что Луна меньше Солнца в 20 раз (на самом деле примерно в 400 раз).
Для вычисления размеров Солнца и Луны относительно Земли Аристарх использовал другой метод. Речь идет о наблюдениях лунных затмений. К этому времени древние астрономы уже догадались о причинах этих явлений: Луна затмевается тенью Земли.
На схеме выше хорошо видно, что разность расстояний с Земли до Солнца и до Луны пропорциональна разнице между радиусами Земли и Солнца и радиусами Земли и её тени на расстояние Луны. Во времена Аристарха уже удалось оценить, что радиус Луны равен примерно 15 угловым минутам, а радиус земной тени составляет 40 угловых минут. То есть размер Луны получался примерно в 3 раза меньше размера Земли. Отсюда зная угловой радиус Луны можно было легко оценить, что Луна находится от Земли примерно в 40 диаметрах Земли. Древние греки могли лишь приблизительно оценить размеры Земли. Так Эратосфен Киренский (276 – 195 годы до нашей эры) на основе различий в максимальной высоте Солнца над горизонтом в Асуане и Александрии во время летнего солнцестояния определил, что радиус Земли близок к 6287 км (современное значение 6371 км). Если подставить это значение в оценку Аристарха насчет расстояния до Луны, то оно будет соответствовать примерно 502 тысяч км (современное значение среднего расстояния от Земли до Луны составляет 384 тысяч км).
Чуть позже математик и астроном II века до н. э. Гиппарх Никейский подсчитал, что расстояние до земного спутника в 60 раз больше, чем радиус нашей планеты. Его расчеты основывались на наблюдениях за движением Луны и его периодических затмениях.
Материалы по теме
Так как в момент затмения Солнце и Луна будут иметь одинаковые угловые размеры, то по правилам подобия треугольников можно найти отношение расстояний до Солнца и до Луны. Эта разница составляет 400 раз. Применяя еще раз эти правила, только уже по отношению к диаметрам Луны и Земли, Гиппарх вычислил, что диаметр Земли больше диаметра Луны в 2,5 раза. Т.е Rл = Rз/2,5.
Под углом в 1′ можно наблюдать предмет, размеры которого в 3 483 раза меньше, чем расстояние до него – эта информация во времена Гиппарха была всем известна. То есть, при наблюдаемом радиусе Луны в 15′ она будет ближе к наблюдателю в 15 раз. Т.е. отношение расстояния до Луны к ее радиусу будет равно 3483/15= 232 или Sл= 232Rл.
Соответственно, дистанция до Луны – это 232* Rз /2,5= 60 радиусов Земли. Это получается 6 371*60=382 260 км. Самое интересное, что измерения, выполненные при помощи современных инструментов, подтвердили правоту античного ученого.
Сейчас измерение дистанции до Луны проводится при помощи лазерных приборов, позволяющих измерить его с точностью до нескольких сантиметров. При этом измерения происходят за очень короткое время – не более 2 секунд, за которое Луна удаляется по орбите примерно на 50 метров от точки отправки лазерного импульса.
Эволюция методик измерения расстояния до Луны
Только с изобретением телескопа астрономы смогли получить более-менее точные значения параметров орбиты Луны и соответствия её размеров с размером Земли.
Пример эволюции астрономической единицы со временем
Более точный метод измерения расстояния до Луны появился в связи с развитием радиолокации. Первая радиолокация Луны была проведены в 1946 году в США и Великобритании. Радиолокация позволяла измерить расстояние до Луны с точностью в несколько километров.
Ещё более точным методом измерения расстояния до Луны стала лазерная локация. Для его реализации в 1960х годах на Луне было установлено несколько уголковых отражателей. Интересно отметить, что первые эксперименты по лазерной локации были проведены ещё до установки уголковых отражателей на поверхности Луны. В 1962-1963 годах в Крымской обсерватории СССР были проведены несколько экспериментов по лазерной локации отдельных лунных кратеров с использованием телескопов диаметром от 0.3 до 2.6 метров. Эти эксперименты смогли определять расстояние до поверхности Луны с точностью в несколько сотен метров. В 1969-1972 годы астронавты программы “Аполлон” доставили на поверхность нашего спутника три уголковых отражателя. Среди них наиболее совершенным был отражатель миссии “Апполон-15”, так как он состоял 300 призм, тогда как два других (миссии “Апполон-11” и “Апполон-14”) только из ста призм каждый.
Карта положения уголковых отражателей
Кроме того в 1970 и 1973 годах СССР доставил на поверхность Луны ещё два французских уголковых отражателя на борту самоходных аппаратов “Луноход-1” и “Луноход-2”, каждый из которых состоял из 14 призм. Использование первого из этих отражателей обладает незаурядной историей. За первые 6 месяцев работы лунохода с отражателем удалось провести около 20 сеансов лазерной локации. Однако затем из-за неудачного положения лунохода вплоть до 2010 года не удавалось использовать отражатель. Лишь снимки нового аппарата LRO помогли уточнить положение лунохода с отражателем, и тем самым возобновить сеансы работы с ним.
В СССР наибольшее количество сеансов лазерной локации было проведено на 2.6-метровом телескопе Крымской обсерватории. Между 1976 и 1983 годами на этом телескопе было проведено 1400 измерений с погрешностью в 25 сантиметров, затем наблюдения были прекращены в связи со свертыванием советской лунной программы.
Всего же с 1970 по 2010 годы в мире было проведено примерно 17 тысяч высокоточных сеансов лазерной локации. Большинство из них было связано с уголковым отражателем “Аполонна-15” (как говорилось выше, он является наиболее совершенным – с рекордным количеством призм):
Из 40 обсерваторий, способных выполнять лазерную локацию Луны лишь несколько могут выполнять высокоточные измерения:
Большинство сверхточных измерений выполнено на 2-метровом телескопе в техасской обсерватории имени Мак Дональда:
В то же время наиболее точные измерения выполняет инструмент APOLLO, который был установлен на 3.5-метровом телескопе обсерватории Апач Пойнт в 2006 году. Точность его измерений достигает одного миллиметра:
Эволюция системы Луна и Земля
Главной целью всё более точных измерений расстояния до Луны являются попытки более глубокого понимания эволюции орбиты Луны в далеком прошлом и в отдаленном будущем. К настоящему времени астрономы пришли к выводу, что в прошлом Луна находилась в несколько раз ближе к Земле, а так же обладала значительно более коротким периодом вращения (то есть не была приливно захваченной). Этот факт подтверждает импактную версию образования Луны из выброшенного вещества Земли, которая преобладает в наше время. Кроме того, приливное воздействие Луны приводит к тому, что скорость вращения Земли вокруг своей оси постепенно замедляется. Скорость этого процесса составляет увеличение земных суток каждый год на 23 микросекунды. За один год Луна отдаляется от Земли в среднем на 38 миллиметров. Оценивается, что в случае если система Земля-Луна переживет превращение Солнца в красный гигант, то через 50 миллиардов лет земные сутки сравняются с лунным месяцем. В результате Луна и Земля будут всегда повернуты к друг другу только одной стороной, как сейчас наблюдается в системе Плутон-Харон. К этому времени Луна отдалится до, примерно, 600 тысяч километров, а лунный месяц увеличится до 47 суток. Кроме того, предполагается, что испарение земных океанов через 2.3 миллиардов лет приведет к ускорению процесса удаления Луны (земные приливы значительно тормозят процесс).
Кроме того, расчеты показывают, что в дальнейшем Луна снова начнет сближаться с Землей по причине приливного взаимодействия с друг другом. При приближении к Земле на 12 тысяч км Луна будет разорвана приливными силами, обломки Луны образуют кольцо наподобие известных колец вокруг планет-гигантов Солнечной Системы. Другие известные спутники Солнечной Системы повторят эту судьбу гораздо раньше. Так Фобосу отводят 20-40 миллионов лет, а Тритону около 2 миллиардов лет.
Интересные факты
Между Землей и Луной можно поместить все остальные планеты Солнечной системы
Каждый год расстояние до земного спутника возрастает в среднем на 4 см. Причины – движение планетоида по спиральной орбите и постепенно падающая мощность гравитационного взаимодействия Земли и Луны.
Между Землей и Луной теоретически можно разместить все планеты Солнечной системы. Если сложить диаметры всех планет, включая Плутон, то получится величина в 382 100 км.
comments powered by HyperComments
Понравилась запись? Расскажи о ней друзьям!
Просмотров записи: 1818
spacegid.com
сколько километров, среднее расстояние между центрами Земли и спутника, Википедия
Луна представляет собой скалистое космическое тело сферической формы. На ней отсутствует атмосфера и любые признаки жизни. По сравнению с нашей планетой, единственным спутником которой она является. Диаметр спутника равен примерно четвёртой части диаметра Земли. Задолго до начала всевозможных исследований люди поняли, что Луна полна загадок и тайн.
Она стоит в одном ряду с самыми крупными естественными спутниками планет солнечной системы. Плотность грунта относительно мала, а пробы, взятые с поверхности для детального анализа, приводят учёных в замешательство по сей день. По теории возникновения она «родилась» приблизительно 4,1 миллиарда лет назад.
Это интересно: Солнечная система, планеты по порядку и история названий.
Движение
Среднее расстояние от Луны до Земли составляет 384400 км, эта цифра приближенно включает в себя 60 радиусов нашей планеты. В зависимости от момента движения единственного спутника Земли по эллиптической орбите меняется степень её близости к планете и видимые наблюдателем размеры. При нахождении в перигее спутник от Земли отделяют 363104 километра. Когда небесное тело достигает апогея, кратчайшее расстояние между центрами Земли и Луны равно 406696 километров. Диапазон разности расстояний достигает 43592 км.
При наблюдении за движением этого небесного тела по небосводу можно попасть под влияние обмана зрения. Когда это оно находится высоко и окружено бесконечным пространством, его размеры воспринимаются значительно меньше, чем это есть в действительности. В непосредственной близости к горизонту Земли может показаться, что Луна обладает большим диаметром.
Ввиду того, что спутник то приближается к планете, то отдаляется от неё, варьируется и яркость поверхности Луны. Исследования доказывают, что спутник не создаёт свечения, а отражает порядка семи процентов рассеянного солнечного света. Эта особенность характеризуется реголитовым слоем, возникшим от столкновения с метеоритами. Частицы обломков имеют размеры от мельчайших до крупных и могут покрывать поверхность от нескольких микрон до десятков метров.
Это интересно: какая самая далекая от солнца планета?
От чего зависит движение
Движение Луны по орбите обусловлено влиянием на неё притяжением Земли и Солнца. Причём Солнце притягивает ее к себе в гораздо большей степени, чем наша планета. Помимо самой яркой звезды Солнечной системы, движение Луны есть совокупность многих параметров:
- Звёздный, или сидерический, месяц, который составляет 27 суток 7 часов 43 минуты и 11,51 секунды;
- По отношению к плоскости вращения Земли вокруг Солнца лунная орбита меняет угол наклона;
- Сама лунная орбита претерпевает изменения в точках перигея и апогея;
- Точки пересечения плоскостей орбит Луны и Солнца смещаются;
- Увеличение долготы перигея с периодом 8,8 лет;
- Орбита меняет свои габариты в апогее и перигее.
Перемещение Луны по орбите можно сравнить со спиралью, которая постепенно раскручивается.
Это интересно: красивые названия звёзд – история их появлений, названия звезд и созвездий.
Расстояние между Землёй и Луной
Расстояние между Землёй и Луной величина непостоянная. Древний учёный Гиппарх Никейский во втором веке до нашей эры сумел вычислить это расстояние. У него получилась цифра, равная тридцати земным диаметрам, то есть 384000 километров.
Величину диаметра смог измерить иной древнегреческий математик и астроном Эратосфен Киренский. Он установил шест в вертикальном положении около здания библиотеки и измерил длину отбрасываемой от него тени. Затем он определил наименьший угол, который образовывает солнечный луч, падая на шест. Получился градус, равный семи. Располагая знаниями о том, что в день летного солнцестояния в городе Сиене Солнце находится в зените, а расстояние от Сиены до Александрии составляет 5000 стадиев, Эратосфен сделал вывод: 5000 стадиев – это 7 градусов меридиана Земли. Полный меридиан равен 360 градусов, или примерно 250000 стадиев.
Это интересно: следствием осевого вращения Земли являются какие процессы?
Как узнать расстояние до спутника
Существует несколько методов измерения расстояния от Земли до Луны:
- Самый простой – на основании их угловых размеров.
Эти размеры одинаковы, так как во время полного солнечного затмения солнечный диск целиком заслоняется лунным. Для измерения подойдёт обычная лучинка. Если расположить лучинку в вытянутой руке, то отношение её ширины к длине до глаза есть угловой размер Луны в радианах. Данная величина равна 0,0087. При переведении радианов в градусы получится приблизительно 0,5. Зная радиус Земли и угловой размер нашего спутника, легко выяснить расстояние до небесного тела. Путём геометрических вычислений найдётся расстояние равное 30 диаметрам нашей планеты.
- Методом лазерной локации.
С поверхности Земли на рефлекторные отражатели, установленные на Луне астронавтами более сорока лет назад, направляется лазерный луч. Он движется с известной скоростью света и, достигнув рефлектора, возвращается назад. Путь луча составляет примерно одну секунду. Учёные фиксируют конкретное время и вычисляют точное расстояние до нашего спутника. Этот способ измерения помог установить, что ближайшее к Земле небесное тело меняет траекторию движения в сторону удаления от планеты на несколько сантиметров в год.
- Методом триангуляции (из двух равноудалённых на поверхности Земли точек).
Среднее расстояние до Луны: википедия
Ближайшая точка орбиты Луны расположена в среднем на расстоянии 362000 километров. Самая удалённая точка лунной орбиты находится на расстоянии 405000 километров.
Не менее двух раз в год в новолуние, когда спутник приближается максимально к узлу (точке пересечения с эклиптикой), имеет место солнечное затмение. В остальное время его движение осуществляется под Солнцем либо над ним. В полнолуния случаются лунные затмения, и естественный спутник Земли должен также быть рядом с узлом.
Прямая линия, соединяющая узлы, оборачивается вокруг нашей планеты каждые 18 лет и 224 дня. Направление вращения в данном случае противоположно ходу Луны.
Послесловие
За столетие продолжительность земных суток увеличивается на одну тысячную долю секунды. Данное явление вызывает ближайшее к Земле небесное тело в результате действия сил гравитации. В мировом океане возникают отливы и приливы из-за гравитационного притяжения Луны, и эти процессы тормозят земное вращение.
Гравитационное поле оказало влияние на форму небесного тела. На обращённой к Земле стороне присутствует деформация, хотя не исключается, что последняя возникла благодаря строению внутренних слоёв спутника.
Воздействие на Луну, производимое Землёй и Солнцем, модификации в траектории её движения по эллиптической орбите через миллионы лет отдалят таинственное небесное тело и оптически его уменьшат. Легендой станут и полные солнечные затмения.
obrazovanie.guru
Расстояние от Земли до Сатурна. Как далеко от нас Сатурн?
Сатурн - шестая планета Солнечной системы. Вторая по величине, и ее плотность настолько мала, что если наполнить огромный резервуар водой и поместить туда Сатурн, то он свободно будет держаться на поверхности, не погружаясь в воду целиком. Главная достопримечательность Сатурна - это его кольца, состоящие из пыли, газа и льда. Огромное число колец окружают планету, диаметр которых превышает диаметр Земли в несколько раз.
Какой он - Сатурн?
Для начала нужно разобраться, что же это за планета такая и с чем ее "едят". Сатурн - это шестая планета от Солнца, названная в честь древнеримского бога Сатурна. Греки называли его Кроносом, отцом Зевса (Юпитера). В самой дальней точке орбиты (афелии) расстояние от светила составляет 1 513 млрд км.
Планетарные сутки составляют всего 10 часов и 34 минуты, однако планетарный год длится 29,5 земного. Атмосфера газового гиганта состоит в основном из водорода (на его долю приходится 92 %). Остальные 8 % приходятся на примеси гелия, метана, аммиака, этана и пр.
Запущенные в 1977 году аппараты "Вояджер-1" и "Вояджер-2" пару лет назад достигли орбиты Сатурна и предоставили ученым бесценные сведения об этой планете. На поверхности были замечены ветры, чья скорость достигала 500 м/с. К примеру, самый сильный ветер на Земле достигал лишь 103 м/с (Нью-Гемпшир, гора Вашингтон).
Подобно Большому Красному пятну на Юпитере существует Большой белый овал на Сатурне. Но второй появляется лишь каждые 30 лет, а последнее его появление было в 1990 году. Через пару лет мы сможем вновь за ним понаблюдать.
Соотношение размеров Сатурна и Земли
Во сколько раз Сатурн больше Земли? По некоторым данным, только в диаметре Сатурн превосходит нашу планету в 10 раз. По объему в 764 раза, т. е. Сатурн может вместить в себя именно такое количество наших планет. Ширина колец Сатурна превосходит диаметр нашей голубой планеты в 6 раз. Настолько он гигантский.
Расстояние от Земли до Сатурна
Для начала нужно учитывать тот факт, что все планеты Солнечной системы двигаются не по кругу, а по эллипсам (овалам). Наступают моменты, когда происходит смена расстояния от Солнца. Оно может становиться ближе, может удаляться. На Земле это хорошо заметно. Это называется сменой времен года. Но здесь играет роль вращение и наклон нашей планеты относительно орбиты.
Следовательно, расстояние от Земли до Сатурна будет значительно варьироваться. Сейчас вы узнаете насколько. С помощью научных измерений было подсчитано, что минимальное расстояние от Земли до Сатурна в километрах составляет 1195 млн, в то время как максимальное составляет 1660 млн.
Сколько лететь до Сатурна от Земли
Как известно, скорость света (по теории относительности Эйнштейна) - непреодолимый предел во Вселенной. Он кажется нам недосягаемым. Но в космических масштабах она ничтожно мала. За 8 минут свет преодолевает расстояние до Земли, а это 150 млн км (1 а. е.). Расстояние до Сатурна приходится преодолевать за 1 час и 20 минут. Это не так долго, скажете вы, но только вдумайтесь, что скорость света составляет 300 000 м/с!
Если же за средство передвижения взять ракету, на преодоление расстояния уйдут годы. Космическим аппаратам, направленным на изучение планет-гигантов, потребовалось от 2,5 до 3 лет. На данный момент они находятся за пределами Солнечной системы. Многие ученые полагают, что расстояние от Земли до Сатурна возможно преодолеть за 6 лет и 9 месяцев.
Что ждет человека у Сатурна?
Зачем нам вообще нужна эта водородная планета, где никогда бы не зародилась жизнь? Сатурн интересует ученых своей луной под названием Титан. Самый крупный спутник Сатурна и второй по величине в Солнечной системе (после Ганимеда у Юпитера). Ученых он заинтересовал ничуть не меньше Марса. Титан по размерам превосходит Меркурий, и на его поверхности даже есть реки. Правда, реки из жидкого метана и этана.
Сила притяжения на спутнике меньше, чем на Земле. Основной элемент, присуствующий в атмосфере, - это углеводород. Если нам удастся добраться до Титана, это станет для нас весьма острой проблемой. Зато не нужны будут плотные скафандры. Лишь очень теплая одежда и баллон с кислородом. Учитывая плотность и силу притяжения Титана, можно с большой уверенностью сказать, что человек сможет летать. Дело в том, что в таких условиях наше тело свободно может парить в воздухе, не имея сильного сопротивления со стороны гравитации. Нам понядобятся лишь обычные модельные крылья. И даже в случае их поломки человек без проблем сможет мягко "оседлать" твердую поверхность спутника.
Для благополучного заселения Титана потребуется возводить целые города под полусферическими куполами. Только тогда представится возможным воссоздание климата, подобного земному, для более комфортного проживания и выращивания необходимых продуктов питания, а также добычи ценных минеральных ресурсов из недр планеты.
Острой проблемой окажется и нехватка солнечного света, ведь Солнце возле Сатурна кажется небольшой желтой звездой. Заменой солнечным батареям станет углеводород, в изобилии покрывающий планету целыми морями. Из него первые колонизаторы будут получать энергию. Вода находится глубоко под поверхностью спутника в виде льда.
fb.ru
Расстояние от Земли до Луны
Солнечная система > Система Земля-Луна > Спутник Луна > Расстояние от Земли до Луны
Расстояние от Земли до Луны
Если коротко, то расстояние от Земли до Луны в среднем составляет 384403 км. Но важно знать несколько нюансов. Мы не зря употребили слово «средний», потому что Луна проходит по эллиптическому пути и меняет удаленность.
В ближайшей точке показатель составляет 363104 км, а при максимальной отдаленности – 406696 км. Вы видите разницу в 43592 км, что довольно много. От этого меняется и ее кажущийся размер на 15%. Также сказывается на светимости, ведь она будет казаться на 30% ярче в полной фазе и при максимальном сближении. Этот момент именуют суперлуной.
Записи древних греков о размере Луны
Это видео выпустили в 2011 году, чтобы отобразить геоцентрическую фазу, угол осевой позиции, либрацию и кажущийся лунный диаметр за год.
Но как нам вообще удалось определить дистанцию? Ну, все зависит от времени вычисления. Древние греки полагались на простые геометрические формулы. Они долгое время отслеживали изменение теней и догадались, что она должна быть в 108 раз больше диаметра тела. Отсюда возникли идеи о затмениях.
Сравнение видимых размеров Луны в Апогей и Перигей
Ученые выяснили, что тень примерно в 2.5 раз больше лунной ширины. Сам объект обладает достаточными параметрами, чтобы периодически закрывать от нас Солнце. Зная земной диаметр и формулу треугольника, они вывели дистанцию в 397500 км. Не совсем точно, но это удивительные показатели для того времени.
Сейчас мы используем миллиметровое измерение – вычисление времени, за которое сигнал движется от Земли к объекту. Благодаря миссии Аполлон нам удалось провернуть это со спутником. Более 40 лет назад астронавты установили на его поверхности специальные отражающие зеркала, в которые с нашей планеты посылают лазерные лучи. Мы получаем слабую отдачу, но этого хватает, чтобы вывести максимально точное число.
Световая скорость составляет 300000 км/с, поэтому для преодоления пути нужно чуть больше секунды. Далее уходит еще столько же на возврат. Также эта техника помогла понять, что каждый год спутник отдаляется на 3.8 см, и через миллиарды лет он будет визуально казаться меньше звезды. Да, придется попрощаться с любимыми затмениями.
Между Землей и Луной можно разместить все планеты
Если вспомнить о масштабах наших планет (особенно газовых гигантов), то удивляешься, что это может быть реальным. Чтобы понять, давайте взглянем на планетарные диаметры:
- Меркурий – 4879 км
- Венера – 12104 км
- Марс – 6771 км
- Юпитер – 139822 км
- Сатурн – 116464 км
- Уран – 50724 км
- Нептун – 49244 км
- Всего: 380008 км
Дистанция между нами и спутником составляет 384400 км. Получается, что мы еще и экономим 4392 км. Что же сделать с остатком? Ну, можно добавить Плутон, простирающийся на 2092 км, а также еще какую-нибудь карликовую планету. Конечно, физически они бы не смогли вращаться рядом, но сама возможность удивляет.
Читайте также:
Положение и движение Луны
Строение Луны
Поверхность Луны
v-kosmose.com
Расстояние от Земли до Луны
Солнечная система > Система Земля-Луна > Спутник Луна > Расстояние от Земли до Луны
Если говорить кратко, среднее расстояние от Земли до Луны составляет 384 403 км (238857 миль). Но прежде чем продолжить вам нужно понять еще несколько моментов. Для начала, обратите внимание на использование слова "среднее". Оно связано с тем, что орбита Луны, по которой она движется вокруг Земли, имеет эллиптическую форму. Это означает, что в определенное время она будет отдаляться от нашей планеты, а потом наоборот приближаться.
Расстояние от Земли до Луны
Следовательно, число 384403 км, это расстояние, которое астрономы называют большой полуосью. В ближайшей точке (известной как перигея) Луна находится всего в 357 104 км (225622 миль) от Земли. А в самой отдаленной (так называемой апогее) Луна находится от нас на расстоянии 406696 км (252088 миль).
Это означает, что расстояние от Земли до Луны может варьироваться в пределах 43592 км. Разница довольно большая, и это может объяснить тот факт, что в разное время наш спутник сильно отличается по своим размерам, которые зависят от того, на каком участке орбиты он находится. Например, ее размер в самой дальней и ближней точке может изменяться на 15%. Расстояние также может иметь огромное влияние на яркость Луны в полной фазе. Как и следовало ожидать, самые яркие полные Луны происходят, когда спутник находится в ближайшей к нам точке. В таком случае ее свет будет на 30% мощнее, чем в апогее. Подобное полнолуние известно, как суперлуние (техническое название – перигей-Сигизий).
Сравнение видимых размеров Луны в Апогей и Перигей
Для того чтобы получить представление о том, как все это выглядит, в 2011 году научной студией визуализации цента космических полетов имени Годдарда была выпущена специальная анимация. Она показывает геоцентрическую фазу, либрацию, угол положения оси, и видимый диаметр Луны в течение года, с разными часовыми интервалами.
Сейчас можно задать очень хороший вопрос: откуда мы знаем, как далеко находится Луна? Ответ зависит от времени, когда его произносят. В дни Древней Греции астрономы полагались на простую геометрию: с помощью радиуса Земли, размер которого они уже рассчитали (12875 км или 8000 миль) и измерений теней, они смогли достичь первых относительно точных результатов.
Наблюдая и записывая, как тени меняются в течение длительного периода истории, древние греки определили, что когда объект находится в передней части Солнца, длина его тени всегда будет в 108 раз больше диаметра самого объекта. Так мяч диаметром 2,5 см (1 дюйм), размещенный на палочке между Солнцем и Землей будет создавать треугольную тень, которая проходит на 270 см (108 дюймов).
Это рассуждение также применялось к лунным и солнечным затмениям.
В первом случае они обнаружили, что Луна не полностью блокировалась тенью Земли, и ее ширина была 2,5 раза больше ширины спутника. В последнем, они отметили, что Луна имела достаточный размер и находилась на нужном расстоянии для того, чтобы полностью закрыть собой Солнце. Более того, тень, которую она отбрасывает на Землю и угол под которым находится планета создают две версии одного и того же треугольника.
Записи древних греков о размере Луны
Используя расчеты по диаметру Земли, греки полагали, что большой треугольник будет измеряться диаметром Земли у ее основания (12875 км / 8000 миль) и составит 1390000 км (864 000 миль) в длину. Другой треугольник будет эквивалентным 2,5 диаметрам Луны и, так как треугольники пропорциональные, будет иметь высоту 2,5 орбит спутника.
Добавление двух треугольников дало бы эквивалент 3,5 Лунных орбит, которые создали бы большой треугольник и предоставили возможность (опять относительно) точного измерения расстояния между Землей и Луной. Другими словами, расстояние 1390000 км (864 000 миль), разделяем на 3,5, и в итоге получаем 397500 км (247000 миль). Не совсем точно, но весьма не плохо для древних народов!
Сегодня, ми можем получить данные о точном расстоянии к Луне с помощью времени, которое требуется свету, чтобы пройти от станции LIDAR на Земле к установленным на нашем спутнике отражателям. Этот эксперимент известен под названием Lunar Laser Ranging и стал возможным благодаря усилиям миссии Аполлон.
Lunar Laser Ranging в действии
Когда астронавты посетили Луну более сорока лет назад, они оставили ряд отражательных зеркал на ее поверхности. Когда ученые здесь на Земле стреляют лазером на Луну, свет от него отражается обратно одним из этих устройств. С каждых 100 квадриллионов фотонов, отправленных на Луну, только горстка вернуться назад, но этого достаточно, чтобы получить точную оценку.
Поскольку свет движется со скоростью почти 300000 километров (186411 миль) в секунду, все путешествие займет немного больше секунды. Вычислив точное количество времени, необходимое для света, чтобы слетать на Луну и обратно, астрономы могут определить, как далеко Луна находится в любое время, вплоть до миллиметровой точности.
С этой техникой, астрономы также обнаружили, что Луна медленно отдаляется от нас, со скоростью 3,8 см (1,5 дюйма) в год. Спустя миллионы лет, в ночном небе она будет намного меньше, чем сегодня, а за несколько миллиардов лет или около того, Луна будет визуально меньше, чем Солнце, и мы больше не сможем увидеть полных солнечных затмений.
Положение и движение Луны
Строение Луны
Поверхность Луны
o-kosmose.net
Геостационарная спутниковая орбита (GEO) | Mediasat
В данном материале мы рассмотрим базовые принципы и понятия геостационарной орбиты (GEO).
Весьма популярной спутниковой орбитой является геостационарная орбита. Она используется для размещения спутников многих типов, включая спутники, ведущие прямое телерадиовещание, спутники, обеспечивающие связь, а также релейные системы.
Преимуществом геостационарной орбиты является то, что спутник, находящийся на ней, постоянно располагается в одной и той же позиции, что позволяет направлять на него фиксированную антенну наземной станции.
Читайте также: Высокие эллиптические спутниковые орбиты (HEO)
Этот фактор является чрезвычайно важным для организации таких систем, как прямое телерадиовещание через спутник, где использование постоянно движущейся антенны, следующей за спутником, было бы крайне непрактичным.
Необходимо внимательно относиться к использованию сокращений, принятых для обозначения геостационарной орбиты. Мы можем встретить аббревиатуры GEO и GSO, и обе они используются для обозначения как геостационарной, так и геосинхронной орбиты.
Развитие геостационарных орбит
Идеи относительно возможности использования геостационарной орбиты для размещения на ней спутников выдвигались на протяжении многих лет. В качестве возможного автора положений, лежащих в основе данной идеи, часто называют российского теоретика и научного фантаста Константина Циолковского. Однако впервые о возможности размещения космических аппаратов на высоте 35 900 километров над Землёй с периодом обращения в 24 часа, дающим им возможность «парить» в одной точке над экватором, написали Герман Оберт и Герман Поточник.
Следующий важный шаг на пути к рождению Геостационарной орбиты был сделан в октябре 1945 года, когда научный фантаст Артур Чарльз Кларк написал серьёзную статью для Wireless World – ведущего британского издания в области радио и электроники. Статья была озаглавлена как «Внеземная релейная связь: смогут ли космические ракеты обеспечить охват сигналом всего мира?».
Кларк попытался экстраполировать то, что уже было возможно благодаря использованию существующих на тот момент ракетных технологий, разработанных немецкими учёными, на то, что могло бы стать возможным в будущем. Он высказал мысль о возможности покрытия сигналом всей Земли при использовании всего трёх геостационарных спутников.
В своей статье Кларк указал необходимые характеристики орбиты, а также уровни мощности передатчиков, возможности выработки электроэнергии при помощи солнечных батарей и даже рассчитал возможное влияние солнечных затмений.
Статья Кларка значительно опережала время. Лишь в 1963 году агентство NASA смогло запустить в космос спутники, способные проверить данную теорию на практике. Первым полноценным спутником, способным начать практические испытания теории Кларка, стал спутник Syncom 2, запущенный 26 июля 1963 года (по правде говоря, спутник Syncom 2 не смог этого сделать, поскольку его не удалось доставить на необходимую геостационарную орбиту).
Основы теории Геостационарной орбиты
С увеличением высоты орбиты, на которой находится спутник, увеличивается и период его обращения по данной орбите. На высоте 35 790 километров над Землёй спутнику требуется 24 часа для полного витка вокруг планеты. Такая орбита известна как геосинхронная, так как она синхронизирована с периодом обращения Земли вокруг своей оси.
Частным случаем геосинхронной орбиты является геостационарная орбита. При использовании такой орбиты направление движения спутника вокруг Земли соответствует направлению вращения самой планеты, а период обращения космического аппарата примерно равен 24 часам. Это значит, что спутник вращается с той же угловой скоростью, что и Земля, в том же направлении и, стало быть, постоянно находится в одной и той же точке относительно поверхности планеты.
Читайте также: Низкая околоземная орбита (LEO)
Чтобы гарантировать то, что спутник обращается вокруг Земли с той же скоростью, с которой обращается вокруг своей оси сама планета, необходимо чётко уяснить – каков же на самом деле период обращения Земли вокруг своей оси. Большинство хронометражных устройств измеряет обращение Земли относительно текущего положения Солнца, а вращение Земли вокруг своей оси в сочетании с её вращением вокруг Солнца даёт продолжительность дня. Однако это совсем не тот период обращения Земли, который интересует нас с точки зрения расчета геостационарной орбиты – время, необходимое для одного полного обращения. Этот отрезок времени известен как «звёздные сутки», продолжительность которых составляет 23 часа 56 минут и 4 секунды.
Законы геометрии говорят нам о том, что единственный вариант для того, чтобы, делая один виток в сутки, спутник всегда оставался над одной точкой земной поверхности, состоит в его обращении в том же направлении, в котором вращается сама Земля. Кроме того, спутник не должен смещаться на своей орбите ни на север, ни на юг. Всего этого можно достичь лишь в том случае, если орбита спутника проходит над экватором.
На диаграмме показаны различные типы орбит. Поскольку плоскость любой орбиты должна проходить через центр Земли, на рисунке представлены два возможных варианта. При этом даже если обращение космических аппаратов на обеих орбитах будет осуществляться со скоростями, равными скорости вращения Земли вокруг своей оси, орбита, обозначенная как «геосинхронная», будет полдня смещаться на север относительно экватора, а оставшиеся полдня – на юг и, стало быть, не будет стационарной. Для того, чтобы спутник стал стационарным, он должен располагаться над экватором.
Дрейф на геостационарной орбите
Даже если спутник расположен на геостационарной орбите, на него воздействуют некоторые силы, способные медленно изменять его позицию в течение времени.
Такие факторы, как эллиптическая форма Земли, притяжение Солнца и Луны, а также ряд других увеличивают потенциальную возможность отклонения спутника от своей орбиты. В частности, не совсем круглая форма Земли в районе экватора приводит к тому, что спутник притягивает к двум устойчивым точкам равновесия – одна из них находится над Индийским океаном, а вторая – приблизительно на противоположной части Земли. В результате имеет место явление, получившее название либрации с востока на запад, или движение вперёд и назад.
Для того чтобы преодолеть последствия такого движения, на борту спутника имеется определённый запас топлива, который позволяет ему проводить «поддерживающие манёвры», возвращающие аппарат чётко в необходимую орбитальную позицию. Необходимый промежуток между временем проведения таких «поддерживающих манёвров» определяется в соответствии с так называемым допуском отклонения спутника, который устанавливается, главным образом, с учётом ширины луча антенны наземной станции. Это значит, что при нормальной работе спутника не требуется никакой подстройки антенны.
Читайте также: Типы спутниковых орбит и их определения
Очень часто период активной эксплуатации спутника рассчитывается из количества топлива на его борту, необходимого для поддержания расположения спутника в одной орбитальной позиции. Чаще всего этот период составляет несколько лет. После чего спутник начинает дрейфовать в направлении одной из точек равновесия, после чего возможно его снижение и последующее вхождение в атмосферу Земли. Поэтому желательно использовать последнее имеющееся у него на борту топливо для того, чтобы поднять спутник на более высокую орбиту, дабы избежать его возможного негативного воздействия на работу других космических аппаратов.
Покрытие с геостационарной орбиты
Совершенно очевидным является тот факт, что один геостационарный спутник не способен обеспечить полного покрытия сигналом поверхности Земли. Однако, каждый геостационарный спутник «видит» примерно 42% земной поверхности, при этом охват падает по направлению к спутнику, который не может «видеть» поверхность. Это происходит вокруг экватора и также в направлении полярных регионов.
Расположив на геостационарной орбите группировку из трёх равноудалённых друг от друга спутников, можно обеспечить покрытие сигналом всей поверхности Земли от экватора и вплоть до 81° северной и южной широты.
Отсутствие покрытия в полярных регионах не является проблемой для большинства пользователей, однако при необходимости обеспечения стабильного покрытия полярных широт требуется использования спутников, вращающихся на других орбитах.
Геостационарная орбитаи длина пути сигнала
Одной из проблем, возникающих при использовании спутников, находящихся на геостационарной орбите, является задержка сигнала, вызванная расстоянием, которое он вынужден проделывать.
Минимальное расстояние до любого из геостационарных спутников составляет 35790 км. И это лишь в том случае, если пользователь находится непосредственно под спутником, и сигнал попадает к нему по кратчайшему пути. В действительности же пользователь вряд ли будет находиться точно в данной точке, а стало быть расстояние, которое вынужден будет проделать сигнал, в реальности гораздо больше.
Исходя из длины кратчайшего расстояния от наземной станции до спутника, расчётное минимальное время движения сигнала в одну сторону – то есть, с Земли на спутник или со спутника на Землю – составляет примерно 120 миллисекунд. А это значит, что время полного маршрута сигнала – с Земли на спутник и со спутника назад на Землю – составляет примерно четверть секунды.
Таким образом, для того, чтобы получить ответ в процессе диалога, проходящего через спутник, требуется полсекунды, поскольку сигнал должен пройти через спутник дважды: один раз – в движении в направлении удалённого слушателя, а второй раз назад – с ответом. Эта задержка усложняет телефонные разговоры, для проведения которых используется спутниковый канал связи. Репортёру, получившему вопрос из студии вещания, требуется некоторое время на то, чтобы ответить. Наличие такого эффекта задержки стало причиной того, что многие линии дальней связи используют кабельные каналы вместо спутниковых, ибо задержки в кабеле намного меньшие.
Преимущества и недостатки спутников,расположенных на геостационарной орбите
Несмотря на то, что геостационарная орбита широко используется на практике для развёртывания различных технологий, она всё же подходит не для всех ситуаций. Размышляя над возможным использованием данной орбиты следует учесть целый ряд её преимуществ и недостатков:
Преимущества | Недостатки |
|
|
Однако, несмотря на все имеющиеся недостатки геостационарной орбиты, спутники, расположенные на ней, широко используются во всём мире благодаря главному их преимуществу, которое способно перевесить все недостатки: геостационарный спутник всегда находится в одной орбитальной позиции относительно той или иной точки на Земле.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Понравилось нас читать? Подпишись тутmediasat.info