Лекарства от старения, и Где они обитают. Таблетки от старения


Лекарства от старения, и Где они обитают

: 2 Апр 2018 , Отбор лучшего друга , том 77, №1

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска их развития является возраст, и они составляют значительную долю среди причин смертности. Это инсульты, инфаркты, онкологические заболевания, болезнь Альцгеймера, диабет 2-го типа... Именно эти болезни убивают нас. Ученые, работающие в области биологии старения, ищут, что их объединяет, единый механизм, если, конечно, он существует

Я хотел бы поговорить о том, существуют ли на самом деле какие-то успехи в деле «героической» борьбы со старением. СМИ нам время от времени сообщают, что ученые открыли ген старения, но таблеток от старости в аптеках все еще нет. Хотелось бы знать, как обстоят дела на самом деле. Для этого надо определиться, что мы считаем успехом в борьбе со старением. Чтобы люди жили до ста лет? Или до ста пятидесяти? Тогда можно будет говорить об успехе или еще нет?

Надо понимать, что биология старения – ​тема очень ажиотажная, и это обоюдоострое лезвие, потому что любые разговоры на эту тему легко продать как в буквальном, так и в переносном смысле. Эта тематика требует от ученых, с одной стороны, корректности и сдержанного оптимизма, а с другой – ​способности не бросаться в крайности в своих представлениях. Существуют две противоположные точки зрения. Одна состоит в том, что со старением вообще ничего нельзя сделать: как на роду (в генах) написано, так оно и будет. Другая подразумевает, что бессмертие должно наступить буквально на днях. Последним пользуются некоторые фармакологические компании, которые начинают продавать баночки с «лекарством от старости». Но если бы где-то в секретных лабораториях стояла баночка с таким лекарством, то мы бы уже жили в другом мире.

Где ищут «лекарства от старости»?

Одно из очевидных направлений поисков средств борьбы со старением – ​заменять органы, которые в процессе старения приходят в упадок, на новые, специально выращенные. Сейчас уже более-менее понятно, в каком направлении двигаться, чтобы этого достичь. Существуют методики, позволяющие перепрограммировать специализированные, терминально дифференцированные клетки в индуцированные плюрипотентные стволовые клетки (ИПСК), которые затем можно направленно превращать почти во все типы клеток. Можно взять у пожилого пациента его же собственные клетки, превратить их в ИПСК, в ходе чего они помимо прочих теряют черты, свойственные старческим клеткам (иногда употребляют термин «омолаживаются», но его рекомендуют избегать). Далее можно из них вырастить «молодой» орган или, по крайней мере, «молодую» ткань и пересадить ее пациенту.

Одна из проблем метода в том, что это тактическое отступление, имеющее смысл только до тех пор, пока речь не заходит о мозге: ведь его так просто не заменить. Вторая проблема в том, что клетки, имеющие свойства молодых, оказавшись в окружении старческих клеток, сами приобретают фенотип (молекулярные маркеры) старческих клеток (Acosta et al., 2013). Таким образом, выращенный и пересаженный молодой орган недолго пробудет молодым.

Уже довольно давно существуют методики, позволяющие перепрограммировать специализированные, терминально дифференцированные клетки в индуцированные плюрипотентные стволовые клетки, которые могут дифференцироваться почти во все типы клеток. Для этого в них с помощью вирусных векторов вводят гены, кодирующие регуляторные молекулы, характерные для плюрипотентных клеток. Но подсадка человеку таких клеток связана с высоким риском развития злокачественной опухоли, а использование вирусных векторов в клинической практике не одобрено в связи с тяжелыми осложнениями, развившимися в клинических испытаниях этой методики

Однако этот эффект работает и в обратную сторону: старые клетки, оказавшись среди молодых, приобретают уже их свойства! Чтобы понять, как это происходит, и, возможно, воспроизвести этот эффект, нужно найти молекулярный субстрат «узнавания» клетками «молодого» или «старого» клеточного окружения. Этим субстратом, вероятно, являются какие-то сигнальные молекулы. Результаты экспериментов с использованием парабиоза, искусственного соединения мышей через кровеносную систему, в результате чего мышечные и нервные ткани старых мышей «омолодились», выявили и предполагаемого кандидата на место посредника этого эффекта. Им оказался белок GDF11 (фактор роста и дифференцировки 11), выделенный из крови молодых мышей (Sinha et al., 2014). Правда, эти работы впоследствии подверглись критике, которая состояла в том, что GDF11 – ​сопутствующая находка, и поэтому исследования до сих пор продолжаются (Reardon, 2015). Но я полагаю, что обнаружить истинного посредника или посредников – ​только вопрос времени.

Другое стратегическое направление борьбы со старением – ​попытки влиять непосредственно на его механизмы, изменяя регуляцию обмена питательных веществ и энергии. В качестве субстратов влияния можно назвать гормон роста, который управляет ростом ткани, а также инсулиноподобный фактор роста – ​молекулу, похожую на гормон инсулин, необходимый для регуляции обмена глюкозы, но имеющую широкий спектр действия на процессы роста и развития клеток.

Молекулярные системы, о которых идет речь, «принимают решения» о том, насколько активно клетки должны расти, делиться, использовать энергию. И, хотя это кажется неочевидным, в ходе старения такие системы начинают работать не слабее, а сильнее, но при этом неэффективно (Blagosklonny, 2010). В результате большинство потенциальных средств, изменяющих работу этих систем, направлены на их подавление. Например, к ним относится антибиотик и иммунодепрессант рапамицин, ингибирующий так называемый сигнальный путь киназы mTOR, участвующей в синтетических процессах в клетке и активируемой аминокислотами. Рапамицин имеет серьезные побочные эффекты и не пригоден к использованию для продления жизни человека, но, возможно, в дальнейшем будут найдены более подходящие вещества. Одним из них может оказаться противодиабетический препарат метформин, если будет доказано, что его безопасно применять в профилактических целях.

Надо заметить, что процесс старения довольно долгое время протекает очень медленно, а потом ускоряется. Дело в том, что в организме существуют «системы контроля качества», которые заняты «починкой сломанного», а то, что уже не починить, отправляют в переработку. Это, к примеру, система протеостаза, которая отвечает за правильное свертывание молекул белков; и процесс аутофагии, являющийся в числе прочего важным звеном для отправки на переработку поврежденных клеточных органелл; и апоптоз (клеточное «самоубийство»). Наконец, сама иммунная система, которая борется не только с инфекциями, но и с опухолевыми клетками. Со временем все эти системы начинают работать хуже, но если вернуть им былую активность, возможно, удастся повернуть ряд старческих изменений вспять, и одним из направлений работ является как раз поиск веществ, которые бы увеличивали активность «систем контроля качества».

Еще одно направление связано с тем, что в ходе старения в тканях организма развивается состояние слабого, вялотекущего, неспособного завершиться воспаления – ​так называемое тлеющее воспаление (Salminen, Kaarniranta, Kauppinen, 2012). Вообще воспаление характеризуется пятью признаками: покраснением, отеком, болью, повышением температуры и нарушением функции. И, возможно, если мы будем бороться с воспалением или с тем, что его вызывает в ходе старения, мы сможем вернуть тканям утраченную функциональность.

Потенциальных мишеней так много... Не наводит ли это на мысль, что одну, универсальную таблетку против старения сделать не удастся? Конечно, хочется найти простой ответ, скорее всего, вмешательство будет сложным, комплексным и разнонаправленным. Сколько в нем будет элементов, я не могу сказать

Довольно давно известно (хотя потребовалось много времени для подтверждения этого феномена), что ограничение калорийности питания ведет к замедлению развития старческих изменений и увеличению продолжительности жизни (Colman et al., 2009). На крысах таким способом удалось добиться увеличения продолжительности жизни до 40 %. Эти эксперименты доказывают, что искусственное увеличение максимальной продолжительности жизни в принципе возможно. Ограничение калорийности действует и на системы контроля качества, и снижает тлеющее воспаление, т. е., по-видимому, «бьет» очень близко к предмету поисков – ​общему механизму старения.

Проблемы и способы их решения

Я описал направления биологии старения, по которым активно идут исследования, но любой такой список будет заведомо неполон. Уже известны многие процессы, течение которых нарушается в ходе старения, и, что важно, известны сотни веществ-кандидатов в потенциальные «лекарства от старения» – ​геропротекторы. Обилие потенциальных мишеней и методик, с одной стороны, радует, потому что говорит о том, что стадия, на которой шли поиски хоть каких-нибудь мишеней, пройдена. Но возникла другая проблема: сейчас потенциальных мишеней много больше, чем научное сообщество может «переварить». Возможно, среди нескольких сотен потенциальных геропротекторов есть наиболее действенный, но как его определить? Ограничивающим фактором становится количество лабораторий и специалистов.

Что может сделать обычный человек, который не занимается научными исследованиями, чтобы продлить собственную жизнь и молодость? И как именно нужно ограничивать калорийность питания? Вопрос актуальный и правильный, я сам им задаюсь. Ограничение калорийности действительно работает, цифры разные по разным данным: примерно на 10—30 %. И, к сожалению, я не могу выписать рецепт «молодости». Обычный человек должен вести здоровый образ жизни, как бы это ни звучало скучно и разочаровывающе. Физические нагрузки, периодический острый стресс (например, сходить в горы), не переедать. Конечно, изменить образ жизни захотят далеко не все, обычно люди хотят «таблетку». И мы работаем над этим

Каким может быть выход из этой ситуации? Можно привлечь к работе неспециалистов по аналогии с тем, как поступают орнитологи: они принимают данные наблюдений людей, состоящих в сообществах наблюдателей за птицами (такой подход называется «гражданская наука»). Специалисты по старению предлагают привлекать к своей деятельности владельцев собак (Kaeberlein, 2016). Собака – ​это один из очень немногих видов животных, объем накопленных медицинских данных о котором сравним с данными «человеческой» медицины. Владельцы собак, получая для своих питомцев экспериментальное лечение, могли бы собирать данные (простые, измеряемые на дому показатели) и отправлять отчеты о результатах.

Можно упомянуть еще об одном возможном варианте активации сбора данных, хотя он и является дискуссионным. Согласно недавно введенному во многих штатах США закону, неизлечимо больной человек имеет право получить экспериментальные методы лечения, если они существуют, не дожидаясь окончания процедуры их одобрения. Некоторые такие пациенты считают, что им нечего терять, и делают это на свой страх и риск. Хотя это весьма специфический случай, и даже он остается «ареной» горячих дебатов, поэтому активно призывать людей к применению глубоко экспериментальных методик нельзя.

МЕНЬШЕ ЕСТЬ – ДОЛЬШЕ ЖИТЬ​? Первые экспериментальные данные о влиянии ограничения питания на продолжительность жизни были представлены еще в начале 1900-х гг. в экспериментах на крысах: ограничение приема пищи тормозило рост животных, но увеличивало продолжительность жизни. Наиболее известными стали исследования 1935 г., когда было показано, что ограничение калорийности пищи на 40 % у крыс, начиная с возраста, когда они переходили на обычную пищу с материнского молока, продляло их жизнь вдвое. На сегодняшний день эффект ограничения калорийности на продолжительность жизни и здоровье продемонстрирован на совершенно разных организмах: круглых червях, мушках-дрозофилах, мышах и крысах, собаках и коровах и некоторых обезьянах. За это время высказывалось множество гипотез о механизмах действия ограничения калорийности пищи на долголетие. Сначала предполагали, что эффект как-то связан с замедлением обмена веществ. Высказывалось мнение и о том, что это артефакт, что лабораторные животные просто переедают по сравнению с дикими видами, а возвращение к природной норме идет им на пользу. Эти ранние гипотезы были в итоге отброшены. Затем возникла идея, что омолаживающий эффект ограничения калорийности связан с уменьшением производства активных форм кислорода, которые атакуют макромолекулы в клетках, т. е. с уменьшением уровня окислительного стресса. Когда в научную жизнь прочно вошла молекулярная биология, искать объяснение стали в области регуляции молекулярных сигналов. Сейчас большинство геронтологов соглашаются с тем, что эффекты ограничения калорийности на продолжительность жизни связаны с питательными веществами, запускающими в клетках ряд сигнальных каскадов. Один из возможных механизмов действия ограничения калорий на продолжительность жизни опосредован снижением активности взаимосвязанных между собой сигнальных путей mTOR-киназы (активируется аминокислотами), инсулиноподобного фактора роста и инсулинового рецептора (активируется углеводами). Результатом их деятельности является активация ряда белков, участвующих в процессах деления клеток, апоптоза, ответа на стрессовые факторы. Ослабление активности этих сигнальных путей в итоге приводит к позитивным последствиям: например, инактивация mTOR-киназы способствует усилению процессов аутофагии – ​деградации поврежденных белков и внутриклеточных органелл. Другими возможными посредниками эффекта ограничения калорийности могут быть повышение активности сигнального пути аденозинмонофосфат-активируемой протеинкиназы (АМФК) и активности белков под названием сиртуины. АМФК активируется в условиях ограничения энергии, регулирует энергетический баланс в клетке и участвует в регуляции обмена углеводов и жиров. Сиртуины, с одной стороны, участвуют в выключении генов, продукты которых клетке сейчас не нужны, а с другой – ​в репарации ДНК. Но всю жизнь с детства питаться в режиме ограничения калорий – ​задача трудно реализуемая. Поэтому геронтологи и биологи пытаются разработать лекарства, имитирующие благоприятные эффекты ограничения калорийности. Согласно результатам ряда работ, одним из таких препаратов может быть антиоксидант ресвератрол, содержащийся, в частности, в кожуре винограда и красном вине. Действию ресвератрола длительное время приписывали так называемый французский парадокс: относительно низкий уровень сердечно-сосудистых и онкологических заболеваний у жителей Франции на фоне высококалорийного питания. Правда, позже было показано, что содержание ресвератрола в вине слишком мало, чтобы вызвать нужный эффект, и вообще результаты исследований по теме влияния ресвератрола на здоровье и долголетие достаточно противоречивы. Сигнальный путь mTOR-киназы могут ингибировать лекарственные средства рапамицин и метформин. Но рапамицин, антибиотик и иммуносупрессор, имеет серьезные побочные эффекты, и, конечно, не может идти речи об его использовании для продления жизни человека. Можно ли применять на здоровых людях препарат для лечения сахарного диабета 2-го типа метформин, который, помимо влияния на mTOR-киназу, активирует сигнальный путь АМФК, тоже пока под вопросом. На самом деле, механизмы действия ограничения калорийности пищи на продолжительность жизни до сих пор до конца не понятны. Относительно всех гипотез существуют как подтверждающие их данные, так и опровергающие. Видимо, это связано с тем, что ограничение калорийности сопровождается сложными системными изменениями в организме. Сигнальные пути, которые задействованы в этих процессах, тесно и гибко взаимодействуют между собой и не всегда выдают в итоге одинаковый результат. Таким образом, несмотря на серьезные подвижки в понимании механизмов процесса старения, «таблетки от старения», по крайней мере надежной и гарантированно безвредной, пока не существует. Зато каждый свободен в реализации «сложного» пути – ​следить за своей диетой и, если и не дожить до ста лет, как минимум лучше себя чувствовать. По: (Lee, Min, 2013; Martin et al., 2016)

Исследовать процесс старения на людях очень трудно. Человек стареет долго, это неудобно с методологической точки зрения. Нельзя забывать и об этических аспектах. Поэтому старение исследуют в основном на червях-нематодах, дрожжах, мухах, мышах – ​на недолго живущих организмах. Исследования на модельных организмах – ​хороший подход, но человек не мышь и не муха, и далеко не все, что справедливо для моделей, будет также справедливо для человека (de Magalhães, Stevens, Thornton, 2017). Известно несколько сотен генов дрожжей и нематод, функция которых связана со старением, но у человека эти гены в основном функционируют не так или отсутствуют вовсе.

Один из вариантов, как обойти эту проблему, – «подгонять решение под ответ». Существуют животные, которые преодолели проблему старения и живут долго: продолжительность жизни хорошо коррелирует с размером организма, но некоторые животные выбиваются из этой закономерности. К ним относятся грызуны – голые землекопы и слепыши, некоторые летучие мыши, птицы, очень крупные млекопитающие. Можно изучить, чем они отличаются от не долгоживущих организмов, и пытаться имитировать фармакологическими агентами действие генных вариантов, отвечающих за долгую жизнь (Gorbunova et al., 2014).

Эксперименты, которые «провелись сами собой», могут быть найдены и в человеческих популяциях. Сегодня ведутся исследования геномов людей, которые прожили более 100 лет (Puca et al., 2017), с тем соображением, что эти люди «выиграли в генетическую лотерею». И выявление связанных с их долгожительством вариантов генов (аллелей) может указать нам, какие вещества способны воспроизвести этот эффект в общей популяции.

Если старение является «сборником симптомов», таких как диабет 2-го типа, инсульты, инфаркты, почему бы не оставить попытки объять необъятное и не попытаться лечить только эти заболевания? Ведь уже пытались сделать универсальное лекарство, например, связанное с увеличением теломер, и не получилось? Лечение симптомов не всегда оправдывает себя, если проводить аналогии с медициной как таковой. Мы предполагаем, что старческие заболевания являются различными гранями единого процесса. Несомненно, исследования старческих заболеваний – ​это важное направление биологии старения, но мы, анализируя разные аспекты, хотим увидеть в них общее. Теломеры – ​это участки на концах хромосом, которые защищают их при копировании и с количеством делений клетки укорачиваются. Когда они совсем «изнашиваются», клетка гибнет. Действительно, еще несколько десятилетий назад выдвигалась идея, что для увеличения продолжительности жизни можно удлинять теломеры. Эксперименты на мышах показывают, что с увеличением активности теломеразы (фермента, способного наращивать теломеры) растет продолжительность жизни мышей, при этом не увеличивается частота опухолевых заболеваний (de Jesus et al., 2012). Но у мышей, как вообще у небольших животных, теломераза работает всегда, и в этих экспериментах ее активность только усиливается. На человека и другие крупные организмы это транслировать сложно. У человека теломераза работает только в эмбриональных и опухолевых клетках, и ее активация может вызвать онкологические заболевания. Считается, что укорочение теломер и последующая гибель клетки являются предохранительным механизмом от злокачественного перерождения. Для всего же остального нам нужна высокопроизводительная методика проверки гипотез: если мы каждую будем проверять десятки лет, ответы получим очень нескоро

Некоторые потенциальные геропротекторы являются давно применяющимися в медицине лекарствами (например, упоминавшийся выше метформин), и исследование течения старческих заболеваний у людей, принимающих их по сторонним показаниям, может помочь нам выявить наиболее перспективные вещества.

Многообещающим направлением является поиск биомаркеров старения – ​показателей, скорость изменения которых за сравнительно небольшой промежуток времени, например за год, достаточно достоверно отражает общую скорость этого процесса (Sprott, 2010). Использование биомаркеров позволит напрямую исследовать эффективность геропротекторов, не требуя наблюдения в течение всей жизни.

И о будущем борьбы со старением. Приведу сначала в пример статистику по выживаемости пациентов с онкологическими заболеваниями. Хотя нам до сих пор кажется, что рак – ​это приговор, по многим видам опухолей цифры выживаемости и наступления долгосрочной ремиссии выросли на десятки процентов, например, для рака простаты – ​с 30 до 70 %. Долгое время шли фундаментальные исследования, а сейчас мы видим плоды работы, которая начиналась в середине XX в. Вероятно, и результаты борьбы со старением будут такой же «тихой революцией». Мы не проснемся и не прочитаем в заголовках газет, что старение побеждено. Это будет постепенный процесс, которому предшествовало постепенное накопление новых данных. Сначала мы узнаем, что увеличение жизни в принципе возможно, затем обнаружим все большее число работающих геропротекторов, затем начнет расти продолжительность жизни… И когда-нибудь мы обернемся назад и увидим, что прогресс действительно есть.

Литература

Blagosklonny M. V. Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans) // Cell Cycle. 2010. V. 9. N. 4. P. 683—688.

Colman R. J., Anderson R. M., Johnson S. C. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys // Science. 2009. V. 325. N. 5937. P. 201—204.

de Magalhães J. P., Stevens M., Thornton D. The business of anti-aging science // Trends in biotechnology. 2017. V. 35. N. 11. P. 1062—1073.

Gorbunova V., Seluanov A., Zhang Z. et al. Comparative genetics of longevity and cancer: insights from long-lived rodents // Nat Rev Genet. 2014. V. 15. N. 8. P. 531—540.

Puca A. A., Spinelli C., Accardi G. et al. Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing // Mechanisms of ageing and development. 2017. doi.org/10.1016/j.mad.2017.10.004.

Sinha M., Jang Y. C., Oh J. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle // Science. 2014. V. 344. N. 6184. P. 649—652.

Sprott R. L. Biomarkers of aging and disease: introduction and definitions // Experimental gerontology. 2010. V. 45. N. 1. P. 2—4.

: 2 Апр 2018 , Отбор лучшего друга , том 77, №1

scfh.ru

Лекарство от старости | Статьи

Российские ученые — в одном шаге от создания «лекарства от старости». На ком тестировался новый препарат, сколько можно прожить, оставаясь социально активным и относительно здоровым, отчего у диабетиков меньше шансов на долголетие и почему биохакинг стал так популярен в последние годы? На эти и другие вопросы ответили участники круглого стола «Известий» — главный гериатр Минздрава России, директор Российского геронтологического научно-клинического центра РНИМУ им. Н.И. Пирогова, завкафедрой болезней старения РНИМУ им. Н.И.Пирогова Ольга Ткачева, ведущий научный сотрудник НИИ Физико-химической биологии МГУ, руководитель проекта «Ионы Скулачева» Максим Скулачев и социолог, демограф и биохакер Дарья Халтурина.

120 лет — не предел

«Известия»: С проблемой старения населения сталкиваются многие страны. Россия — не исключение. Стареющее население — это нагрузка на пенсионную систему, здравоохранение, проблема для экономики страны в целом. Тем не менее мы стремимся к увеличению продолжительности жизни. Каков ее предел с точки зрения науки, медицины?

Ольга Ткачева, главный гериатр Минздрава: Максимальная зафиксированная на планете продолжительность жизни — 122 года, пять месяцев и 14 дней, Жанна Кальмон. Когда её спрашивали, почему она так долго живет, Жанна Кальмон отвечала: «Я никогда не работала и делала что хотела — вот весь мой секрет». В возрасте 100 лет Жанна ездила на велосипеде, играла в большой теннис.

Автор цитаты

Интересно, что на планете есть «голубые зоны», где люди живут на несколько десятилетий дольше. Средняя продолжительность жизни в этих зонах около 90 лет, а количество жителей в возрасте более 100 лет достигает рекордных значений.

Ученые пытаются выяснить, чем эти зоны похожи: там схожи экономика, экология, магнитные поля? Но пока сходство нашли только в одном: в этих зонах нет ни экстремально низких, ни экстремально высоких температур.

В Окинаве каждый третий — долгожитель, люди там просто забывают умереть. Они много двигаются, мало едят — примерно 80% нормы суточной калорийности, в рационе много растительной пищи, у них очень много социальных связей. Вот такой секрет, и у всех он похож — Коста-Рика, Калифорния, острова Сардиния и Икария.

«Известия»: Существует ли «ген долгожительства»?

Ольга Ткачева: Ищут генетические аспекты, но пока что обнаружили только определенные гены у жителей Окинавы. К сожалению, «голубые зоны» постепенно превращаются в «серые», потому что там появился фастфуд, меняется экология, «ускорилась» жизнь.

Демографы говорят, что к 2100 году ожидаемая продолжительность жизни на большей части планеты будет составлять 90–95 лет. Таким образом, увеличивается средняя продолжительность жизни, а вот максимальная пока не увеличивается.20 тыс. лет назад первобытные люди изображали на наскальных рисунках лошадей и думали, что быстрее, чем на лошади, ехать нельзя. Представьте себе, что они были правы ровно 20 тыс. лет! А потом появились машины, самолеты, которые развивают огромные скорости.

Автор цитаты

Вполне возможно, через 20 тыс. лет благодаря нашим коллегам мы сможем увеличить максимальную продолжительность жизни. Научные исследования в области геронтологии в настоящее время являются очень актуальными.

В Российском геронтологическом научно-клиническом центре, например, изучаются механизмы старения, создаются панели биомаркеров биологического возраста человека, изучается так называемый геропротекторный (замедляющий старение) потенциал многих немедикаментозных и лекарственных воздействий.

Это не чудеса, а абсолютно признанный, так называемый гериатрический, подход. А занимаются этими проблемами врачи — гериатры. Мы работаем в клинике, но в мире много интересных экспериментальных работ в этой области. Например, голые землекопы — прекрасный объект для исследования, потому что эти животные не стареют.

Максим Скулачев, молекулярный биолог, МГУ: У нас в лаборатории живут почти семь десятков голых землекопов (Heterocephalus glaber), за которыми мы наблюдаем уже два года. Это африканский грызун, его ближайший родственник — мышь. Мыши живут 2–3 года и за это время успевают постареть, у них с возрастом по экспоненте растет смертность — это главный признак стареющих существ. У людей тоже нарастает смертность. А график у землекопа — горизонтальная линия. Смертность землекопов не зависит от возраста.

Опыт на землекопах был запущен в 1980-х годах и продолжается до сих пор — это исследование начала зоолог Рашель Баффенстайн. Она наловила землекопов в Африке, и они уже прожили больше 30 лет в неволе. Это в десять раз больше, чем положено животным их размера и скорости метаболизма. Самое главное, что при этом у них не отмечается возрастания возрастных болезней: инсульта, рака.

Недавно была научная сенсация. После анализа 162 тыс. трупов землекопов, которые содержались в разных лабораториях, всё же обнаружили одну раковую опухоль. Но если бы мы анализировали трупы людей, опухоль нашли бы у каждого третьего. Это колоссальная сопротивляемость раку.

Автор цитаты

У землекопов есть определенная защитная противораковая система. Для нас это колоссальный мотивирующий пример — выходит, что у млекопитающих старение можно «отключить».

Дарья Халтурина, социолог, демограф, антрополог и биохакер: Не так давно было проведено демографическое исследование, по результатам которого выяснилось, что возраст смерти отодвигается. Однако после 90 лет даже в самых благоприятных западных условиях люди начинают умирать. Но повышение продолжительности жизни — это результат научных достижений 25-летней давности (среднестатистический путь трансляции из лабораторного открытия на полки аптек — 17 лет). И мы видим, что медицина с профилактикой факторов риска, устранением патогенетических механизмов и снижением давления дает этот результат.

Сейчас в лабораториях делаются разработки и открытия, которые, скорее всего, позволят выйти даже за естественные пределы. Если будет хорошо работающее искусственное сердце, ясно, что этот порог смерти отодвинется. Пока особо не задействованы методы регенеративной медицины: стволовые клетки и так далее. Поэтому не стоит впадать в пессимизм и говорить, что к 90 годам точно умрем, ведь нельзя предсказывать будущее, исходя из прошлого. Это неверное математическое моделирование.

Программа на выбывание

«Известия»: Что такое старение — сбой каждой из систем организма, мутации, болезни или генетическая программа, которую при определенных умениях и условиях можно «взломать»?

Ольга Ткачева: Есть две основные теории старения. Сторонники одной считают, что старение запрограммировано и мы должны умереть. Сторонники второй уверены, что старение — это результат ошибок. Как только организм прекращает исправлять ошибки, развиваются болезни и прогрессирует старение.

Дарья Халтурина: Думаю, что старение — это одновременно и сбой каждой из систем организма, и программа, заложенная в человеке. Элементы программы, конечно, есть: у нас в определенном возрасте прекращается выработка Т-клеток или B-клеток. Иммунные Т-клетки во время полового созревания, а В-клетки — после 35 лет практически не появляются. Но это просто «поломки». Если машину не чинить, она тоже умрет.

Максим Скулачев: Я сторонник более радикальной теории — всё запрограммировано. То, что мы называем накоплением ошибок и мелких поломок, которые ведут к смерти, срежиссировано нашим геномом и гипотетической программой старения, но при этом совершенно очевидно, что одного гена старения нет. Это было слишком опасно. 

Автор цитаты

Гены рано или поздно мутируют. Для вида крайне опасны нестареющие индивиды. Они получают колоссальные преимущества в размножении перед остальными и вытеснят молодняк, и вид перестанет эволюционировать, а это смертельно опасно.

«Известия»: Смерть — это благо с точки зрения эволюции?

Максим Скулачев: Конечно!

Ольга Ткачева: Если бы мы не умирали, мы бы не совершенствовались.

Дарья Халтурина: Но не мы, а вид. Лично мы не совершенствуемся в течение старения. Как антрополог хочу отметить, что вопросами старения и смерти задавались еще самые древние люди. Человек только появился, а его уже интересовало, почему он смертен и отчего происходит старение.

«Известия»: Есть ли в организме человека ген, который отвечает за старение?

Ольга Ткачева: Обнаружено более 500 генов, каждый из которых так или иначе связан со старением. Кроме того, старение имеет сложный многофакторный механизм. Известно, что сердечно-сосудистые, онкологические заболевания, сахарный диабет II типа, болезнь Альцгеймера и заболевания опорно-двигательной системы — пять основных возраст-ассоциированных болезней.

Медицина живет сегодня в парадигме профилактики и лечения каждой группы этих заболеваний отдельно, но все эти болезни несомненно имеют общий корни, факторы риска этих заболеваний схожи между собой, а также очень похожи на факторы риска ускоренного старения. Если мы научимся замедлять старение, то получим намного больший эффект, чем от профилактики и лечения только сердечно-сосудистых или онкологических заболеваний.

Максим Скулачев: Один из лидеров исследования «голубых зон» — итальянский геронтолог и генетик Клаудио Франчески. Он известен тем, что прочитал геномы всех итальянских долгожителей 100+. Но этого все равно мало, следовательно, и вывода никакого сделать нельзя. Но Франчески исследовал не только геном долгожителей, но и их физиологию. И выяснилось, что среди них не было диабетиков и людей, предрасположенных к диабету. Похоже, что это очень важный фактор и диабет — признак того, что что-то пошло не так.

«Известия»: Мужчины и женщины по-разному стареют?

Ольга Ткачева: Да, женщины стареют быстрее. У них быстрее развивается гериатрические синдромы и старческие проблемы. При этом живут они намного дольше. Среди 100-летних в лучшем случае будет 8–10 мужчин на 100 человек. Этот феномен в настоящее время является предметом научных исследований.

«Известия»: Есть какая-то государственная программа по профилактике старения?

ПОДРОБНЕЕ ПО ТЕМЕ

Ольга Ткачева: В России активно развивается профилактическое направление в медицине, а профилактикой старения надо заниматься с детства. Кроме того, развивается новое направление в медицине — гериатрия, основной задачей которого является продление активного периода жизни.

Дарья Халтурина: Лига здоровья нации и Минздрав России проводят Всероссийский форум «Здоровье нации — основа процветания России». А в 2018 году основной темой форума станет приоритетный проект «Формирование здорового образа жизни». Помимо этого есть Национальная технологическая инициатива. Это программа поддержки разработчиков лекарственных терапий. Она только встает из небытия, конкретных разработок пока нет. Но отрадно, что в рамках Национальной технологической инициативы государство признало здоровое долголетие отдельным направлением.

Максим Скулачев: Это очень прогрессивная точка зрения. До самого последнего времени ученый, который объявлял, что борется со старением, серьезно рисковал репутацией. Заниматься созданием вечного двигателя для физика и борьбой со старением для биолога выглядело совершенно одинаково.

Вечная молодость

«Известия»: Есть ли сегодня научные открытия, которые могут приблизить нас если не к бессмертию, то хотя бы к радикальному продлению молодости?

Максим Скулачев: Одна из реакций организма на команду «пора постареть» — это окислительный стресс. Причина не в том, что свободные радикалы извне поступают от плохой экологии или еще чего-то. Большую часть радикалов — ядовитых веществ в виде токсичных форм кислорода — мы синтезируем сами. Чем мы старше, тем радикалов больше. У академика РАН, биохимика Владимира Скулачева возник вопрос — что такого в организме происходит с возрастом, что заставляет нас синтезировать этот яд? И как с этим можно бороться? В итоге удалось создать антиоксидант, который с точностью до нанометра проникает внутрь митохондрии и ловит свободные радикалы именно там, прямо в месте их образования.

Это вещество вообще не встречается в природе — оно было придумано академиком Скулачевым, а потом его синтезировали химики МГУ. Лекарство на основе этого вещества мы решили сделать 10 лет назад.

Автор цитаты

Первые лекарства уже созданы. Это глазные капли для местного применения — глаза ведь тоже стареют. Исследования подтвердили: это вещество помогает от определенных глазных болезней. Но главное, что мы выяснили: это вещество замедляло развитие определенных признаков старения.

И мы поняли, что надо переходить к клиническим исследованиям уже не глазных капель, а препарата для приема внутрь. Мы получили на их проведение официальное разрешение Минздрава. И первая фаза только что закончилась. 33 человека принимали это вещество в Москве в одной из больниц.

«Известия»: На каких людях тестировался препарат?

Максим Скулачев: Это здоровые молодые мужчины до 50 лет. Первые три человека получили 1,7 мг вещества. Дальше мы смотрели в течение нескольких месяцев, не ухудшилось ли их состояние. Следующие три человека получали уже в два раза больше — 3,4 мг. Остальные получали дозы больше в 4, в 8 и в 16 раз. Они лежали в больнице три дня, и мы отслеживали все параметры их здоровья.

Один из добровольцев рассказал, что после выписки из больницы отыграл свой лучший в жизни футбольный матч. Может, он просто выспался? Не знаю.

Мы брали у добровольцев анализы крови через 5, 10, 15, 30, 45 минут и так далее. Дальше выделяли наше вещество масс-спектрометром и обнаружили его в крови. Оно действительно попадает в организм человека, как и в организм крысы и собаки.

«Известия»: Что вы будете делать дальше? Продолжать исследования на здоровых людях или на больных?

Максим Скулачев: Мы выберем болезнь, связанную с воспалением, потому что вещество прекрасно модулирует воспалительный ответ. Это может быть рассеянный склероз или ревматоидный артрит. Похоже, что это вещество разрывает порочный цикл воспалений. Думаю, мы в шаге от лечения этих болезней — осталось провести клинические исследования.

Минздрав готов дать разрешение на эту фазу. У нас уже есть досье, мы досчитываем результат первой фазы клинического исследования на здоровых добровольцах и можем переходить к испытаниям на добровольцах с определенными заболеваниями.

«Известия»: Когда лекарство от этих болезней станет доступно всем?

Максим Скулачев: По нашим планам, все исследования займут от двух до четырех лет. Я надеюсь, что мы можем до 2021 года доказать полезность нашего вещества при одной из болезней: рассеянный склероз, ревматоидный артрит или остеопороз. В моделях препарат неплохо работает и при инсультах.

А полностью исследование займет ближайшие лет десять. После чего мы придем в Минздрав и скажем: «Вот митохондрии, вот механизм старения. Мы действуем на митохондрии. Вот у нас лечится или осуществляется профилактика таких болезней. Давайте мы не будем ходить вокруг да около и признаем, что это вещество действует на старение».

Мы очень рассчитываем, что они прислушаются. Вероника Игоревна Скворцова — сторонница исследований и разработок по борьбе со старением. И она соавтор одного из наших сотрудников по исследованиям инсульта.

Биохакинг: наука или шаманство?

«Известия»: Сейчас очень популярен биохакинг — с помощью медикаментов люди пытаются продлить молодость, продуктивный период жизни. Насколько перспективно это новое явление?

Максим Скулачев: Биохакинг — это новое слово, а явление не новое. С нашей точки зрения старение — это программа, ее нужно взломать, хакнуть. Мы долго и мучительно проверяем определенные гипотезы, как можно к этому подойти.

А биохакеры считают, что можно просто почитать популярные журналы, набрать БАДов, лекарств, всё это съесть и взломать программу старения.

Ольга Ткачева: Я как практикующий врач могу сказать, что таких, извините, сумасшедших наблюдала много. Чего они только ни делают: чистят организм и так, и эдак, пьют различные комплексы БАДов и витаминов. Человек верит, что омолаживается. Но это чистой воды спекуляции. Самое безобидное, если это не приносит вреда. Но, когда пациентам пожилого возраста или людям, нуждающимся в специализированной высокотехнологичной помощи, внушаются мифы, что их можно спасти биохакингом — с этим надо бороться.

Максим Скулачев: Если мы правы и со старением удастся что-то сделать, всё это кончится биохакингом, только научно обоснованным, а не шаманством.

Ольга Ткачева: Вот именно. Доказанным.

«Известия»: Но ведь есть люди, которые серьезно относятся к биохакингу. Они делают полное исследование организма, смотрят, каких им не хватает витаминов, микроэлементов.

Дарья Халтурина: Я отношусь к начинающим биохакерам. Есть универсальный научный аппарат — принципы доказательной медицины. Чем больше клинических исследований — тем выше уровень доказательности.

Если смотреть исследования, можно найти многое, что задерживается к внедрению в клиническую практику. Особенно это грустно наблюдать в онкологии. Я была поражена: многое из того, что считается геропротекторами (вещества, у которых обнаружена способность увеличивать продолжительность жизни животных. — «Известия»), повышает выживаемость пациенток с раком груди. Причем это дешевые вещи: рыбий жир, льняное семя, метформин. Ничего этого онкологи не прописывают ни у нас, ни на Западе.

Возраст — не в тягость

«Известия»: Если мы добьемся увеличения продолжительности жизни, к чему это приведет с точки зрения демографии? Будет ведь огромная дополнительная нагрузка на бюджет.

Дарья Халтурина: У нас сейчас ситуация, когда возрастные заболевания очень часто отправляют на пенсию людей, которые могли бы прекрасно поработать. Это инсульт, инфаркт, остеоартроз. Если мы их отодвинем вместе со старением, то будет всем только польза.

Максим Скулачев: Мне интересно не то, чтобы люди жили до 120 лет. Для меня гораздо важнее, чтобы люди в 90 лет играли в футбол и активно работали. Если у нас что-то получится, вопрос нагрузки на пенсионеров снимется автоматически. Нужно продлевать молодость, период здорового долголетия.

«Известия»: Если мы ходим увеличить продуктивный период жизни, на что должны делать больший упор: на уход за своим телом, чтобы оно оставалось молодым, или все-таки на функции мозга?

Ольга Ткачева: И на то и на другое. Физическая активность уменьшает риск болезни Альцгеймера. Только в 2017 году проведено три крупных метаанализа научных исследований, которые подтвердили это. С другой стороны, доказано, что дольше живут люди с хорошим образованием и высоким интеллектом. Для сохранения когнитивной функции необходим и физический и когнитивный тренинг.

ЧИТАЙТЕ ТАКЖЕ

 

iz.ru

Таблетки от старости Уход за кожей лица и тела

Над созданием эликсира бессмертия человечество бьется еще с древних времен. И, нужно отметить, не безуспешно. Современные ученые заявляют, что в будущем процесс старения можно будет затормозить. Ну а пока этого не произошло нам остается пользоваться всевозможными омолаживающими средствами — как косметологическими, так и лекарственными, например, таблетками. Так что же это за чудо-лекарства, которые могут подарить вечную молодость?

Таблетки, замедляющие процесс старения, по-научному называются геропротекторами. Это — профилактические средства. На сегодняшний день ученые выявили порядка 20 веществ, способных отсрочить наступление старости. Вариантов таких таблеток много — фармацевтические компании постоянно ведут разработку и поиск новых формул. Как правило, геропротекторы содержат в своем составе антиоксиданты — витамины А, С, Е, янтарную кислоту, растительные экстракты — женьшень, элеутерококк, зеленый чай, гормоны — мелатонин, гормон роста, а также пептиды.Перечисленные вещества оказывают на человеческий организм мощное воздействие. Лидером по борьбе за вечную молодость признаны антиоксиданты, которые способны защитить человека от разрушительного воздействия свободных радикалов. Свободные радикалы — микроскопические частицы, которые не только заставляют нас стареть, но и могут спровоцировать такие грозные заболевания как рак, инсульт, инфаркт. Кроме того, они способны поражать коллаген, а значит наносить мощный удар по коже — отсюда и преждевременные морщины, и «оплывший» овал лица. Возникают свободные радикалы из-за окислительных процессов в организме, происходящих с участием кислорода. Антиоксиданты же в свою очередь эти процессы существенно замедляют.

Целебное воздействие на организм женьшеня и элеутерококка известно давно. Это — мощные адаптогены, помогающие организму справится с неблагоприятными воздействиями окружающей среды. Они прекрасно тонизируют, а также способствуют регенерации клеток, в том числе нервных, что помогает бороться с процессами старения.

О том, что сон — залог крепкого здоровья и молодости известно давно. Все знают, что организм восстанавливается во время сна. Происходит это благодаря гормону мелатонину, который вырабатывается когда человек спит. Причем вырабатывается он только в темное время суток, так что дневной сон с точки зрения омоложения — бесполезен. В достаточном количестве организм производит меланин примерно до 30 лет, потом с каждым годом его выработка падает. Ученые установили, что мелатонин не только защищает от рака и прочих опухолей, но также является мощным антиоксидантом, способным затормозить процесс старения. Многие таблетки от старения содержат его в своем составе.

Выработка гормона роста соматотропина с возрастом также снижается. Как результат — падает мышечная масса, растет процент жира в организме, замедляются обменные процессы, а также выработка коллагена. Способствуют выработке гормона роста, например, аминокислоты — аргинин, лизин, орнитин. Их можно встретить во многих БАДах.

Янтарная кислота — незаменимый компонент многих таблеток от старости. Она не только укрепляет организм в целом, нормализует энергетический обмен, улучшает клеточное дыхание, но также способна выводить токсичные вещества. Употребление янтарной кислоты значительно повышает функциональные возможности организма.

Пептиды вырабатываются организмом и регулируют обмен веществ в клетках тела. Для каждого органа предназначены свои пептидные биорегуляторы. Но с возрастом их выработка снижается, а значит обменные процессы в организме замедляются. Средства, содержащие в своем составе пептиды, по заверениям ученых, способны затормозить процессы старения. Эта группа препаратов называется цитамины. Работают они на клеточном уровне. Фактически пептиды запускают процесс обновления клеток. И при этом не имеют побочных эффектов!

Конечно, таблетка от старости пока еще не изобретена. Но существует огромное количество добавок к пище, витаминов, которые способные замедлить эти неприятные, но неизбежные процессы. Вариантов здесь много, так что выбор есть.

(Visited 229 times, 1 visits today)

for-skin.ru

Лекарства от старения. Питание и долголетие

Лекарства от старения

Быстрый рост продолжительности жизни в экономически развитых странах после 1950 г. был в значительной степени связан с применением антибиотиков, тотальной вакцинацией детей, достижениями общего здравоохранения и гигиены. Возрастающий уровень расходов на медицину отражался пропорциональным улучшением всех показателей здоровья. Однако снижение частоты бактериальных инфекций и ликвидация эпидемий, авитаминозов и белковой недостаточности лишь изменили структуру заболеваний. Доминирующие позиции заняли не инфекционные, а возрастные функциональные заболевания – гипертония, атеросклероз, болезни сердца, рак, артрит, диабет-2, остеопороз и множество других, которые в прошлом считались обычными последствиями старости и, как правило, вообще не лечились радикальными методами. С онкозаболеваниями боролись исключительно хирургическим путем. Химиотерапии до 1950 г. не существовало.

Хотя инфекционная заболеваемость снижалась, системы здравоохранения в западных странах с их сетью больниц, поликлиник, научных институтов и медицинских факультетов продолжали развиваться благодаря общему подъему благосостояния. Фармацевтическая промышленность обычно не входила в государственный сектор и оставалась в частных руках. До 1960 г. фармацевтические корпорации почти не производили лекарств от хронических болезней пожилого возраста, так как на них тогда не было платежеспособного спроса. Лечение острых инфекционных заболеваний не создавало финансовых проблем. Прием лекарств в этом случае продолжается несколько дней, редко – несколько недель. Лечение хронических болезней, ранее считавшихся обычными спутниками старости, может тянуться десятилетиями. Лекарства принимаются до конца жизни. Их ассортимент расширяется с возрастом: к гипертонии добавляется повышенный уровень холестерина, потом появляются признаки атеросклероза, стенокардия, артриты, остеопороз, диабет, камни в почках, бессонница и пр. Для каждой из этих болезней нужно было разрабатывать свои лекарства для постоянного приема. В дополнение к ним фармацевтические корпорации начали производить препараты не для лечения болезней, а для их предупреждения. Такие препараты тоже следовало принимать постоянно, каждый день.

Переориентация систем здравоохранения на лечение хронических болезней старости была экономически крайне трудной для государств с бюджетной медициной, к которым относится большинство стран Европы. Заметная часть бюджета уходила теперь на лечение пожилых и оплату лекарств постоянного приема. Эти расходы росли каждый год. Напротив, для фармацевтической промышленности поворот к лечению хронических болезней старости и к постоянному приему лекарств означал стремительный рост производственных мощностей и огромные стабильные прибыли. Это было заметно прежде всего в США, из-за особенностей их системы здравоохранения, в которой преобладает частный сектор со страховой компенсацией расходов. В 1995 г. медицинские расходы населения США составили триллион долларов. За десять последующих лет они удвоились, превысив 2 трлн, или 7 тыс. долларов на каждого жителя [1]. Основные фармацевтические компании приобрели гигантские размеры. Пятнадцать из них (Мерк, ГлаксоСмит, Пфайцер, Роше, Новартис и др.) имеют капитализацию от 100 до 200 млрд долларов каждая. При таких масштабах они нередко не откликаются на запросы практической медицины, а сами навязывают медицинским учреждениям новые лекарства.

В западных странах для людей старше 50 лет прием лекарств стал такой же каждодневной потребностью, как прием пищи. Большинство лекарств производят органическим синтезом, их эффект проверяется в клинических испытаниях, которые могут продолжаться несколько лет. В клинических испытаниях лекарств от хронических болезней обычно участвуют десятки тысяч человек разного возраста. Расходы на подобные испытания могут составлять сотни миллионов долларов, но в последующем эти затраты возмещаются из кошелька потребителей. Лечение хронических болезней оказалось для бизнеса более привлекательным, чем лечение инфекционных. По данным ВОЗ и других агентств, в период 1975 – 1997 гг. было внедрено в практику 1 223 лекарства от хронических болезней, характерных для населения экономически развитых стран. В то же время для лечения малярии и других заболеваний тропического климата, от которых ежегодно умирают миллионы людей, появилось всего лишь 13 новых препаратов [2].

В конце 1970-х годов, благодаря расшифровке геномов многих животных и человека, биохимики и генетики вышли на новый уровень понимания механизмов физиологических и биохимических процессов и научились осуществлять сложные генетические манипуляции. Эти открытия и наличие компьютеров привели к тому, что трансгенные манипуляции стали возможными даже в небольших лабораториях. Новая отрасль – биотехнология – создавала не только множество новых генетически модифицированных культур бактерий, растений и животных, но и новые биоактивные соединения, способные изменять биохимические и физиологические процессы. Многие из этих соединений являлись потенциальными лекарствами. Все опыты проводились на клеточных культурах, бактериях, водорослях, растениях, насекомых, мышах и крысах. Некоторые соединения испытывались и как геропротекторы. Они могли продлевать жизнь дрожжевых клеток, нематод, мушек дрозофил, мышей и крыс. Ученые научились создавать ускоренностареющих мышей и мышей-долгожителей. Эти открытия имели широкие перспективы и для практической медицины. Однако мелкие и средние биотехнологические компании и фирмы по производству биологически активных добавок к диетам (БАДов) не имели финансовых возможностей для медицинских исследований и клинических испытаний. В большинстве случаев они не имели и лицензий для экспериментов на людях. Выход в практическую медицину был для них закрыт. Но они могли реализовывать свои биологически активные соединения в продовольственной торговле. Вместо лекарств, требующих дорогих клинических испытаний, сложного лицензирования и рецептов врачей, биоактивные добавки к диетам (которые нередко являются лекарственными препаратами) можно было как продукт питания продавать в супермаркете, на рынке или по заказам через почту и Интернет.

Поделитесь на страничке

Следующая глава >

med.wikireading.ru

Лекарства от старости и старения

2017. Novartis отдал свой анти-эйджинговый препарат американскому стартапу

Два года назад швейцарская фармацевтическая компания Novartis провела то, что назвали первым испытанием лекарства от старости на людях. Косвенным образом препарат Ропамицин доказал свою эффективность. Однако провести реальное испытание на людях было бы слишком длительным проектом (из-за того что люди долго живут). Чтобы ускорить этот бизнес Novartis решил отдать право на использования Ропамицина для замедления старения американскому стартапу resTORbio в обмен на долю в компании. Главный научный руководитель стартапа Джозеф Болен обещает провести клинические испытания Ропамицина по восстановлению иммунных клеток у престарелых пациентов. Напомним, Ропамицин замедляет метаболизм клеток и переводит их в режим выживания (который, кстати, можно достичь просто соблюдая низкокалорийную диету).

2017. Препарат замедляет старение помогая клеткам ремонтировать свою ДНК

Только недавно американским ученым удалось омолодить мышек с помощью уничтожения старых клеток в их организмах. А вот команда ученых из Университета Нового Южного Уэльса (Австралия) пошла другим путем - вместо того, чтоб помогать старым клеткам умирать, они придумали помогать им ремонтировать свою ДНК. Австралийцы выяснили, что в старых клетках не хватает белка NAD+, который помогает ремонтировать ДНК. На основе NAD+ был создан препарат NMN, после чего его ввели в организм мышей. Отмечается, что ученые смогли добиться успешного «ремонта» ДНК и уже через неделю после применения метода клетки пожилых грызунов были неотличимы от клеток молодых особей. Исследование австралийских специалистов может быть огромным прорывом в вопросе борьбы со старением. Успех с грызунами, впрочем, совсем не обязательно говорит о том, что NMN будет столь же эффективен в случае с человеком. И ответить на интересующие ученых вопросы помогут тесты на людях, которые планируется провести в течение ближайших шести месяцев.

2017. Basis - лекарство от старости за $60

Американский стартап Elysium Health выпустил на рынок препарат Basics, который позиционируется как лекарство от старения. Он уже продается по цене $60 за упаковку. Препарат состоит из комбинации Витамина B3 (который содержится, например, в печени и грибах) и Птеростильбена (соединения, которое содержится, например, в чернике и винограде). Его действие основано на синтезе в организме фермента NAD, который регулирует усвоение клетками углеводов и жиров. Basics продается как пищевая добавка, и следовательно, не подпадает под юрисдикцию медицинских регуляторов. Можно было бы подумать, что это очередной развод для лохов, но Elysium Health уже получил $26 млн инвестиций и по своей воле сейчас проводит клинические испытания препарата, чтобы доказать его эффективность.

2017. В России придумали продлевать жизнь с помощью защиты митохондрий

Митохондрии - это энергостанции клеток, и от их здоровья зависит скорость, с которой организм стареет. Недавно мы рассказывали о технологии удаления поврежденных митохондрий для омоложения клеток. Команда ученых из МГУ под руководством Владимира Скулачева пошла дальше и придумала как защищать митохондрии от повреждений.  Они использовали молекулу SkQ1, которая представляет собой мощный антиоксидант, способный проникать внутрь митохондрий и нейтрализовать агрессивные молекулы окислителей, разрушающие ее стенки и снижающие ее КПД. Это вещество входит в состав глазных каплей «Визомитин», который Скулачев и его коллеги поставляют уже несколько лет в российские аптеки.  Российские биологи уже успешно проверили работу препарата по замедлению старения клеток на мышах, продлив им жизнь на 15%. Теперь ученые проводят клинические испытания лекарства на базе SkQ1. В случае успеха этих исследований «лекарство от старости» может появиться в аптеках уже через 2-3 года.

2016. Стартап Инсилико создает искусственный интеллект для поиска новых лекарств и борьбы со старением

В 2014 году (уроженец Риги) Александр Жаворонков основал в США стартап Insilico Medicine, а через два года открыл его представительство в Сколково. Александр убежден, что в ближайшие 5 лет мы сможем значительно увеличить качество и продолжительность жизни за счет появления инновационных медицинских препаратов. Но ведь на создание нового лекарства сейчас уходит 10 лет? Эту проблему и собирается решить Insilico Medicine. За счет искусственного интеллекта и огромной базы больших данных, которые он будет обрабатывать. Предполагается, что именно в компьютере (In Silico) будет происходить основная работа по испытанию новых лекарств за счет эмуляции их воздействия на организм (на уровне клеточных процессов) и именно в компьютере будут находить новые способы лечения и омоложения организма.

2015. Ученые научились замедлять старение мозга

Американские ученые Антонио Куррэис и Дэвид Шуберт из института биологии имени Джонаса Солка занимались разработкой технологии лечения болезни Альцгеймера. Обычно те, кто берется за эту болезнь, думают, как удалить из мозга амилоидные бляшки, которые разрушают нейронные связи. Но эта парочка решила воздействовать не на бляшки, а на токсины, разрушающие сосуды в мозге. Разрушение микрососудов в мозге обычно считают следствием болезни Альцгеймера, но что если это - ее первопричина? В общем, ученые синтезировали препарат J147 и испытали его на специальных быстро-стареющих мышах. В результате, принимавшие препарат мыши показали лучшие результаты в когнитивных тестах и тестах памяти, а также продемонстрировали лучшую координацию движений. Кроме того, состояние мозга этих мышей было гораздо лучшим, чем у тех, кто не подвергался действию препарата. Были отмечены лучшие показатели метаболизма, уменьшение количества воспалительных процессов и уменьшение содержания окисленных жирных кислот в мозгу.

2015. Элизабет Пэрриш - первая пациентка, лечащая старость генотерапией

Элизабет Пэрриш - основательница американского стартапа BioViva, который ставит своей целью продление жизни человека. На днях она наделала шуму в интернете, объявив, что сама лично прошла процедуру генотерапии для лечения старения (сейчас ей 44 года). Для этого ей пришлось ехать в Колумбию, т.к. в США подобные эксперименты запрещены без разрешения FDA. Технология, которую испытала на себе Элизабет, предполагает введение в кровь вирусов, содержащих генетический материал, производящий теломеразы (белок, который удлиняет теломеры). Теломеры - это компоненты хромосом, которые (по мнению некоторых ученых) определяют максимальное число делений клетки, что в конечном итоге, ограничивает жизнь организма. Ранее подобная технология тестировалась на мышах, и в результате, удалось продлить их жизнь на 20%. Конечно, с большой долей вероятности, Элизабет просто пытается привлечь внимание и инвестиции для своего стартапа, однако, в любом случае, ее цель - вызывает уважение.

2015. Novartis провел первые клинические испытания лекарства от старения

Швейцарский фарма-гигант Novartis провел исследование препарата Ропамицин, в ходе которого было установлено, что препарат улучшает иммунитет престарелых людей при приеме в малых дозах. Это исследование назвали первым клиническим испытанием анти-эйджингового лекарства на людях. Вещество Ропамицин является продуктом жизнедеятельности бактерии, найденной в 70-х годах под одной из статуй на острове Пасхи. Лекарства на основе этого вещества лечат грибковые заболевания, лечат рак и спасают тысячи пациентов после трансплантации органов, подавляя иммунную реакцию организма на отторжение органа. Дело в том, что Ропамицин замедляет метаболизм клеток. А что будет если замедлить метаболизм? Человек проживет дольше? Да, но только если замедленный метаболизм иммунных клеток не сделает организм (престарелого) человека беззащитным перед вирусами и микробами. И вот, проведенное исследование показало, что в определенных дозах Ропамицин скорее модулирует иммунитет, чем подавляет его. А значит, теоретически, это лекарство от старения.

2013. В Украине хотят создать лекарство от старости при помощи краудфандинга

В Украине нет денег на исследовательские проекты по продлению жизни, зато можно найти ценные ресурсы для этого важного дела. Активисты International Longevity Alliance (Международного альянса за долголетие) выяснили, что в Киевском институте геронтологии доживают свою жизнь 100 лабораторных мышей, которые оказались ненужными институту (так бывает...). И они решили сделать большой эксперимент по созданию "коктейля для продления жизни". Исследователи отобрали 6 препаратов (метопролол, эверолимус, метформин, симвастатин, рамиприл и аспирин), которые осуществляют различные воздействия на организм, замедляя его старение (например, нормализуют частоту биения сердца, содержание холестерина и сахара в крови...) и, скармливая их мышкам,  хотят получить оптимальную комбинацию. Для закупки необходимых препаратов нужно собрать $15 тысяч. Для этого создан проект на Indiegogo (который уже собрал треть суммы). По словам ребят, это первый мире краудфандинговый проект для продления жизни.

2011. Российские и украинские учёные изобрели лекарство от старения

Специалисты Института геронтологии Украины и Санкт-Петербургского института биорегуляции и геронтологии провели исследование препарата Эпиталамин, в качестве средства для профилактики ускоренного старения человека. Этот препарат влияет на синтез мелатонина (гормона эпифиза). У пожилых людей уровень мелатонина в организме понижен. Действие эпиталамина учёные исследовали на 79 людях от 60 до 69 лет, страдающих ишемической болезнью сердца (ИБС). Через три года после начала испытаний биологический возраст пациентов, принимавших эпиталамин, не изменился, и учёные пришли к выводу, что их старение замедлилось. Пациенты контрольной группы, которые препарат не принимали, «постарели» за это время ещё на 4,5 года. Спустя 10 лет биологический возраст больных обеих групп определили повторно. Эффект эпиталамина сохранился: люди, принимавшие его, старели медленнее, чем пациенты контрольной группы.  Исследователи также отмечают, что длительное применение пептидного препарата эпифиза поддерживает физическую работоспособность пожилых людей и нормализует их углеводный и липидный обмен.

www.livemd.ru

Лекарства от старения - МедНовости

18 февраля 2014 года, 13:14

Материал публикуется в рамках партнерства с проектом «Лекарства для жизни», посвященном повышению фармацевтической грамотности пациентов.

Можно ли предотвратить или отсрочить старение? Почему люди с возрастом становятся более уязвимыми для болезней? Над этими вопросами ученые бьются на протяжении веков, но природа процесса старения остается тайной. Досадно осознавать, что избежать многих проблем со здоровьем в старости поможет лишь здоровое питание и физическая активность — в этом врачи точно уверены. А вот эффективность большинства рекламируемых средств исследователи ставят под сомнение.

Антиоксиданты

Впервые теорию о свободных радикалах предложил Дэнхем Харман в 1956 году. Свободные радикалы — продукт окисления органических соединений — воздействуют на клетки, повреждая их структуру. К счастью, клетки могут дать отпор, используя для защиты специальные вещества — антиоксиданты, которые препятствуют окислению. Открытие антиоксидантов породило надежды, что мы сможем замедлить старение, просто добавив их в рацион.

К антиоксидантам относятся витамины А, С и Е, бета-каротин, коэнзим Q10, микроэлементы марганец, селен и пр. Богатыми источниками антиоксидантов являются фрукты и овощи: клюква, виноград, киви, перец, шпинат, брокколи, морковь и т. д. Однако если польза фруктов и овощей доказана, то эффективность и безопасность применения пищевых добавок, содержащих антиоксиданты, остается под вопросом.

В ходе исследования не была обнаружена связь между употреблением продуктов, богатых антиоксидантами, и снижением случаев развития инсульта или деменции. Ученым также не удалось подтвердить положительное влияние витамина С и Е, бета-каротина на вероятность развития диабета или рака, сердечно-сосудистых заболеваний, катаракты.

Между тем высокие дозы бета-каротина могут увеличить риск развития рака легких у курильщиков. Витамин Е в больших количествах повышает вероятность развития рака предстательной железы. Важно помнить: добавки, содержащие антиоксиданты, могут взаимодействовать с некоторыми лекарствами. Например, тот же витамин Е повышает риск кровотечения у людей, принимающих антикоагулянты (средства, препятствующие тромбообразованию). Поэтому прием любых пищевых добавок, содержащих антиоксиданты, следует обсудить с врачом.

Гормоны

Уровни некоторых гормонов меняются в течение жизни. С возрастом обычно увеличивается содержание паратгормона, который помогает регулировать количество кальция в крови и костях, снижается уровень тестостерона у мужчин и эстрогена у женщин. Если организм не производит достаточное количество гормона из-за заболевания или расстройства, врач может назначить гормональную терапию. Однако не стоит верить утверждениям, что гормоны могут замедлить или предотвратить старение. На сегодняшний день ни одно исследование не показало, что гормональная терапия увеличивает продолжительность жизни или избавляет от слабости, характерной для пожилого возраста. В то же время препараты, которые содержат гормоны, могут вызвать различные побочные эффекты, поэтому принимать их нужно по назначению и под наблюдением врача.

Низкокалорийная диета

Известно, что переедание может привести к серьезным проблемам со здоровьем (диабету 2-го типа, сердечно-сосудистым заболеваниям) и существенно сократить жизнь. Тем не менее многих ученых волнует другой вопрос — как влияет на продолжительность жизни ограничение калорий. Речь идет о снижении калорийности диеты на 30–40%.

Еще в 1930-е годы исследователи обнаружили, что лабораторные мыши живут дольше, если в их рационе меньше калорий. С тех пор было установлено, что низкокалорийная диета продлевает жизнь дрожжей, червей и мух. Но исследования на приматах, некоторые из которых проводятся в настоящее время, пока не дали убедительных результатов, а значит, делать выводы пока рано.

Таблетки от старости

Ученые обещают, что вскоре будут созданы новые препараты, замедляющие старение, предупреждающие возрастные заболевания. Возможно, такими лекарствами станут синтетические варианты ресвератрола, соединения, обнаруживаемого в красном вине. Многолетние исследования показали, что биологические эффекты вещества обусловлены активностью гена SIRT1. Он кодирует фермент из семейства сиртуинов, регулирующих многие ключевые функции организма, в том числе ответственные за биологическое старение.

Кроме того, изучается воздействие иммунодепрессанта рапамицина на продолжительность жизни различных биологических моделей. Было установлено, что препарат, который используют, чтобы предотвратить отторжение органов при трансплантации, позволяет продлить жизнь мышей. Будущее исследований туманно, ведь использование рапамицина для лечения людей связано с рисками — вещество может способствовать развитию инфекций, лимфомы и рака кожи.

medportal.ru

Лекарства от старения, и где они обитают

Михаил Тюменцев«Наука из первых рук» №1(77), 2018

Время напрямую людей не убивает, старение — это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска их развития является возраст, и они составляют значительную долю среди причин смертности. Это инсульты, инфаркты, онкологические заболевания, болезнь Альцгеймера, диабет 2-го типа... Именно эти болезни убивают нас. Ученые, работающие в области биологии старения, ищут, что их объединяет, единый механизм, если, конечно, он существует.

Об авторе

Михаил Алексеевич Тюменцев — аспирант лаборатории молекулярных механизмов старения Института цитологии и генетики СО РАН (Новосибирск). Автор и соавтор 2 научных работ.

Я хотел бы поговорить о том, существуют ли на самом деле какие-то успехи в деле «героической» борьбы со старением. СМИ нам время от времени сообщают, что ученые открыли ген старения, но таблеток от старости в аптеках все еще нет. Хотелось бы знать, как обстоят дела на самом деле. Для этого надо определиться, что мы считаем успехом в борьбе со старением. Чтобы люди жили до ста лет? Или до ста пятидесяти? Тогда можно будет говорить об успехе или еще нет?

Надо понимать, что биология старения — тема очень ажиотажная, и это обоюдоострое лезвие, потому что любые разговоры на эту тему легко продать как в буквальном, так и в переносном смысле. Эта тематика требует от ученых, с одной стороны, корректности и сдержанного оптимизма, а с другой — способности не бросаться в крайности в своих представлениях. Существуют две противоположные точки зрения. Одна состоит в том, что со старением вообще ничего нельзя сделать: как на роду (в генах) написано, так оно и будет. Другая подразумевает, что бессмертие должно наступить буквально на днях. Последним пользуются некоторые фармакологические компании, которые начинают продавать баночки с «лекарством от старости». Но если бы где-то в секретных лабораториях стояла баночка с таким лекарством, то мы бы уже жили в другом мире.

Где ищут «лекарства от старости»?

Одно из очевидных направлений поисков средств борьбы со старением — заменять органы, которые в процессе старения приходят в упадок, на новые, специально выращенные. Сейчас уже более-менее понятно, в каком направлении двигаться, чтобы этого достичь. Существуют методики, позволяющие перепрограммировать специализированные, терминально дифференцированные клетки в индуцированные плюрипотентные стволовые клетки (ИПСК), которые затем можно направленно превращать почти во все типы клеток. Можно взять у пожилого пациента его же собственные клетки, превратить их в ИПСК, в ходе чего они помимо прочих теряют черты, свойственные старческим клеткам (иногда употребляют термин «омолаживаются», но его рекомендуют избегать). Далее можно из них вырастить «молодой» орган или, по крайней мере, «молодую» ткань и пересадить ее пациенту.

Одна из проблем метода в том, что это тактическое отступление, имеющее смысл только до тех пор, пока речь не заходит о мозге: ведь его так просто не заменить. Вторая проблема в том, что клетки, имеющие свойства молодых, оказавшись в окружении старческих клеток, сами приобретают фенотип (молекулярные маркеры) старческих клеток (Acosta et al., 2013). Таким образом, выращенный и пересаженный молодой орган недолго пробудет молодым.

Однако этот эффект работает и в обратную сторону: старые клетки, оказавшись среди молодых, приобретают уже их свойства! Чтобы понять, как это происходит, и, возможно, воспроизвести этот эффект, нужно найти молекулярный субстрат «узнавания» клетками «молодого» или «старого» клеточного окружения. Этим субстратом, вероятно, являются какие-то сигнальные молекулы. Результаты экспериментов с использованием парабиоза, искусственного соединения мышей через кровеносную систему, в результате чего мышечные и нервные ткани старых мышей «омолодились», выявили и предполагаемого кандидата на место посредника этого эффекта. Им оказался белок GDF11 (фактор роста и дифференцировки 11), выделенный из крови молодых мышей (Sinha et al., 2014). Правда, эти работы впоследствии подверглись критике, которая состояла в том, что GDF11 — сопутствующая находка, и поэтому исследования до сих пор продолжаются (Reardon, 2015). Но я полагаю, что обнаружить истинного посредника или посредников — только вопрос времени.

Другое стратегическое направление борьбы со старением — попытки влиять непосредственно на его механизмы, изменяя регуляцию обмена питательных веществ и энергии. В качестве субстратов влияния можно назвать гормон роста, который управляет ростом ткани, а также инсулиноподобный фактор роста — молекулу, похожую на гормон инсулин, необходимый для регуляции обмена глюкозы, но имеющую широкий спектр действия на процессы роста и развития клеток.

Молекулярные системы, о которых идет речь, «принимают решения» о том, насколько активно клетки должны расти, делиться, использовать энергию. И, хотя это кажется неочевидным, в ходе старения такие системы начинают работать не слабее, а сильнее, но при этом неэффективно (Blagosklonny, 2010). В результате большинство потенциальных средств, изменяющих работу этих систем, направлены на их подавление. Например, к ним относится антибиотик и иммунодепрессант рапамицин, ингибирующий так называемый сигнальный путь киназы mTOR, участвующей в синтетических процессах в клетке и активируемой аминокислотами. Рапамицин имеет серьезные побочные эффекты и не пригоден к использованию для продления жизни человека, но, возможно, в дальнейшем будут найдены более подходящие вещества. Одним из них может оказаться противодиабетический препарат метформин, если будет доказано, что его безопасно применять в профилактических целях.

Надо заметить, что процесс старения довольно долгое время протекает очень медленно, а потом ускоряется. Дело в том, что в организме существуют «системы контроля качества», которые заняты «починкой сломанного», а то, что уже не починить, отправляют в переработку. Это, к примеру, система протеостаза, которая отвечает за правильное свертывание молекул белков; и процесс аутофагии, являющийся в числе прочего важным звеном для отправки на переработку поврежденных клеточных органелл; и апоптоз (клеточное «самоубийство»). Наконец, сама иммунная система, которая борется не только с инфекциями, но и с опухолевыми клетками. Со временем все эти системы начинают работать хуже, но если вернуть им былую активность, возможно, удастся повернуть ряд старческих изменений вспять, и одним из направлений работ является как раз поиск веществ, которые бы увеличивали активность «систем контроля качества».

Еще одно направление связано с тем, что в ходе старения в тканях организма развивается состояние слабого, вялотекущего, неспособного завершиться воспаления — так называемое тлеющее воспаление (Salminen, Kaarniranta, Kauppinen, 2012). Вообще воспаление характеризуется пятью признаками: покраснением, отеком, болью, повышением температуры и нарушением функции. И, возможно, если мы будем бороться с воспалением или с тем, что его вызывает в ходе старения, мы сможем вернуть тканям утраченную функциональность.

Довольно давно известно (хотя потребовалось много времени для подтверждения этого феномена), что ограничение калорийности питания ведет к замедлению развития старческих изменений и увеличению продолжительности жизни (Colman et al., 2009). На крысах таким способом удалось добиться увеличения продолжительности жизни до 40%. Эти эксперименты доказывают, что искусственное увеличение максимальной продолжительности жизни в принципе возможно. Ограничение калорийности действует и на системы контроля качества, и снижает тлеющее воспаление, т. е., по-видимому, «бьет» очень близко к предмету поисков — общему механизму старения.

Проблемы и способы их решения

Я описал направления биологии старения, по которым активно идут исследования, но любой такой список будет заведомо неполон. Уже известны многие процессы, течение которых нарушается в ходе старения, и, что важно, известны сотни веществ-кандидатов в потенциальные «лекарства от старения» — геропротекторы. Обилие потенциальных мишеней и методик, с одной стороны, радует, потому что говорит о том, что стадия, на которой шли поиски хоть каких-нибудь мишеней, пройдена. Но возникла другая проблема: сейчас потенциальных мишеней много больше, чем научное сообщество может «переварить». Возможно, среди нескольких сотен потенциальных геропротекторов есть наиболее действенный, но как его определить? Ограничивающим фактором становится количество лабораторий и специалистов.

Каким может быть выход из этой ситуации? Можно привлечь к работе неспециалистов по аналогии с тем, как поступают орнитологи: они принимают данные наблюдений людей, состоящих в сообществах наблюдателей за птицами (такой подход называется «гражданская наука»). Специалисты по старению предлагают привлекать к своей деятельности владельцев собак (Kaeberlein, 2016). Собака — это один из очень немногих видов животных, объем накопленных медицинских данных о котором сравним с данными «человеческой» медицины. Владельцы собак, получая для своих питомцев экспериментальное лечение, могли бы собирать данные (простые, измеряемые на дому показатели) и отправлять отчеты о результатах.

Можно упомянуть еще об одном возможном варианте активации сбора данных, хотя он и является дискуссионным. Согласно недавно введенному во многих штатах США закону, неизлечимо больной человек имеет право получить экспериментальные методы лечения, если они существуют, не дожидаясь окончания процедуры их одобрения. Некоторые такие пациенты считают, что им нечего терять, и делают это на свой страх и риск. Хотя это весьма специфический случай, и даже он остается «ареной» горячих дебатов, поэтому активно призывать людей к применению глубоко экспериментальных методик нельзя.

Исследовать процесс старения на людях очень трудно. Человек стареет долго, это неудобно с методологической точки зрения. Нельзя забывать и об этических аспектах. Поэтому старение исследуют в основном на червях-нематодах, дрожжах, мухах, мышах — на недолго живущих организмах. Исследования на модельных организмах — хороший подход, но человек не мышь и не муха, и далеко не все, что справедливо для моделей, будет также справедливо для человека (de Magalhães, Stevens, Thornton, 2017). Известно несколько сотен генов дрожжей и нематод, функция которых связана со старением, но у человека эти гены в основном функционируют не так или отсутствуют вовсе.

Один из вариантов, как обойти эту проблему, — «подгонять решение под ответ». Существуют животные, которые преодолели проблему старения и живут долго: продолжительность жизни хорошо коррелирует с размером организма, но некоторые животные выбиваются из этой закономерности. К ним относятся грызуны — голые землекопы и слепыши, некоторые летучие мыши, птицы, очень крупные млекопитающие. Можно изучить, чем они отличаются от не долгоживущих организмов, и пытаться имитировать фармакологическими агентами действие генных вариантов, отвечающих за долгую жизнь (Gorbunova et al., 2014).

Эксперименты, которые «провелись сами собой», могут быть найдены и в человеческих популяциях. Сегодня ведутся исследования геномов людей, которые прожили более 100 лет (Puca et al., 2017), с тем соображением, что эти люди «выиграли в генетическую лотерею». И выявление связанных с их долгожительством вариантов генов (аллелей) может указать нам, какие вещества способны воспроизвести этот эффект в общей популяции.

Некоторые потенциальные геропротекторы являются давно применяющимися в медицине лекарствами (например, упоминавшийся выше метформин), и исследование течения старческих заболеваний у людей, принимающих их по сторонним показаниям, может помочь нам выявить наиболее перспективные вещества.

Многообещающим направлением является поиск биомаркеров старения — показателей, скорость изменения которых за сравнительно небольшой промежуток времени, например за год, достаточно достоверно отражает общую скорость этого процесса (Sprott, 2010). Использование биомаркеров позволит напрямую исследовать эффективность геропротекторов, не требуя наблюдения в течение всей жизни.

И о будущем борьбы со старением. Приведу сначала в пример статистику по выживаемости пациентов с онкологическими заболеваниями. Хотя нам до сих пор кажется, что рак — это приговор, по многим видам опухолей цифры выживаемости и наступления долгосрочной ремиссии выросли на десятки процентов, например, для рака простаты — с 30 до 70%. Долгое время шли фундаментальные исследования, а сейчас мы видим плоды работы, которая начиналась в середине XX в. Вероятно, и результаты борьбы со старением будут такой же «тихой революцией». Мы не проснемся и не прочитаем в заголовках газет, что старение побеждено. Это будет постепенный процесс, которому предшествовало постепенное накопление новых данных. Сначала мы узнаем, что увеличение жизни в принципе возможно, затем обнаружим все большее число работающих геропротекторов, затем начнет расти продолжительность жизни... И когда-нибудь мы обернемся назад и увидим, что прогресс действительно есть.

Литература 1. Blagosklonny M. V. Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans) // Cell Cycle. 2010. V. 9. N. 4. P. 683–688.2. Colman R. J., Anderson R. M., Johnson S. C. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys // Science. 2009. V. 325. N. 5937. P. 201–204.3. de Magalhães J. P., Stevens M., Thornton D. The business of anti-aging science // Trends in biotechnology. 2017. V. 35. N. 11. P. 1062–1073.4. Gorbunova V., Seluanov A., Zhang Z. et al. Comparative genetics of longevity and cancer: insights from long-lived rodents // Nat. Rev. Genet. 2014. V. 15. N. 8. P. 531–540.5. Puca A. A., Spinelli C., Accardi G. et al. Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing // Mechanisms of ageing and development. 2017. doi.org/10.1016/j.mad.2017.10.004.6. Sinha M., Jang Y. C., Oh J. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle // Science. 2014. V. 344. N. 6184. P. 649–652.7. Sprott R. L. Biomarkers of aging and disease: introduction and definitions // Experimental gerontology. 2010. V. 45. N. 1. P. 2–4.

elementy.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики