Атомный двигатель как работает: Ядерный ракетный двигатель строят для полетов на Марс. Чем он опасен?

Ядерный реактор — принцип работы, устройство, схема

Принцип работы ядерного реактора

Принцип действия реактора можно описать в паре предложений:

Уран-235 распадается, вследствие чего выделяется большое количество тепловой энергии. Эта энергия кипятит воду, а возникший пар крутит турбину под давлением. Турбина, в свою очередь, вращает электрогенератор, который вырабатывает электричество.

Все, расходимся… Ладно, давайте разберемся более детально.

Уран-235 — это один из изотопов урана. Изотоп — это разновидность атома какого-либо вещества, которая отличается от обычного атома атомной массой. Конкретно уран-235 отличается от простого урана тем, что в ядре такого изотопа на три нейтрона меньше.

Из-за недостатка нейтронов ядро становится менее стабильным и распадается на две части, если разогнать и врезать в него нейтрон. При этой реакции вылетает еще парочка нейтронов. Эти нейтроны могут попасть в другое ядро урана-235 и расщепить его, после чего оттуда вылетит еще нейтрон, и так далее по цепочке. Такой процесс называется цепной ядерной реакцией.

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Деление урана

Деление ядер урана под воздействием нейтронов открыли немецкие ученые Отто Ган и Фриц Штрассман в 1938 году. Для эксперимента выбрали именно нейтроны потому, что они электрически нейтральны, то есть у них нет заряда. А раз нет заряда, то между протонами и нейтронами нет кулоновского отталкивания, и нейтроны легко проникают в ядро.

Когда нейтрон попадает в ядро урана-235, оно деформируется и становится вытянутым. Ядерные силы действуют на очень маленьких расстояниях, но не работают на больших. А вот электростатическое взаимодействие может происходить и на больших расстояниях. Поэтому ядерное взаимодействие не может противодействовать электростатическому отталкиванию противоположных частей вытянутого ядра, и последнее разрывается на части. При этом излучается та самая парочка нейтронов, о которых мы уже упоминали выше, а близкие по массе осколки разлетаются с большой скоростью.

Результаты деления ядра урана-235:

1. Распад на барий и криптон с выделением трех нейтронов:

2. Распад на ксенон и стронций с выделением двух нейтронов:

Еще больше наглядных примеров — на курсах по физике для 9 класса в онлайн-школе Skysmart.

Управляемая ядерная реакция

Естественная ядерная реакция происходит очень быстро — меньше, чем за секунду. Такая быстрая ядерная реакция провоцирует ядерный взрыв.

Хорошая новость заключается в том, что ядерной реакцией можно управлять. Задача проста — следи себе за реакцией, контролируй и не давай урану распадаться слишком быстро. Легко сказать!

Для выполнения этой задачи придумали замедлитель. Замедлитель — не устройство, а вещество, которое уменьшает кинетическую энергию нейтронов за счет многократного столкновения с молекулами замедлителя. В качестве замедлителя часто используют графитовые стержни и воду — обычную (H2O) или тяжелую (D2O).

Оказывается…

На Земле был природный ядерный реактор. Он находился в урановом месторождении Окло. Это в Габоне, в Центральной Африке. В природном ядерном реакторе процесс распада урана происходит без человеческого участия. Но есть один нюанс: этот реактор остыл больше миллиарда лет назад.

Техническая реализация

Если вы хоть раз смотрели «Симпсонов» (или в вашем городе есть реактор), то знаете, как выглядят большие трубы, стоящие на территории атомной электростанции (АЭС). Эти трубы называются градирни и служат для быстрого охлаждения пара.

В момент распада ядро урана раскалывается на две части. Эти части разлетаются в разные стороны с огромной скоростью, но, несмотря на скорость, не улетают далеко. Они ударяются об атомы, которые находятся рядом, и кинетическая энергия переходит в тепловую. Количество теплоты от этих соударений нагревает воду, превращая ее в пар. Пар крутит турбину, а турбина крутит генератор, который вырабатывает электричество.

Вот и получается, что мы живем в стимпанке — все работает на пару.

АЭС

Если коротко, то атомная электростанция — это сооружение, которое производит электричество за счет ядерного реактора.

А если подробнее, то АЭС — это большой комплекс, во главе которого стоит ядерный реактор. Помимо реактора на АЭС есть турбина, генератор, трансформаторы для преобразования напряжения. В общем, это большая система.

В бытовом употреблении АЭС часто приравнивают к ядерному реактору, и это нельзя назвать неправильным. Просто ядерный реактор — босс в этой движухе, поэтому он и определяет все остальное. 😉

Кстати, когда будете играть в крокодила, загадайте атомную электростанцию. Будет забавно, проверено.

Чернобыльская АЭС

Когда речь заходит о ядерной энергетике, многие невольно вспоминают катастрофу на Чернобыльской АЭС и поэтому ошибочно считают, что ядерный реактор — зло.

Но по большому счету, реактор — это очень дорогой чайник. Дым, который валит из труб АЭС и пугает прохожих, на самом деле не дым, а пар.

В результате работы ядерного реактора действительно образуются радиоактивные отходы, и они могут быть опасны, если с ними неправильно обращаться. Часть этих отходов перерабатывают для дальнейшего использования, а часть приходится держать в хранилищах, чтобы они не причинили вред человеку и окружающей среде.

Шок-контент 😱

Ядерная энергия — самый экологически чистый вид энергии на сегодняшний день.

Атомные электростанции выбрасывают в атмосферу только пар, им необходимо небольшое количество топлива, а еще они занимают малую площадь и при правильном использовании безопасны. Тем не менее, после аварии на Чернобыльской АЭС многие страны приостановили развитие атомной энергетики.

Первая авария на Чернобыльской АЭС произошла в 1982 году. Во время пробного пуска разрушился один из технологических каналов реактора, была деформирована графитовая кладка активной зоны. Пострадавших не было, но последствия ликвидировали около трех месяцев.

В 1986 году произошло ЧП в известном всему миру четвертом энергоблоке. В этом самом энергоблоке проводились испытания турбогенератора. Система аварийного охлаждения была планово отключена, поэтому, когда реактор не смогли остановить, эта система не спасла АЭС от взрыва и пожара.

Взрыв и его последствия не говорят о том, что ядерная энергетика вредна. На самом деле даже бананы радиоактивны, потому что в них содержатся радиоактивные изотопы. Но даже съев около сотни бананов массой 150 г, вы получите всего лишь нормальную суточную дозу радиации. Чтобы банановая радиация навредила человеку, ему придется съесть не меньше тонны. То же и с ядерными реакциями — они приносят вред только в том случае, если их не контролировать.

Виды современных реакторов

Сегодня существует несколько видов ядерных реакторов, но используют в основном два — гомогенные и гетерогенные:

  • в гомогенных реакторах ядерное горючее и замедлитель перемешаны;
  • в гетерогенных реакторах ядерное горючее и замедлитель находятся отдельно друг от друга.

Еще бывают реакторы, в которых для получения энергии используют уран-238, а не уран-235. Но в таких реакторах сложно отводить тепло, поэтому они довольно редки.

Использование атомной энергии

Атомная энергия используется не только в ядерных реакторах. Например, существуют корабли и подводные лодки, которые работают на атомной энергии.

В начале XXI века из-за высоких цен на нефть были очень актуальны поиски способов использования ядерной энергии. Тогда появились разработки по компактным атомным электростанциям, которые могут работать десятилетиями без обслуживания и к тому же безопасны.

Кроме того, ученые работают над ядерными методами для диагностики и лечения онкологических заболеваний. Есть исследования, которые подтверждают, что радиоактивные изотопы могут уничтожать раковые клетки.

Как работает ядерный двигатель — Мастерок.жж.рф — LiveJournal

Ядерный ракетный двигатель — ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Давайте разберем варианты и принципы из действия…

 

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела — порядка 8—50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

 

 

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

 

 

Их разделяют на два типа — твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

 

 

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

 

 

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

 

 

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

 

 

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым — режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.

Это копия статьи, находящейся по адресу http://masterokblog.ru/?p=20860.

Tags: Технологии, Энергия

NUCLEAR 101: Как работает ядерный реактор?

Офис
Ядерная энергия

29 марта 2021 г.

Ядерные реакторы — сердце атомной электростанции.

Они содержат и контролируют цепные ядерные реакции, которые производят тепло посредством физического процесса, называемого делением. Это тепло используется для производства пара, который вращает турбину для выработки электроэнергии.

Имея более 440 коммерческих реакторов по всему миру, в том числе 92 в Соединенных Штатах, ядерная энергетика продолжает оставаться одним из крупнейших доступных источников надежной безуглеродной электроэнергии.

Ядерное деление создает тепло

Основная задача реактора — поддерживать и контролировать ядерное деление — процесс, в котором атомы расщепляются и высвобождают энергию.

Деление и синтез: в чем разница?

    

Реакторы используют уран в качестве ядерного топлива. Уран перерабатывается в небольшие керамические гранулы и укладывается в герметичные металлические трубки, называемые топливными стержнями. Как правило, более 200 таких стержней связываются вместе, образуя топливную сборку. Активная зона реактора обычно состоит из пары сотен сборок, в зависимости от уровня мощности.

Внутри корпуса реактора топливные стержни погружены в воду, которая действует как теплоноситель и замедлитель. Замедлитель помогает замедлить нейтроны, образующиеся при делении, чтобы поддерживать цепную реакцию.

Затем в активную зону реактора можно вставить управляющие стержни, чтобы уменьшить скорость реакции, или вынуть, чтобы увеличить ее.

Тепло, создаваемое ядерным делением, превращает воду в пар, который вращает турбину для производства безуглеродного электричества.

Типы легководных реакторов в США       

Все коммерческие ядерные реакторы в США являются легководными реакторами. Это означает, что они используют обычную воду в качестве теплоносителя и замедлителя нейтронов.

В Америке работают два типа легководных реакторов.

Реакторы с водой под давлением

Графика Сары Харман | Министерство энергетики США

Более 65% коммерческих реакторов в США являются водо-водяными реакторами или PWR. Эти реакторы закачивают воду в активную зону реактора под высоким давлением, чтобы вода не закипела.

Вода в активной зоне нагревается за счет ядерного деления, а затем перекачивается в трубы внутри теплообменника. Эти трубки нагревают отдельный источник воды для создания пара. Затем пар вращает электрический генератор для производства электроэнергии.

Вода в активной зоне возвращается в реактор для повторного нагрева, и процесс повторяется.

Реакторы с кипящей водой

Графика Сары Харман | Министерство энергетики США

Примерно треть реакторов, работающих в США, являются реакторами с кипящей водой (BWR).

BWR нагревают воду и производят пар непосредственно внутри корпуса реактора. Вода прокачивается через активную зону реактора и нагревается за счет деления. Затем трубы подают пар непосредственно в турбину для производства электроэнергии.

Неиспользованный пар затем конденсируется обратно в воду и повторно используется в процессе нагрева.

Подписывайтесь на нас

Как работает ядерный реактор

// Как работает ядерный реактор?

Ядерные реакторы — это, по сути, большие котлы, которые используются для нагрева воды для производства огромного количества электроэнергии с низким содержанием углерода. Они бывают разных размеров и форм и могут работать на различных видах топлива.

Атомная электростанция Ringhals с четырьмя реакторами, способными обеспечить 20 % потребности Швеции в электроэнергии (Изображение: Vattenfall) где частица («нейтрон») стреляет в атом, который затем делится на два меньших атома и несколько дополнительных нейтронов. Некоторые из нейтронов, которые высвобождаются, затем попадают на другие атомы, заставляя их тоже делиться и высвобождая больше нейтронов. Это называется цепной реакцией.

Деление атомов в цепной реакции также приводит к высвобождению большого количества энергии в виде тепла. Вырабатываемое тепло отводится из реактора циркулирующей жидкостью, обычно водой. Затем это тепло можно использовать для производства пара, который приводит в действие турбины для производства электроэнергии.

Чтобы гарантировать, что ядерная реакция протекает с нужной скоростью, в реакторах есть системы, ускоряющие, замедляющие или останавливающие ядерную реакцию и выделяемое ею тепло. Обычно это делается с помощью регулирующих стержней, которые обычно изготавливаются из материалов, поглощающих нейтроны, таких как серебро и бор.

Два примера ядерного деления урана-235, наиболее часто используемого топлива в ядерных реакторах.

Ядерные реакторы бывают разных форм и размеров: в некоторых для охлаждения активной зоны используется вода, в других – газ или жидкий металл. В наиболее распространенных типах энергетических реакторов используется вода, при этом более 90% мировых реакторов основаны на воде. Дополнительную информацию о множестве различных типов реакторов по всему миру можно найти в разделе «Атомные энергетические реакторы» Информационной библиотеки.

Ядерные реакторы очень надежны в выработке электроэнергии, способны работать 24 часа в сутки в течение многих месяцев, если не лет, без перерыва, независимо от погоды и времени года. Кроме того, большинство ядерных реакторов могут работать очень долго — во многих случаях более 60 лет. В 2019 году блоки 3 и 4 на АЭС «Турки-Пойнт» во Флориде стали первыми реакторами в мире, получившими лицензию на 80 лет эксплуатации.

Заправка реактора (Изображение: Vattenfall)

Что питает реактор?

В качестве топлива для реактора может использоваться ряд различных материалов, но чаще всего используется уран. Уран в изобилии, и его можно найти во многих местах по всему миру, в том числе в океанах. Можно использовать и другие виды топлива, такие как плутоний и торий.

Большинство современных реакторов содержат несколько сотен тепловыделяющих сборок, каждая из которых содержит тысячи маленьких таблеток уранового топлива. Одна пеллета содержит столько же энергии, сколько содержится в одной тонне угля. Типичный реактор требует около 27 тонн свежего топлива в год. Напротив, угольной электростанции аналогичного размера потребуется более двух с половиной миллионов тонн угля для производства такого же количества электроэнергии.

Таблетки ядерного топлива ненамного больше кусочка сахара (Изображение: Казатомпром)

Как насчет отходов?

Как и любая отрасль, атомная промышленность производит отходы. Однако, в отличие от многих других отраслей, ядерная энергетика производит очень мало энергии и полностью содержит и управляет тем, что производит. Подавляющее большинство отходов атомных электростанций малорадиоактивны, и в течение многих десятилетий с ними ответственно обращались и утилизировали.