Самые важные процессоры в истории компьютеров. Самый первый процессор


конец 80-х — начало 2000-х / Блог компании ua-hosting.company / Хабр

Продолжая тему первой статьи — история эволюции процессоров с конца XX века по начала XXI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) — архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

Руководители проекта Berkeley RISC — Дэвид Паттерсон и Карло Секвин

После нескольких лет плодотворной работы, на рынке появилось несколько образцов процессоров с сокращенным набором команд. Каждая инструкция платформы RISC была простой и выполнялась за один такт. Также присутствовало намного больше регистров общего назначения. Кроме того использовалась конвейеризация с упрощенными командами, что позволяло эффективно наращивать тактовую частоту.

RISC I вышел в 1982 году и содержал более чем 44 420 транзисторов. Он имел всего 32 инструкции и работал на частоте 4 МГц. Следующий за ним RISC II насчитывал 40 760 транзисторов, использовал 39 инструкций и был более быстрым.

Процессор RISC II

Процессоры MIPS: R2000, R3000, R4000 и R4400

Архитектура процессоров MIPS (Microprocessor without Interlocked Pipeline Stages) предусматривала наличие вспомогательных блоков в составе кристалла. В MIPS использовался удлиненный конвейер.

В 1984 году группа исследователей во главе с американским ученым Джоном Хеннесси основала компанию, проектирующую микроэлектронные устройства. MIPS лицензировала микропроцессорную архитектуру и IP-ядра для устройств умного дома, сетевых и мобильных применений. В 1985 году вышел первый продукт компании — 32-битный R2000, который в 1988 году был доработан в R3000. У обновленной модели имелась поддержка многопроцессорности, кэш-памяти инструкций и данных. Процессор нашел применение в SG-сериях рабочих станций разных компаний. Также R3000 стал основой игровой консоли Sony PlayStation.

Процессор R3000

В 1991 году вышла линейка нового поколения R4000. Данный процессор обладал 64-битной архитектурой, встроенным сопроцессором и работал на тактовой частоте 100 МГц. Внутренняя кэш-память составляла 16 Кб (8 Кб кэш-команд и 8 Кб кэш-данных).

Через год вышла доработанная версия процессора — R4400. В этой модели увеличился кэш до 32 Кб (16 Кб кэш-команд и 16 Кб кэш-данных). Процессор мог работать на частоте 100 МГц — 250 МГц.

Процессоры MIPS: R8000 и R10000

В 1994 году появился первый процессор с суперскалярной реализацией архитектуры MIPS — R8000. Емкость кэш-памяти данных составляла 16 Кб. У этого CPU была высокая пропускная способность доступа к данным (до 1.2 Гб/с) в сочетании с высокой скоростью выполнения операций. Частота достигала 75 МГц — 90 МГц. Использовалось 6 схем: устройство для целочисленных команд, для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ и кэш-контроллер ASIC.

Процессор R8000

В 1996 году вышла доработанная версия — R10000. Процессор включал в себя 32 Кб первичной кэш-памяти данных и команд. Работал CPU на частоте 150 МГц — 250 МГц.

В конце 90-х компания MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Ряды процессоров пополнили продукты компании Sun Microsystems, которая разработала масштабируемую архитектуру SPARC (Scalable Processor ARChitecture). Первый одноименный процессор вышел в конце 80-х и получил название SPARC V7. Его частота достигала 14.28 МГц — 40 МГц.

В 1992 году появилась следующая 32-битная версия под названием SPARC V8, на базе которой был создан процессор microSPARC. Тактовая частота составляла 40 МГц — 50 МГц.

Над созданием следующего поколения архитектуры SPARC V9 с компанией Sun Microsystems совместно работали Texas Instruments, Fujitsu, Philips и другие. Платформа расширилась до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные (каждая объемом по 16 Кб), а также второго уровня емкостью 512 Кб — 1024 Кб.

Процессор UltraSPARC III

Процессоры StrongARM

В 1995 году стартовал проект по разработке семейства микропроцессоров StrongARM, реализовавших набор инструкций ARM V4. Эти CPU представляли собой классическую скалярную архитектуру с 5-стадийным конвейером, включая блоки управления памятью и поддерживая кэш-память инструкций и данных объемом по 16 Кб каждая.

StrongARM SA-110

И уже в 1996 году был выпущен первый процессор на базе StrongARM — SA-110. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц.

Также на рынок вышли модели SA-1100, SA-1110 и SA-1500.

Процессор SA-110 в Apple MessagePad 2000

Процессоры POWER, POWER2 и PowerPC

В 1985 году компания IBM начала разработку RISC-архитектуры следующего поколения в рамках проекта America Project. Разработка процессора POWER (Performance Optimization With Enhanced RISC) и набора инструкций для него длилась 5 лет. Он был весьма производительный, но состоял из 11 различных микросхем. И поэтому в 1992 году вышел другой вариант процессора, что умещался в одном чипе.

Чипсет POWER

В 1991 году совместными усилиями альянса компаний IBM, Apple и Motorola была разработана архитектура PowerPC (сокращенно PPC). Она состояла из базового набора функций платформы POWER, а также поддерживала работу в двух режимах и была обратно совместима с 32-битным режимом работы для 64-разрядной версии. Основным назначением являлись персональные компьютеры.

Процессор PowerPC 601 использовался в Macintosh.

Процессор PowerPC

В 1993 году был представлен POWER2 с расширенным набором команд. Тактовая частота процессора варьировалась от 55 МГц до 71.5 МГц, а кэш-память данных и инструкций была 128-256 Кб и 32 Кб. Микросхемы процессора (их было 8) содержали 23 миллиона транзисторов, а изготавливался он по 0.72-микрометровой CMOS-технологии.

В 1998 году IBM выпустила третью серию процессоров POWER3 на 64 бита, полностью совместимых со стандартом PowerPC.

В период с 2001 по 2010 вышли модели POWER4 (до восьми параллельно выполняющихся команд), двухядерные POWER5 и POWER6, четырех-восьми ядерный POWER7.

Процессоры Alpha 21064A

В 1992 году компания Digital Equipment Corporation (DEC) выпустила процессор Alpha 21064 (EV4). Это был 64-разрядный суперскалярный кристалл с конвейерной архитектурой и тактовой частотой 100 МГц — 200 МГц. Изготовлен по 0,75-мкм техпроцессу, со внешней 128-разрядной шиной процессора. Присутствовало 16 Кб кэш-памяти (8 Кб данных и 8 Кб инструкций).

Следующей моделью в серии стал процессор 21164 (EV5), который вышел в 1995 году. Он обладал двумя целочисленными блоками и насчитывал уже три уровня кэш-памяти (два в процессоре, третий — внешний). Кэш-память первого уровня разделялась на кэш данных и кэш инструкций объемом по 8 Кб каждый. Объем кэш-памяти второго уровня составлял 96 Кб. Тактовая частота процессора варьировалась от 266 МГц до 500 МГц.

DEC Alpha AXP 21064

В 1996 году вышли процессоры Alpha 21264 (EV6) с 15,2 миллионами транзисторов, изготовленные по 15,2-мкм техпроцессу. Их тактовая частота составляла от 450 МГц до 600 МГц. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой — в модуль Fbox. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кб. Объем кэш-памяти второго уровня был от 2 Мб до 8 Мб.

В 1999 году DEC купила компания Compaq. В результате чего большая часть производства продукции, использовавшей Alpha, была передана компании API NetWorks, Inc.

Процессоры Intel P5 и P54C

По макету Винода Дхама был разработан процессор пятого поколения под кодовым названием P5. В 1993 году CPU вышли в производство под названием Pentium.

Процессоры на ядре P5 производились с использованием 800-нанометрового техпроцесса по биполярной BiCMOS-технологии. Они содержали 3,1 миллиона транзисторов. У Pentium была 64-битная шина данных, суперскалярная архитектура. Имелось раздельное кэширование программного кода и данных. Использовалась кэш-память первого уровня объемом 16 Кб, разделенная на 2 сегмента (8 Кб для данных и 8 Кб для инструкций). Первые модели были с частотами 60 МГц — 66 МГц.

Процессор Intel Pentium

В том же году Intel запустила в продажу процессоры P54C. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Скорость работы процессоров составляла 75 МГц, а с 1994 года — 90 МГц и 100 МГц. Через год архитектура P54C (P54CS) была переведена на 350-нм техпроцесс и тактовая частота увеличилась до 200 МГц.

В 1997 году P5 получила последнее обновление — P55C (Pentium MMX). Появилась поддержка набора команд MMX (MultiMedia eXtension). Процессор состоял из 4,5 миллиона транзисторов и производится по усовершенствованной 280-нанометровой CMOS-технологии. Объем кэш-памяти первого уровня увеличился до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Частота процессора достигла 233 МГц.

Процессоры AMD K5 и K6

В 1995 году компания AMD выпустила процессор K5. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Процессоры изготавливались с использованием 350- или 500-нанометрового техпроцесса, с 4,3 миллионами транзисторов. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Объем кэш-памяти инструкций составлял 16 Кб, а данных — 8 Кб. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.

Процессор AMD K5

Под маркой K5 выпускалось два варианта процессоров SSA/5 и 5k86. Первый работал на частотах от 75 МГц до 100 МГц. Процессор 5k86 работал на частотах от 90 МГц до 133 МГц.

В 1997 году компания представила процессор K6, архитектура которого существенно отличалась от K5. Процессоры изготавливались по 350-нанометровому техпроцессу, включали в себя 8,8 миллионов транзисторов, поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Площадь кристалла составляла 162 мм². Объем кэш-памяти первого уровня насчитывал 64 Кб (32 Кб данные и 32 Кб инструкции). Работал процессор на частоте 166 МГц, 200 МГц и 233 МГц. Частота системной шины была 66 МГц.

В 1998 году AMD выпустила чипы с улучшенной архитектурой K6-2, с 9,3 миллионами транзисторов изготавливаемого по 250-нанометровому техпроцессу. Максимальная частота чипа составляла 550 МГц.

Процессор AMD K6

В 1999 году вышла третья генерация — архитектура K6-III. Кристалл сохранил все особенности K6-2, но при этом появилась встроенная кэш-память второго уровня объемом 256 Кб. Объем кэша первого уровня составлял 64 Кб.

Процессоры AMD K7

В том же 1999 году на смену К6 пришли процессоры К7. Они выпускались по 250-нм технологии с 22 миллионами транзисторов. У CPU присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 МГц получить эффективную частоту 200 МГц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

Процессор AMD K7

Несколько позже появились кристаллы, базировавшиеся на ядре Orion. Они производилось по 180-нм техпроцессу.

Выход ядра Thunderbird внес необычные изменения в процессоры. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Кэш был с эффективным объемом 384 Кб (128 Кб кэша первого уровня и 256 Кб кэша второго уровня). Увеличилась тактовая частота системной шины — теперь она функционировала с частотой 133 МГц.

Процессоры Intel P6

Архитектура P6 пришла на смену P5 в 1995 году. Процессор являлся суперскалярным и поддерживал изменения порядка выполнения операций. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти.

В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150 МГц — 200 МГц, имели 16 Кб кэш-памяти первого уровня и до 1 Мб кэша второго уровня.

Процессор Intel Pentium Pro

В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а также улучшился механизм работы с памятью. Тактовая частота процессоров Katmai достигала 600 МГц.

В 2000 году вышли первые процессоры Pentium 4 с ядром Willamette. Эффективная частота системной шины составляла 400 МГц (физическая частота — 100 МГц). Кэш-данных первого уровня достигал объема 8 Кб, а кэш-память второго уровня — 256 Кб.

Следующим ядром линейки стало Northwood (2002 год). Процессоры содержали 55 миллионов транзисторов и производились по новой 130-нм КМОП-технологии с медными соединениями. Частота системной шины составляла 400 МГц, 533 МГц или 800 МГц.

Intel Pentium 4

В 2004 году производство процессоров вновь перевели на более тонкие технологические нормы — 90 нм. Вышли Pentium 4 на ядре Prescott. Кэш данных первого уровня увеличился до 16 Кб, а кэш второго уровня достиг 1 Мб. Тактовая частота составляла 2,4 ГГц — 3,8 ГГц, частота системной шины — 533 МГц или 800 МГц.

Последним ядром, которое использовалось в процессорах Pentium 4 стало одноядерное Cedar Mill. Выпускалось по новому техпроцессу — 65 нм. Существовало четыре модели: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц).

Процессоры Athlon 64 и Athlon 64 X2

В конце 2003 года AMD выпустила новую 64-битную архитектуру K8, построенную по 130-нанометровому техпроцессу. В процессоре был встроенный контроллер памяти и шина HyperTransport. Она работала на частоте 200 МГц. Новые продукты AMD получили название Athlon 64. Процессоры поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3.

Процессор Athlon 64

В 2005 году на рынок вышли процессоры компании AMD под названием Athlon 64 X2. Это были первые двухъядерные процессоры для настольных компьютеров. В основе модели лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд.

Процессор Athlon 64 X2

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти второго уровня и энергопотреблением.

Процессоры Intel Core

Процессоры Pentium M обеспечивали большую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. И поэтому их архитектурные решения стали основой для микроархитектуры Core, которая вышла в 2006 году. Первым настольным четырехядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

Кодовое имя первого поколения мобильных процессоров компании Intel было Yonah. Они производились с использованием техпроцесса 65 нм, основанного на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Процессор мог обрабатывать до четырех инструкций за такт. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Intel Core 2 Extreme QX6700

В 2007 году вышла 45-нм микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

Процессор AMD Phenom II X6

В 2008 году вышла архитектура следующего поколения — Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Intel Core i7

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere. Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Процессоры AMD K10

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила поколение архитектуры микропроцессоров x86 — K10. Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня — 512 Кб. Также появилась перспективная поддержка контроллером памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2007 году с архитектурой K10 вышли многоядерные центральные процессоры Phenom фирмы AMD, предназначенные для использования в стационарных персональных компьютерах. Решения на базе K10 производились по 65- и 45-нм техпроцессу. В новой версии архитектуры (К10,5) контроллер памяти работал с памятью DDR2 и DDR3.

Процессор AMD Phenom

В 2011 году вышла новая архитектура Bulldozer. Каждый модуль содержал два ядра со своим блоком целочисленных вычислений и кэш-памятью 1-го уровня. Поддерживалась кэш-память 3-го уровня объемом 8 Мб, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

Процессор AMD Bulldozer

В 2013 году компания представила следующее поколение процессоров — Piledriver. Данная модель являлась улучшенной архитектурой Bulldozer. Были доработаны блоки предсказания ветвлений, возросла производительность модуля операций с плавающей запятой и целочисленных вычислений, а также тактовая частота.

Просматривая историю, можно проследить этапы развития процессоров, изменения в их архитектуре, усовершенствования технологий разработки и многое другое. Современные CPU отличаются от тех, которые выходили раньше, но при этом имеют и общие черты.

habr.com

История архитектуры процессора x86 Часть 1. Самый первый микропроцессор

12 лет назад 5 октября 2006 в 12:21 173

В своей книге “Искусство управления государством” бывший премьер-министр Великобритании Маргарет Тэтчер (Margaret Thatcher) писала: “…в 1990 году мы не могли предположить, как велико будет воздействие информационной революции на бизнес, образ жизни и даже ход военных действий”. А за четверть века до этого никто и не предполагал, что информационная революция скоро начнется. Более того, даже сами энтузиасты компьютерного дела, уверенные, что за компьютерами будущее, довольно туманно представляли себе это самое красочное будущее. Многие открытия, которые практически перевернули мир и представление общественности о современном мироустройстве, появились как бы сами собой, по мановению волшебной палочки, без какого-либо предварительного планирования. Характерна в этой связи история разработки первого в мире микропроцессора.

Два миллиона за листок бумаги

Покинув Fairchild Semiconductor, Роберт Нойс (Robert Noyce) и автор небезызвестного закона Гордон Мур (Gordon Moore) решили основать собственную компанию (подробнее о Fairchild Semiconductor см. статью “Белокурое дитя” в Upgrade #39 (129) за 2003 год). Нойс сел за печатную машинку и напечатал бизнес-план будущего кита IT-промышленности, которому суждено изменить мир. Вот полный текст этого бизнес-плана. “Компания будет участвовать в исследованиях, разработке, изготовлении и продаже интегрированных электронных структур, чтобы удовлетворять потребность промышленности в электронных системах. Они будут включать в себя полупроводниковые устройства в тонкой и толстой оболочке и другие компоненты твердого тела, используемые в гибридных и монолитных интегрированных структурах.

Разнообразие процессов будет установлено на лабораторном и производственном уровнях. Они включают: выращивание кристаллов, разрезание, напуск, полировку, диффузию твердого тела, фотолитографическое маскирование и гравирование, вакуумное напыление, покрытие оболочкой, сборку, упаковку, тестирование. А также разработку и изготовление специальных технологий и испытание оборудования, требующегося для выполнения указанных процессов.

Изделия могут включать диоды, транзисторы, устройства с полевым эффектом, фоточувствительные элементы, лучеиспускающие устройства, интегральные схемы и подсистемы, обычно характеризующиеся фразой “масштабируемая интеграция с запаздыванием”. Основными пользователями этих продуктов, как ожидается, будут производители передовых электронных систем для коммуникации, радаров, контроля и обработки данных. Ожидается, что большинство этих клиентов будут расположены за пределами Калифорнии”.

По всему видно, что Нойс и Мур были оптимистами, раз предполагали, что хоть кто-то на основе этого текста сможет понять, чем, собственно, будет заниматься компания. Из текста бизнес-плана, однако, видно, что производством микропроцессоров заниматься не предполагалось. Впрочем, никто другой в то время ни о каких микропроцессорах не помышлял. Да и самого слова-то тогда не было, ибо центральный процессор любой ЭВМ того периода представлял собой довольно сложный агрегат немалого размера, состоящий из нескольких узлов.

На момент составления этого прожекта никто не мог, конечно, предсказать, какие он принесет доходы. Как бы там ни было, а в поисках кредита Нойс и Мур обратились к Артуру Року (Arthur Rock) – финансисту, который ранее помог создать Fairchild Semiconductor. И через два дня, как в сказке, компаньоны получили два с половиной миллиона долларов. Это даже по сегодняшним меркам немалые деньги, а в 60-х годах прошлого века это было прямо-таки целое состояние. Если бы не высокая репутация Нойса и Мура, то вряд ли они так легко получили бы требуемую сумму. Но что хорошо в США – там всегда имеются в наличии рисковые капиталисты, готовые вложить доллар-другой в перспективный бизнес, связанный с новыми технологиями. Собственно, на этом и покоится могущество этой страны. В современной России, которая, как почему-то считается, идет по пути США, таких капиталистов – днем с огнем…

Итак, дело, можно сказать, было в шляпе. Настала очередь самого приятного момента – выбора для будущего флагмана IT-индустрии. Первое пришедшее в голову название было название, составлено из имен отцов – основателей компании – Moore Noyce. Однако товарищи подняли их на смех. На взгляд “экспертов”, такое название произносилось бы всеми не иначе как more noise (“много шума”), что для компании, продукция которой должна была использоваться в радиопромышленности, было хуже некуда. Составили список, в котором попадались такие слова, как COMPTEK, CALCOMP, ESTEK, DISTEK и т. п. В результате Мур и Нойс выбрали название, являющееся сокращением от “интегрированная электроника”, – Intel.

Их ждало разочарование – это название уже кто-то зарегистрировал ранее для сети мотелей. Но, имея два с половиной миллиона долларов, несложно выкупить понравившееся название. Так компаньоны и поступили. В конце 60-х годов большинство ЭВМ были оборудованы памятью на магнитных сердечниках, и своей миссией такие компании, как Intel, считали повсеместное внедрение “кремниевой памяти”. Поэтому самым первым изделием, которое запустила в производство компания, была “микросхема 3101” – 64-разрядная биполярная статическая оперативная память, основанная на барьерном диоде Шоттки (см. врезку “Вальтер Шоттки”).

Вальтер ШотткиБинарные диоды Шоттки названы в честь немецкого физика швейцарского происхождения Вальтера Шоттки (Walter Shottky, 1886-1976). Шоттки долго и плодотворно работал на ниве электропроводимости. В 1914 году он открыл явление возрастания тока насыщения под действием внешнего ускоряющего электрического поля (“эффект Шоттки”) и разработал теорию этого эффекта. В 1915 году он изобрел электронную лампу с экранной сеткой. В 1918 году Шоттки предложил супергетеродинный принцип усиления. В 1939 году он исследовал свойства потенциального барьера, который возникает на границе полупроводник-металл. В результате этих исследований Шоттки разработал теорию полупроводниковых диодов с таким барьером, которые получили название диодов Шоттки. Вальтер Шоттки внес большой вклад в изучение процессов, протекающих в электролампах и полупроводниках. Исследования Вальтера Шоттки относятся к физике твердого тела, термодинамике, статистике, электронике, физике полупроводников. 

В первый год после своего создания (1969) Intel принесла своим владельцам ни много ни мало 2672 доллара прибыли. До полного погашения кредита оставалось совсем чуть-чуть.

4 вместо 12

Сегодня Intel (как, впрочем, и AMD) производит чипы в расчете на рыночные продажи, но в первые годы своего становления компания нередко делала микросхемы на заказ. В апреле 1969 года в Intel обратились представители японской фирмы Busicom, занимающейся выпуском калькуляторов. Японцы прослышали, что у Intel самая передовая технология производства микросхем. Для своего нового настольного калькулятора Busicom хотела заказать 12 микросхем различного назначения. Проблема, однако, заключалась в том, что ресурсы Intel в тот момент не позволяли выполнить такой заказ. Методика разработки микросхем сегодня не сильно отличается от той, что была в конце 60-х годов XX века, правда, инструментарий отличается весьма заметно.

В те давние-давние годы такие весьма трудоемкие операции, как проектирование и тестирование, выполнялись вручную. Проектировщики вычерчивали черновые варианты на миллиметровке, а чертежники переносили их на специальную вощеную бумагу (восковку). Прототип маски изготовляли путем ручного нанесения линий на огромные листы лавсановой пленки. Никаких компьютерных систем обсчета схемы и ее узлов еще не существовало. Проверка правильности производилась путем “прохода” по всем линиям зеленым или желтым фломастером. Сама маска изготавливалась путем переноса чертежа с лавсановой пленки на так называемый рубилит – огромные двухслойные листы рубинового цвета. Гравировка на рубилите также осуществлялась вручную. Затем несколько дней приходилось перепроверять точность гравировки. В том случае, если необходимо было убрать или добавить какие-то транзисторы, это делалось опять-таки вручную, с использованием скальпеля. Только после тщательной проверки лист рубилита передавался изготовителю маски. Малейшая ошибка на любом этапе – и все приходилось начинать сначала. Например, первый тестовый экземпляр “изделия 3101” получился 63-разрядным.

Словом, 12 новых микросхем Intel физически не могла потянуть. Но Мур и Нойс были не только замечательными инженерами, но и предпринимателями, в связи с чем им сильно не хотелось терять выгодный заказ. И тут одному из сотрудников Intel, Теду Хоффу (Ted Hoff), пришло в голову, что, раз компания не имеет возможности спроектировать 12 микросхем, нужно сделать всего одну универсальную микросхему, которая по своим функциональным возможностям заменит их все. Иначе говоря, Тед Хофф сформулировал идею микропроцессора – первого в мире. В июле 1969 года была создана группа по разработке, и работа началась. В сентябре к группе присоединился также перешедший из Fairchild Стэн Мазор (Stan Mazor). Контролером от заказчика в группу вошел японец Масатоси Сима (Masatoshi Shima). Чтобы полностью обеспечить работу калькулятора, необходимо было изготовить не одну, а четыре микросхемы. Таким образом, вместо 12 чипов требовалось разработать только четыре, но один из них – универсальный. Изготовлением микросхем такой сложности до этого никто не занимался.

Итальяно-японское содружество

В апреле 1970 года к группе по выполнению заказа Busicom присоединился новый сотрудник. Он пришел из кузницы кадров для Intel – компании Fairchild Semiconductor. Звали нового сотрудника Федерико Фэджин (Federico Faggin). Ему было 28 лет, но уже почти десять лет он занимался созданием компьютеров. В девятнадцать лет Фэджин участвовал в построении мини-ЭВМ итальянской компании Olivetti. Затем он попал в итальянское представительство Fairchild, где занимался разработкой нескольких микросхем. В 1968 году Фэджин покинул Италию и перебрался в США, в лабораторию Fairchild Semiconductor в Пало-Альто. Стэн Мазор показал новому члену группы общую спецификацию проектируемого набора микросхем и сказал, что на следующий день прилетает представитель заказчика.

Утром Мазор и Фэджин поехали в аэропорт Сан-Франциско встречать Масатоси Симу. Японцу не терпелось увидеть, что именно сделали люди из Intel за несколько месяцев его отсутствия. Приехав в офис, Мазор оставил итальянца и японца с глазу на глаз, а сам благоразумно испарился. Когда Сима посмотрел документы, которые ему протянул Фэджин, то его чуть Кондратий не хватил: за четыре месяца “интеловцы” не сделали ровным счетом ничего. Сима ожидал, что за это время уже закончится прорисовка схемы чипов, а увидел только концепцию в том виде, которая была на момент его отъезда в декабре 1969 года. Дух самурая вскипел, и Масатоси Сима дал выход своему возмущению. Не менее темпераментный Фэджин объяснил Симе, что если тот не успокоится и не поймет, что они в одной лодке, – проекту полный капут. На японца произвели впечатления доводы Фэджина и то, что он, собственно, работает в компании всего несколько дней и не несет ответственность за срыв графика. Таким образом, Федерико Фэджин и Масатоси Сима стали вместе работать над проектированием схем чипов.

К этому времени, однако, руководство компании Intel, которое смотрело на этот заказ Busicom как на очень интересный и в чем-то авантюрный, но все-таки не самый важный эксперимент, переключило группу Хоффа и Мазора на изготовление “изделия 1103” – микросхемы DRAM емкостью 1 кбит. На тот момент именно с изготовлением чипов памяти руководство Intel связывало будущее благополучие компании. Оказалось, что Федерико Фэджин был руководителем проекта, в котором, кроме него, никого не было (Сима, как представитель заказчика, участвовал лишь эпизодически). Фэджин в течение недели создал новый, более реалистичный проектный график и показал его Симе. Тот улетел в Японию в штаб-квартиру Busicom. Японцы, узнав все детали, хотели было отказаться от сотрудничества с Intel, но все-таки передумали и отослали Масатоси Симу обратно в США с целью максимально помочь и ускорить создание набора микросхем.

В конечном итоге группа кроме Фэджина пополнилась одним электротехником и тремя чертежниками. Но основная тяжесть работы все равно легла на руководителя. Первоначально группа Фэджина взялась за разработку чипа 4001 – микросхемы ROM. Обстановка была весьма нервозной, поскольку никто до них не делал изделий такой сложности. Все приходилось проектировать вручную с нуля. Помимо проектирования чипа параллельно нужно было изготавливать тестовое оборудование и разрабатывать программы тестирования. Порой Фэджин пропадал в лаборатории по 70-80 часов в неделю, не уходя домой даже на ночь. Как он позднее вспоминал, ему весьма повезло, что в марте 1970 года у него родилась дочка и его жена на несколько месяцев уехала в Италию. В противном случае не миновать бы ему семейного скандала.

В октябре 1970 года работы по изготовлению чипа 4001 были закончены. Микросхема работала безупречно. Это повысило уровень доверия к Intel со стороны Busicom. В ноябре был готов и чип 4003 – микросхема интерфейса с периферией, самая простая из всего набора. Еще чуть позже был готов 320-битный модуль динамической памяти 4002. И вот, наконец, в конце декабря 1970 года с завода для тестирования были получены “вафли” (так американские специалисты называют кремниевые пластины, на которых “вырастили” микросхемы, но еще не разрезали). Дело было поздним вечером, и никто не видел, как у Фэджина тряслись руки, когда он загружал первые две “вафли” в пробер (специальное устройство для испытания и тестирования). Он сел перед осциллографом, включил кнопку напряжения и… ничего, линия на экране даже не дернулась. Фэджин загрузил следующую “вафлю” – тот же самый результат. Он был в полном недоумении.

Нет, конечно, никто не ожидал, что первый опытный образец устройства, которого никто в мире ранее не делал, сразу же покажет расчетные результаты. Но чтобы на выходе вообще не было сигнала – это был просто удар. После двадцати минут учащенного сердцебиения Фэджин решил рассмотреть пластины под микроскопом. И тут сразу же все выяснилось: нарушения в технологическом процессе, приведшие к тому, что некоторых межслойных перемычек на схемах не было! Это было очень плохо, график слетал, но зато Фэджин знал: ошибка произошла не по его вине. Следующая партия “вафель” поступила в январе 1971 года. Фэджин снова заперся в лаборатории и просидел в ней до четырех утра. На этот раз все работало безупречно. В течение усиленного тестирования в последующие несколько дней все же обнаружились несколько незначительных ошибок, но они были быстро исправлены. Подобно художнику, подписывающему полотно, Фэджин поставил на чип 4004 свои инициалы – FF.

Микропроцессор как товар

В марте 1971 года Intel отправила в Японию комплект для калькулятора, который состоял из одного микропроцессора (4004), двух 320-битных модулей динамической памяти (4002), трех микросхем интерфейса (4003) и четырех микросхем ROM. В апреле из компании Busicom поступило сообщение, что калькулятор работает идеально. Можно было запускать производство. Однако Федерико Фэджин начал горячо убеждать руководство Intel, что глупо ограничиваться только калькуляторами. По его мнению, микропроцессор можно было бы использовать во многих областях современного производства. Он был уверен, что набор микросхем 400x представляет самостоятельную ценность и может продаваться сам по себе. Его уверенность передалась руководству. Однако была одна загвоздочка – первый в мире микропроцессор не принадлежал Intel, он принадлежал японской фирме Busicom! Ну что тут было делать? Оставалось ехать в Японию и начинать переговоры о покупке прав на собственную разработку. Так “интеловцы” и поступили. В результате компания Busicom продала права на микропроцессор 4004 и сопутствующие микросхемы за шестьдесят тысяч долларов.

Обе стороны остались довольны. Busicom до сих пор продает калькуляторы, а Intel… Руководство компании Intel поначалу смотрело на микропроцессоры как на побочный продукт, который лишь способствует продажам главного товара – модулей оперативной памяти. Компания Intel выбросила на рынок свою разработку в ноябре 1971 года под названием MCS-4 (Micro Computer Set).

Несколько позднее Гордон Мур, оглядываясь назад, скажет по этому поводу: “Если бы автомобилестроение эволюционировало со скоростью полупроводниковой промышленности, то сегодня “Роллс-ройс” стоил бы три доллара, мог бы проехать полмиллиона миль на одном галлоне бензина и было бы дешевле его выбросить, чем платить за парковку”. Конечно, если сравнивать с нынешними требованиями, у MCS-4 были далеко не сногсшибательные показатели. Да и в начале 70-х никто особо сильно не взволновался в результате появления этой продукции. В целом вычислительная система на основе набора MCS-4 не уступала самым первым ЭВМ 1950-х годов, но на дворе-то уже были другие времена, и в вычислительных центрах стояли машины, вычислительная мощь которых ушла далеко вперед.

Intel развернула специальную пропагандистскую кампанию, адресованную инженерам и разработчикам. В своих рекламных объявлениях Intel доказывала, что микропроцессоры, конечно, не являются чем-то очень серьезным, но зато их можно использовать в разных специфических областях, типа автоматизации производства. Помимо калькуляторов набор MCS-4 нашел себе применение в качестве контроллеров для таких устройств, как газовые насосы, автоматические анализаторы крови, устройства контроля уличного движения…

Что касается отца первого в мире микропроцессора, то он был сильно огорчен тем обстоятельством, что Intel никак не хочет взглянуть на новое устройство как на основной продукт. Фэджин совершил несколько туров по США и Европе, выступая в научных центрах и передовых заводах, пропагандируя микропроцессоры. Подчас его и компанию Intel поднимали на смех.

Действительно, уж больно несерьезным тогда выглядела вся эта микропроцессорная затея. Фэджин поучаствовал и в проекте 8008 – создании восьмибитного микропроцессора, который во многом повторял архитектуру 4004. Однако постепенно в нем нарастало чувство обиды за то, что в компании к нему относятся как просто к хорошему инженеру, справившемуся со сложной, но не очень важной работой. Но он-то знал, что фактически совершил мировую революцию.

В октябре 1974 года Федерико Фэджин покинул Intel и основал свою собственную компанию Zilog, Inc. В апреле следующего года в Zilog из Busicom перешел Масатоси Сима. И друзья приступили к проектированию нового процессора, который должен был стать самым лучшим в мире. В мае 1976 года на рынке появился микропроцессор Z80 компании Zilog. Процессор Z80 был очень успешным проектом и серьезно потеснил на рынке процессоры Intel 8008 и 8080. В середине 70-х – начале 80-х годов компания Zilog была для Intel приблизительно тем же, чем сегодня компания AMD – серьезным конкурентом, способным выпускать более дешевые и эффективные модели той же архитектуры. Как бы там ни было, а большинство обозревателей сходятся в том, что Z80 был самым надежным и успешным микропроцессором за всю историю микропроцессорной техники. Однако не стоит забывать, что история эта еще только начиналась…

MCS-4 – прообраз будущего

Статья о создании первого в мире микропроцессора будет неполной, если не сказать хотя бы пару слов о технических особенностях набора MCS-4. На введении цифры 4 в систему кодирования Intel настоял Федерико Фэджин. Маркетинговому отделу Intel эта идея понравилась – четверка указывала и на разрядность процессора, и на общее количество микросхем. Набор состоял из четырех следующих чипов: 4001 – микросхема маскируемой ROM емкостью 2048 бит; 4002 – микросхема RAM емкостью 320 бит; 4003 – микросхема интерфейса, представляющая собой 10-битный сдвиговый регистр; 4004 – четырехбитный ЦПУ с набором из 45 команд. Фактически это был прообраз персонального компьютера ближайшего будущего. Рассмотрим немного подробнее функционирование этих микросхем, поскольку основные принципы их работы можно обнаружить даже в современных микропроцессорах.

В оперативной памяти (RAM) современного компьютера одновременно хранятся и выполняющиеся программы, и данные, которые они обрабатывают. В связи с этим процессор всякий раз должен знать, что именно он сейчас выбирает из памяти – команду или данные. Первому микропроцессору 4004 было проще – команды хранились только в ROM (чип 4001), а данные – в RAM (чип 4002).

Поскольку инструкции для процессора 4004 были восьмибитными, микросхема 4001 была организована в виде массива из 256 восьмибитных слов (термин “байт” тогда еще не использовался). Иначе говоря, в одной такой микросхеме могло уместиться максимум 256 инструкций центрального процессора. Микропроцессор 4004 мог работать максимум с четырьмя микросхемами 4001, следовательно, максимальное количество инструкций, которые можно было записать, не превышало 1024. Тем более что “Ассемблер” 4004 был очень простым – всего 45 команд, причем не было таких сложных команд, как умножение или деление. Вся математика зиждилась на командах ADD (прибавить) и SUB (отнять). Кто знаком с алгоритмом двоичного деления, легко поймет сложность работы программистов с процессором 4004.

Адрес и данные передавались по мультиплексируемой четырехбитной шине. Поскольку микросхема 4001 представляла собой EPROM, ее можно было перепрошивать, записывая те или иные программы. Тем самым MCS-4 настраивалась на выполнение конкретных задач.

Роль оперативной памяти отводилась чипу 4002. Обмен данными с 4002-й также осуществлялось по четырехразрядной шине. В системе на базе MCS-4 можно было использовать максимум четыре микросхемы 4002, то есть максимальный объем ОП в такой системе равнялся 1 кбайт (4 x 320 бит). Память была организована в виде четырех регистров, в каждом из которых могло размещаться двадцать четырехбитных символов (4 x 20 x 4). Поскольку при использовании четырехбитного кода можно закодировать максимум 16 символов (24), MCS-4 было бы затруднительно использовать для работы с текстовым процессором. Если говорить о калькуляторе, то кодировались десять символов от 0 до 9, четыре знака арифметических действий, десятичная точка и один символ оставался резервным. Получение данных из памяти осуществлялось процессором по инструкции SRC.

Процессор посылал две четырехбитовые последовательности X2 (D3D2D1D0) и X3 (D3D2D1D0). В последовательности X2 биты D3D2 указывали номер банка памяти (номер чипа 4002), а биты D1D0 – номер запрашиваемого регистра в этом банке (современные процессоры, кстати, при работе с памятью также указывают номер банка памяти). Вся последовательность X3 указывала номер символа в регистре. Чипы и регистры нумеровались: 00 – 1; 01 – 2; 10 – 3; 11 – 4. Например, инструкция SRC 01010000 сообщала процессору, что во втором чипе, втором регистре следует выбрать первый символ.

Весь обмен данными с внешними устройствами, такими, как клавиатура, дисплеи, принтеры, телетайпы, разного рода переключатели, счетчики, – словом, с периферией, осуществлялся через микросхему интерфейса 4003. В ней были объединены параллельный выходной порт, а также последовательный входной / выходной порт. В принципе, такой механизм обмена данными с периферией просуществовал вплоть до появления портов USB и т. п.

Основа набора – микросхема 4004 – была самым настоящим микропроцессором. Процессор содержал четырехбитный сумматор, регистр-аккумулятор, 16 индексных регистров (четырехбитных, естественно), 12 счетчиков программ и стека (четырехбитных) и восьмибитный командный регистр и декодер. Командный регистр подразделялся на два четырехбитных регистра – OPR и OPA.

Рабочий цикл происходил следующим образом. Процессор вырабатывал сигнал синхронизации SYNC. Затем посылалось 12 бит адреса для выборки из ROM (4001), которые проходили за три рабочих цикла: A1, A2, A3. В соответствии с поступившим запросом обратно в процессор посылалась восьмибитная команда за два цикла: M1 и M2. Инструкция размещалась в регистрах OPR и OPA, интерпретировалась и выполнялась за следующие три цикла: X1, X2, X3. На рисунке показан рабочий цикл процессора Intel 4004. Частота процессора 4004 первого выпуска была 0,75 МГц, так что все это происходило не очень быстро по нынешним понятиям. Весь цикл занимал порядка 10,8 секунды. Суммирование двух восьмизнаковых десятичных чисел занимало 850 секунд. За секунду Intel 4004 выполнял 60 000 операций.

Даже из краткого технического описания видно, что это был совсем слабенький процессор. Поэтому нет ничего удивительного, что мало кого в начале семидесятых годов прошлого века всполошило появление на рынке набора MCS-4. Продажи по-прежнему оставались не очень высокими. Зато пропаганда Intel откликнулась в сердцах молодых энтузиастов вроде Билла Гейтса (Bill Gates) и его друга Пола Аллена (Paul Allen), которые сразу поняли, что появление микропроцессоров открывает лично для них двери в новый мир.

Схема кодирования от Intel

Схему цифрового кодирования изделий Intel изобрели Энди Гроув (Andy Grove) и Гордон Мур. В своем исходном виде она была весьма простой, для кодирования использовались только цифры 0, 1, 2 и 3. После того как Федерико Фэджин создал микропроцессор, он предложил ввести цифру 4, чтобы в коде отразить четырехбитную структуру его регистров. С появлением восьмибитных процессоров была добавлена цифра 8. В этой системе любое изделие получало код, состоящий из четырех цифр. Первая цифра кода (крайняя левая) обозначала категорию: 0 – контрольные чипы; 1 – микросхемы PMOS; 2 – микросхемы NMOS; 3 – биполярные микросхемы; 4 – четырехбитные процессоры; 5 – микросхемы CMOS; 7 – память на магнитных доменах; 8 – восьмибитные процессоры и микроконтроллеры. Цифры 6 и 9 не использовались.

Вторая цифра в коде обозначала тип: 0 – процессоры; 1 – микросхемы статической и динамической RAM; 2 – контроллеры; 3 – микросхемы ROM; 4 – сдвиговые регистры; 5 – микросхемы EPLD; 6 – микросхемы PROM; 7 – микросхемы EPROM; 8 – схемы синхронизации для тактовых генераторов; 9 – чипы для телекоммуникаций (появилась позднее). Две последние цифры обозначали порядковый номер данного вида изделия. Таким образом, первая микросхема, которую изготовила Intel, имевшая код 3101, расшифровывалась как “биполярная микросхема статической или динамической RAM первого выпуска”. UPgrade

Дмитрий Румянцев

upweek.ru

Процессоры AMD - история развития от А до Я

     Я совсем недавно писал об истории развития процессоров компании Intel. Кому интересно, эту статью можно найти по ссылке: «История процессоров Intel». Когда я писал статью, мне стало очень интересно, как развивались процессоры AMD. Сейчас каждый, кто в теме, знает, что компания AMD — это главный и вечный конкурент компании Intel.

На заметку! В сегодняшней статье я постараюсь написать все ветви развития процессоров AMD. Если о каждом процессоре писать подробно, то статья будет безумно большой, в связи с чем я решил написать самое необходимое и добавить фотографии с подробными характеристиками. 1. Процессор AMD Am 2900 (1975 год)

     Данный процессор является родоначальником процессор AMD. Первоначально он был сделан для вычислительных машин (калькулятор). Сам процессор был 4-битным, но у него был один большой минус: процессору нужна была большая площадь для интегральных схем. Со временем эту проблему решили.     Спустя некоторое временя у этого процессора появилось целое семейство от 2900 до 2965. Последние версии процессоров имели хорошую мощность.

2. Процессор AMD Am 9080 (1974 год)

     Тактовая частота процессора составляла 2 МГц. По сути это был клон процессора Intel 8080. Он даже выпускался без лицензии.

3. Процессор AMD Am 286 (1982 год)

     Данный процессор выпускался по лицензии Intel и был клоном процессора Intel 80286. Но в отличии от Intel у него было несколько значимых преимуществ:

1. Высокая тактовая частота2. Эмуляция EMS3. Возможность выхода из Protected mode4. Низкая цена

4. Процессор AMD Am 386 (1991 год)

     Этот процессор был так же идентичен процессорам Intel. С выходом этого процессора компания AMD продолжала рецензировать производство клонов процессоров Intel.     У процессора Am 386 были 2 интересные функции:1. Он был намного быстрее, чем аналоги Intel2. Это первый процессор, который получил логотип Windows Compatible

5. Процессор AMD Am 486 (апрель 1993 года)

     Это был последний процессор, который стал клоном Intel. Его сделали для конкуренции с процессором Intel 80486. Потом этот процессор стали выпускать в двух вариантах: первом варианте процессор имел микрокод Intel, а во втором — микрокод AMD. С введением своего микрокода у AMD произошел конфликт с Intel.     В дальнейшем этот процессор был доработан до AMD 5x86. Это тот же процессор Am 486, только с множителем 4x.

6. Процессор AMD K5 (1996 год)

     Это первый собственный процессор компании AMD. Процессор K5 был пятого поколения и, если его сравнивать с Intel Pentium, то он был более продвинутый, пусть с небольшими недостатками.     На тот момент процессор AMD K5 был очень интересен своей внутренней архитектурой, сделанной на основе RISC. Данная архитектура декодировала перед выполнением инструкций x86 в микроинструкции.

На заметку! Это первый процессор, у которого на упаковке было написано, что требуется установка радиатора и вентилятора. Такая система охлаждения в то время встречалась крайне редко. 7. Процессор AMD K6 (1997 год)

     Этот процессор появился в результате работы NexGen над Nx686. Процессор AMD K6 имел совместимость с материнскими платами Socket 7 (Pentium). И ко всему этому он с этой платой работал лучше, чем процессор Intel Pentium II. Да и по цене он был намного дешевле.     В 1998 году процессор K6 был модернизирован до процессора K6-2. В нем уже использовалась более скоростная шина (100 МГц) и была увеличена производительность SIMD.     В 1999 году была представлена третья версия процессора K6-3. По своим характеристикам он превосходил процессор K6-2, но вот только в производстве был очень затратным.

На заметку! В этом же году компания AMD стала продавать процессоры для ноутбуков. Версии процессоров K6-3+ и K6-3+ изготавливались оба по 180-нм техпроцессу. 8. Процессор AMD K7/Athlon (1999 год)

     Так как процессор K6-3 уже было больше нельзя модернизировать, AMD решила выпустить новый процессор седьмого поколения K7. Позднее его переименовали в Athlon.     В этом процессоре были устранены все недостатки предыдущих версий. В связи с этим процессор превосходил процессоры линейки Intel. В народе этот процессор сразу был назван «УБИЙЦА Intel».     На тот момент процессор Athlon был самым быстрым процессором x86. Правда, была одна проблема со стороны чипсета. Ни один из чипсетов AMD и VIA не могли конкурировать с чипсетами Intel.

На заметку! В этом году AMD самая первая объявила и продала процессор с частотой 1 ГГц, тем самым опередив Intel на целых два дня. 9. Процессор AMD Athlon: Thunderbird, XP, Barton (лето 2000 года)

     Так как с процессором K7 компания AMD вышла победителем, то она решила его улучшать шаг за шагом. В следующих версиях процессоров была увеличена частота и был совершен переход на более тонкие техпроцессы.     Не стоит забывать, что AMD так же делала процессоры для серверов и ноутбуков.

10. Процессор AMD Duron и Sempron (2000 - 2004)

     Чтобы конкурировать с процессорами Intel, Celeron AMD выпустила два бюджетных процессора. Конечно, они были медленнее процессоров Athlon, но конкуренцию Celeron они все-таки составили.

11. Процессор AMD K8 (2003 год)

     Процессор восьмого поколения AMD K8 стал первым процессором x86, который поддерживал 64 - битную адресацию. Главным улучшением процессора стал интегрированный контроллер памяти.     После этого AMD выпустила огромное количество процессоров, сделанных на основе процессора K8. В качестве примера Вашему вниманию хочу представить пару процессоров: Opteron (серверная версия), Turion 64 (для ноутбуков) и Athlon 64 FX (High-end процессор).

12. Процессор AMD Athlon 64 X2 (2005 год)

     Данный процессор был создан из двух ядер процессора K8, став первым двухъядерным процессором AMD. Благодаря архитектуре с интерфейсом Hyper Transport значительно увеличилась производительность. На тот момент он значительно опередил процессоры Intel.     У процессора так же было много модификаций, как и у предыдущего процессора. Продавался он вплоть до 2008 года, потом потеряв свою актуальность.

13. Процессор AMD Phenom: K10 и Quad-Core (2007 год)

     Архитектура этого процессора была хорошо проработана. С выходом процессора K10 AMD столкнулся с тяжелыми проблемами. Процессор был не такой быстрый и трудно поддавался разгону. Тут компания Intel значительно обошла AMD.     Далее процессор Phenom был доработан до 4 ядер и стал называться Phenom X4, но и тут возникли проблемы с 4-м ядром, т. к. тот был дефектным. После чего появился 3-ядерный процессор Phenom X3.     К сожалению, к середине 2008 года AMD стало очень трудно конкурировать с Intel. Для того чтобы выйти из ситуации нужно было предлагать новые решения.

14. Процессор AMD Bulldozer (2010 год)

     Для выхода из кризисной ситуации (солидное отставание от Intel) AMD разработала абсолютно новую архитектуру. AMD назвала свой новый процессор кодовым именем «Bulldozer». Имя, скорее всего, было выбрано не случайно. Этот процессор должен был снести с рынка процессоры Intel как бульдозер сносит все на своем пути.

     Данный процессор делится на две ветви: Opteron (серверная версия) и FX (для ПК). На фотографии должно быть все понятно. Этот процессор составил отличную конкуренцию процессорам Intel Core. Они и по сей день продаются и идут вровень с процессорами Intel.

Вывод

     Вот и закончилась история процессоров AMD, но возможно через пару лет кто-то уже другой будет дописывать данную статью.      Напоследок хочу Вам представить статью, где я описал достоинства и недостатки процессоров AMD и Intel. Для того чтобы перейти на статью, кликайте сюда: «Процессоры AMD против Intel». После прочтения публикаций, оставляйте свои комментарии, ведь мне очень интересно узнать Ваше мнение.

www.pc-aio.ru

Самые важные процессоры в истории компьютеров

Процессоры окружают нас повсюду — они есть в компьютерах, телефонах, часах, и даже в холодильниках и чайниках. Однако их можно легко разбить на две-три группы по общим признакам (к примеру, ARM и x86), и в каждой группе были модели, которые серьезно продвинули процессоростроение вперед — о них и поговорим.

Intel 4004 (1971) Процессор, с которого все началось — да, разумеется были процессоры и до него, однако это был первый коммерческий «камень», который в принципе мог купить каждый человек. Его характеристики были более чем скромны — частота до 740 КГц, сам он был 4-битным, а стоил около 200 долларов (к примеру — за такие деньги сейчас можно взять хороший четырехядерный Intel Core i5). Однако его возможностей вполне хватало для работы калькуляторов — именно для них он и разрабатывался.

Intel 8086 (1978) Именно с этого процессора стали использовать набор команд х86, который сейчас есть во всех процессорах от Intel и AMD. Так что в теории современный софт после некоторой адаптации можно запустить на этом 10 МГц «камушке». Также это был первый 16-битный процессор от Intel, так что в итоге он мог адресовать аж 1 МБ памяти — огромный объем по тем меркам.

Zilog Z80 (1976)

Пожалуй, один из самых известных процессоров благодаря Sinclair ZX Spectrum — персональному компьютеру, который стоил крайне дешево, и поэтому за 17 месяцев было продано аж один миллион экземпляров. Сам процессор был бинарно совместим с популярным Intel 8080, так что с запуском программ никаких проблем не было. Ну а из-за огромной популярности Спекки под этот процессор было написано огромное множество всевозможным программ и игр, более того — их пишут даже сейчас (да-да, под 3-10 МГц процессор 30-летней давности), так что процессор можно смело называть самый долгоживущим среди процессоров для персональных ПК.

RCA 1802 (1976) С развитием ракетостроения достаточно быстро стало понятно, что из-за высокого уровня солнечной (в основном) радиации обычные кремниевые процессоры быстро деградируют и перестают работать, так что для долгих космических перелетов нужно или делать серьезную защиту (что сильно увеличивает вес спутника), или же использовать другой полупроводник или подложку. Первый вариант, разумеется, отбросили — для спутников 70ых годов каждый грамм был на счету, а вот второй вариант удался — был создан процессор RCA 1802, построенный по технологии кремний на сапфире (КНС) и обладающий высокой устойчивостью как к статике, так и к радиации. И процессор не подвел — он был установлен в исследовательском зонде Галилео, изучавшем Юпитер, и без проблем отработал почти 15 лет (с 1989 по 2003 год), обработав при этом свыше 30 гигабайт информации (и это при частоте всего 1.7 МГц).

MOS Technology 6502 (1975)

Процессор, которые многие знают по компьютеру Apple II, в котором он стоял. Но свою популярность он получил раньше из-за того, что при цене всего в 25 долларов конкурировал с Intel 8080 и Motorola 6800, которые стоили около 200 долларов. Разумеется, конкуренты потом снизили цену (причем более чем вдвое — до 70-80 долларов), однако это только подхлестнуло продажи 6502ого. По меркам середины 70ых это был достаточно мощный процессор, который мог адресовать до 64 КБ памяти. В итоге его стали ставить в игровые приставки, где цена комплектующих была важна (к слову, в Денди, он же NES, стоял именно он), и в дешевые ПК (тем самым серьезно подхлестнув рынок домашних компьютеров). 

Motorola 68000 (1980)

«Последний выдох великой Motorola». Компания, которая на тот момент уже достаточно давно занималась процессорами, стала сдавать — основной ее ошибкой было то, что она наплевала на совместимость: если Intel уже почти 5 лет выпускает х86 процессоры, от Motorola постоянно делала что-то новое. Так произошло и с 68k — это был мощный 32-битный процессор с частотой до 20 МГц, его активно ставили в персональные компьютеры от Amiga и Apple, он даже побывал в космосе, будучи задействован в Спэйс Шаттлах. Но, увы, продолжения он толком не имел, в конце 90ых Motorola пыталась уйти во встраиваемые решения, но и там более дешевые ARM-процессоры не дали ей сколько-нибудь развиться.

PowerPC 601 (1992) Архитектура Power была достаточно серьезным конкурентом x86, и все потому, что в нее серьезно вложились Apple и IBM: они отлично понимали, что Motorola не сможет в одиночку сделать новый хороший процессор, а Apple и IBM нужно что-то ставить в свои устройства — так родился союз AIM (по первым буквам компаний, которые в него входили), и в 1992 году появился процессор 601, работающий на частоте в 66 МГц. В итоге архитектура продолжала развиваться до середины нулевых, пока не стало понятно, что x86 все же лучше. Последним устройством на архитектуре Power можно считать Xbox 360, который относительно актуален даже сейчас.

AMD Opteron 240 (2003) Это был первый процессор архитектуры х86, умевший аппаратно выполнять 64-битные приложения. Intel в то время нечего было предложить — да, их Itanium умели выполнять 64-битный код, но вот с 32-битным кодом, который был тогда в 99% программ, они работали медленнее, чем Opteron. Плюсов в 64-битной адресации было много, самый основной — возможность работы более чем с 4 ГБ памяти, и в Windows XP это уже было реализовано.

Pentuim III (2000) В 90ые началась жесткая гонка за мегагерцами — каждое новое поколение имело все меньший техпроцесс и все лучшую компоновку транзисторов, что в итоге привело к тому, что планка в 1 ГГц была покорена в Pentium III в 2000 году. С тех пор частоты выросли крайне незначительно, до 3-5 ГГц, а производительность стали увеличивать «вширь» — стали появляться многоядерные процессоры.

Intel Pentium D (2005) Проиграв гонку за 64-битные процессоры, Intel решили подтянуться и создать первый пользовательский двухядерный процессор — и им это удалось: в 2005 году они выпустили двухядерный Pentium, хотя по современным меркам это не совсем двухядерный процессор — это два процессора под одной крышкой, без общих элементов. Работала такая схема плохо, да и софта, поддерживающего многопоточность, тогда не было. Но все же это дало толчок к развитию многоядерных процессоров, где, к слову, Intel все же проигрывает — AMD сейчас предлагает пользователям восьмиядерные решения, когда Intel — лишь четырехядерные (и в скором времени — шестиядерные).

После 2005 года чего-то глобально нового в процессорах больше, увы, не появлялось — да, теперь процессоры имеют кэш L3 и даже L4, но это логичное развитие L2. Процессоры имеют по 4-8 ядер — логичное развитие многоядерности. Частоты в среднем как были около 3 ГГц в 2005, такими они сейчас и остались. И даже 128-битных процессоров не появилось и в ближайшем будущем не будет, ибо до лимита памяти х64 процессоров еще очень и очень далеко. Более того — мы все ближе к лимиту на размер кремниевого транзистора, и сейчас активно ведутся разработки по созданию абсолютно новых процессоров. Так что кто знает — может, лет через 20, мы будем работать на квантовых ПК, а на современные Core i7 смотреть также, как мы сейчас смотрим на какой-нибудь Pentium III.

www.iguides.ru

САМЫЙ ПЕРВЫЙ ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР | Наука и жизнь

IBM PC стал точкой отсчета для современных персональных компьютеров в том виде, к какому мы все привыкли, но он вовсе не был первым в мире ПК. Кому же принадлежит первенство? Первый в мире микрокомпьютер Altair-8800 (1975 год).

Вопрос этот до сих пор вызывает массу дебатов, однако чаще всего пальму первенства отдают микрокомпьютеру Altair-8800, выпущенному в 1975 году небольшой американской компании MITS из города Альбукерке, штат Нью-Мексико.

Что же представлял собой первый в мире микрокомпьютер? По сути, это был комплект типа "Сделай сам" - ящик для корпуса и набор деталей, включавших новейший по тем временам процессор 8080 фирмы Intel. Комплект распространялся по почте всего за 397 долларов. (Для сравнения : один только процессор Intel 8080 продавался за 360 долларов, правда, MITS покупала его у Intel по себестоимости - за 75 долларов.) Счастливым обладателям приходилось самостоятельно паять и тестировать собранные узлы, а если сборка завершалась успешно, то для работы с микрокомпьютером надо было еще освоить программирование - научиться писать программы на машинном языке, то есть с помощью нулей и единиц. К тому же Altair-8800 не предусматривал ни монитора, ни клавиатуры, ни дисководов или винчестеров. Все это стало непременной принадлежностью ПК гораздо позднее, а пока что для ввода программ в компьютер приходилось щелкать тумблерами на передней панели корпуса, а для считывания результатов следить за показаниями светодиодных индикаторов. Объем оперативной памяти составлял всего лишь 256 байт. Современным пользователям ПК, привыкшим кликать мышкой по красивым иконкам и панелям на экране, трудно представить себе радость обладания подобным устройством. Однако "Альтаир" был любим пользователями - ведь люди впервые получили действительно ПЕРСОНАЛЬНЫЙ компьютер!

Создатель Altair-8800 Эд Робертс надеялся продать 200 комплектов своего детища в течение одного года, однако уже к концу первого дня продаж число заявок превысило эту цифру. А через несколько месяцев фирма была буквально завалена заказами. Дела шли настолько хорошо, что Робертс не только быстро окупил первоначальную банковскую ссуду в 20 тысяч долларов, но и смог в 1977 году продать свою компанию за 6,5 миллиона долларов. "Альтаир" разошелся по всей Америке в десятках тысяч экземпляров.

Однако, как и в случае с любым другим серьезным изобретением, первенство "Альтаира" может быть оспорено. Ведь, например, далеко не все согласны с утверждениями, что автомобиль изобрел Карл Бенц, самолет - братья Райт, кинематограф - братья Люмьер, а радио - Александр Попов. То же самое и с персональным компьютером: здесь на звание первых претендуют еще по крайней мере две модели: Scelbi-8H и Mark 8, появившиеся в 1974 году. Оба эти компьютера строились на базе первого 8-разрядного микропроцессора Intel 8008 и, подобно "Альтаиру", представляли собой просто наборы деталей для самостоятельной сборки. Однако Scelbi-8H и Mark 8 так и остались во многом экспериментальными моделями, не нашедшими коммерческого применения. Настоящий коммерческий успех и широкое распространение получил именно Altair-8080 фирмы MITS - видимо, поэтому его и считают первым персональным компьютером.

См. в номере на ту же тему

Ю. МИХАЙЛОВ - Двадцать лет эры РС.

В. ЗАЙЦЕВ, А. ШИШЛОВА - Как выбрать идеальный компьютер?

www.nkj.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики