Создание водородной бомбы. Водородную бомбу
Водородная бомба - это... Что такое Водородная бомба?
Термоя́дерное ору́жие — тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжёлые (например, синтеза двух ядер атомов дейтерия (тяжелого водорода) в одно ядро атома гелия), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления.
Общее описание
Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.
Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:
В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.
Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру (порядка 50 млн градусов), в водородной бомбе сначала взрывается небольшая по мощности атомная бомба. Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий.
Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию (234), которая и дает основное выделение энергии при взрыве водородной (термоядерной) бомбы. Если корпус бомбы изготовлен из природного урана, то быстрые нейтроны (уносящие 70 % энергии, выделяющейся при реакции (242)) вызывают в нем новую цепную неуправляемую реакцию деления. Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности.
Дополнительным поражающим фактором является нейтронное излучение, возникающее в момент взрыва водородной бомбы.
Устройство термоядерного боеприпаса
Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба), так и боеголовок для баллистических и крылатых ракет.
История
1 ноября 1952 США взорвали первый термоядерный заряд на атолле Эневетак. Первая советская водородная бомба была взорвана 12 августа 1953 года. Однако следует заметить, что американская «бомба» представляла собой лабораторный образец, фактически «дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции, а советская бомба была законченным устройством, пригодным к практическому применению. Впрочем, мощность взорванного американцами устройства составляла 10 мегатонн, в то время как мощность бомбы конструкции академика Сахарова — 400 килотонн. Самая крупная когда-либо взорванная водородная бомба — советская 50-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв в последствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном "Новая Земля". Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила, тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Любопытно отметить, что после этого прекратился рост мегатоннажа ядерного арсенала США.
СССР
Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (еще до испытания первой советской ядерной бомбы) Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства (современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз). Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» (первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо»). Мощность взрыва была эквивалентна 400 килотоннам при кпд всего 15 — 20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.
После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.
В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом («лучевая имплозия»). «Третья идея» Сахарова была проверена в ходе испытаний «РДС-37» мощностью 1.6 мегатонн в ноябре 1955 года. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.
Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. КПД устройства составил почти 97 %, и изначально оно было рассчитано на мощность в 100 мегатонн, урезанных впоследствии волевым решением руководства проекта вдвое. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы.
США
Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.
Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию(обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.
В 1951 году была проведена серия испытаний под общим наименованием «Operation Greenhouse» (Операция Оранжерея), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж», в котором было взорвано экспериментальное устройство, предсталявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещенным в центре. Основная часть мощности взрыва была получена именно за счет реакции синтеза водорода, что подтвердило на практике общую концепцию двухступенчатых устройств.
1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную емкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной емкости проходил плутониевый стрежень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма излучения от первичного заряда к вторичному.
Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твердого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчеты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами.
Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47 развернутые на подводных лодках, оснащенных баллистическими ракетами Поларис. Боеголовки имели массу 700 фунтов (320 кг) и диаметр 18 дюймов (50 см). Более поздние испытания показали низкую надежность боеголовок, установленных на ракеты Поларис и необходимость их доработок. К середине 70-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).
Великобритания
В Великобритании разработки термоядерного оружия были начаты в 1954 в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на весьма зачаточном уровне, так как Соединенные Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолет для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии. Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.
В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.
В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных бомб. Почти все свидетели испытаний (включая экипаж самолета, который ее сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в ее состав входил заряд плутония массой 117 килограмов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов. Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.
В сентябре 1957 была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1.8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.
2 сентября 1958 года был взорван облегченный вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трехступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединенные Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.
Китай
Китайская Народная Республика испытала своё первое термоядерное устройство типа «Теллер-Улам» мощностью 3,31 мегатонны в июне 1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу. Эта феноменальная скорость стала парадоксальным результатом маккартизма: китайские физики, работавшие в США, были высланы по подозрению в шпионаже и, вернувшись на родину, способствовали его усилению.
Франция
В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6 мегатонны. Подробности о развитиии французской программы известны слабо.
Другие страны
Детали развития проекта Теллер-Улам в других странах менее известны.
Происшествия с термоядерными боеприпасами
Испания, 1966
17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.
Гренландия, 1968
21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле (en:Thule Air Base). На борту самолёта находилось 4 термоядерные авиабомбы.
Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привел к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя ядерное загрязнение. В 1987 г. почти 200 из датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличенния смертности или заболеваемости раком.
Пентагон опубликовал информацию о том, что все из четырех атомных боезарядов были найдены и уничтожены. Но в ноябре 2008 года в связи с истечением срока секретности информация, находящаяся под грифом «Секретно», была раскрыта. В документах было сказано, что разбившийся бомбардировщик нёс четыре боезаряда, но в течение нескольких недель учёным удалось по фрагментам обнаружить только 3 боезаряда. В апреле 1968 подводная лодка «Star III» была отослана на базу для поисков утерянной бомбы, серийный номер которой 78252, в море. Но найдена она не была до сих пор. Во избежание паники среди населения Соединённые Штаты опубликовали информацию о четырёх найденных уничтоженных бомбах.
Ссылки
Примечания
См. также
Wikimedia Foundation. 2010.
dic.academic.ru
ВОДОРОДНАЯ БОМБА | Энциклопедия Кругосвет
ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах.
Термоядерные реакции.
В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.
Изотопы водорода.
Атом водорода – простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (h3O) показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода – дейтерий (2H). Ядро дейтерия состоит из протона и нейтрона – нейтральной частицы, по массе близкой к протону.
Существует третий изотоп водорода – тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.
Разработка водородной бомбы.
Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте.
Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия.
Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.
Механизм действия водородной бомбы.
Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития – соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе.
Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.
Деление, синтез, деление (супербомба).
На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб.
Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.
Последствия взрыва.
Ударная волна и тепловой эффект.
Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий – это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха – туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги.
Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.
Огненный шар.
В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное (хотя и вторичное) последствие взрыва – это радиоактивное заражение окружающей среды.
Радиоактивные осадки.
Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными – в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.
Длительное заражение местности радиоактивными осадками.
В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. 100 км от эпицентра взрыва. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, т.е. не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека.
www.krugosvet.ru
Создание водородной бомбы | lemur59.ru
Водородная бомба Как известно, еще в середине 20-х годов английский астрофизик Эддингтон высказал предположение, что источником энергии звезд могут быть ядерные реакции синтеза (слияние легких атомных ядер в более тяжелые. Артур Стэнли Эддингтон Сверхвысокие температура и давление в недрах звезд создают необходимые для этого условия. В нормальных (земных) условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы они, преодолев электростатическое отталкивание, могли сблизиться и вступить в ядерную реакцию. Однако это отталкивание можно преодолеть, сталкивая разогнанные до больших скоростей ядра легких элементов. Д.Кокрофт и Э.Уолтон использовали этот метод в своих экспериментах, проводившихся в 1932г. в Кембридже (Великобритания). Ускоренные в электрическом поле протоны, «обстреливали» литиевую мишень при этом наблюдалось взаимодействие протонов с ядрами лития. В 1938г. тремя физиками независимо друг от друга были открыты два цикла термоядерных реакций превращения водорода в гелий,являющиеся источником энергии звезд:- протон-протонный (Г. Бете и Ч.Критчфилд) и углеродно-азотный (Г.Бете и К.Вейцзеккер).
Таким образом теоретическая возможность получения энергии путем ядерного синтеза была известна еще до войны. Вопрос состоял в том чтобы создать работоспособное техническое устройство которое бы позволило создать на Земле условия необходимые для начала реакций синтеза. Для этого требовались миллионные температуры и сверхвысокие давления. В 1944г. в Германии в лаборатории Дибнера велись работы по инициированию термоядерного синтеза путем сжатия ядерного топлива подрывом кумулятивных зарядов обычного взрывчатого вещества (Работы эти не дали однако желаемого результата как теперь понятно из-за недостаточности давления и температуры ). США Идея бомбы основанной на термоядерном синтезе, инициируемом атомным зарядом была предложена Э.Ферми его коллеге Э.Теллеру (который и считается «отцом» термоядерной бомбы) еще в 1941г. Энрико Ферми Эдвард Теллер В 1942г. между Оппенгеймером и Теллером возник конфликт поскольку последний был «обижен» тем, что место главы теоретического отдела было отдано не ему. В результате Оппенгеймер отстранил Теллера от проекта атомной бомбы и перевел на изучение возможности использования реакции синтеза гелия из ядер тяжелого водорода (дейтерия) для создания нового оружия.Теллер принялся за создание устройства, получившего название «классический супер» (в советском варианте «труба»). Идея состояла в разжигании термоядерной реакции в жидком дейтерии при помощи тепла от взрыва атомного заряда. Но вскоре выяснилось, что атомный взрыв недостаточно горяч, и не обеспечивает необходимых условий для «горения» дейтерия. Для начала реакций синтеза требовалось введение в смесь трития. Реакция дейтерия с тритием должна была обеспечить повышение температуры до условий дейтериево-дейтеривого синтеза. Но тритий, ввиду своей радиоактивности (период полураспада всего 12 лет) в природе практически не встречается и его приходится
получать искусственным путем в реакторах деления. Это делало его на порядок дороже оружейного плутония.
Кроме того каждые 12 лет половина полученного трития просто исчезала в результате радиоактивного распада.Применение газообразных дейтерия и трития в качестве ядерного топлива было невозможно и приходилось
применять сжиженный газ, что делало взрывные устройства малопригодными для практического применения. Исследования проблем «классического супера» продолжалось в США до конца 1950г. когда выяснилось что даже несмотря на большие количества трития достичь стабильного термоядерного горения в таком устройстве невозможно. Исследования зашли в тупик.
В апреле 1946г. в Лос-Аламосе проходило секретное совещание на котором обсуждались итоги американских работ по водородной бомбе в нем участвовал Клаус Фукс.Через какое-то время после совещания он передал материалы, связанные с этими работами, представителям советской разведки и они попали к нашим физикам. В начале 1950г. К.Фукс был арестован и этот источник информации «иссяк». В конце августа 1946г. Э.Теллер выдвинул идею, альтернативную «классическому суперу», которую он назвал «Alarm Clock». Этот вариант был использован в СССР А.Сахаровым под названием «слойка», а в США никогда не реализовывался. Идея заключалась в окружении ядра делящейся атомной бомбы слоем термоядерного горючего из смеси дейтерия с тритием. Излучение от атомного взрыва способно сжать 7-16 слоев горючего, перемежающегося со слоями делящегося материала и нагреть его примерно до такой же температуры, как и само делящиеся ядро. Это опять же требовало использования очень дорогого и неудобного трития. Термоядерное топливо окружала оболочка из урана-238 которая на первом этапе выполняла роль теплоизолятора, не давая энергии выйти за пределы капсулы с топливом. Без нее горючие, состоящие из легких элементов было бы абсолютно прозрачно для теплового излучения, и не прогрелось бы до высоких температур. Непрозрачный уран, поглощая эту энергию, возвращал часть ее обратно в топливо. Кроме того, они увеличивают сжатие горючего путем сдерживания его теплового расширения. На втором этапе, уран подвергался распаду за счет нейтронов, появившихся при синтезе, выделяя дополнительную энергию. В сентябре 1947г. Теллер предложил использовать новое термоядерное горючее – дейтерид лития-6 являющееся при нормальных условиях твердым веществом. Литий поглощая нейтрон делился на гелий и тритий с выделением дополнительной энергии,что еще больше повышало температуру, помогая начаться синтезу. Идею «слойки», использовали и британские физики при создании при создании своей первой бомбы. Но будучи тупиковой ветвью развития термоядерных систем эта схема отмерла. Перевести разработку термоядерного оружия в практическую плоскость позволила предложенная в 1951г. сотрудником Теллера Станиславом Уламом новая схема. Для инициирования термоядерного синтеза предполагалось сжимать термоядерное топливо, используя излучение от первичной реакции расщепления, а не ударную волну(т.н. идея «радиационной имплозии»), а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы - триггера (двуступенчатая схема). Учитывая что при обычном атомном взрыве 80% энергии выделяется в виде рентгеновского излучения, а около 20 в виде кинетической энергии осколков деления и что, рентгеновские лучи намного опережают расширяющиеся (со скоростью около 1000 км/с.) остатки плутония, такая схема позволяла сжать емкость с термоядерным горючим второй ступени до начала его интенсивного нагрева. Эта модель американской водородной бомбы получила название Улама-Теллера. На практике все происходит следующим образом. Компоненты бомбы помещаются в цилиндрический корпус с триггером на одном конце. Термоядерное топливо в виде цилиндра или эллипсоида помещается в корпус из очень плотного материала – урана,свинца или вольфрама. Внутри цилиндра аксиально помещен стержень из Pu-239 или U-235, 2-3 см. в диаметре. Все оставшееся пространство корпуса заполняется пластмассой. При подрыве триггера испускаемые рентгеновские лучи нагревают урановый корпус бомбы он начинает расширяться и охлаждаться путем уноса массы (абляции). Явление уноса, подобно струе кумулятивного заряда направленного внутрь капсулы, развивает огромное давление на термоядерное горючие. Два других источника давления движение плазмы (после срабатывания первичного заряда корпус капсулы как и всё устройство представляет собой ионизированную плазму) и давление рентгеновских фотонов не оказывают значительного влияния на обжатие. При обжатии стержня из делящегося материала он переходит в надкритическое состояние. Быстрые нейтроны, образующиеся при делении триггера и замедленные дейтеридом лития до тепловых скоростей начинают цепную реакцию в стержне. Происходит еще один атомный взрыв действующий наподобие «запальной свечи» и вызывающий еще большее увеличивает давления и температуры в центре капсулы, делая их достаточными для разжигания термо-ядерной реакции. Урановый корпус мешает выходу теплового излучения за его пределы, значительно увеличивая эффективность горения. Температуры, возникающие в ходе термоядерной реакции многократно превышают образующиеся при цепном делении (до 300 млн. вместо 50-100млн. град.). Все это происходит примерно за несколько сотен наносекунд. Описанная выше последовательность процессов на этом заканчивается, если корпус заряда изготовлен из вольфрама (или свинца). Однако если изготовить его из U-238 то образующиеся при синтезе быстрые нейтроны, вызывают деление ядер U-238. Деление одной тонны U-238 дает энергию, эквивалентную 18 Мт. При этом образуется много радиоактивных продуктов деления . Все это и составляет радиоактивные осадки, сопровождающие взрыв водородной бомбы. Чисто термоядерные заряды создают значи-тельно меньшее заражение обусловленное только взрывом триггера. Такие бомбы получили название «чистых»/ Двухступенчатая схема Теллера-Улама позволяет создавать столь мощные заряды, на сколько хватит мощности триггера для сверхбыстрого обжатия большого количества горючего. Для дальнейшего увеличения величины заряда можно использовать энергию второй ступени для сжатия третьей. На каждой стадии в таких устройствах возможно усиление мощности в 10-100 раз. Модель требовала большого количества трития, и для его производства американцы построили новые реакторы. Работы шли в большой спешке, ведь Советский Союз к тому времени уже создал атомную бомбу. Штатам оставалось только надеяться, что СССР пошел по украденному Фуксом тупиковому пути (который был арестован в Англии в январе 1950г.). И эти надежды оправдались. Первые термоядерные устройства были взорваны в ходе операции Greenhouse (Оранжерея) на атолле Эниветок (Маршалловы острова). Операция включала четыре испытания. В ходе первых двух «Dog» и «Easy» в апреле1951г. были испытаны две новые атомные бомбы: Mk.6 - 81Кт. и Mk.5 - 47Кт. 8 мая 1951г. было проведено первое испытание термоядерного устройства «George» мощностью 225Кт. Это был чисто исследовательский эксперимент по изучению термоядерного горения дейтерия. Устройство представляло собой ядерный заряд в виде тора 2,6м. в диаметре и 0,6м. толщиной с небольшим (несколько граммов) количеством жидкой дейтериево-тритиевой смеси, помещенным в центре. Выход энергии от синтеза в этом устройстве очень невелик по сравнению с
выходом энергии от деления ядер урана. 25 мая 1951г. было проведено испытание термоядерного устройства «Item».
В нем в качестве термоядерного топлива использовалась смесь дейтерия с тритием, охлажденная до жидкого состояния, и находящаясявнутри ядра из обогащенного урана. Устройство создавалось для испытания принципаувеличения мощности атомного заряда за счет дополнительных нейтронов возникающих вреакции синтеза. Эти нейтроны, попадая в зону реакции деления, увеличивали их интенсивность (увеличивалась доля ращепившихся ядер урана) а следовательно и силу взрыва.
Для ускорения разработок в июле 1952г. правительство США организовало второй оружейный ядерный центр - Ливерморскую национальную лабораторию им. Лоуренса в Калифорнии. 1 ноября 1952г. на атолле Эниветок проведено испытание «Ivy Mike» мощностью 10,4Мт. Это было первое устройство, созданное по принципу Теллера-Улама. Весило оно около 80т. и занимало помещение размером с двухэтажный дом. Термоядерное горючее (дейтерий – тритий) находилось в жидком состоянии при температуре, близкой к абсолютному нулю в дьюаровском сосуде по центру которого проходил плутониевый стрежень. Сам сосуд окружал корпус-толкатель из природного урана, массой более 5т. Целиком сборка помещалась в огромную стальную оболочку, 2м. в диаметре и 6,1м. В высоту, со стенками толщиной 25-30см. Эксперимент стал промежуточным шагом американских физиков на пути к созданию транспортабельного водородного оружия. 77% (8 Мт.) выхода энергии обеспечило деление уранового корпуса заряда и только (2.4Мт.), приходился на реакцию синтеза. «Ivy Mike» Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твердого топлива-дейтерида лития-6 ( Li6). В этом плане впереди оказались советские ученые, использовавшие дейтерид Li6 уже в первой советской термоядерная бомбе испытанной в августе 1953г. Американский же завод по производству Li6 в Ок-Ридже был пущен в эксплуатацию только к середине 1953г. (строительство началось в мае 1952г.).После операции «Ivy Mike» оба ядерных центра (в Лос-Аламосе и Калифорнии) приступили к спешной разработке более компактных зарядов с использованием дейтерида лития, которые возможно было бы применять в боевых условиях. испытательный взрыв “ Майкла “ В 1954г. в ходе операции «Castle» на атолле Бикини планировалось провести испытания экспериментальных образцов термоядерных зарядов ставшие прототипами для первых серийных бомб. Однако для скорейшего оснащения вооруженных сил новым оружием три типа устройств, были сразу, без испытаний, изготовлены малой серией (по 5 изделий). Одним из них стла бомба EC-16 (ее испытание под именем «Jughead» планиро- валось провести в ходе операции «Castle»). Это была транспортабельная версия криогенной системы «Mike» (масса бомбы 19т. мощность 8Мт.). Но после первых успешных испытаний устройств с дейтеридом лития EC-16 моментально устарела и даже не испытывалась. EC-17 и ЕС-14 были серийными версиями устройств «Runt I» и «Alarm Clock». 1 марта 1954г.(здесь и далее дата указана по местному времени) состоялось испытание «Castle Bravo» в ходе которого было взорвано устройство «Shrimp». Это был двухступенчатый заряд с дейтеридом лития обогащенным изотопом Li6 до 40%(остальное составлял природный Li7). Такое горючие применялось в США впервые поэтому мощность взрыва сильно превысила ожидаемую в 4-8Мт. и составила 15Мт. (10Мт. Выделилось при делении оболочки из U-238 и 5 Мт. от реакции синтеза). Причина неожиданно высокой мощности состояла в Li7 который по ожиданиям должен был быть достаточно инертным, но в действительности при поглощении быстрых нейтронов атом Li7 тоже делился на тритий и гелий. Этот «незапланированный» тритий и обеспечил 2-х кратное усиление мощности. Кратер от взрыва получился 2км. в диаметре и глубиной 75м. Масса устройства составляла 10.5т. длина 4,5м. диаметр 1,35м. Успешный результат первого испытаня привел к отказу от криогенных проектов «Jughead» (EC-16) и «Ramrod» (криогенного близнеца устройства «Morgenstern»). Из-за дефицита обогащенного Li6 в следующем испытани «Castle Romeo» использовался заряд из природного (7.5% Li6) лития. Термоядерное устройство под именем «Runt I» было взорвано 26 Марта 1954г. Одновременно это было контрольное испытание термоядерной бомбы получившей обозначение EC-17. Мощность взрыва составила 11Мт.из которых на реакции синтеза пришлось 4Мт. Как и в случае с «Bravo», выделившаяся мощность намного превысила ожидаемые 1.5-7Мт. Масса устройства - 18т. длина –5,7м. диаметр – 1,55м. 26 Апреля 1954г. в ходе испытания «Castle Union» было взорвано устройство «Alarm Clock» (EC-14) с содержанием Li6-95%. Энерговыделение – 6,9 Мт. из которых 1,6Мт. (27.5%) образовались за счет реакций синтеза. Взрыв оставил на дне лагуны кратер 100м. шириной и 30м. глубиной. Масса устройства – 12,5 т. длина – 3,86 м. диаметр – 1,55м. 7 апреля 1954г. проведено испытание «Castle Koon» в ходе которого было взорвано изделие «Morgenstern» являвшееся первой термоядерной разработкой Калифорнийского ядерного центра и последним оружейным проектом, над которым работал Э.Теллер. Испытание было неудачным. Вместо планировавшейся 1Мт.мощность взрыва составила лишь 110кт. из которых только 10кт. за приходилось на термоядерный синтез. Это произошло из-за того, что нейтронный поток от триггера достиг второй ступени, предварительно разогрев ее и помешав эффективному обжатию. Остальные изделия, испытанные в «Castle», содержали бор-10, служащий хорошим поглотителем нейтронов и снижающим эффект предварительного разогрева термоядерного топлива. 5 Мая 1954г. произведено испытание «Castle Yankee». Испытываемый заряд назывался «Runt II» и являлся прототипом для бомбы EC-24 и близнецом «Runt I». Это изделие было полностью аналогично испытанному в «Romeo», но в нем вместо природного применялся обогащенный (до 40% Li6) литий. Это дало прибавку мощности в 2.5Мт. Мощность взрыва составила 13.5 Мт. (при ожидаемых 7.5-15Мт.) из которых на реакции синтеза пришлось 6,5Мт. Масса «Runt II» 7,8т. длина-5,6м. диаметр -1,52м. Включение в график испытания этого заряда произошло из-за чрезвычайного успеха «Castle Romeo» и исключения испытаний устройств «Ramrod» и «Jughead». 14 Мая 1954г. состоялось испытание «Castle Nectar» в ходе которого было взорвано изделие «Zombie» представлявшее собой прототип облегченного термоядерного заряда TX-15. По сравнению с весом остальных зарядов, эта бомба выглядит совсем небольшой масса - 2.9т. мощность - 1.7 Мт, длина – 2,8м. диаметр- 0,88 м. Первоначально она разрабатывалось как чисто атомная бомба с мощностью в диапазоне сотен килотонн в которой применялось радиационное обжатие одного атомного заряда другим. Идея была сохранена но в проект добавили термоядерное горючее для увеличения мощности. В итоге получилась радиационно обжимаемая атомная бомба с термоядерным усилением (80% энергии выделяется за счет деления урана). Проект выиграл в весе, но применение в нем дорогого и отсутствующего на тот момент в должных количествах материала - высокообогащенного лития сдерживало его производство до 1955г. Таким образом на вооружение США уже в 1954г поступили в ограниченном количестве первые термоядерные бомбы. Это были огромные и тяжелые мастодонты ЕС-14 («Alarm Clock») масса 14т. мощность 7Мт. получивший обозначение Мк.14, ЕС-17 («Runt I») масса 19 т. мощность 11 Мт. диаметр – 1,6 м. длина – 7,5м получивший обозначение Мк.17. Эти заряды изготовлены сериями по 5 шт. Кроме того, имелось10 зарядов EC 24 («Runt II») получивших обозначение Мк.24. Термоядерная бомба Mk.17 стала крупнейшей бомбой из созданных в США. Взять ее в полет мог только B-36. Для ее эксплуатации требовались специальные машины, средства и приспособления. Подвесить ее в самолет могли лишь на одной авиабазе, что было крайне неудобно и снижало гибкость применения этого оружия. Поэтому все пять Mk.17 были сняты с вооружения в 1957г. После операции «Castle» было развернуто серийное производство новых термоядерных зарядов, начавших поступать на вооружение в 1955г. Серийная версия «Zombie» («Castle Nectar»)- Mk.15 длина - 3,5м. масса - 3447кг. мощность - 1.69Мт. В 1955- 1957гг. было изготовлено 1200шт. сняты с вооружения в 1965г. Mk.21 с ядром, содержащим 95% лития-6: длина – 3,75м. масса – 8т. мощность 5Мт. В 1955 – 56гг. произведено 275 шт. сняты с вооружения в 1957г. Наследник «Castle Yankee» - Mk.24 длина – 7,42м. масса 19т. мощность 15Мт. В 1954-55 гг. изготовлено 105шт. сняты с вооружения в 1956г. В 1956г. состоялось испытание «Redwing Cherokee» (дальнейшее развитие бомбы Mk.15). Энерговыделение составило 3.8Мт. масса 3,1т. длина – 3,45м. диаметр - 0,88м. Важное отличие этого заряда от испытанных ранее то, что он был сразу конструктивно оформлен в виде авиабомбы и впервые в США было произведено бомбометание термоядерного устройства с самолета. Самая мощная американская бомба была разработана по программе B-41. Работы начались в 1955г. в Калифорнийскрм ядерном центре на основе разрабатываемой там экспериментальной трехступенчатой термоядерной системы. Прототипы бомбы TX-41, испытывался в тестах "Sycamore", "Poplar" и "Pine" операции "Hardtack" на полигоне в Тихом океане, между 31 маем и 27 июлем 1958г. среди них были только чистые варианты. В результате была создана самая мощная американская термоядерная бомба Mk.41. Она имела ширину 1,3м. (1,85м. по хвостовому оперению) длину 3,7м. и массу 4,8т. За период 1960-62гг. было изготовлено 500 шт. (снята с вооружения в 1976г.). Этот трехступенчатый термоядерный заряд производился в двух вариантах. «Грязная» с оболочкой третьей ступени из U-238 - Y1 и «чистая» со свинцовой оболочкой -Y2 мощностью менее 10 Мт. и 25 Мт. соответственно. В качестве топлива использовался дейтерид лития с 95% Li-6. Среди всех американских проектов, в этом был достигнут наибольший удельный энерговыход: 5.2 кт/кг. (по словам Тейлора для термоядерного оружия предел отношения мощности заряда к массе - около 6 кт/кг.) В 1979г. после тяжелого сердечного приступа Э.Теллер сделал неожиданное заявление «…первую конструкцию (водородной бомбы) создал Дик Гарвин». В интервью, посвященном той же теме, Гарвин вспоминал что в 1951г. в Лос-Аламосе Теллер рассказал ему о научной идее, лежащей в основе создания будущего оружия, и попросил сконструировать ядерное взрывное устройство. Рэй Киддер, один из основоположников атомного оружия прокомментировал это заявление так: «Всегда существовало противоречие подобного типа: у кого возникла идея создания водородной бомбы и кто ее создал. Теперь все сказано. Это исключительно правдоподобно и, смею заметить, точно». Однако среди ученых нет единодушия в отношении вклада 23-летнего (в ту пору Гарвина ) в разработку термоядерной бомбы. СССР Как уже говорилось СССР через своего агента – английского физика Клауса Фукса (до его ареста в 1950г.) получал практически все материалы по американским разработкам как говорится из "первых рук". Но он был не единственным нашим источником и после 1950г. информация продолжала поступать (может быть не том количестве). С ней, в строжайшей тайне, знакомился только Курчатов. Никто (из физиков) кроме него об этой информации не знал. Со стороны это выглядело как гениальное озарение. Но к идее использования термоядерного синтеза для создания бомбы советские ученые похоже пришли самостоятельно. В 1946г. И. Гуревич, Я. Зельдович, И.Померанчук и Ю. Харитон передали Курчатову совместное предложение в форме открытого отчёта. Яков Борисович Зельдович Суть их предложения заключалась в использовании атомного взрыва в качестве детонатора для обеспечения взрывной реакции в дейтерии. При этом подчёркивалось, что „желательна наибольшая возможная плотность дейтерия“, а для облегчения возникновения ядерной детонации полезно применение массивных оболочек, замедляющих разлёт. Гуревич позднее назвал факт незасектеченности этого отчета «... наглядным доказательством того, что мы ничего не знали об американских разработках.» Но Сталин и Берия во всю гнали создание атомной бомбы и на предложение малоизвстных ученых не обратили внимания. Далее события развивались следующим образом. В июне 1948г. по постановлению Правительства в ФИАНе под руководством И.Тамма была создана специальная группа, в которую был включен А.Сахаров в задачу которой входило исследование возможности создания водородной бомбы.
Андрей Дмитриевич Сахаров При этом ей поручалась проверка и уточнение тех расчётов, которые проводились в московской группе Я. Зельдовича в Институте химической физики. Надо сказать, что в тот период группа Я.Зельдовича разрабатывала проект «труба». Уже в конце 1949г. Сахаров предложил новую модель водородной бомбы. Это была гетерогенная конструкция из чередующихся слоев расщепляющегося материала и слоев топлива синтеза (дейтерия в смеси с тритием). Схема получила наименование «слойка» или схема Сахарова-Гинзбурга (непонятно каким образом «слойку» внедрялись жидкие дейтерий и тритий). Эта модель имела некоторые недостатки - водородный компонент бомбы был незначителен, что ограничивало мощность взрыва. Эта мощность могла быть максимум в двадцать-сорок раз выше мощности обычной плутониевой бомбы. Кроме того только тритий был очень дорог и для его производства требовалось много времени. По предложению В. Гинзбурга в качестве источника дейтерия и трития был использован литий, имевший к тому же дополнительные реимущества -твёрдое агрегатное состояние и дешевизну. В феврале 1950г. было принято постановление Совета Министров СССР ставившее задачу организовать расчетно-теоретические, экспериментальные и конструкторские работы по созданию изделий РДС-6с («слойка») и РДС-6т («труба»). Таким образом у нас параллельно развивались два направления - «труба» и «слойка». В первую очередь должно было быть создано изделие РДС-6с весом до 5т. для усиления мощности в дейтерид лития вводилось небольшое количество трития. Был установлен срок изготовления первого экземпляра изделия РДС-6с - 1954г. К 1 мая 1952г. следовало изготовить РДС-6с была испытана 12 августа 1953г. на Семипалатинском полигоне,получив на Западе наименование «Джо-4».(“ Дядюшкой Джо “ так на Западе называли И.В. Сталина ) Это была именно перемещаемая бомба, а не стационарное устройство, как у американцев. Заряд имел несколько больший вес и те же габариты, что и первая советская атомная бомба, испытанная в 1949г. Испытание решено было провести в стационарных условиях на стальной башне высотой 40м. (заряд устанавливался на высоте 30м.). Мощность взрыва была эквивалентна 400Кт. при кпд всего 15 — 20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750Кт.Выделяемая мощность распределялась следующим образом 40 кт. - триггер, 60-80 кт. синтез, остальное - деление оболочек из U-238. Л.Феоктистов вспоминает: «В 1953г. мы ... были уверены, что ... «слойкой» мы не только догоняем, но даже перегоняем Америку. ... Конечно, мы уже тогда слышали об испытании «Майк», но...в то время мы думали, что богатые американцы взорвали «дом» с жидким дейтерием... по схеме, близкой к «трубе» Зельдовича» . Бомба имела два существенных недостатка, обусловленные наличием трития - высокая стоимость и ограниченный (до полугода) срок годности. В дальнейщем от трития отказались, что привело к некоторому снижению мощности. Испытание нового заряда было проведено 6 ноября 1955г. Причем впервые водорордная бомба была сброшена с самолета. водородная бомба РДС-6с взрыв РДС-6с В начале 1954г. состоялось специальное совещание в Министерстве среднего машиностроения с участием министра В. Малышева по «трубе». Было принято решение о полной бесперспективности этого направления (в США к такому же выводу пришли еще в
1950г.). Дальнейшие исследования сконцентрировались на том, что у нас получило название «атомного обжатия» (АО)идея которого заключалась использовать для обжатия основного заряда не продуктов взрыва, а излучения (схема Улама-Теллера). В связи с этим 14 января 1954г. Зельдович собственноручно написал записку Харитону, сопроводив
её поясняющей схемой: «В настоящей записке сообщаются предварительная схема устройства для АО сверхъизделия
и оценочные расчёты её действия. Применение АО было предложено В. Давиденко». В своих «Воспоминаниях» Сахаров отмечал что к этой идее «…одновременно пришли несколько сотрудников наших теоретических отделов.
Одним из них был я... Но также, несомненно, очень велика была роль Зельдовича, Трутнева и некоторых...». К началу лета 1955г. расчётно-теоретические работы были завершены, был выпущен отчёт. Но изготовление экспериментального заряда завершилось лишь к осени. Он был успешно испытан 22 ноября 1955г. Это была первая советская двухступенчатая водородная бомба небольшой мощности, получившая обозначение РДС-37. РДС-37 При ее испытании пришлось заменить часть термоядерного горючего на инертное вещество, чтобы снизить мощность ради безопасности самолёта и жилого городка, находившегося примерно в 70км. от места взрыва. Мощность взрыва составила 1,6Мт. Решение о создании водородной бомбы мощностью 100Мт. Хрущев принял в 1961г. дабы показать империалистам «кузькину мать». Никита Сергеевич Хрущёв – я Вам покажу “ Кузькину Мать “ До этого максимальным зарядом, испытанным в СССР заряд мощностью 2.9 Мт. К разработке устройства получившего обозначение А602ЭН группа Сахарова приступила сразу после совещания с Хрущевым 10 июля 1961г. на котором было объявлено о начале проведения осенью 1961г. серии испытаний устройств в 4, 10 и 12.5 Мт. Разработка шла ускоренными темпами. Из готовившегося испытания не делали тайны. Публичное заявление по поводу планирующегося супервзрыва было сделано Хрущевым 1 сентября 1961г. (в тот же день произведено первое испытание серии). Ядерный заряд разрабатывался в ВНИИЭФ (Арзамас-16),собиралась бомба в РФЯЦ-ВНИИТФ (Челябинск-70). Бомба имела трехступенчатую схему.
“ царь-бомба “ РДС-202 Около 50% мощности обеспечивалось термоядерной частью, а 50% - делением корпусов третьей и второй ступеней из урана-238. Для испытаний было решено ограничить максимальную мощность бомбы до 50 Мт. Для этого урановую оболочку третьей ступенизаменили на свинцовую что снизило вклад урановой части с 51.5 до 1.5 Мт. Для обеспечения безопасного (для экипажа) применения «супербомбы» с самолета-носителя в НИИ парашютно-десантных систем была создана тормозная парашютная система с площадью основного купола 1600 кв.м. Бомба имела длину около 8 м. диаметр около 2 м. массу 27т. Груз таких габаритов не помещался ни в один из существующих бомбардировщиков и только Ту-95 на пределе грузоподъемности мог поднять его в воздух. Но и в его бомбоотсек бомба не помещалась. На заводе-изготовителе стратегический бомбардировщик Ту-95 подвергли доработке, вырезав часть фюзеляжа и все-таки в полете бомба больше чем наполовину торчала наружу. Такая подвеска и немалый вес груза привели к тому, что самолет сильно сбавил в дальности и скорости – становясь практически негодным к боевому применению. Весь корпус самолета, даже лопасти его винтов, были покрыты специальной белой краской, защищающей от световой вспышки при взрыве.
Ту-95 с РДС-202 Все было готово уже через 112 дней после встречи с Хрущевым. Утром 30 октября 1961г. Ту-95 поднялся в воздух и взял курс на Новую Землю. Экипажем самолета командовал майор А.Дурновцев (после испытания он получил звание Героя СССР и повышение до подполковника). Бомба отделилась на высоте 10500м. и снижалась на замедляющем парашюте до 4000м. За время падения самолет успел удалиться на относительно безопасное расстояние в 40-50км. Взрыв произошел в 11:32 по московскому времени. Вспышка оказалась настолько ярка, что ее можно было наблюдать с расстояния до 1000 км. на 300-километровом удалении был слышен мощный рев. Светящийся огненный шар достиг земли и имел размеры около 10км. в диаметре. Гигантский гриб поднялся на высоту в 65 км. После взрыва из-за ионизации атмосферы на 40 мин. было прервано радиосообщение с Новой Землей. Зона полного уничтожения представляла собой круг в 25км. в радиусе 40км. были разрушены деревянные и сильно повреждены каменные дома, на расстоянии 60 км. можно было получить ожоги третьей степени (с омертвлением верхних слоев кожи), а окна, двери, крыши срывало и на больших расстояниях. При полной мощности в 100 Мт. зона полного уничтожения имела бы радиус 35 км. Зона серьезных повреждений - 50 км. ожоги третьей степени можно было бы получить на дистанции в 77 км. ядерный полигон на Новой Земле взрыв РДС-202 С полной уверенностью можно утверждать, что использование такого оружия в военных условиях было невозможно и испытание имело сугубо политическое и психологическое значение. Дальнейшие работы по бомбе были прекращены серийное производство не велось. Великобритания В Великобритании разработка термоядерного оружия была начата в 1954г. в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на весьма зачаточном уровне, так как США не делились информацией, ссылаясь на закон об Атомной энергии 1946г. В 1957г. Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное
устройство мощностью около 300Кт. оказавшееся значительно слабее советских и американских аналогов. В ходе испытания «Orange Herald» (Оранжевый вестник)была взорвана самая мощная из когда-либо созданных атомная бомба мощностью 700Кт. Почти все свидетели испытаний (включая экипаж самолета, который ее сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в ее состав входил 117кг. плутония, а годовое производство плутония в Великобритании составляло в то время 120 кг.
В сентябре 1957г. была проведена вторая серия испытаний. Первым в испытании под названием «Grapple Х Round» 8 ноября было взорвано двухступенчатое устройство с небольшим термоядерным зарядом. Мощность взрыва составила приблизительно 1.8 Мт.28 апреля 1958г. в ходе испытаний «Grapple Y» над островом Рождества была сброшена самая мощная британская термоядерная бомба мощностью 3 Мт. 2 сентября 1958 г.был взорван облегченный вариант этого устройства мощностью около 1,2 Мт. 11 сентября 1958 г. в ходе последнего испытания под наименованием "Halliard 1" было взорвано трехступенчатое устройство мощностью около 800Кт.
Франция В ходе испытаний «Канопус» во Французской Полинезии в августе 1968 г. Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6Мт. Подробности о развитиии французской программы малоизвестны. Это фотографии испытаний первой французской термоядерной бомбы. испытания " Единорога " Китай КНР испытала своё первое термоядерное устройство типа «Теллер-Улам» мощностью 3,31Мт. в июне 1967г. (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу. Это стало возможным благодаря США откуда в то время были высланы по подозрению в шпионаже работавшие там китайские физики.
lemur59.ru
Водородная бомба Википедия
Термоя́дерное ору́жие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия.
Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (при этом используемый уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки; сами нейтроны производят наведённую радиоактивность) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5—10 раз) увеличивает количество радиоактивных осадков[1].
Общее описание
Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.
Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при обычных условиях, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:
36Li+01n→13H+24He+E1.{\displaystyle {}_{3}^{6}\mathrm {Li} +{}_{0}^{1}n\to {}_{1}^{3}\mathrm {H} +{}_{2}^{4}\mathrm {He} +E_{1}.} Дейтерий-тритиевая реакцияЭта же реакция происходит и в дейтериде лития-6 в термоядерном устройстве при облучении быстрыми нейтронами; выделяющаяся энергия E1 = 4,784 МэВ. Образовавшийся тритий (3H) далее вступает в реакцию с дейтерием, выделяя энергию E2 = 17,59 МэВ:
13H+12H→24He+01n+E2,{\displaystyle {}_{1}^{3}\mathrm {H} +{}_{1}^{2}\mathrm {H} \to {}_{2}^{4}\mathrm {He} +{}_{0}^{1}n+E_{2},}причём образуется нейтрон с кинетической энергией не менее 14,1 МэВ, который может вновь инициировать первую реакцию на ещё одном ядре лития-6, либо вызвать деление тяжёлых ядер урана или плутония в оболочке или триггере с испусканием ещё нескольких быстрых нейтронов.
В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше: реакция n + 7Li → 3H + 4He + n − 2,467 МэВ является эндотермической, поглощающей энергию.
Термоядерная бомба, действующая по принципу Теллера — Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.
Триггер — это небольшой плутониевый ядерный заряд с усилением (Boosted fission weapon (англ.)русск.) мощностью в несколько килотонн. Назначение триггера — создать необходимые условия для инициирования термоядерной реакции — высокую температуру и давление.
Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и, расположенный по оси контейнера, плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 — вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера.
Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.
Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формой второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.
При взрыве триггера 80 % энергии выделяется в виде мощного импульса мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени и пластиковым наполнителем, который превращается в высокотемпературную плазму под большим давлением. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе с давлениями света и плазмы обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до огромных температур. Однако давление и температура ещё недостаточны для запуска термоядерной реакции, создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием.
А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы. Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои урана-238 (слойка).
Виды боеприпасов
Термоядерные заряды существуют как в виде авиационных бомб (свободного падения), боевых блоков для баллистических и крылатых ракет, зарядных отделений торпед и глубинных, донных мин.
История
1 ноября 1952 года США взорвали первый в мире термоядерный заряд по схеме Теллера-Улама на атолле Эниветок.
12 августа 1953 года в СССР на Семипалатинском полигоне была взорвана первая в мире водородная бомба по схеме «слойка» — советская РДС-6.
Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу — законченное устройство, пригодное к практическому военному применению[2].
1 марта 1954 года во время испытаний Кастл Браво США произвели взрыв бомбы, собранной по схеме Теллера-Улама. СССР произвел испытания бомбы РДС-37 по той же схеме 22 ноября 1955 года.
Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый[3]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила[4]; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала.
США
Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года[5], в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.
Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию (обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.
Взрыв «Джордж»В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» (англ. Operation Greenhouse), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» (англ. George), в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств.
1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» (англ. Ivy Mike) было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стержень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма-излучения от первичного заряда к вторичному.
Монтаж боеголовокСмесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle (англ.)русск.» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчёты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами[6].
Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47, развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 320 кг и диаметр 50 см. Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис, и необходимость их доработок. К середине 1970-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).
СССР
Взрыв первого советского термоядерного устройства РДС-6с («слойка», оно же «Джо-4»)Первый советский проект термоядерного устройства напоминал слоёный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (ещё до испытания первой советской ядерной бомбы) Андреем Сахаровым и Юлием Харитоном и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера — Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления, имел коэффициент умножения до 30 раз меньший по сравнению с современными устройствами по схеме Теллер — Улам. Области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство РДС-6с типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4»[к. 1]. Мощность взрыва была эквивалентна 400 килотоннам при КПД 15—20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.
После проведения США испытания «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Харитоном ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.
В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объёмах, повторив таким образом схему Теллера — Улама. Следующий большой шаг был предложен и развит Франк-Каменецким, Трутневым, Сахаровым и Зельдовичем в 1953 году. А именно, был выполнен «Проект 49», предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. «Третья идея» Сахарова была проверена в ходе испытаний РДС-37 мощностью 1,6 мегатонны в ноябре 1955 года.
Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.
Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 58 мегатонн, доставленная бомбардировщиком Ту-95. 97 % энергии устройства выделилось в результате термоядерной реакции (это максимальное значение из всех испытанных устройств). В первоначальном варианте предполагалась мощность 100 Мт, из которых около 50 % выделяется в результате термоядерной реакции, а 50 % — в результате деления 238U в оболочке из обеднённого урана нейтронами первых ступеней (т. н. «реакция Джекила — Хайда»). Однако такой вариант отвергли, так как он бы привёл к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую[3]. Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.
Великобритания
В Великобритании разработки термоядерного оружия были начаты в 1954 году в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии.
Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.
В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.
В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных (нетермоядерных) бомб. Почти все свидетели испытаний (включая экипаж самолёта, который её сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в её состав входил заряд плутония массой 117 килограммов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов.
Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.
В сентябре 1957 года была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1,8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.
2 сентября 1958 года был взорван облегчённый вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трёхступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединённые Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.
Китай
Китайская Народная Республика испытала своё первое термоядерное устройство по схеме Теллер-Улам мощностью 3,36 мегатонны в июне 1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу.
Франция
В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство по схеме Теллер-Улам мощностью около 2,6 мегатонны. Подробности о развитии французской программы известны мало[кому?].
Северная Корея
В декабре 2015 года ЦТАК распространило заявление руководителя КНДР Ким Чен Ына, в котором он сообщает о наличии у Пхеньяна собственной водородной бомбы[7]. В январе 2016 года Северная Корея провела успешное испытание водородной бомбы, о чём объявили в эфире центрального телевидения КНДР. Ранее сейсмологи нескольких стран сообщили о землетрясении, которое спровоцировали ядерные испытания[8].
3 сентября 2017 года КНДР объявила о наличии термоядерного заряда, готового к применению в качестве боеголовки для межконтинентальной ракеты. В тот же день Северной Кореей было проведено испытание бомбы, мощность взрыва которой по оценкам японских сейсмологов составила до 100 килотонн[9][10]. 12 сентября эксперты американского Университета Джона Хопкинса оценили мощность ядерного заряда, испытанного в КНДР 3 сентября, и по их оценке он составил 250 килотонн в тротиловом эквиваленте[11].
Происшествия с термоядерными боеприпасами
США, 1958
Столкновение бомбардировщика B-47 и истребителя F-86 над островом Тайби 5 февраля 1958 года — авиационное происшествие над побережьем американского штата Джорджия, в результате которого истребитель был потерян, а экипажу бомбардировщика пришлось аварийно сбросить в океан водородную бомбу Mark 15. Бомба до сих пор не найдена; считается, что она покоится на дне залива Уоссо (англ. Wassaw Sound) к югу от курортного города Тайби-Айленд.
Испания, 1966
17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.
Гренландия, 1968
21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле. На борту самолёта находились 4 термоядерные авиабомбы.
Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привёл к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя радиоактивное загрязнение. В 1987 году почти 200 датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличения смертности или заболеваемости раком.
Пентагон опубликовал информацию о том, что все четыре атомных боезаряда были найдены и уничтожены. Но в ноябре 2008 года обозреватель Би-би-си Гордон Корера (англ. Gordon Corera) высказал предположение, основанное на анализе рассекреченных документов, что, вопреки утверждениям Пентагона, четвёртая атомная бомба могла быть не разрушена, а потеряна в результате катастрофы, и целью подводных работ 1968 года были её поиски. История получила широкое распространение в СМИ различных стран[12][13]. Министр иностранных дел Дании Пер Стиг Меллер поручил Датскому институту международных отношений провести независимый анализ рассекреченных документов, оказавшихся в распоряжении журналиста. Отчёт был опубликован в 2009 году. В нём говорится: «Мы показали, что четыре ядерные бомбы были уничтожены при взрывах, последовавших за крушением. Это не обсуждается, и мы можем дать ясный ответ: никакой бомбы нет, никакой бомбы не было, и американцы не искали бомбу.»[14]
США, 2007
29 августа 2007 года 6 крылатых ракет AGM-129 ACM с термоядерными боевыми частями (боеголовки W80 изменяемой мощности 5-150 кт) были по ошибке установлены на бомбардировщик B-52H на авиабазе Майнот в Северной Дакоте и отправлены на авиабазу Барксдейл в Луизиане. О факте наличия на ракетах ядерных боезарядов стало известно случайно и лишь 36 часов спустя. После погрузки в Майноте и по прилёте в Барксдейл, самолёт около суток не охранялся. Инцидент стал причиной громкого скандала в США, ряда отставок в Военно-воздушных силах и реорганизации управления стратегическими ядерными силами США.
Чистое термоядерное оружие
Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе в настоящее время создать чистый термоядерный снаряд разумных размеров и веса практически не представляется возможным.
Следует отметить, что в Снежинске разработан самый чистый ядерный заряд, предназначенный для мирных применений, в котором 99,85 % энергии получается за счёт синтеза ядер лёгких элементов[15], то есть на долю реакций деления приходится лишь 1/700 общего количества энергии.
См. также
Примечания
Комментарии- ↑ Первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо».
- ↑ Лоуренс У. Л. Люди и атомы. — М.: Атомиздат, 1967, с. 207.
- ↑ Термоядерная бомба и дейтерид лития
- ↑ 1 2 В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана[значимость факта?]
- ↑ Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжёлых бомбардировщиков
- ↑ Teller, 2001, p. 157.
- ↑ Операция Castle
- ↑ Ким Чен Ын о водородной бомбе КНДР: «В целях надёжной защиты суверенитета и достоинства»
- ↑ КНДР объявила об успешном испытании водородной бомбы // РБК
- ↑ Пхеньян объявил об успешном испытании водородной бомбы, РБК. Проверено 3 сентября 2017.
- ↑ North Korea says it can make new bomb in volume, CNN (3 сентября 2017). Проверено 3 сентября 2017.
- ↑ Мощность испытанной в КНДР ядерной бомбы оценили в четверть мегатонны (рус.), TUT.BY (13 сентября 2017). Проверено 20 сентября 2017.
- ↑ Gordon Corera. Mystery of lost US nuclear bomb (англ.). BBC News (10 November 2008). Проверено 28 октября 2011. Архивировано 1 февраля 2012 года.
- ↑ Карера Г. 40 лет назад ВВС США потеряли атомную бомбу (рус.). BBC Russian.com (11 ноября 2008). Проверено 31 октября 2011. Архивировано 1 февраля 2012 года.
- ↑ The Marshal’s Baton, 2009
- ↑ РФЯЦ-ВНИИТФ: Об Институте — История института — Сделано в Снежинске
Литература
Ссылки
wikiredia.ru
Как работает водородная бомба (6 фото + видео)
Все уже успели обсудить одну из самых неприятных новостей декабря — успешные испытания Северной Кореей водородной бомбы. Ким Чен Ын не преминул намекнуть (прямо заявить) о том, что готов в любой момент превратить оружие из оборонительного в наступательное, чем вызывал небывалый ажиотаж в прессе всего мира. Впрочем, нашлись и оптимисты, заявившие о фальсификации испытаний: мол, и тень от чучхе не туда падает, и радиоактивных осадков что-то не видно. Но почему наличие у страны-агрессора водородной бомбы является столь значительным фактором для свободных стран, ведь даже ядерные боеголовки, которые у Северной Кореи имеются в достатке, еще никого так не пугали?
Что это
Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода — точно такой же процесс происходит на Солнце.
Чем водородная бомба отличается от атомной
Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.
Первое испытание
И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков.
Ударная волна
Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда.
Тепловой эффект
Водородная бомба всего в 20 мегатонн (размеры самой большой испытанной на данный момент бомбы — 58 мегатонн) создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров.
Огненный шар
Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала.
Радиационное заражение
Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли — она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты.
Царь-бомба
58 мегатонн — вот, сколько весила самая крупная водородная бомба, взорванная на полигоне архипелага Новая Земля. Ударная волна три раза обогнула земной шар, заставив противников СССР лишний раз увериться в огромной разрушительной силе этого оружия. Весельчак Хрущев на пленуме шутил, что бомбу не сделали больше только из опасений разбить стекла в Кремле.
Другие статьи:
nlo-mir.ru
Водородная бомба
ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах. В 1961 году был произведен самый мощный взрыв водородной бомбы. Утром 30 октября в 11 ч. 32 мин. над Новой Землей в районе Губы Митюши на высоте 4000 м над поверхностью суши была взорвана водородная бомба мощностью в 50 млн. т. тротила. Советский Союз провел испытание самого мощного в истории термоядерного устройства. Даже в "половинном" варианте (а максимальная мощность такой бомбы составляет 100 мегатонн) энергия взрыва десятикратно превышала суммарную мощность всех взрывчатых веществ, использованных всеми воюющими сторонами за годы Второй мировой войны (включая атомные бомбы, сброшенные на Хиросиму и Нагасаки). Ударная волна от взрыва трижды обогнула земной шар, первый раз - за 36 ч. 27 мин. Световая вспышка была настолько яркой, что, несмотря на сплошную облачность, была видна даже с командного пункта в поселке Белушья Губа (отдаленном от эпицентра взрыва почти на 200 км). Грибовидное облако выросло до высоты 67 км. К моменту взрыва, пока на огромном парашюте бомба медленно опускалась с высоты 10500 до расчетной точки подрыва, самолет-носитель Ту-95 с экипажем и его командиром майором Андреем Егоровичем Дурновцевым уже был в безопасной зоне. Командир возвращался на свой аэродром подполковником, Героем Советского Союза. В заброшенном поселке - 400 км от эпицентра - были порушены деревянные дома, а каменные лишились крыш, окон и дверей. На многие сотни километров от полигона в результате взрыва почти на час изменились условия прохождения радиоволн, и прекратилась радиосвязь. Бомба была разработана В.Б. Адамским, Ю.Н. Смирновым, А.Д. Сахаровым, Ю.Н. Бабаевым и Ю.А. Трутневым (за что Сахаров был награжден третьей медалью Героя Социалистического Труда). Масса "устройства" составляла 26 тонн, для ее транспортировки и сброса использовался специально модифицированный стратегический бомбардировщик Ту-95. "Супербомба", как называл ее А.Сахаров, не помещалась в бомбовом отсеке самолета (ее длина составляла 8 метров, а диаметр - около 2 метров), поэтому несиловую часть фюзеляжа вырезали и смонтировали специальный подъемный механизм и устройство для крепления бомбы; при этом в полете она все равно больше чем наполовину торчала наружу. Весь корпус самолета, даже лопасти его винтов, был покрыт специальной белой краской, защищающей от световой вспышки при взрыве. Такой же краской был покрыт корпус сопровождавшего самолета-лаборатории. Результаты взрыва заряда, получившего на Западе имя «Царь-бомба», впечатляли: * Ядерный «гриб» взрыва поднялся на высоту 64 км; диаметр его шляпки достиг 40 километров. Огненный шар разрыва достиг земли и почти достиг высоты сброса бомбы (то есть, радиус огненного шара взрыва был примерно 4,5 километра). * Излучение вызывало ожоги третьей степени на расстоянии до ста километров. * На пике выделения излучения взрыв достиг мощности в 1 % от солнечной. * Ударная волна, возникшая в результате взрыва, три раза обогнула земной шар. * Ионизация атмосферы стала причиной помех радиосвязи даже в сотнях километров от полигона в течение одного часа. * Свидетели почувствовали удар и смогли описать взрыв на расстоянии тысячи километров от эпицентра. Также, ударная волна в какой-то степени сохранила разрушительную силу на расстоянии тысячи километров от эпицентра. * Акустическая волна докатилась до острова Диксон, где взрывной волной повыбивало окна в домах. Политическим результатом этого испытания была демонстрация Советским Союзом владения неограниченным по мощности оружием массового уничтожения — максимальный мегатоннаж бомбы из испытанных к тому моменту США был вчетверо меньше, чем у «Царь-бомбы». В самом деле, увеличение мощности водородной бомбы достигается простым увеличением массы рабочего материала, так что, в принципе, нет никаких факторов, препятствующих созданию 100-мегатонной или 500-мегатонной водородной бомбы. (На самом деле, «Царь-бомба» была рассчитана на 100-мегатонный эквивалент; планируемую мощность взрыва урезали вдвое, по словам Хрущёва, «Чтобы не разбить все стёкла в Москве»). Этим испытанием Советский Союз продемонстрировал способность создать водородную бомбу любой мощности и средства доставки бомбы к точке подрыва. Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле. Изотопы водорода. Атом водорода – простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (h3O) показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода – дейтерий (2H). Ядро дейтерия состоит из протона и нейтрона – нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода – тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития – соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление (супербомба). На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий – это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха – туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте, на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное (хотя и вторичное) последствие взрыва – это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными – в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. 100 км от эпицентра взрыва. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, т.е. не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека
www.coolreferat.com
Водородная бомба
Как известно, еще в середине 20-х годов английский астрофизик Эддингтон выс-
казал предположение, что источником энергии звезд могут быть ядерные реакции син-
теза (слияние легких атомных ядер в более тяжелые. Сверхвысокие температура и
давление в недрах звезд создают необходимые для этого условия. В нормальных
(земных) условиях кинетическая энергия ядер легких атомов слишком мала для того,
чтобы они, преодолев электростатическое отталкивание, могли сблизиться и вступить
в ядерную реакцию. Однако это отталкивание можно преодолеть, сталкивая разогнанные
до больших скоростей ядра легких элементов. Д.Кокрофт и Э.Уолтон использовали этот
метод в своих экспериментах, проводившихся в 1932г. в Кембридже (Великобритания).
Ускоренные в электрическом поле протоны, «обстреливали» литиевую мишень при этом
наблюдалось взаимодействие протонов с ядрами лития. В 1938г. тремя физиками неза-
висимо друг от друга были открыты два цикла термоядерных реакций превращения водо-
рода в гелий, являющиеся источником энергии звезд:- протон-протонный (Г. Бете и
Ч.Критчфилд) и углеродно-азотный (Г.Бете и К.Вейцзеккер).
Таким образом теоретическая возможность получения энергии путем ядерного син-
теза была известна еще до войны. Вопрос состоял в том чтобы создать работоспособ-
ное техническое устройство которое бы позволило создать на Земле условия необходи-
мые для начала реакций синтеза. Для этого требовались миллионные температуры и
сверхвысокие давления. В 1944г. в Германии в лаборатории Дибнера велись работы по
инициированию термоядерного синтеза путем сжатия ядерного топлива подрывом кумуля-
тивных зарядов обычного взрывчатого вещества (см. «Урановый проект Фашистской
Германии»). Работы эти не дали однако желаемого результата как теперь понятно
из-за недостаточности давления и температуры.
США
Идея бомбы основанной на термоядерном синтезе, инициируемом атомным зарядом
была предложена Э.Ферми его коллеге Э.Теллеру (который и считается «отцом» термо-
ядерной бомбы) еще в 1941г. В 1942г. между Оппенгеймером и Теллером возник
конфликт поскольку последний был «обижен» тем, что место главы теоретического
отдела было отдано не ему. В результате Оппенгеймер отстранил Теллера от проекта
атомной бомбы и перевел на изучение возможности использования реакции синтеза
гелия из ядер тяжелого водорода (дейтерия) для создания нового оружия. Теллер
принялся за создание устройства, получившего название «классический супер» (в со-
ветском варианте «труба»). Идея состояла в разжигании термоядерной реакции в жид-
ком дейтерии при помощи тепла от взрыва атомного заряда. Но вскоре выяснилось, что
атомный взрыв недостаточно горяч, и не обеспечивает необходимых условий для
«горения» дейтерия. Для начала реакций синтеза требовалось введение в смесь трития.
Реакция дейтерия с тритием должна была обеспечить повышение температуры до условий
дейтериево-дейтериевого синтеза. Но тритий, ввиду своей радиоактивности (период
полураспада всего 12 лет) в природе практически не встречается и его приходится
получать искусственным путем в реакторах деления. Это делало его на порядок дороже
оружейного плутония. Кроме того каждые 12 лет половина полученного трития просто
исчезала в результате радиоактивного распада. Применение газообразных дейтерия
и трития в качестве ядерного топлива было невозможно и приходилось применять сжи-
женный газ, что делало взрывные устройства малопригодными для практического приме-
нения. Исследования проблем «классического супера» продолжалось в США до конца
1950г. когда выяснилось что даже несмотря на большие количества трития достичь
стабильного термоядерного горения в таком устройстве невозможно. Исследования
зашли в тупик.
В апреле 1946г. в Лос-Аламосе проходило секретное совещание на котором обсуж-
дались итоги американских работ по водородной бомбе в нем участвовал Клаус Фукс.
Через какое-то время после совещания он передал материалы, связанные с этими рабо-
тами, представителям советской разведки и они попали к нашим физикам. В начале
1950г. К.Фукс был арестован и этот источник информации «иссяк».
В конце августа 1946г. Э.Теллер выдвинул идею, альтернативную «классическому
суперу», которую он назвал «Alarm Clock». Этот вариант был использован в СССР
А.Сахаровым под названием «слойка», а в США никогда не реализовывался. Идея заклю-
чалась в окружении ядра делящейся атомной бомбы слоем термоядерного горючего из
смеси дейтерия с тритием. Излучение от атомного взрыва способно сжать 7-16 слоев
горючего, перемежающегося со слоями делящегося материала и нагреть его примерно до
такой же температуры, как и само делящиеся ядро. Это опять же требовало исполь-
зования очень дорогого и неудобного трития. Термоядерное топливо окружала оболочка
из урана-238 которая на первом этапе выполняла роль теплоизолятора, не давая энер-
гии выйти за пределы капсулы с топливом. Без нее горючие, состоящие из легких
элементов было бы абсолютно прозрачно для теплового излучения, и не прогрелось бы
до высоких температур. Непрозрачный уран, поглощая эту энергию, возвращал часть ее
обратно в топливо. Кроме того, они увеличивают сжатие горючего путем сдерживания
его теплового расширения. На втором этапе, уран подвергался распаду за счет нейтро-
нов, появившихся при синтезе, выделяя дополнительную энергию.
В сентябре 1947г. Теллер предложил использовать новое термоядерное горючее -
дейтерид лития-6 являющееся при нормальных условиях твердым веществом. Литий
поглощая нейтрон делился на гелий и тритий с выделением дополнительной энергии,
что еще больше повышало температуру, помогая начаться синтезу.
Идею «слойки», использовали и британские физики при создании при создании
своей первой бомбы. Но будучи тупиковой ветвью развития термоядерных систем эта
схема отмерла.
Перевести разработку термоядерного оружия в практическую плоскость позволила
предложенная в 1951г. сотрудником Теллера Станиславом Уламом новая схема. Для
инициирования термоядерного синтеза предполагалось сжимать термоядерное топливо,
используя излучение от первичной реакции расщепления, а не ударную волну(т.н. идея
«радиационной имплозии»), а также разместить термоядерный заряд отдельно от пер-
вичного ядерного компонента бомбы - триггера (двуступенчатая схема). Учитывая что
при обычном атомном взрыве 80% энергии выделяется в виде рентгеновского излучения,
а около 20 в виде кинетической энергии осколков деления и что, рентгеновские лучи
намного опережают расширяющиеся (со скоростью около 1000 км/с.) остатки плутония,
такая схема позволяла сжать емкость с термоядерным горючим второй ступени до
начала его интенсивного нагрева. Эта модель американской водородной бомбы получила
название Улама-Теллера.
На практике все происходит следующим образом. Компоненты бомбы помещаются в
цилиндрический корпус с триггером на одном конце. Термоядерное топливо в виде ци-
линдра или эллипсоида помещается в корпус из очень плотного материала – урана,
свинца или вольфрама. Внутри цилиндра аксиально помещен стержень из Pu-239 или
U-235, 2-3 см. в диаметре. Все оставшееся пространство корпуса заполняется пласт-
массой. При подрыве триггера испускаемые рентгеновские лучи нагревают урановый
корпус бомбы он начинает расширяться и охлаждаться путем уноса массы (абляции).
Явление уноса, подобно струе кумулятивного заряда направленного внутрь капсулы,
развивает огромное давление на термоядерное горючие. Два других источника давления
движение плазмы (после срабатывания первичного заряда корпус капсулы как и всё
устройство представляет собой ионизированную плазму) и давление рентгеновских
фотонов не оказывают значительного влияния на обжатие. При обжатии стержня из
делящегося материала он переходит в надкритическое состояние. Быстрые нейтроны,
образующиеся при делении триггера и замедленные дейтеридом лития до тепловых
скоростей начинают цепную реакцию в стержне. Происходит еще один атомный взрыв
действующий наподобие «запальной свечи» и вызывающий еще большее увеличивает дав-
ления и температуры в центре капсулы, делая их достаточными для разжигания термо-
ядерной реакции. Урановый корпус мешает выходу теплового излучения за его пределы,
значительно увеличивая эффективность горения. Температуры, возникающие в ходе
термоядерной реакции многократно превышают образующиеся при цепном делении (до 300
млн. вместо 50-100млн. град.). Все это происходит примерно за несколько сотен нано-
секунд. Описанная выше последовательность процессов на этом заканчивается, если
корпус заряда изготовлен из вольфрама (или свинца). Однако если изготовить его из
U-238 то образующиеся при синтезе быстрые нейтроны, вызывают деление ядер U-238.
Деление одной тонны U-238 дает энергию, эквивалентную 18 Мт. При этом обраэуется
много радиоактивных продуктов деления . Все это и составляет радиоактивные осадки,
сопровождающие взрыв водородной бомбы. Чисто термоядерные заряды создают значи-
тельно меньшее заражение обусловленное только взрывом триггера. Такие бомбы полу-
чили название «чистых»/
Двухступенчатая схема Теллера-Улама позволяет создавать столь мощные заряды,
на сколько хватит мощности триггера для сверхбыстрого обжатия большого количества
горючего. Для дальнейшего увеличения величины заряда можно использовать энергию
второй ступени для сжатия третьей. На каждой стадии в таких устройствах возможно
усиление мощности в 10-100 раз. Модель требовала большого количества трития, и для
его производства американцы построили новые реакторы. Работы шли в большой спешке,
ведь Советский Союз к тому времени уже создал атомную бомбу. Штатам оставалось
только надеяться, что СССР пошел по украденному Фуксом тупиковому пути (который
был арестован в Англии в январе 1950г.). И эти надежды оправдались.
Первые термоядерные устройства были взорваны в ходе операции Greenhouse (Оран-
жерея) на атолле Эниветок (Маршалловы острова). Операция включала четыре испытания.
В ходе первых двух «Dog» и «Easy» в апреле1951г. были испытаны две новые атомные
бомбы: Mk.6 - 81Кт. и Mk.5 - 47Кт. 8 мая 1951г. было проведено первое испытание
термоядерного устройства «George» мощностью 225Кт. Это был чисто исследовательский
эксперимент по изучению термоядерного горения дейтерия. Устройство представляло
собой ядерный заряд в виде тора 2,6м. в диаметре и 0,6м. толщиной с небольшим
(несколько граммов) количеством жидкой дейтериево-тритиевой смеси, помещенным в
центре. Выход энергии от синтеза в этом устройстве очень невелик по сравнению с
выходом энергии от деления ядер урана. 25 мая 1951г. было проведено испытание тер-
моядерного устройства «Item». В нем в качестве термоядерного топлива использова-
лась смесь дейтерия с тритием, охлажденная до жидкого состояния, и находящаяся
внутри ядра из обогащенного урана. Устройство создавалось для испытания принципа
увеличения мощности атомного заряда за счет дополнительных нейтронов возникающих в
реакции синтеза. Эти нейтроны, попадая в зону реакции деления, увеличивали их
интенсивность (увеличивалась доля ращепившихся ядер урана) а следовательно и силу
взрыва.
Для ускорения разработок в июле 1952г. правительство США организовало второй
оружейный ядерный центр - Ливерморскую национальную лабораторию им. Лоуренса в
Калифорнии.
1 ноября 1952г. на атолле Эниветок проведено испытание «Ivy Mike» мощностью
10,4Мт. Это было первое устройство, созданное по принципу Теллера-Улама. Весило
оно около 80т. и занимало помещение размером с двухэтажный дом. Термоядерное горю-
чее (дейтерий – тритий) находилось в жидком состоянии при температуре, близкой к
абсолютному нулю в дьюаровском сосуде по центру которого проходил плутониевый стр-
ежень. Сам сосуд окружал корпус-толкатель из природного урана, массой более 5т.
Целиком сборка помещалась в огромную стальную оболочку, 2м. в диаметре и 6,1м. в
высоту, со стенками толщиной 25-30см. Эксперимент стал промежуточным шагом амери-
канских физиков на пути к созданию транспортабельного водородного оружия. 77% (8
Мт.) выхода энергии обеспечило деление уранового корпуса заряда и только (2.4Мт.),
приходился на реакцию синтеза.
«Ivy Mike»
Смесь жидких изотопов водорода не имела практического применения для термоя-
дерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан
с использованием твердого топлива - дейтерида лития-6 ( Li6). В этом плане впереди
оказались советские ученые, использовавшие дейтерид Li6 уже в первой советской
термоядерная бомбе испытанной в августе 1953г. Американский же завод по производ-
ству Li6 в Ок-Ридже был пущен в эксплуатацию только к середине 1953г. (строитель-
ство началось в мае 1952г.). После операции «Ivy Mike» оба ядерных центра (в Лос-
Аламосе и Калифорнии) приступили к спешной разработке более компактных зарядов с
использованием дейтерида лития, которые возможно было бы применять в боевых усло-
виях.
В 1954г. в ходе операции «Castle» на атолле Бикини планировалось провести ис-
пытания экспериментальных образцов термоядерных зарядов ставшие прототипами для
первых серийных бомб. Однако для скорейшего оснащения вооруженных сил новым ору-
жием три типа устройств, были сразу, без испытаний, изготовлены малой серией (по 5
изделий). Одним из них стла бомба EC-16 (ее испытание под именем «Jughead» планиро-
валось провести в ходе операции «Castle»). Это была транспортабельная версия
криогенной системы «Mike» (масса бомбы 19т. мощность 8Мт.). Но после первых успеш-
ных испытаний устройств с дейтеридом лития EC-16 моментально устарела и даже не
испытывалась. EC-17 и ЕС-14 были серийными версиями устройств «Runt I» и «Alarm
Clock».
1 марта 1954г.(здесь и далее дата указана по местному времени) состоялось ис-
пытание «Castle Bravo» в ходе которого было взорвано устройство «Shrimp». Это был
двухступенчатый заряд с дейтеридом лития обогащенным изотопом Li6 до 40%(остальное
составлял природный Li7). Такое горючие применялось в США впервые поэтому мощность
взрыва сильно превысила ожидаемую в 4-8Мт. и составила 15Мт. (10Мт. выделилось
при делении оболочки из U-238 и 5 Мт. от реакции синтеза). Причина неожиданно
высокой мощности состояла в Li7 который по ожиданиям должен был быть достаточно
инертным, но в действительности при поглощении быстрых нейтронов атом Li7 тоже
делился на тритий и гелий. Этот «незапланированный» тритий и обеспечил 2-х крат-
ное усиление мощности. Кратер от взрыва получился 2км. в диаметре и глубиной 75м.
Масса устройства составляла 10.5т. длина 4,5м. диаметр 1,35м. Успешный результат
первого испытаня привел к отказу от криогенных проектов «Jughead» (EC-16) и
«Ramrod» (криогенного близнеца устройства «Morgenstern»).
Из-за дефицита обогащенного Li6 в следующем испытани «Castle Romeo» исполь-
зовался заряд из природного (7.5% Li6) лития. Термоядерное устройство под именем
«Runt I» было взорвано 26 Марта 1954г. Одновременно это было контрольное испытание
термоядерной бомбы получившей обозначение EC-17. Мощность взрыва составила 11Мт.
из которых на реакции синтеза пришлось 4Мт. Как и в случае с «Bravo», выделившаяся
мощность намного превысила ожидаемые 1.5-7Мт. Масса устройства - 18т. длина –
5,7м. диаметр – 1,55м.
26 Апреля 1954г. в ходе испытания «Castle Union» было взорвано устройство
«Alarm Clock» (EC-14) с содержанием Li6-95%. Энерговыделение – 6,9 Мт. из которых
1,6Мт. (27.5%) образовались за счет реакций синтеза. Взрыв оставил на дне лагуны
кратер 100м. шириной и 30м. глубиной. Масса устройства – 12,5 т. длина – 3,86 м.
диаметр – 1,55м.
7 апреля 1954г. проведено испытание «Castle Koon» в ходе которого было взор-
вано изделие «Morgenstern» являвшееся первой термоядерной разработкой Калифорний-
ского ядерного центра и последним оружейным проектом, над которым работал Э.Теллер.
Испытание было неудачным. Вместо планировавшейся 1Мт. мощность взрыва составила
лишь 110кт. из которых только 10кт. за приходилось на термоядерный синтез. Это
произошло из-за того, что нейтронный поток от триггера достиг второй ступени, пред-
варительно разогрев ее и помешав эффективному обжатию. Остальные изделия, испытан-
ные в «Castle», содержали бор-10, служащий хорошим поглотителем нейтронов и снижа-
ющим эффект предварительного разогрева термоядерного топлива.
5 Мая 1954г. произведено испытание «Castle Yankee». Испытываемый заряд назы-
вался «Runt II» и являлся прототипом для бомбы EC-24 и близнецом «Runt I». Это
изделие было полностью аналогично испытанному в «Romeo», но в нем вместо природ-
ного применялся обогащенный (до 40% Li6) литий. Это дало прибавку мощности в 2.5Мт.
Мощность взрыва составила 13.5 Мт. (при ожидаемых 7.5-15Мт.) из которых на реакции
синтеза пришлось 6,5Мт. Масса «Runt II» 17,8т. длина-5,6м. диаметр -1,52м. Вклю-
чение в график испытания этого заряда произошло из-за чрезвычайного успеха «Castle
Romeo» и исключения испытаний устройств «Ramrod» и «Jughead».
14 Мая 1954г. состоялось испытание «Castle Nectar» в ходе которого было взор-
вано изделие «Zombie» представлявшее собой прототип облегченного термоядерного
заряда TX-15. По сравнению с весом остальных зарядов, эта бомба выглядит совсем
небольшой масса - 2.9т. мощность - 1.7 Мт, длина – 2,8м. диаметр- 0,88 м. Первона-
чально она разрабатывалось как чисто атомная бомба с мощностью в диапазоне сотен
килотонн в которой применялось радиационное обжатие одного атомного заряда другим.
Идея была сохранена но в проект добавили термоядерное горючее для увеличения мощ-
ности. В итоге получилась радиационно обжимаемая атомная бомба с термоядерным
усилением (80% энергии выделяется за счет деления урана). Проект выиграл в весе,
но применение в нем дорогого и отсутствующего на тот момент в должных количествах
материала - высокообогащенного лития сдерживало его производство до 1955г.
Таким образом на вооружение США уже в 1954г поступили в ограниченном коли-
честве первые термоядерные бомбы. Это были огромные и тяжелые мастодонты ЕС-14
(«Alarm Clock») масса 14т. мощность 7Мт. получивший обозначение Мк.14, ЕС-17
(«Runt I») масса 19 т. мощность 11 Мт. диаметр – 1,6 м. длина – 7,5м получивший
обозначение Мк.17. Эти заряды изготовлены сериями по 5 шт. Кроме того, имелось 10
зарядов EC 24 («Runt II») получивших обозначение Мк.24. Термоядерная бомба Mk.17
стала крупнейшей бомбой из созданных в США. Взять ее в полет мог только B-36. Для
ее эксплуатации требовались специальные машины, средства и приспособления. Подве-
сить ее в самолет могли лишь на одной авиабазе, что было крайне неудобно и снижало
гибкость применения этого оружия. Поэтому все пять Mk.17 были сняты с вооружения
в 1957г.
После операции «Castle» было развернуто серийное производство новых термоя-
дерных зарядов, начавших поступать на вооружение в 1955г. Серийная версия «Zombie»
(«Castle Nectar»)- Mk.15 длина - 3,5м. масса - 3447кг. мощность - 1.69Мт. В 1955-
1957гг. было изготовлено 1200шт. сняты с вооружения в 1965г. Mk.21 с ядром, содер-
жащим 95% лития-6: длина – 3,75м. масса – 8т. мощность 5Мт. В 1955 – 56гг. произ-
ведено 275 шт. сняты с вооружения в 1957г. Наследник «Castle Yankee» - Mk.24 длина
– 7,42м. масса 19т. мощность 15Мт. В 1954-55 гг. изготовлено 105шт. сняты с воору-
жения в 1956г. В 1956г. состоялось испытание «Redwing Cherokee» (дальнейшее раз-
витие бомбы Mk.15). Энерговыделение составило 3.8Мт. масса 3,1т. длина – 3,45м.
диаметр - 0,88м. Важное отличие этого заряда от испытанных ранее то, что он был
сразу конструктивно оформлен в виде авиабомбы и впервые в США было произведено бом-
бометание термоядерного устройства с самолета.
Самая мощная американская бомба была разработана по программе B-41. Работы
начались в 1955г. в Калифорнийскрм ядерном центре на основе разрабатываемой там
экспериментальной трехступенчатой термоядерной системы. Прототипы бомбы TX-41, ис-
пытывался в тестах "Sycamore", "Poplar" и "Pine" операции "Hardtack" на полигоне в
Тихом океане, между 31 маем и 27 июлем 1958г. среди них были только чистые вари-
анты. В результете была создана самая мощная американская термоядерная бомба Mk.41.
Она имела ширину 1,3м. (1,85м. по хвостовому оперению) длину 3,7м. и массу 4,8т.
За период 1960-62гг. было изготовлено 500 шт. (снята с вооружения в 1976г.).
Этот трехступенчатый термоядерный заряд производился в двух вариантах. «Гряз-
ная» с оболочкой третьей ступени из U-238 - Y1 и «чистая» со свинцовой оболочкой
-Y2 мощностью менее 10 Мт. и 25 Мт. соответственно. В качестве топлива использо-
вался дейтерид лития с 95% Li-6. Среди всех американских проектов, в этом был
достигнут наибольший удельный энерговыход: 5.2 кт/кг. (по словам Тейлора для
термоядерного оружия предел отношения мощности заряда к массе - около 6 кт/кг.).
В 1979г. после тяжелого сердечного приступа Э.Теллер сделал неожиданное заяв-
ление «…первую конструкцию (водородной бомбы) создал Дик Гарвин». В интервью,
посвященном той же теме, Гарвин вспоминал что в 1951г. в Лос-Аламосе Теллер рас-
сказал ему о научной идее, лежащей в основе создания будущего оружия, и попросил
сконструировать ядерное взрывное устройство. Рэй Киддер, один из основоположников
атомного оружия прокомментировал это заявление так: «Всегда существовало противоре-
чие подобного типа: у кого возникла идея создания водородной бомбы и кто ее создал.
Теперь все сказано. Это исключительно правдоподобно и, смею заметить, точно».
Однако среди ученых нет единодушия в отношении вклада 23-хлетнего (в ту пору
Гарвина в разработку термоядерной бомбы.
СССР
Как уже говорилось СССР через своего агента - английского физика Клауса Фукса
(до его ареста в 1950г.) получал практически все материалы по американским раз-
работкам как говорится из "первых рук". Но он был не единственным нашим источником
и после 1950г. информация продолжала поступать (может быть не том количестве). С
ней, в строжайшей тайне, знакомился только Курчатов. Никто (из физиков) кроме него
об этой информации не знал. Со стороны это выглядело как гениальное озарение Но к
идее использования термоядерного синтеза для создания бомбы советские ученые
похоже пришли самостоятельно. В 1946г. И. Гуревич, Я. Зельдович, И.Померанчук
и Ю. Харитон передали Курчатову совместное предложение в форме открытого отчёта.
Суть их предложения заключалась в использовании атомного взрыва в качестве детона-
тора для обеспечения взрывной реакции в дейтерии. При этом подчёркивалось, что
„желательна наибольшая возможная плотность дейтерия“, а для облегчения возникнове-
ния ядерной детонации полезно применение массивных оболочек, замедляющих разлёт.
Гуревич позднее назвал факт незасектеченности этого отчета «... наглядным доказа-
тельством того, что мы ничего не знали об американских разработках.» Но Сталин
и Берия во всю гнали создание атомной бомбы и на предложение малоизвстных ученых
не обратили внимания. Далее события развивались следующим образом.
В июне 1948г. по постановлению Правительства в ФИАНе под руководством И.Тамма
была создана специальная группа, в которую был включен А.Сахаров в задачу которой
входило исследование возможности создания водородной бомбы. При этом ей поручалась
проверка и уточнение тех расчётов, которые проводились в московской группе Я. Зель-
довича в Институте химической физики. Надо сказать, что в тот период группа Я.Зель-
довича разрабатывала проект «труба».
Уже в конце 1949г. Сахаров предложил новую модель водородной бомбы. Это была
гетерогенная конструкция из чередующихся слоев расщепляющегося материала и слоев
топлива синтеза (дейтерия в смеси с тритием). Схема получила наименование «слойка»
или схема Сахарова-Гинзбурга (непонятно каким образом «слойку» внедрялись жидкие
дейтерий и тритий). Эта модель имела некоторые недостатки - водородный компонент
бомбы был незначителен, что ограничивало мощность взрыва. Эта мощность могла быть
максимум в двадцать-сорок раз выше мощности обычной плутониевой бомбы. Кроме того
только тритий был очень дорог и для его производства требовалось много времени. По
предложению В. Гинзбурга в качестве источника дейтерия и трития был использован
литий, имевший к тому же дополнительные преимущества -твёрдое агрегатное состояние
и дешевизну.
В феврале 1950г. было принято постановление Совета Министров СССР ставившее
задачу организовать расчетно-теоретические, экспериментальные и конструкторские
работы по созданию изделий РДС-6с («слойка») и РДС-6т («труба»). Таким образом у
нас параллельно развивались два направления - «труба» и «слойка». В первую очередь
должно было быть создано изделие РДС-6с весом до 5т. для усиления мощности в дейте-
рид лития вводилось небольшое количество трития. Был установлен срок изготовления
первого экземпляра изделия РДС-6с - 1954г. К 1 мая 1952г. следовало изготовить
|
rocketpolk44.narod.ru