Популярная библиотека химических элементов. Превращение воздуха в гелий


Гелий He - один из самых легких газов на Земле.

Как многие знают, самым распространенным и легким элементом на земле является водород, гелий же в нашем мире занимает второе место! Гелий — второй элемент периодической таблицы Менделеева является  инертным одноатомным газом, не имеющим ни цвета, ни вкуса, ни запаха. Обладает самой низкой температурой кипения из всех веществ (-269 оС). Имеет 8 изотопов. Каждый из них уникален по своим свойствам.

История открытия

Первооткрывателем гелия по праву можно считать французского астронома, директора обсерватории в Медоне, Пьера Жюль Сезар Жансена. В 1868 году, при исследовании солнца, а именно хромосферы, астрономом была запечатлена линия ярко-желтого цвета, которую изначально и ошибочно отнесли к спектру натрия. Но, спустя несколько лет, в 1871 году Пьер, совместно с английским астрономом Джозефом Локьером, установили, что линия, найденная Жансеном, не принадлежит ни одному из известных на тот момент химических элементов. Название гелий получил, от слова «гелиос», что в переводе с греческого означает — солнце! В первую очередь, ученые предположили, что найденный элемент является металлом, но в наши дни, с уверенностью можно сказать — это было ложное предположение

Как многие знают, абсолютно все газы можно привести в жидкое состояние, но для этого, конечно, потребуются определенные условия. Сжиженный открыли только в 1908 году. Нидерландский физик Хейке Камерлинг-Оннес понижал давление газа с протеканием через дроссель, предварительно охладив гелий.

Твердый гелий, был получен только через 20 лет в 1926 году. Ученик Камерлинг-Оннеса, смог добиться получения кристаллов газа, увеличив давление гелия выше 35 атмосфер и охладив газ до предельно низкой температуры.

Интересные свойства гелия

Начнем с того, что гелий не может вступать в химические реакции вовсе, а так же не имеет степеней окисления. Гелий – одноатомный газ, и имеет всего лишь один электронный уровень (оболочку), являясь крайне устойчивым газом, так как имеет полностью заполненный электронами первый уровень, что говорит о сильном воздействии ядра на электроны. Атомы гелия, не то, что не реагируют с другими веществами, более того, они не соединяются даже друг с другом.

Жидкий гелий имеет ряд абсолютно уникальных свойств. В 30 годах 20-го века, при еще меньших температурах было замечено крайне странное и невероятное явление – когда гелий охлаждается до температуры всего на 2 градуса превышающей абсолютный ноль, происходит его неожиданная трансформация. Поверхность жидкости становится абсолютно спокойной и гладкой, ни единого пузырька, ни малейшего бурления жидкости.  Жидкий гелий превращается в сверхтекучую жидкость. Такой гелий может забраться по стенкам и «сбежать» из сосуда, в котором он хранится, это происходит из за нулевой вязкости сжиженного газа. Он может стать фонтаном, обладающим нулевым трением, а значит, такой фонтан может течь бесконечно. Несмотря на все теории, ученые установили, что сжиженный гелий это непросто жидкость. Например, начиная с 2He, оказалось, что сжиженный газ состоит из двух взаимопроникающих жидкостей:  нормальной (вязкой) и сверхтекучей (нулевая вязкость) компоненты. Сверхтекучая компонента является идеальной и обладает нулевым трением, при протекании в любых сосудах и капиллярах.

Что же касается твердого гелия, то на данный момент, ученые проводят многочисленные опыты и эксперименты. Твердый 4He обладает квантовым эффектом, таким как кристаллизационная волна. Этот эффект основан на колебании границы раздела фаз в системе – «кристалл – жидкость». Достаточно немного качнуть такой гелий, и граница фаз между жидкостью и твердым веществом будет схожа с границей двух жидкостей!

Использование гелия в промышленности

В основном, гелий необходим для получения крайне низких температур, а так же в металлургии для выплавки чистых металлов. Так же 2He – это не только один из лучших теплоносителей, но и хороший пропеллент (Е939) в пищевой индустрии.

С помощью гелия можно определять местонахождение разломов в толще Земли, так как он выделяется при распаде радиоактивных элементов, которыми насыщена земная кора. Концентрация гелия на выходе из трещины, в 50 -100 раз больше, чем нормальная.

Более того, гелием наполняют воздушные суда, такие как дирижабли. Гелий намного легче чем воздух, поэтому подъемная сила таких судов очень высока. Да, водород легче, чем гелий. Так почему бы не использовать его? Водород – это горючий элемент, и заправлять им дирижабли крайне опасно.

Опасность

Любое превышение концентрации газа может быть опасным для здоровья человека. Вдыхание воздуха с высокой концентрацией гелия может вызвать потерю сознания, сильные , рвоту и даже смерть. Смерть наступает в результате кислородного голодания, связанного с тем что в легкие не попадает кислород.

www.alto-lab.ru

Популярная библиотека химических элементов. Раритетные издания. Наука и техника

Гелий

Гелий – подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях – ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия – альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов – то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью – показать, что элемент №2 – элемент весьма необычный.

Земной гелий

Гелий – элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер – 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы – высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – 4Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, – это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой – самородные металлы, магнетит, гранат, апатит, циркон и другие, – прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко – десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений – явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·1014 м3; судя же по вычислениям, его образовалось в земной коре за 2 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий – легкий газ и, подобно водороду (хотя и медленнее), не улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся – старый улетучивался в космос, а вместо него в атмосферу поступал свежий – «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли – в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий – редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе – 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.

Рис. 1. Кривые распространенности элементов на Земле (вверху) и в космосе.«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16О, 20Ne, 24Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные – и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим – 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования – план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты – Юпитер V – армады кибернетических машин на криотронах (о них – ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость – необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона – конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней – реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле – 26,7 МэВ на один атом гелия.

Реакция синтеза гелия – основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3Be, 12C, 16O, 20Ne, 24Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами – элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый...

Атом гелия (он же молекула) – прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию – 78,61 МэВ. Отсюда – феноменальная химическая пассивность гелия.

За последние 15 лет химикам удалось получить более 150 химических соединений тяжелых благородных газов (о соединениях тяжелых благородных газов будет рассказано в статьях «Криптон» и «Ксенон»). Однако инертность гелия остается, как и прежде, вне подозрений.

Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики – меньше, чем в любом другом веществе. Отсюда – самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью – способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его ныне немало – сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком – жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий – идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения – при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле – криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена – частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 – 2,4·10–21 секунды, гелия-6 – 0,83 секунды, гелия-8 – 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше – 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый – в 1926 г.

Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких – быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни – довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался.

 

• Литий

• Оглавление

Дата публикации:

8 февраля 2002 года

n-t.ru

Получение гелия из воздуха - Справочник химика 21

    Опыт 11. Получение геля кремниевых кислот. Опыт проводят в нескольких пробирках с разбавленным и отстоявшимся раствором силикатного клея или аналогичного раствора, полученного растворением в воде силиката натрия. В одну из них добавляют соляную кислоту, в другую — уксусную, а в третью — пропускают оксид углерода (IV) или продувают выдыхаемый воздух. Во всех случаях выпадает гель кремниевых кислот. [c.161]     Опыт 2. Полученный гель кремниевой кислоты тщательно промывают на фильтре водой и оставляют на несколько дней сушиться на воздухе. На следующем уроке кремниевую кислоту бросают в. воду и отмечают ее нерастворимость в воде. Опускают в стакан лакмусовую бумажку она не меняется. [c.238]

    Гелий также находит применение при получении искусственного воздуха для медицинских целей. Так как растворимость гелия в крови значительно меньше, чем азота, то работа с искусственным воздухом , где азот заменен гелием, дает возможность проводить водолазные и другие работы, ведущиеся при повышенном давлении, без ущерба для здоровья человека. [c.162]

    Аргон, полученный из воздуха, первоначально считали химически чистым веществом. Однако при более тщательном исследовании в нем обнаружили гелий, а затем еще три инертных газа (неон, криптон и ксенон). Наконец, удалось открыть и шестой инертный газ — радон, находящийся в воздухе в чрезвычайно малых количествах. [c.543]

    Источниками получения гелия в настоящее время являются природные газы и воздух. В некоторых газах его содержится до 7—16%. Остальные благородные газы получают главным образом фракционной перегонкой воздуха. В первой, наиболее легкокипящей фракции содержатся Не, Ме, N2, во второй — N2, Аг, О2. Дополнительная разгонка третьей фракции позволяет выделить тяжелые газы — Кг и Хе. Разделение благородных газов осуществляют также многократной адсорбцией на активированном угле и других адсорбентах. [c.390]

    Благодаря легкости и химической инертности гелий используют вместо водорода для наполнения аэростатов, а также для получения искусственного воздуха (употребляемого водолазами), в котором гелий заменяет азот. [c.404]

    Производство гелия в США осуществляется на 12 заводах. Объем производства — около 135 млн. м в год. Потребление гелия в 1980 г. — 35 млн. м , в 1999 г. прогноз — 60 млн. м [17]. Согласно долгосрочной правительственной программе весь избыток получаемого на заводах гелия закачивается в специальные подземные хранилища с тем, чтобы в будущем, когда запасы гелиеносных природных и нефтяных газов истощатся, этот гелий можно было использовать. Такие мероприятия оправданы, так как получение гелия из воздуха — единственного альтернативного сырьевого источника —во много раз дороже [18]. В связи с этим при обсуждении в Конгрессе США гелиевого закона в 1980 г. были внесены предложения об увеличении государственных запасов гелия с 1,1 млрд. м в 1980 г. до 2,4 млрд. м к концу 1990-х годов [17]. [c.12]

    Гелий — нейтральный газ, не горючий и легче воздуха. Его использовали для наполнения дирижаблей и аэростатов. А самый простой и наиболее дешевый способ получения гелия — это извлечение его из природного газа. [c.41]

    Этот метод широко применяется для разделения газовых смесей, содержащих легколетучие компоненты — воздуха, коксового газа, получения гелия из природных газов, получения водорода. Одна из важнейших задач низкотемпературной дестилляции — получение этилена из газов нефтепереработки и пиролиза этана. [c.181]

    Если общее содержание инертных газов в воздухе около процента, то почти 90% от этого количества падает на аргон содержание неона, гелия, криптона и ксенона определяется тысячными, десятитысячными и стотысячными долями процента в 1 л воздуха — 9,3 л аргона, 18 мл неона, 5 мл гелия, 1 мл криптона, 0,8 мл ксенона, радона — миллионные доли процента (6-10 1 ). Однако отдельные участки атмосферы (например, в США у Ниагарского водопада, в СССР в районах Поволжья и др.) и некоторые минеральные источники обогащены инертными газами (в частности, гелием) и могут служить сырьевой базой для их получения. Из воздуха их выделяют путем сжижения и последующего испарения. [c.407]

    Это одноатомный газ без цвета и запаха, второй по легкости после водорода, химически не деятельный, негорючий. При 0° и 760 мм ртутного столба 1 л гелия весит 0,178 г. В воздухе содержится 0,0004 oб,i% гелия, т. е. 1 м на 250 ООО м воздуха. Промышленное получение гелия организовано на базе природных газовых источников, в которых он обнаружен в сравнительно доступных для извлечения количествах. [c.15]

    Была сделана попытка упростить эту обычную последующую обработку полиэтиленового геля. С этой целью часть корпуса шприц-машины— одночервячный участок—охлаждали водой, чтобы гель образовывался в машине. В этом случае соотношение полиэтилена к толуолу бралось равным 1 0,7. Так как путь, проходимый раствором при охлаждении, был очень коротким и охлаждение наступало слишком быстро, то получали слишком крупный порошок. Вследствие высокой вязкости высококонцентрированного геля производительность шприц-машины уменьшалась. Для получения тонкокристаллической дисперсии в нагретый до 50 °С питающий червяк вводили горячий раствор полиэтилена в толуоле в соотношении 1 2 шприц-машина при этом охлаждалась водой. После удаления растворителя при температуре ниже температуры растворения полученный гель состоял из частиц размером менее 70 мк. В настоящее время проводятся опыты по подаче в шприц-машину воздуха вместе с нагретым раствором полиэтилена для получения продутого геля, который можно было бы одновременно с разделением на фракции высушить в воздушном сепараторе. [c.220]

    Гелий для промышленных целей получают не из воздуха, а из природных газов некоторых месторождений, где он содержится в значительно больших количествах—до 0,2—0,3%, а в отдельных случаях—до 1,8—2%. Поэтому получение гелия из природных газов экономически более выгодно. Только на очень крупных воздухоразделительных установках, производительностью 0—70 тыс. кислорода, гелий целесообразно извлекать из [c.22]

    В работе [113] проведено обобщение анализа Спэрроу и др. [82] на случай вертикальной поверхности. Рассматривались системы гелий — воздух и водород — воздух с учетом переменности теплофизических свойств, а также эффектов Дюфура и Соре. Полученные результаты во многом аналогичны описанным выше. Вновь было установлено, что эффект Соре приводит к существенному изменению теплового потока, а результаты измерения характеристик теплообмена для рассматриваемых систем можно достаточно точно скоррелировать, применяя разность температур Tq—Та- [c.401]

    Гелий для промышленных целей получают обычно не из воздуха, а из природного газа некоторых месторождений, в которых содержится до 0,2—0,3, а в отдельных случаях — до 1,8—2% гелия. Поэтому получение гелия из природных газов экономически более выгодно. Только на очень крупных воздухоразделительных установках, производительностью 35 тыс. м ч кислорода целесообразно извлекать гелий из неоно-гелиевой смеси, отбор которой на такой установке может достигать 1,5—1,9 лг /ч. [c.23]

    До конца XIX века полагали, что воздух состоит только из кислорода и азота. Но в 1894 г, английский физик Дж. Рэлей установил, что плотность азота, полученного из воздуха (1,2572 г/л), несколько больше, чем плотность азота, полученного из его соединений (1,2505 г/л). Профессор химии У. Рамзай предположил, что разница в плотности вызвана присутствием в атмосферном азоте примеси какого-то более тяжелого газа. Связывая азот с раскаленным магнием (Рамзай) или вызывая действием электрического разряда его соединение с кислородом (Рэлей), оба ученых выделили из атмосферного азота небольшие количества химически инертного газа. Так был открыт неизвестный до того времени элемент, названный аргоном. Вслед за аргоном были выделены гелий, неон, криптон и ксенон, содержащиеся в воздухе в ничтожных количествах. Последний элемент подгруппы — радон — был открыт при изучении радиоактивных превращений. [c.660]

    Гелий для промышленных целей получают не из воздуха, а из природных газов некоторых месторождений, где он содержится в значительно больших количествах—до 0,2—0,3%, а в отдельных случаях—до 1,8—2%. Поэтому получение гелия из природных газов экономически более выгодно. Только на очень крупных воздухоразделительных установках, производительностью 60—70 тыс. м 1ч кислорода, гелий целесообразно извлекать из неоно-гелиевой смеси, отбор которой на таких установках может достигать 3,5—3,8 м /ч. [c.22]

    В зависимости от природы взятого вещества набухание, растворение, застудневание и высушивание могут быть с одним и тем же образцом выполнены многократно или только один раз. Так, если прибавить к разбавленному раствору силиката натрия (N325103 л5102) соляную кислоту, то образуется гель коллоидной кремневой кислоты вся масса раствора превращается в совершенно бесцветный и прозрачный гель. Если же высушивать полученный гель, то объем его изменяется мало, так как выделяющаяся вода заменяется воздухом. [c.225]

    Гелий достаточно широко расиростраиеи в природе. Ои один из основных элементов космоса, содержится в атмосферном воздухе, морской воде и отдельных минералах. Промышленными источниками получения гелия являются природный и попутиый нефтяной газы. [c.191]

    Многие традиционные технологии пищевой промышленности основаны на изменении структуры белков, что позволяет получать продукты разной текстуры. Наиболее известными примерами являются клейковина, а также казенны. Так, при хлебопечении замешивание теста из муки с водой и солью изменяет структуру клейковины и вызывает образование упругой и растяжимой белковой сети, в которую заключены крахмальные зерна. От реологических характеристик этой белковой сети зависят важнейшие свойства теста, а также конечное качество хлеба. Среди участвующих здесь молекулярных механизмов важную роль, по всей видимости, играют окисление за счет кислорода воздуха сульфгидрильных групп клейковины и перекомбинация дисульфидных мостиков. В процессе сыродельного производства молоко претерпевает изменения и переходит из жидкого в твердое состояние. Это преобразование связано с дестабилизацией мицелл казеина под действием сычужного фермента химозина или молочнокислого брожения. В этом случае происходит образование белкового геля, свойства которого тесно связанные с условиями получения геля, предопределяют правильный ход процесса созревания и конечное качество сыра. [c.528]

    Открытие элементов нулевой группы. Тщательные и весьма точные опыты, предпринятые Рэлеем и Рамзаем, столкнувшимися с проблемой различия в плотностях азота, полученного из. воздуха после удаления кислорода, и азота, полученного разложением азотсодержащих соединений (в первом случае плотность оказалась выше на 0,1%), привели к открытию 5 редких газов, что знаменовало собой выдающийся успех классической экспериментальной химии. К моменту открытия аргона, 8Аг (1894 г.) и гелия 2Не (1895 г.) не было точно известно, какое место они должны занять в периодической системе. Однако Рамзай решил, что оба эти элемента принадлежат к одному семейству, и для Не определил место в таблице Менделеева между Н и зЫ, а для Аг (который в то время обозначали символом А) —между 1 С1 и эК. В 1896 г. были предсказаны свойства трех еще не обнаруженных газов, относящихся к тому же семейству, и в течение мая — июля 1898 г. были открыты криптон збКг, неон юЫе и ксенон 54Хе, принадлежность которых к так называемой нулевой группе была доказана исследованием их свойств. Действительно, было бы неестественным такое расположение элементов в периодической таблице, когда непосредственно за галогенами следовали бы щелочные металлы, диаметрально отличающиеся от них по свойствам включение между ними нулевой группы оказалось посновапным и придало периодической системе законченный [c.29]

    В утку для гидрирования емкостью 500 мл загружают 200 мл спирта, полученное нитрозосоединение и около 5 г свежеприготовленного скелетного никелевого катализатора тк устанавливают на встряхивающую машину и вытесняют аргоном или гелием воздух Затем в систему пpoп кaют водород и вытесняют инерт-ныи газ Расход водорода на продувку около 3—5 г Закрыв кран утки, замеряют водород в цилиндре (газометре) и включают встряхивающую машину Поглощение водорода начинается тотчас Восстановление считают оконченным, если прекратится поглощение водорода [c.61]

    Существуют и другие способы извлечения гелия из гелионосных природных газов, например диффузионный, основанный на высокой проницаемости гелия через мембраны из тефлона. Гелий можно получить также на установках разделения воздуха. Однако его содержание в воздухе мало (0,000524%). Другим источником гелия могут служить монацитовые пески, содержащие 1 см гелия в 1 г руды [3, 7]. Однако все эти источники не могут рассматриваться как промышленные способы получения гелия. [c.32]

    Медь хорошо прокатывается, тянется, штампуется, но плохо обрабатывается резанием из-за большой вязкости. Детали, изготовлепные-из меди, соединяются сваркой, пайкой твердыми и мягкими припоями, клепкой. Медь достаточно устойчива к ш елочам и широко пспопь-зуется для изготовления аппаратов в пищевой и спиртовой промышленности, ректификационных кубов, колонн, теплообменников. Медь необходима для изготовления аппаратов, работающих в установках глубокого холода, при температурах —180- --250° С. В этих условиях теплопроводность и прочность меди резко возрастают, что делает ее незаменимым материалом в установках получения жидкого воздуха, кислорода, азота, гелия и других газов, разделяемых методом низкотемпературной ректификации. [c.23]

    Метеорологические радиозондовые и шаропилотные ооолочки изготовляют из хлоропренового латекса, в к-рый вводят 25 мае. ч. дибутилеебацината. Гель латексной смеси, полученный ионным отложением на ребристых формах, подвергают уплотнению в воде, снимают с формы, раздувают в 2—4 раза сжатым воздухом и сушат в раздутом состоянии 1,5—2 ч при постепенном повышении темп-ры от 30 до 45 °С. Затем воздух из внутренней части оболочки эвакуируют, опудривают оболочку тальком и вулканизуют при 120 °С в сложенном состоянии. Операции, связанные с получением геля, автоматизированы. Раздувку, сушку и вакуумирова-ние оболочки осуществляют также автоматически на пульсирующем конвейере при этом контролируют напряжение, возникающее при раздувке, т. к. его постоянство обеспечивает получение оболочек со стабильными свойствами (табл. 1). [c.21]

    Долгое время считали, что азот и кислород являются единственными составными частями воздуха. Однако в 1892 г. ученые столкнулись с непонятным в то время явлением вес 1 л азота, полученного из воздуха, отличается от веса 1 л азота, полученного разложением азотистых веществ в первом случае вес составил 1,2565 г, а во втором—1,2507 г. Это обстоятельство заставляло признать, что азот, получаемый из воздуха, не является химически чистым веществом и что к нему примешан какой-то другой газ (один или несколько), удельно бопее тяжелый, чем азот. Специальные исследования привели к открхлтию наличия в воздухе целой группы газов, очень схожих между собой. Все они оказались химически неактивными, поэтому их назвали ин ер тными. В группу инертных газов входят гелий, аргон и др. (эти газы более подробно рассмотрены в 4). [c.62]

    Постоянными спутниками гелия являются другие газы нулевой группы, а также азот, в ко,пичественном отношении занимающий первое место среди негорючих газов. Отде.пение от гелия всех сопутствующих газов и его количественное определение осуществляются путем последовательного поглощения газов соответствующими реагентами для горючих газов— после их сожжения, для негорючих (азот и пр.) — обработкой кокосовым углем при температуре жидкого воздуха. Лишь один гелий при этом не поглощается и может быть определен по остатку. Техническое получение гелия из естественного газа достигается с помощью специальных холодильных машин, основанных па тех ж е принципах, как машины для нгидкого воздуха. Так как гелий является наиболее трудно сншжаемым газом (температура кипения его —268°), то, превращая в жидкое состояние последовательно все находящиеся в смеси с гелием газы, отделяя их и постепенно обогащая, таким образом, остаток гелием, можно получить последний желаемой чистоты, вплоть до 100%-ной.  [c.129]

    Одна из основных проблем при таком измерении состоит в том, что различные вещества десорбируются с порошка сорбента по-разному. В результате радиоактивность в различных зонах, взятых с одной хроматограммы, измеряется с разной эффективностью. Кроме того, степень десорбции разных веществ точно неизвестна, и поэтому введение каких-либо поправок затруднительно. Однако мы уже кратко упоминали о возможных путях решения этой проблемы. Так, в раствор сцинтиллятора можно добавлять воду, чтобы ускорить десорбцию водорастворимых соединений. Если адсорбентом служит силикагель, вода дезактивирует его, что тоже способствует десорбции. Несколько лучших результатов можно добиться при добавлении воды (1 мл) к порошку силикагеля до того, как в сосуд будет влит сцинтиллятор на основе тритона Х-100 (15 мл). При такой последовательности обработки достигается более полная десорбция соединений. Могут применяться и гелеобразующие агенты, например кабосил (тонко измельченный кремнезем), который добавляется в раствор сцинтиллятора в соотношении 1 1 по объему, и образующийся тиксотропный гель дает однородную суспензию частиц адсорбента. При использовании препаратов типа кабосил желательно сначала приготовить необходимое количество смеси препарата со сцинтиллятором, а уже потом полученный гель разлить по сосудам с порошком адсорбента. Энергичным встряхиванием сосудов добиваются равномерного распределения адсорбента в объеме геля. Все пузырьки воздуха долж- [c.117]

    С промышленной точки зрения разделение неоно-гелиевой смесн представляет интерес только для получения неона. Получение геЛия из воздуха слишком доро.го и сложно и не может иметь промышленного значения. Основным сырьем для получения гелия являются природные гелионосные газы, из которых его м.0 Ж Но получить в больших количествах и по дешевой цене. Получать гелий из неоно-гелиевой смеси можно лишь в отдельных случаях и только для лабораторных целей. [c.323]

    Источником для промышленного получения большей части редких газов является атмосферный воздух. Основным источником получения гелия служат природные гелийсодержащие газы. [c.240]

    Процессы сжижения и последующего разделения газов приобре-тают все большее значение в промышленности. Производство кислорода, азота и аргона из воздуха с помощью низкотемпературных методов осуществляется давно и хорошо освоено, но будущие возможности для увеличения применения кислорода и обогащенного кислородом воздуха настолько велики, что желание получить более дешевые и более надежные методы разделения стимулируют непрерывную активность в этой области. Получение водорода низкотемпературными методами из водяного газа и газа коксовых печей хорошо известно за границей, но лишь в ограниченной степени практикуется в Америке. Значительным достижением в этой области является получение гелия из природных газов. Очень недавним усовершенствованием является сжижение и хранение природного газа для удовлетворения увеличивающейся в нем потребности зимой. Из этих немногих примеров очевидно, что область низких температур имеет такое техническое значение, что заслуживает большего места, чем мы можем посвятить ей в этой книге. Мы ограничимся только кратким ознакомлением с этой интересной областью. [c.524]

    Исходный алюмосиликатный гидрогель обычно готовили следующим образом водную пасту осажденного дисперсного кремнезема размешивали до гомогенизации с заданным количеством раствора алюмината калия (или смешанного алюмината калия и натрия) и затем выдерживали для созревания при комнзтной температуре 16—20 ч. Полученный гель нагревали в герметически закрытых сосудах (стеклянных или стальных) при 95— 97 °С в течение 100—160 ч. Образовавшийся осадок цеолита отделяли от маточного растворз, отмывали нз фильтре до pH промывной воды 10—10,5 и высушивали на воздухе. В некоторых случаях в качестве носителя кремнезема применялся аэросил. [c.55]

chem21.info

Гелий

Гелий

2

He

2
ГЕЛИЙ
4,0026
1s2

Гелий – подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях – ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия – альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов – то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью – показать, что элемент №2 – элемент весьма необычный.

Земной гелий

Гелий – элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер – 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы – высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – 4Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, – это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой – самородные металлы, магнетит, гранат, апатит, циркон и другие, – прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко – десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений – явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·1014 м3; судя же по вычислениям, его образовалось в земной коре за 2 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий – легкий газ и, подобно водороду (хотя и медленнее), не улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся – старый улетучивался в космос, а вместо него в атмосферу поступал свежий – «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли – в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий – редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе – 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.

Рис. 1. Кривые распространенности элементов на Земле (вверху) и в космосе.«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16О, 20Ne, 24Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные – и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим – 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования – план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты – Юпитер V – армады кибернетических машин на криотронах (о них – ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость – необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона – конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней – реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле – 26,7 МэВ на один атом гелия.

Реакция синтеза гелия – основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3Be, 12C, 16O, 20Ne, 24Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами – элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый...

Атом гелия (он же молекула) – прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию – 78,61 МэВ. Отсюда – феноменальная химическая пассивность гелия.

За последние 15 лет химикам удалось получить более 150 химических соединений тяжелых благородных газов (о соединениях тяжелых благородных газов будет рассказано в статьях «Криптон» и «Ксенон»). Однако инертность гелия остается, как и прежде, вне подозрений.

Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики – меньше, чем в любом другом веществе. Отсюда – самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью – способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его ныне немало – сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком – жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий – идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения – при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле – криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена – частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 – 2,4·10–21 секунды, гелия-6 – 0,83 секунды, гелия-8 – 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше – 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый – в 1926 г.

Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких – быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни – довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался. 

himiya.okis.ru

Углеродный цикл на Солнце и в недрах звёзд

Подробно:

Знания-сила

Как превращается водород в гелий в недрах звёзд? Первый ответ на этот вопрос нашли независимо друг от друга Ганс Бете в США и Карл-Фридрих фон Вайцзеккер в Германии. В 1938 году они обнаружили первую реакцию, которая приводит к превращению водорода в гелий и может обеспечить необходимую энергию для поддержания жизни звезд. Время для этого пришло: 11 июля 1938 г. в редакцию журнала "Zeitschrift für Physik" поступила рукопись Вайцзеккера, а 7 сентября того же года рукопись Бе́те поступила в редакцию журнала "Physical Review". В обеих работах излагалось открытие углеродного цикла. Бе́те и Кричфилд уже 23 июня послали работу, содержащую важнейшую часть протон-протонного цикла.

Этот процесс довольно сложен. Для его протекания необходимо, чтобы в звёздах кроме водорода присутствовали и атомы других элементов, например углерода. Я́дра атомов углерода играют роль катализаторов. О катализаторах мы хорошо знаем из химии. Протоны присоединяются к ядрам углерода, там же образуются атомы гелия. Затем ядро углерода выталкивает образовавшиеся из протонов я́дра гелия, а само остаётся в результате этого процесса неизменным.

• На рисунке показана схема этой реакции, имеющая вид замкнутого цикла. Рассмотрим эту реакцию, начиная с верхней части рисунка. Процесс начинается с того, что ядро атома водорода сталкивается с ядром углерода с массовым числом 12. Мы обозначаем его как C12. За счёт туннельного эффекта протон может преодолеть силы электрического отталкивания ядра углерода и объединиться с ним.

Превращение водорода в гелий в углеродном цикле реакций Бе́те

Превращение водорода в гелий в углеродном цикле реакций Бе́те в недрах звезд. Красные волнистые стрелки показывают, что атом испускает квант электромагнитного излучения.

Новое ядро состоит уже из тринадцати тяжелых элементарных частиц. За счёт положительного заряда протона заряд исходного ядра углерода увеличивается. При этом возникает ядро азота с массовым числом 13. Его обозначают как N13. Этот изотоп азота радиоактивен и через некоторое время испускает две легкие частицы: позитрон и нейтрино - элементарную частицу, о которой мы ещё услышим. Таким образом, ядро азота превращается в ядро углерода с массовым числом 13, т.е. в C13. Это ядро снова имеет такой же заряд, как ядро углерода в начале цикла, но его массовое число уже на единицу больше. Теперь мы имеем ядро другого изотопа углерода. Если с этим ядром столкнется еще один протон, то вновь возникает ядро азота. Однако теперь оно имеет массовое число 14, это N14. Если новый атом азота столкнется с еще одним протоном, то он переходит в О15, т.е. в ядро кислорода с массовым числом 15. Это ядро тоже радиоактивно, оно вновь испускает позитрон и нейтрино и переходит в N15 - азот с массовым числом 15. Мы видим, что процесс начался с углерода с массовым числом 12 и привел к появлению азота с массовым числом 15. Таким образом, последовательное присоединение протонов приводит к появлению всё более тяжелых я́дер. Пусть к ядру N15 присоединится ещё один протон, тогда из образовавшегося ядра вылетают вместе два протона и два нейтрона, которые образуют ядро гелия. Тяжелое ядро вновь превращается в исходное ядро углерода. Круг замкнулся.

В результате четыре протона объединяются и образуют ядро гелия: водород превращается в гелий. В ходе этого процесса освобождается энергия, которой достаточно для того, чтобы звёзды могли светить миллиарды лет.

Разогрев звёздного вещества происходит не на всех этапах рассмотренной нами цепо́чки реакций. Звёздное вещество разогревается частично за счёт квантов электромагнитного излучения, которые передают свою энергию звёздному газу, а частично за счёт позитронов, которые почти сразу же аннигилируют со свободными электронами звёздного газа. При аннигиляции позитронов и электронов тоже образуются кванты электромагнитного излучения. Энергия этих квантов передаётся звёздному веществу. Небольшая часть выделяющейся энергии уносится из звезды вместе с вылетающими нейтрино. Некоторые непонятные вопросы, связанные с нейтри́но мы рассмотрим позже.

В 1967 г. Бе́те была присуждена Нобелевская премия по физике за открытие углеродного цикла, которое было сделано им в 1938 году вместе с фон Вайцзеккером. В этом случае Нобелевский комитет, по всей видимости, забыл, что честь этого открытия принадлежит не одному Бе́те.

Нам известно, что циклическое превращение происходит в присутствии элементов-катализаторов: углерода и азота. Но в звёздных недрах не обязательно должны присутствовать все три элемента. Вполне достаточно и одного из них. Если начнется хотя бы одна реакция цикла, то элементы-катализаторы возникнут в результате последующих этапов реакций. Более того, протекание циклической реакции приводит к тому, что возникает вполне определённое количественное соотношение между неохо́тливыми изотопами. Это количественное соотношение зависит от температуры, при которой протекает цикл. Астрофизики могут в настоящее время с помощью своих спектроскопических методов провести достаточно точный количественный анализ космического вещества. По соотношению между количеством изотопов C12, C13, N14 и N15 часто можно не только установить, что в звездных недрах идёт превращение вещества по углеродному циклу, но и при какой температуре происходят эти реакции. Однако водород может превращаться в гелий не только за счет углеродного цикла. Наряду с реакциями углеродного цикла происходят и другие, более простые превращения. Они-то и вносят основной вклад (по крайней мере на Солнце) в выделение энергии. Далее мы перейдём к рассмотрению этих реакций.

znaniya-sila.narod.ru

Гелий

He 2

Гелий

to кип. (oС) 268,935 Степ.окис. -

4,002602

to плав.(oС) 271,15 Плотность 178,47
1s2 ОЭО 5,5 в зем. коре 0,0015 %

Гелий — подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По Легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали:. Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Ка-мерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученьге.

...Мы перечислили эти факты лишь с одной целью: показать, что элемент № 2 — элемент весьма необычный.

Земной гелий.

Гелий — элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле *. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая .линия D, а что за ней скрывалось, стало достоверно- известно лишь после того, как гелии извлекли из земных минерале»,-содержащих радиоактивные элементы.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа-частицы — высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия — ''Не, чьи атомы можно рассматривать как останки альфа-частиц, захороненные в оболочке из двух спаренных электронов — в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементе», насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за-4,52 миллиарда лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна, тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия — половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико—несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве .гелия близка к нулю, так как они очень редки.

В 1881 году об открытии гелия в вулканически газах, сообщил италь-яиский ученый Пальмиери. Однако его сообщение (впоследствии подтвержденное) мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в, 1895 году.

Природные соединения, в составе которых есть альфа-активные итотопы, это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой — самородные металлы, магнетит, гранат, апатит, циркон и другие,— прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергается процессам выветривания, перекристаллизации и т. д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняют газом. Ложем для таких газовых коллекторов обычно служат вода или нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом — метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко — десятых долей процента. Большая (1,5—10%) гелиеносность метано-азотных месторождений — явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5 • 10

судя же по вычислениям, его образовалось в земной коре за два миллиарда лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий — легкий газ и, подобно водороду (хотя и медленнее), он улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся — старый улетучивался в космос, а вместо него в атмосферу поступал свежий — «выдыхаемый» Землей.

В земной коре гелия приблизительно в 20 миллионов раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли — в альфа-активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий — редкий и рассеянный газ. На килограмм земного материала приходится всего 0,003 миллиграмма гелия, а содержание его в воздухе— 0,00052 объемного процента.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все црочие элементы остается только один процент! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента . главенствуют в звездах, планетарных туманностях и межзвездном газе.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа-распаде) гелий, а крупные — и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33 %, по другим — 97 %. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования — план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты — Юпитер V — армады кибернетических машин на криотронах (о них — ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость — необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 году немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 миллионов киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона — конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма-кванта. Наконец, реагируют два ядра 3Не, преобразуясь в альфа-частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом, гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико» но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складываеся из шести ступеней—реакций. Углерод играет здесь р<ль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих вреаращений, такая же, как и при протонно-протонном щикле — 26,7 Мэв на один атом гелия.

Реакция синтеза гелия—основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепяа и метеорологических явлений на Земде.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д. А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются

а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхиовых» звездах.

Известный советский химик А. Ф. Капустинский называл водород и гелий протоэлементами — элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый…

Атом гелия (он же молекула) — прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию 78,61 эв. Отсюда — феноменальная химическая пассивность гелия.

В последние пять лет химикам удалось получить химические соединения тяжелых инертных газов. Однако благородство гелия остается, как и прежде, вне подозрений. Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики — меньше, чем в любом другом веществе. Отсюда—самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него не действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно в полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в сто раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и метадаы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-вторых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172° абсолютной шкалы происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 миллионов разлучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью — способностью вытекать без трения через капилляры сколь угодно малого диаметра. Очень интересно, что способность переходить в состояние с нулевой вязкостью присуща только одному изотопу — 4Не. Другой изотоп гелия — 3Не в сверхтекучее состояние не переходит.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком — жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 году), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента № 2.

Первыми гелий применили немцы. В 1915 году они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды, и нет для этих целей более подходящего таза, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий — идеальное средство для передавливания изодной емкости в другую легковоспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов. С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения — при более высоких температурах тонкие детали энергетических спектров маскируются тепловым! движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тысяч эрстед) при ничтожных затратах энергии. При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле — криотроны— всё шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без пего никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намно большие, количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,1%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена — частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Гелий в скафандре.

У космобиологов уже давно сложилось убеждение, что нет и не может быть газовой среды, которая была бы в равной степени хороша для любых условии космического полета. «Земной» воздух — не исключение. Его достоинства самоочевидны, именно они — причина того, что атмосфера во всех наших «Востоках», «Восходах» и «Союзах» состояла из обычного воздуха. Но в некоторых условиях обычный и привычный земной воздух может из друга превратиться во врага или не очень надежного друга...

Уже при полете к Луне на космический корабль воздействуют три источника радиации: излучение радиационных поясов Земли, галактическое космическое излучение и корпускулярное излучение солнечных вспышек. Предусмотреть интенсивность последнего практически невозможно. Даже при надежной защите корабля обычный воздух в этих условиях может стать источником вторичной — наведенной радиации. Точнее, источником станут атомы азота, из которого атмосфера корабля состоит почти на 80%. Из этой ситуации может быть лишь два выхода: или намного усложнять и утяжелять средства радиационной защиты, или создавать внутри корабля атмосферу, в которой невозможно возникновение наведенной радиации.

В аварийной ситуации может проявиться и другой «минус» обычного воздуха. Космический полет проходит в условиях глубокого вакуума. При случайной непредвиденной разгерметизации корабля космонавт подвергнется сразу нескольким опасностям. От многих из них, в том числе и от острого кислородного голодания, его защитит скафандр. Но будут ли участники длительных космических полетов постоянно находиться в скафандрах?!

Наконец, третий недостаток обычного воздуха как среды обитания космонавтов состоит в том, что эта газовая смесь — далеко не самая легкая. Собственно, не так тяжел сам воздух. От замены его даже водородом (представим на минуту, что это возможно) вес корабля заметно не изменится. Но ведь воздух, которым дышат космонавты, надо постоянно регенерировать. Циркуляция и вентиляция требуют затрат энергии. Чем легче газ, тем легче вентиляционные устройства, тем меньше вес источников энергии.

Конечно, естественные достоинства земного воздуха с лихвой перекрывают эти минусы, но не считаться с ними нельзя — вопрос-то гамлетовский: быть или не быть. Поэтому не прекращаются поиски и исследования других вариантов воздушной среды, пригодной для жизни в космосе. И если без кислорода никак не обойдешься, то азот воздуха, не играющий в жизненно важных процессах большой роли, может быть изъят или заменен.

В отечественной и зарубежной научной литературе фигурируют пять реальных вариантов газовой среды для кабин космических кораблей. Первый — обычный воздух:

78% Na, 21% Oz; 1% — все остальное: водород, инертные газы, СОа и другие. Второй, третий и четвертый варианты предполагают полное или частичное удаление из обычного воздуха балластного азота. Но, как известно, чистым кислородом долго дышать нельзя. Чтобы избежать кислородного отравления, давление в кабине снижается (человеку в космическом скафандре это снижение давления, естественно, ничем не грозит), так что парциальное давление кислорода остается таким же, как в нормальных условиях.

Газовая среда, освобожденная от азота, позволяет существенно уменьшить вес кабин. Именно такая среда была в кабинах американских космических кораблей «Меркурий», «Джемини», «Аполлон».

В опытах, поставленных в нашей стране, были подтверждены почти все достоинства атмосферы пониженного давления. Ей действительно не свойственны недостатки естественной воздушной среды. Но у нее свои минусы. Во-первых, в сильно разреженной атмосфере нельзя находиться без скафандра или с открытым скафандром. Во-вторых, и при низком давлении чистый кислород все-таки раздражает верхние дыхательные пути. В-третьих, в атмосфере чистого кислорода, да еще при пониженном давлении, намного увеличивается вероятность пожара. Значит, нужно предусматривать на борту какую-то технику пожарной безопасности, а она тоже что-то весит...

И, наконец, пятый вариант—атмосфера, в которой весь азот заменен гелием.

Теоретически предпосылки для такой замены были обнадеживающими. Феноменальная химическая пассивность гелия должна была гарантировать неизменность направления и характера биохимических реакций организма.

Однако все эти выкладки нужно было подтвердить опытами.

В камеру, заполненную гелио-кислородной смесью, поместили несколько белых мышей. Животные получали нормальный корм, воду; необычный воздух тщательно регенерировался. За мышами вели постоянное наблюдение. Эксперимент длился больше пятидесяти дней. Никаких существенных изменений в поведении и жизнедеятельности животных не наблюдалось. В ходе опыта не погибла ни одна мышь, напротив, у одной из них родились мышата, и население камеры увеличилось. После окончания опыта исследовали ткани и органы животных, долгое время находившихся или даже родившихся в гелио-кислородной среде, но никаких изменений, причиной которых мог быть гелий, обнаружено не было.

Другое важное свойство гелия как заменителя азота — прочность и компактность его молекул. Есть все основания считать, что в гелио-кислородной среде опасность наведенной радиации практически исключена. Растворимость гелия в крови, моче, лимфе и особенно жирах намного меньше, чем азота. Это уменьшает опасность декомпрессионных расстройств при резких перепадах давления. Не случайно гелио-кислородные смеси стали надежным средством профилактики кессонной болезни и дали большой выигрыш по времени при подъеме водолазов.

И плюс ко всему гелий намного легче азота.

Данные многих опытов на животных и с участием человека были за гелиевый воздух. Но все опыты на людях были кратковременны. Как скажется на человеке долгое пребывание в гелио-кислородной среде? Точный ответ на этот вопрос дали проведенные несколько лет назад опыты советских биологов профессора А. Г. Кузнецова и кандидата медицинских наук А. Г. Дианова. Было проведено два эксперимента продолжительностью один—22, другой—30 дней, в которых участвовали молодые, абсолютно здоровые люди. Первые два дня герметическая камера была заполнена обыкновенным воздухом. За это время медики сняли фоновые данные. На третий день произошла смена среды обитания. Сначала камеру провентилировали чистым медицинским кислородом, который не только вытеснил азот, но и «вымыл» этот газ из организма участника опыта. Когда концентрация кислорода в воздухе камеры достигла 97%, его подачу прекратили и начали подавать гелий. В этот жедень в камере установилась атмосфера примерно такого состава: 22,5% O

khimiya.narod.ru

Ядерные реакции – источники солнечной энергии

Современные теоретические исследования Солнца говорят о том, что солнечная энергия рождается в центральной части Солнца и, пройдя почти через всю его толщу, поступает на его поверхность и излучается в мировое пространство. За счёт чего образуется эта энергия?

Как мы уже говорили, при температуре в несколько тысяч градусов все сложные вещества распадаются на составляющие их элементы. А при температуре в несколько десятков миллионов градусов возможны превращения элементов.

В настоящее время экспериментально изучены процессы преобразования элементов: внутриатомные реакции и ядерные превращения. На основе этих новейших достижений физиками разработана теория так называемой циклической ядерной реакции и выяснены условия превращения наиболее лёгкого элемента — водорода в более тяжёлый — гелий. Оказывается, что при превращении четырёх ядер атомов водорода — протонов — в ядро гелия происходит как бы некоторая «потеря» первоначальной массы. Четыре протона — ядра четырёх водородных атомов —весят 4,03252 атомной единицы, а ядро гелия — 4,00386 атомной единицы. «Потеря» составляет 0,02866 атомной единицы. При этом выделяется большая энергия. Известно, например, что при превращении одного грамма водорода в гелий выделяется такое же количество энергии, как при сгорании 15 тонн бензина.

Как мы уже знаем, в центре Солнца температура достигает 20 миллионов градусов. При такой температуре, согласно вычислениям учёных, водород превращается в гелий. Это превращение сопровождается выделением огромного количества энергии. Таким образом, Солнце представляет собой своего рода огромную лабораторию, в которой происходит беспрерывный процесс преобразования элементов.

Катализатором, то-есть веществом, ускоряющим реакцию, ускоряющим превращение четырёх протонов в ядро гелия, является углерод. Можно сказать, что Солнце в настоящее время переживает углеродный цикл ядерных реакций, конечным результатом которых является образование гелия из водорода; углерод при этом не расходуется, он только обусловливает этот цикл реакций.

Источником солнечной энергии являются, таким образом, реакции превращения водорода в гелий при помощи ядер углерода. Как показали подсчёты, для восполнения энергии, излучаемой Солнцем, достаточно иметь в его составе менее одного процента по весу углерода. Из наблюдений известно, что примерно такое количество углерода и содержится в составе солнечной атмосферы.

Остаётся выяснить вопрос о том, на долго ли хватит Солнцу горючего материала при условии поддержания его температуры на современном уровне? Ведь для этого необходимо, чтобы каждую секунду на Солнце превращались в гелий 500 миллионов тонн водорода. Выдержит ли Солнце такую «нагрузку»? Не потухнет ли оно, истощив все запасы своего топлива?

Такие опасения напрасны. Наше Солнце так велико, запасов водорода на нём так много (он составляет, как мы уже говорили, около 50 процентов всей солнечной массы), а «потери» этой массы в результате излучения так ничтожно малы, что можно с уверенностью говорить — на протяжении ещё многих миллиардов лет Солнце будет столь же интенсивно освещать и обогревать нашу Землю, как и в настоящее время.

www.hep.by


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики