Содержание
Шаг 2. Устройство двигателя. Как работает двигатель?
Молодцы ребята! Вы освоили шаг №1, где вы узнали об общем устройстве автомобиля. Теперь мы переходим к шагу №2, а именно к изучению отдельных агрегатов автомобиля.
Мы теперь понимаем, что автомобиль состоит из тысячи мелких деталей. Устройство автомобиля можно даже сравнить со строением человека: двигатель это сердце автомобиля, ходовая часть автомобиля это ноги, трансмиссия это опорно двигательный аппарат, кузов это туловище, система питания это желудок. Так можно сравнивать долго, а мы хотим узнать, как же устроен двигатель автомобиля.
Как человек не может существовать без отдельных своих органов, таких как сердце, печень, почки, так и автомобиль не может без своих агрегатов, механизмов, систем и деталей. Каждый орган выполняет свою функцию, обеспечивая оптимальную работу автомобиля.
Двигатель – это энергосиловая машина, которая преобразует тепловую энергию в механическую работу.
Объясняем:В цилиндр двигателя (из топливного бака, куда заправляем топливо) поступает бензин. Топливо воспламеняется и сгорает в цилиндре, вследствие чего выделяется огромное количество теплоты. Теплота действует на детали двигателя и заставляет их работать.
Какие двигатели бывают?
Двигатели могут устанавливаться не только на автомобили, но и на промышленных предприятиях, для выполнения каких либо работ. Двигатели, которые устанавливаются на автомобили, называются транспортными.
Двигатели, которые используются на промышленном производстве, называются стационарными.
Непрерывная работа двигателя обеспечивается благодаря повторяющимся процессам в цилиндре, которые проходят в определенной последовательности.
Все процессы в двигателе, которые происходят во время его работы, называют рабочим циклом. По способу осуществления рабочего цикла двигатели разделяются на:двухтактные и четырехтактные.
Для сгорания топлива необходимо смешать его с воздухом в определенной пропорции. По способу смесеобразования двигатели бывают карбюраторные, дизельные и инжекторные.
Зачем смешивать топливо с воздухом, спросите вы?
А вот, и школьная химия пригодилась. Для нормальной работы двигателя необходимо, чтобы топливо, подающееся в цилиндр, сгорало.
Что такое вечный двигатель? Вечный двигатель– это устройство, которое работает бесконечно, без топлива и энергии. Все мечтают изобрести вечный двигатель, но, к сожалению, пока такого изобретения не существует. Создание вечного двигателя противоречит закону физики сохранения энергии. |
Давайте вспомним, что нужно для горения? Если вы хорошо учили химию, тогда вы должны помнить, что для реакции горения необходим кислород. Второе, что нам нужно это источник тепла: огонь или искра. Если еще дровишек подкинете, то будет замечательный костер, который мы так любим делать, на пикнике.
В бензиновом двигателе в роли источника тепла выступает свеча зажигания (принудительное воспламенение). В дизельном двигателе процесс воспламенения происходит от сжатия (самовоспламенение).
На каком топливе работает двигатель? В двигателе в качестве «дровишек», в отличие от костра, используется топливо. Карбюраторные и инжекторные двигатели работают на бензине. Дизельные двигатели работают на дизельном топливе. Есть еще двигатели, работающие на газу.
Еще, двигатели классифицируются по числу цилиндров (одно и много — цилиндровые) и их расположению (V-образные, одно рядные), способу наполнения цилиндром свежим зарядом (без наддува, с наддувом) и охлаждению (жидкостное и воздушное).
Устройство простейшего двигателя
Двигатель внутреннего сгорания состоит из механизмов и систем, которые выполняют разные функции, но имеют общую цель – надежная и стабильная работа двигателя.
В цилиндре двигателя находится поршень 8 с поршневыми кольцами 9, соединенный с коленчатым валом 10 при помощи шатуна 2.
Поршень 8 двигается вверх-вниз, вращая коленчатый вал 10, который в свою очередь с помощью приводного ремня передает вращательное движение распределительному валу 6. На распределительном валу есть, кулачок, который при вращении нажимает на рычаг коромысла, в это время вторая часть коромысла открывает или закрывает впускной 4 или выпускной 7 клапаны.
Когда поршень идет вниз открывается впускной клапан, в цилиндре создается разряжение, за счет которого поступает горючая смесь.
Горючая смесь – это смесь воздуха и мелко распыленного топлива (бензина) в определенной пропорции, которая обеспечивает качественное сгорание. |
Во время движения поршня вверх, горючая смесь сжимается, в это время свеча зажигания подает искру, сжатая смесь топлива и воздуха в цилиндре воспламеняется и сгорает, выделяется огромное количество газов с высокой температуры и давления и давят на поршень, опуская его вниз. Поршень через шатун вращает коленчатый вал. Таким образом, возвратно-поступательное движение поршня шатуна (вверх-вниз) преобразуется во вращательный момент коленчатого вала.
Российские ученые создали двигатель для спутников, который работает без топлива: luckyea77 — LiveJournal
?
Categories:
- Космос
- Наука
- Cancel
Россия стоит у подножия монополизации малого космоса. Ученые из компании «Экипо» создали не имеющий аналогов в мире двигатель для спутников, способный работать без привычного топлива.
Орбитальная гонка
Последнее время покорение околоземных орбит стало популярной целью многих стран и частных компаний. Сейчас яркая борьба происходит между двумя крупными предприятиями – SpaceX Илона Маска и Virgin Orbit Ричарда Брэнсона. Космические супергиганты заставляют волноваться ученых, так как, по их прогнозам, всего через несколько десятилетий из-за массового вывода спутников на орбиты люди перестанут видеть на небе звезды.
И вот теперь в российской науке произошел настоящий прорыв – впервые в мире создан двигатель для спутников, работающий без привычного горючего. Он сможет находиться на расстоянии всего лишь 200 км от Земли. Примечательно, что аналоги американских миллиардеров такими результатами похвастаться не могут.
Недостатки стандартных двигателей
Рабочий газ приводит в движение стандартный двигательный механизм. Его ионы разгоняются электрическим полем. В результате заряженные частицы создают тягу, которая позволяет находиться аппарату в заданном диапазоне.
Дело в том, что на низких орбитах встречаются атмосферные остатки. При встрече с ними включается сила притяжения, аппарат падает и сгорает. Двигатель не дает этому случиться. Но проблема заключается в том, что для нормального и продолжительного функционирования спутника требуется много топлива. Порой при его запуске вес горючего равен весу самого космического аппарата – это делает процесс запуска крайне дорогостоящим.
Прорыв всем на зависть
И вот теперь российские ученые совершили невероятное открытие в данной отрасли и создали двигатель открытого типа, который работает благодаря вышеупомянутым остаткам атмосферы. Именно они становятся источником его функционирования, и что немаловажно, – абсолютно бесплатным.
Вячеслав Темкин – один из разработчиков двигателя, заявил, что новый ионный двигатель сможет долгое время удерживать спутники на высоте 200 км от Земли. Образно говоря, они будут находиться на орбите до тех пор, пока не выйдут из строя его другие составляющие.
Преимущество малых высот
Низкие околоземные орбиты вызывают большой интерес у многих космических держав по многим причинам. Одна их них – отсутствие космического мусора, который постоянно сталкивается со спутниками и выводит их из строя.
А другая – бесперебойное обеспечение связи самых труднодоступных регионов. Для России это крайне важно. Благодаря новым двигателям страна сможет решить многие геополитические и экономические задачи, а также снова стать лидером космической отрасли.
Источник
Tags: двигатель, космос
Subscribe
Плазменная система зажигания делает ДВС на 20% экономичнее
Американская компания Transient Plasma Systems представила коммерческую версию технологии для модернизации двигателей внутреннего сгорания.…
Посмотрите на «бесшумный» дрон с ионным двигателем нового поколения
Беспилотник Ventus ионизирует воздух для создания подъемной силы без движущихся двигателей. Компания Undefined Technologies из Флориды…
В России совершён прорыв в разработке ракетных плазменных двигателей
Российская частная космическая компания «Эдвансд Пропалшн Системс» во главе с учеными-изобретателями Андреем Шумейко и Асланом Пашаевым…
Toyota начала тестировать водородные двигатели в гоночных автомобилях
В японском концерне Toyota заявили, что тестируют водородные двигатели внутреннего сгорания в гоночных автомобилях, поскольку работают над…
Разработан новый ионный электродвигатель для дальнего космоса
Два вуза сформировали коллектив для проведения теоретических и экспериментальных исследований по разработке ионного электрического ракетного…
Крошечный водородный двигатель заменил аналоги на ископаемом топливе
Израильская компания Aquarius Engines на этой неделе продемонстрировала свою последнюю разработку — крошечный водородный двигатель. Инженеры…
Автомобильный электродвигатель без постоянных магнитов стал дешевле и эффективнее
Немецкая компания Mahle разработала автомобильный электродвигатель без постоянных магнитов: он стал дешевле, экономичнее и эффективнее. Новая…
Создан прототип двигателя, работающего на информации
Канадские ученые разработали поразительно быстрый двигатель, работающий на новом виде топлива — информации. Он преобразует хаотичное колебание…
Ядерный ракетный двигатель строят для полетов на Марс. Чем он опасен?
NASA разработает ядерный двигатель для быстрого полета на Марс. Ракеты с ядерными двигателями будут более мощными и вдвое более эффективными, чем…
Photo
Hint http://pics.livejournal.com/igrick/pic/000r1edq
принцип работы, обзор БТГ и их схемы
Электроэнергия помогает человечеству решать огромный спектр бытовых и промышленных задач, но ее выработка требует от человека постоянной затраты ресурсов. Наиболее эффективными на сегодняшний день являются топливные генераторы, которые используются на ТЭС, в мобильных моделях бензиновых и дизельных генераторов. Но развитие прогресса не стоит на месте – человечество постоянно пытается удешевить получаемую электроэнергию за счет внедрения инноваций. Одна из самых революционных идей – создать бестопливный генератор, который можно будет вращать без затрат ресурсов.
Что такое БТГ (бестопливный генератор)?
Сама идея относительно не нова, под понятием бестопливного генератора понимается устройство, которое будет вырабатывать электроэнергию без необходимости затрат ресурсов на вращение его вала. У основания этой идеи стояли такие выдающиеся ученные, как Тесла, Энштейн, Хендершот и другие. В те времена для запуска и работы генератора использовался пар, получаемый за счет сгорания какого-либо топлива, от этого и возникло название бестопливного.
В наше время уже не обязательно использовать топливо для получения электрической энергии. Ее научились генерировать из солнечной энергии, энергии ветра, рек, приливов и отливов. Но устройства, предложенные физиками-основателями электротехники, до сих пор граничат с научной фантастикой и продолжают будоражить воображение как именитых ученных, так и простых обывателей.
Принцип работы
Любое генерирующее устройство построено на принципе получения электрического тока посредством направленного движения заряженных частиц в проводниковой среде. Такой эффект можно достигнуть посредством:
- Генерации переменного магнитного потока – когда в проводнике наводится ЭДС от магнитного поля извне;
- Перетеканием заряженных частиц между средами с разным потенциалом;
- Самогенерации – режим работы, при котором устройство увеличивает мощность начального импульса, что позволяет поддерживать его работоспособность и аккумулировать часть энергии для питания какого-либо стороннего потребителя.
Единственная причина, по которой не удается в полной мере реализовать подобный замысел – закон сохранения энергии. Чтобы получить какой-то вид энергии вам все равно необходимо затрачивать другой вид. Поэтому идея изобретения бестопливного генератора породила массу мифов вокруг этого вопроса и дала почву для авантюристов.
Миф или реальность?
Сразу отмечу, что великие умы создавали идею бестопливного генератора не ради коммерческой выгоды. Такими людьми, как Никола Тесла, Альберт Энштейн двигала вполне естественная жажда познания и стремление сделать этот мир лучше, а не банальное обогащение. Как свидетельствуют хроники их деятельности, им удалось добиться невероятных успехов. Многие из их достижений оставили после себя гораздо больше вопросов, чем ответов, что и дает повод нашим современникам продолжить дерзновения и научные соискания.
Причинной, по которой великие ученые не смогли реализовать свои изобретения, было несовершенство технологий или отсутствие какого-либо компонента, которые обеспечили бы стабильный результат. Наши современники в научных лабораториях и в домашних условиях пытаются воплотить нереализованные идеи создания бестопливного двигателя, иногда в научных целях, иногда с целью наживы. Но добиться желаемого и наладить производство бестопливного генератора в промышленных масштабах пока еще не удалось.
Из-за бурной деятельности аферистов в интернете вы встретите массу предложений купить бестопливный генератор, но работоспособностью эти модели не обладают. Как правило, недобросовестные изобретатели пользуются безграмотностью населения в вопросах электротехники, создают красивую упаковку и продают пустышку под заманчивым названием бестопливный генератор. Но это не значит, что рабочих схем не существует, рассмотрите примеры наиболее известных из них.
Обзор БТГ и их схемы
Сегодня существует достаточно большое количество бестопливных генераторов различной конструкции и принципа действия. Разумеется, далеко не все модели и принцип их действия освещались создателями для широких масс. Большинство бестопливных генераторов остаются тайной, свято оберегаемой создателями и патентами. Нам остается лишь проанализировать доступную информацию о принципе их действия и общие сведения об эффективности.
Генератор Адамса – «Вега»
Достаточно эффективный генератор магнитного типа изобретенный на основе теории выдвинутой ученными Адамсом и Бедини. В основе работы генератора лежит вращающийся магнитный ротор, который набирается из постоянных магнитов с одноименной ориентацией полюсов. При вращении ротора создается синхронное магнитное поле, которое наводит в обмотках статора ЭДС. Для поддержания вращающего момента ротора на него подаются краткосрочные электромагнитные импульсы.
Промышленную реализацию данного принципа получил генератор «Вега», происходит от аббревиатуры Вертикальный генератор Адамса, который предназначен для электроснабжения частных домов, дач, судоходных приспособлений. За счет кратковременных импульсов на выходе создается пульсирующее напряжение, подающееся на аккумуляторы для зарядки, а с них инвертируется в переменное промышленной частоты. Но вопрос соответствия заявленных параметров его реальным возможностям достаточно спорный.
Генератор Тесла
Был запатентован известным сербским физиком более ста лет назад. Принцип действия заключается в наличии электромагнитного излучения в атмосфере Земли, в то время как сама планета представляет собой значительно более низкий уровень потенциала.
Рис. 1. Принципиальная схема генератора Тесла
Посмотрите на рисунок, бестопливный генератор Тесла условно состоит из таких частей:
- Приемника излучения – изготавливается из проводящего материала, расположенного на диэлектрическом основании. Приемник должен обязательно изолироваться от земли и размещаться как можно выше;
- конденсатор (C) – предназначен для накопления электрического заряда;
- заземлитель – предназначен для электрического контакта с землей.
Принцип действия заключается в получении электромагнитной энергии приемником, которая начинает протекать по замкнутой цепи на землю. Но, из-за наличия конденсатора, заряд не стекает по заземлителю, а накапливается на пластинах. При подключении к конденсатору нагрузки произойдет питание устройства за счет разрядки конденсатора. Помимо этого конструкция может дополняться автоматикой и преобразователями для беспрерывного электроснабжения совместно с подзарядом.
Генератор Росси
Работа этого бестопливного генератора основана на принципе холодного ядерного синтеза. Несмотря на отсутствие классических турбин, приводимых в действие паром или сгоранием нефтепродуктов, для его функционирование вместо сжигания топлива используется химическая реакция между никелем и водородом. В камере генератора Росси происходит экзотермическая реакция с выделением тепловой энергии.
Следует отметить, что для нормального протекания реакции применяется катализатор и затрачивается электроэнергия. Как утверждает Росси, количество вырабатываемой тепловой энергии получается в 7 раз больше затрачиваемого электричества. Эту модель уже начинают внедрять для отопления участков и выработки электроэнергии. Но, так как для работы все же необходимо заправлять установку рабочими реагентами, совсем бестопливной назвать ее нельзя.
Генератор Хендершота
Принцип действия этого бестопливного генератора был предложен Лестером Хендершотом и основан на преобразовании магнитного поля Земли в электрическую энергию. Теоретическое обоснование модели ученый предложил еще в 1901 – 1930 гг, она состоит из:
- электрических катушек, находящихся в резонансе;
- металлического сердечника;
- двух трансформаторов;
- конденсаторов;
- постоянного магнита.
Для работы схемы обязательно должна соблюдаться ориентация катушек с севера на юг, благодаря чему произойдет вращение магнитного поля, которое сгенерирует ЭДС в катушках.
Марк Хендершот, сын Лестера Хендершота представляет свой БТГ
Также в сети ходит и схема данного БТГ (рисунок ниже). Насколько она правдивая – я не могу сказать.
Схема генератора Хендершота
Генератор Тариэля Капанадзе
Наш современник утверждает, что открыл возможность получения электрической энергии из эфира, работая с катушками Теслы и продолжая исследования известного ученного. Бестопливный генератор Капанадзе состоит из катушки Тесла, блока конденсаторов, аккумулятора и инвертора, но эта компоновка лишь догадка, сам изобретатель держит конструкцию бестопливного генератора в строжайшей тайне.
Рис. 2: общий вид генератора Капанадзе
Посмотрите на рисунок 2, здесь приведен общий вид генератора свободной энергии. Сегодня ходят слухи о попытке широкомасштабной реализации устройства для нужд потребителей в некоторых странах, но конечного результата им достичь так и не удалось.
Также по сети ходит и электрическая схема данного генератора (рисунок ниже). Но насколько она правдивая – мы сказать не можем.
Электрическая схема генератора Капанадзе
Генератор Хмелевского
Согласно официальной версии бестопливный генератор Хмелевского был открыт случайно, так как создатель задумывал его как блок питания для преобразования постоянного тока в переменный. Но он нашел широкое применение в геологоразведке и получил широкое распространение в экспедициях, удалявшихся от источников центрального энергоснабжения.
Такой бестопливный генератор состоит из трансформатора с расщепленными обмотками, резисторов, конденсаторов и тиристора. Генерация электроэнергии происходит за счет особой конструкции самого трансформатора, который может создавать встречную ЭДС больше, чем на входе. Такой результат достигается за счет резонансного эффекта и применения напряжения определенной частоты и амплитуды.
Генератор Джона Серла
В основе бестопливного генератора Серла лежит принцип магнитного взаимодействия между сердечником и роликами. При котором магнитные ролики размещаются на равноудаленном расстоянии и стремятся сохранить свою позицию после приведения системы в движение. В состав магнитного двигателя входит многокомпонентный неподвижный сердечник, вокруг которого вращаются такие же многокомпонентные ролики. По диаметру вокруг роликов установлены катушки, в которых генерируется ЭДС при прохождении возле них магнитного ролика. Для запуска устройства применяются пусковые электромагниты, которые подают импульсы, приводящие в движение ролики.
Рис. 3: общий вид генератора Серла
Как утверждает Серл, ролики самостоятельно увеличивают скорость вращения за счет переменного магнитного поля, создаваемого за счет разнополюсного совмещения магнитов внутри роликов и внутри неподвижного сердечника. При изготовлении конструкции в три уровня скорость вращения приводит не только к выработке электроэнергии, но и снижает массу аппарата вплоть до антигравитационного эффекта.
Генератор Романова
Принцип работы бестопливного генератора Романова заключается в подаче стоячих волн на одну из пластин конденсатора, в то время как вторая пластина напрямую подключается к земле.
Рис. 4: принцип работы генератора Романова
Посмотрите на рисунок, здесь приведен принцип работы устройства, при подключении одной пластины к земле, на ней возникает определенный заряд. Стоячие волны на второй пластине обеспечивают генерацию потенциала, значительно отличающегося от потенциала земли. В качестве генератора стоячей волны выступают катушки с разнонаправленной намоткой, в которой вихревые токи компенсируют активную составляющую тока. После накопления заряда конденсатор может использоваться для питания электрических приборов в качестве нагрузки.
Но однозначного успеха для бытовых или промышленных целей в реализации данной модели добиться так и не удалось.
Генератор Шаубергера
Такой бестопливный генератор основан на получении вращательного момента на турбине за счет перемещения воды по системе труб и дальнейшем преобразовании механической энергии в электрическую. Для получения такого эффекта в конструкции генератора используется сквозной поток воды, получаемый от перемещения воды снизу вверх.
Рис. 5: принципиальная схема генератора Шаубергера
Принцип действия этого механического генератора основан на получении кавитационных полостей в жидкости – состояния разрежения близкого к вакууму, из-за чего вода приходит в движение не сверху вниз, как мы привыкли наблюдать в природе, а снизу вверх, что приводит в движение ротор электрического генератора и создает замкнутый цикл. Когда вода поднимается по внутренним трубкам вверх и опускается назад в исходный резервуар.
Можно ли сделать бестопливный генератор своими руками?
Многие из рассмотренных выше генераторов невозможно реализовать в домашних условиях. В одних случаях их авторы не предоставляют электрические схемы для общего пользования, в других, автономная работа заканчивается спустя какое-то время после начала генерации. Но существуют модели, которые вы можете попробовать реализовать в домашних условиях самостоятельно. Но никакой гарантии мы не даем. Это лишь попытка и одна из возможных реализаций.
Рассмотрим на примере изготовление бестопливного генератора Тесла. Для этого:
- вам понадобиться изготовить приемник, для этого можно использовать алюминиевую фольгу (в данном примере взят кусок размером 900×300 мм) и закрепить его на изоляционной поверхности, к примеру, сухой фанере или полимерной пластине.
Рис. 6: изготовьте приемник излучения - закрепите в центре приемника проводник для токосъема и передачи электрического заряда к накопителю электроэнергии.
Рис. 7: закрепите провод - установите приемник в наиболее высокой точке (в данном примере он расположен на крыше частного дома).
- проследите, чтобы ни фольга приемника, ни провод от него к накопителю не касались заземленных элементов.
- подключите провод к одной из пластин конденсатора (для данной схемы используется модель на 2200 мкФ).
- вывод второй пластины конденсатора заземлите.
Рис. 8: подключение конденсатора - после подключения проверьте цепь в местах электрических соединений и замерьте заряд конденсатора (он равен нулю или стремиться к этой величине).
- Спустя 30 – 60 минут измерьте при помощи того же мультиметра напряжение на конденсаторе (в данном примере напряжение составило 202 мВ).
Рис. 9: измерьте заряд конденсатора
Как видите, бестопливный генератор Тесла действительно работает, и вы можете собрать его в домашних условиях самостоятельно. Основной недостаток – запитать от него получиться разве что светодиод, да и то на несколько секунд от силы. Мощность такого устройства зависит от площади приемника и емкости конденсатора. И если подобрать конденсаторы большой емкости еще представляется возможным, то создать приемник размером с футбольное поле, чтобы можно было бесперебойно питать хотя бы дом, достаточно проблематично.
Видео по теме
Принцип работы, обзор БТГ и их схемы» src=»https://www.youtube.com/embed/XUNXje81v_g?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Список использованной литературы
- Бродянский В.М. «Вечный двигатель— прежде и теперь. От утопии — к науке, от науки — к утопии» 1989
- НОВАЯ ЭНЕРГЕТИКА «Эксперименты в области альтернативной энергетики и передовых аэрокосмических систем» Номер 2/2004 (17)
- Д.Бендини, Т.Бендини «Генерация свободной энергии» 2004
- Орд-Хьюм А. «Вечное движение. История одной навязчивой идеи» 1980
Инструкция к генераторной установке
Общая информация
3.1. Общая информация и идентификация генераторов
Дизель-генератор разработан как составное устройство для обеспечения отличной и надежной работы. Основные элементы показаны на структурной схеме типовой генераторной установки, хотя для различных моделей существует несколько отличий в главной структуре. В данном разделе описываются основные элементы генераторной установки, более подробные описания характеристик представлены в следующих разделах.
Каждый генератор имеет паспортную табличку, прикрепленную к корпусу генератора переменного тока (далее генератор). Информация на паспортной табличке служит для идентификации модели генератора и его рабочих характеристик, включая номер модели, серийный номер, выходное напряжение, фазу, частоту и номинальную мощность (выходная мощность указана в кВА или кВт). Информация также повторяется в чертежах, прилагающихся к документации. Серийный номер уникален для каждой установки. При приобретении запасных частей или при обслуживании и проведении ремонтных услуг необходимо сообщать серийный номер установки.
3.2. Дизельный двигатель
Дизельный двигатель является источником энергии в генераторной установке и имеет следующие особенности: специально разработанный для генераторной установки, безопасная и равномерная работа, промышленный тип, 4-тактное или 2-тактное компрессионное воспламенение, комплект дополнительных устройств для стабильного электроснабжения. Дополнительные устройства включают: цилиндрический воздушный фильтр, турбокомпрессор, механический или электрический регулятор скорости, обеспечивающий точное управление вращением генератора.
3.3. Система электропитания двигателя
В зависимости от модели системы электропитания имеют напряжение =12В или =24В, и включают: стартер, зарядный генератор, аккумуляторы и держатель аккумуляторов. Для больших генераторных установок, аккумуляторы и держатели аккумуляторов могут устанавливаться отдельно от генераторной установки. Обычно генераторные установки комплектуются одним или двумя свинцово-кислотными аккумуляторами, которые подробно описаны в десятом разделе данного руководства. По запросу заказчика двигатель может комплектоваться другими типами аккумуляторов.
3.4. Система охлаждения
Система охлаждения двигателя включает один радиатор, один вентилятор. Генератор переменного тока комплектуется дополнительным вентилятором для охлаждения его частей. Поток воздуха сначала проходит генератор, затем двигатель и радиатор.
3.5. Генератор переменного тока
Выходная мощность поступает с одного бесщеточного самовозбуждающегося генератора переменного тока с встроенным регулятором напряжения. Генератор имеет водонепроницаемый корпус с защитным покрытием и систему управления, смонтированную наверху.
3.6. Топливный бак и платформа
Двигатель и генератор переменного тока установлены на тяжелую металлическую платформу. Для небольших генераторных установок в платформу устанавливается топливный бак, содержащий, при полном заполнении, топливо на 8 часов работы. Если в платформе нет топливного бака, то предлагается отдельный топливный бак.
3.7. Демпферы
Генератор закреплен на демпферах для смягчения ударов, передаваемых основанию при запуске. Демпферы установлены между стойками двигателя/генератора и платформой. Тем не менее, для больших генераторных установок двигатель и генератор фиксируются на платформе, и демпферы предлагаются заказчику для монтажа силами заказчика.
3.8. Глушитель и выхлопная система
Установка комплектуется глушителем и системой выхлопа в разобранном состоянии. Система уменьшает шум и выводит выхлопные газы наружу.
3.9. Система управления (специфические особенности)
Существует несколько типов систем управления для различных генераторных установок. Каждая установка имеет одну систему для управления работой и обеспечения защиты от поломки при неправильной работе. В девятом разделе документации представлена дополнительная информация с маркировкой и сигналами для различных систем управления.
3.10. Выходной воздушный выключатель
Для защиты генераторной установки в дополнительной распределительной коробке устанавливается силовой выключатель, соответствующий мощности установки. В некоторых случаях выключатель ставят вместе с системой автоматического выключения или панелью управления.
Структурная схема стандартной генераторной установки
- Дизельный двигатель
- Демпфер
- Панель управления
- Соединитель
- Платформа
Монтаж, перемещение, транспортировка и хранение
4. 1 Основные принципы
В случае, когда габариты и соответствующая система управления или энергосистема согласованы, можно разрабатывать план по монтажу дизель-генератора. В данном разделе рассматриваются важные элементы для безопасной и эффективной установки. Для получения дополнительной информации см. инструкцию по установке.
4.2 Кожух
Удобнее монтировать и перемещать генераторные установки с внешним кожухом. Наша компания выпускает 2 модели генераторных установок с внешним кожухом. Одна модель с закрытым устанавливаемым сверху кожухом стационарного типа или стационарного типа с шумопоглощением. Другая модель с корпусом, похожим на контейнер (может вместить человека), стационарного типа или стационарного типа с шумопоглощением.
Кожухи монтируются для удобной транспортировки и монтажа, а также защиты частей дизель-генератора от доступа случайных лиц.
Внимание!
! Перед запиранием двери корпуса, проверьте, что внутри не находятся люди.
4.3 Перемещение генераторной установки
Платформа генераторной установки разработана специальной для удобного перемещения установки. Ошибки при перемещении могут повлечь серьезные поломки частей генераторной установки.
Поднимайте или опускайте установку с помощью погрузчика или аккуратно тяните или толкайте платформу. Если генераторная установка передвигается толканием, то проложите деревянные доски между вилкой погрузчика и рамой для предотвращения поломки рамы и перераспределения веса в местах зацепления рамы погрузчиком. Если необходимо частое перемещение генератора на раму установки могут монтироваться каналы масляного скольжения с пазами для вилки погрузчика, а также подвес. У небольших моделей платформа имеет пазы для вилочного погрузчика.
Внимание!
! Не используйте для подъема установки рым-болты двигателя или генератора.
! Проверьте состояние подвеса, кронштейна и допустимую массу подвеса.
! Сохраняйте дистанцию при подъеме установки.
Для подъема генераторной установки устанавливается один одноточечный подвес и необходим один стандартный кран.
Если генераторная установка поднимается, проверьте точки крепления для подъема, проверьте прочность соединения, отсутствие трещин в металле и затянуты ли соединения и т.д. Точка подъема с балкой защиты установки находится в центре масс (ближе к генератору) всей генераторной установки, и в данном случае может использоваться прямой подъем. Приподняв генераторную установку от земли необходимо использовать стальной кабель для предотвращения раскачивания или вращения установки. Не поднимайте генераторную установку при сильном ветре. Генераторная установка должна устанавливаться на плоскую поверхность, способную выдержать ее вес.
Данный метод подъема используется только для подъема при монтаже. Если необходимо часто поднимать генераторную установку, следует установить одноточечное подъемное оборудование. Если генераторная установка поднимается вертолетом, необходимо подъемное кольцо.
4.4 Место монтажа
Очень важно правильно выбрать место для размещения генераторной установки. Необходимо учитывать ключевые факторы:
- Хорошая вентиляция.
- Защита частей от попадания дождя, снега, града, затопления, попадания прямых солнечных лучей, низких температур и перегрева.
- На оборудование не будет воздействовать загрязненный воздух, содержащий земляную пыль, металлическую пыль, древесную стружку, копоть, дым, пар, смог от работы двигателя или другого загрязнения.
- Предусмотрена защита машины от падения дерева или столба или других предметов, сброшенных с транспортных средств и кранов.
- Имеется достаточно места вокруг машины для охлаждения и ремонта: 1 метр вокруг машины и два метра от верхних частей машины.
- Убедитесь, что в помещение есть вход, достаточный для ввоза генераторной установки. Воздух должен легко подводиться и отводиться.
- Имеется зашита от доступа случайных лиц.
Если генератор необходимо смонтировать вне здания, он должен комплектоваться всепогодным внешним корпусом или корпусом контейнерного типа, что очень полезно при размещении генераторной установки в помещении и временно вне помещения.
4.5 Платформа и демпферы
Перед доставкой генераторной установки с завода генератор переменного тока и двигатель должны быть правильно установлены на жесткую платформу, поэтому, когда установка приходит в собранном виде, достаточно только зафиксировать генераторную установку болтами на прочном основании.
4.5.1. Основание: наилучшим основанием для монтажа является блок усиленного бетона. Основание должно обеспечивать жесткую поддержку генераторной установки для предотвращения качения и ударов. Стандартный бетонный блок толщиной 150-200 мм с площадью не меньше площади платформы установки. Земля под блоком должна выдерживать вес блока и установки. (Если генератор устанавливается над землей, конструкция здания должна выдерживать вес машины, топливного бака, дополнительных устройств и т.д.) Здание должно соответствовать строительным нормам. Если на земле сыро (как в бройлерных помещениях), основание должно находиться выше уровня земли для безопасности электрических соединений, обслуживания и уменьшения коррозии металла платформ.
4.5.2 Демпфер: демпферы устанавливаются между ножками двигателя/генератора и платформой для уменьшения вибраций генераторной установки, передаваемых зданию. Платформа крепится непосредственно к блоку основания. Для больших генераторных установок двигатель/генератор переменного тока жестко крепится на платформе с дополнительными демпферами для установки заказчиком между платформой и основанием. В любом случае дизель-генератор должен жестко фиксироваться на основании (с демпферами или без) для предотвращения перемещений.
Внешние подключения к генераторной установке также должны иметь вибрационное демпфирование, например, гибкий топливопровод, гибкие вентиляционные трубы, гибкое соединение отвода выхлопных газов, мягкие кабельные каналы, держатели и соединения и т.д.
4.6 Подвод воздуха для двигателя
Воздух, поступающий в двигатель, должен быть чистым и прохладным. Обычно, устанавливают воздушный фильтр для фильтрации воздуха.
Иногда воздух подводится из другого места или помещения, так как воздух вокруг генераторной установки может быть не пригоден для использования из-за пыли или температуры. Не стоит переносить фильтр в другое место, если это может привести к занесению грязи в двигатель. Если необходимо, используйте оборудование по очистке воздуха одобренное производителем, иначе это плохо повлияет на работу двигателя.
4.7 Охлаждение и вентиляция
Двигатель, генератор и вентилятор выделяют тепло, высокая температура ухудшает эффективность работы генератора. Поэтому необходимо принять меры по охлаждению двигателя и генератора. Правильное направление потока воздуха – с переднего конца двигателя. Он проходит сквозь радиатор двигателя и выводится наружу через присоединенную вентиляционную трубу. Если нет отвода воздуха, то горячий воздух, рассредоточенный вентилятором, будет возвращаться по короткому пути к радиатору, уменьшая эффективность охлаждения.
Вход и выход воздуховода должны быть достаточно большим, чтобы обеспечить свободное течение воздуха. Площадь проемов должна быть 1,5 раза больше площади радиатора.
На вход и выход воздуховода должны устанавливаться жалюзи для защиты дизель-генератора от плохих погодных условий. Жалюзи должны быть фиксированными или регулируемыми. В холодную погоду, если генератор не работает, необходимо закрывать жалюзи, сохраняя тепло в помещении, что полезно для аккумулятора. Для генераторных установок с автозапуском жалюзи должны открываться автоматически при запуске установки. Для системы охлаждения и отвода тепла без радиатора, произведенное генераторной установкой тепло должно отводиться наружу.
4.8 Отвод выхлопных газов
Отвод выхлопных газов позволяет вывести наружу вредный дым, смог, запах и уменьшить шум в помещении. Подходящий глушитель, согласованный с выхлопной линией, может устанавливаться как внутри, так и снаружи.
Внимание!
! Все генераторные установки, устанавливаемые в помещениях, должны использовать герметичные выхлопные трубы, позволяющие выводить газы наружу, и установка выхлопных труб должна соответствовать нормам и стандартам.
! Проверьте, что горячая система выхлопа находится на удалении от воспламеняющихся предметов.
! Проверьте, что выхлопные газы не причиняют вред окружающим.
Во время разработки вытяжной системы выхлопных газов, необходимо принимать во внимание тот факт, что противодавление должно иметь минимальное значение, потому что оно сильно уменьшает КПД и срок службы двигателя и увеличивает расход топлива. Для уменьшения противодавления выхлопные трубы должны быть как можно короче, в случае изгиба диметр изгиба должен быть минимум в 1,5 раза больше внутреннего диаметра трубы, а если длина системы выхлопа превышает 3 метра, требуется утверждение конструкции производителем.
Стандарты для выхлопных систем:
- Для соединения выхлопной трубы и выхлопного отверстия двигателя должно использоваться гибкое соединение. Гибкое соединение необходимо для уменьшения вибраций передаваемых системе выхлопа и зданию. Оно также позволяет компенсировать смещения из-за теплового расширения выхлопных труб и устройств.
- При монтаже труб и глушителя не повредите выхлопные трубы.
- Части выхлопной системы, проходящие в помещении, должны иметь теплоизоляцию для уменьшения теплоотдачи и шума. Трубы и глушитель должны располагаться на удалении от легко воспламеняющихся веществ как внутри, так и снаружи помещения.
- Длинные трубы должны располагаться под углом с монтажом дренажного крана в нижней точке для отвода воды и предотвращения ее попадание в двигатель или глушитель.
- При прохождении трубы через стену, необходимо установить рубашку, поглощающую вибрации и предохраняющую легко воспламеняющиеся материалы от нагретой трубы, а также позволяющую компенсировать тепловые расширения помещения и нагревающейся трубы.
- Конец трубы, выходящий наружу в горизонтальном положении должен иметь срез под углом 60 градусов, при вертикальном расположении должен оснащаться козырьком для предотвращения попадания дождя и снега в систему выхлопа.
- Труба выхлопной системы не должна объединяться с трубами других генераторов или с трубами печи или бойлера.
4.9 Топливо
Топливная система должна иметь постоянное снабжение чистым топливом для двигателя. Установка топливной системы обычно включает один расходный бак, большой топливный бак и насос с соответствующим оборудованием.
! Монтаж дополнительной топливной цистерны для стационарной генераторной установки должен соответствовать стандартам и нормам.
! Не курите, не допускайте появления огня и искр рядом с топливом. Испарения топлива и масла могут взорваться при попадании огня.
4.9.1 Расходный бак: расходный бак непосредственно питает двигатель топливом, поэтому устанавливается в генераторном помещении. Для маленьких генераторных установок, металлический или резиновый постоянный бак устанавливается в платформу с топливопроводом, подключенным к дизельному двигателю. На полном баке генераторная установка может работать 8 часов. С очень большими топливными баками генераторная установка может работать до 24 часов.
4. 9.2 Большой топливный бак: для увеличения продолжительности работы генераторной установки без постоянного подвоза топлива, необходима установка дополнительного большого топливного бака.
Обычно большие топливные баки устанавливаются снаружи для удобной заправки топливом, чистки и проверки, в холодных районах бак не должен переохлаждаться, так как при этом топливо течет медленней из-за увеличения вязкости. Баки устанавливаются на земле или под землей.
Большие топливные баки должны иметь вентиляционные отверстия для отвода избыточного давления при добавлении или испарении топлива и предотвращения образования вакуума при расходе топлива. Нижняя часть бака круглой формы устанавливается под углом 2 градуса для отстоя воды и осадков. В нижней части устанавливается кран для слива воды и грязи. Необходимо часто выполнять дренаж воды из топливных баков, установленных под землей.
Очень важно соблюдать перепад высоты между большим топливным баком и расходным топливным баком. Максимальная высота всасывания для электрического насоса для масла — 4 метра, поэтому нижняя часть большого бака должна быть не ниже 4 метров от расходного топливного бака.
4.9.3 Подвод топлива: для топливопроводов могут быть использованы стальные трубы или гибкие шланги, применяемыми для любой среды и совместимыми с топливом.
Примечание:
! Не используйте для топливной системы трубы со свинцовым покрытием.
Диаметр труб для топлива и обратного слива должен быть не меньше выходных труб генераторной установки, в то время как труба отвода избытков должна быть большего диаметра (в целях обеспечения бесперебойной подачи топлива, в случае низких температур). Для подключения к двигателю необходимо использовать гибкое соединение, предотвращающее поломку и утечку топлива из-за вибраций установки.
Транспортная труба должна выполнять забор топлива на высоте не менее 50 мм от верхней точки дна бака, а также на удалении от сливного крана.
Чистота топлива очень важна для увеличения срока службы и обеспечения стабильности работы двигателя, поэтому между насосом и фильтром двигателя устанавливается качественный фильтр. На другом конце насоса должен иметься кран для слива воды и грязи.
4.10. Меры противопожарной безопасности
Во время монтажа генераторной установки должны быть приняты следующие меры:
- В помещении должен быть пожарный выход, чтобы оператор в случае пожара мог немедленно покинуть помещение.
- В помещении должен быть огнетушитель класса BC/ABC.
- К дизельному двигателю должны подключаться предохранительный клапан с температурным срабатыванием для отсечки подачи топлива.
4.11. Пусковые аккумуляторы
Внимание!
! Не курите, не допускайте появления огня и искр около аккумуляторов, поскольку водород, генерируемый во время заряда аккумулятора, взрывоопасен. Аккумуляторы должны располагаться возле двигателя и должны быть открытыми для обслуживания, так как длинные провода могут влиять на энергию пуска.
4.12. Подключение проводов
Подключение выхода генератора и нагрузки, а также обслуживание и ремонт должен выполняться квалифицированным электриком с большим опытом работы.
Внимание!
! Подключение кабелей должно соответствовать стандартам и требованиям, включая требования по заземлению и защиты от потери заземления.
4.12.1. Подключение кабелей: подключение должно производиться гибкими кабелями и генератор переменного тока или клеммы силового выключателя не должны повредиться от вибраций генераторной установки. Если во время монтажа не оказалось гибких проводов, можно установить одну распределительную коробку генератора для подключения гибкими проводами к генераторной установке. Кабели должны прокладываться в трубах или каналах и не должны крепиться на генераторной установке. Если необходим изгиб провода, учитывайте минимальный диаметр изгиба.
Силовые кабели должны соответствовать выходному напряжению и току генератора. Необходимо принимать во внимание температуру в помещении, метод установки и проходящие рядом провода. Если провод состоит из одной медной жилы, то герметичная оболочка должна быть из немагнитного металла, такого как алюминий или медь или неметаллического материала, например тефлон. Если оболочка выполнена из магнитных материалов, то простым решением будут разрезы в оболочке для сокращения противотоков.
Все клеммы соединения должны быть затянуты. Очень важно для автоматического выключателя и генератора синфазная работа с электрической сетью.
4.12.2. Защита: соединение генератора и нагрузки защищено автоматическим выключателем. Автоматический выключатель разрывает цепь при перегрузках и коротких замыканиях.
4.12.3. Нагрузка: при проектировании система электропитания должна рассчитываться симметричность нагрузки, не перегружайте одну фазу более чем другие фазы, это может привести к перегреву обмоток генератора. Рассогласование фаз может привести к поломке чувствительного 3-фазного оборудования системы электропитания. Ток в фазе не должен превышать номинальный ток генератора. Если необходимо подключить генератор к существующей силовой ветке, необходимо пересмотреть распределение электроэнергии для симметрирования нагрузки.
4.12.4. Коэффициент мощности COSц: необходимо рассчитывать коэффициент мощности, COSц меньше чем 0,8 (индуктивность) будет приводить к перегрузке генератора. Для нормальной работы необходимо чтобы COSц лежал в диапазоне 0,8~1.
Имейте в виду, что необходимо предотвращать появление опережающего сдвига фаз во время установки ручного или автоматического оборудования по корректированию COSц (например, конденсаторные установки), потому что опережающий сдвиг фаз приводит к нестабильности напряжения и появлению опасных высоких напряжений. Другими словами, все оборудование по коррекции коэффициента мощности необходимо отключать при подаче напряжения от генератора.
4.12.5. Заземление: стандарты заземления в различных местах отличаются. Необходимо заземлять платформу генераторной установки. Заземляющие провода должны быть иметь слабину для предотвращения обрыва из-за вибраций, поскольку генераторная установка установлена на амортизаторы.
Заземляющий провод должен выдерживать номинальный ток генератора и соответствовать нормам электробезопасности.
4.12.6. Переключение генератора: большинство генераторов переменного тока могут переключаться на различные выходные напряжения. Выполняйте переключение в соответствии с «Руководством генератора переменного тока». Перед изменением напряжения проверьте, что другая аппаратура такая как автоматический выключатель, переключатель тока, провода и амперметр, соответствует новому напряжению.
4.12.7. Одновременная работа: при одновременной работе нескольких генераторов необходима установка дополнительного оборудования.
4.12.8. Проверка изоляции: сразу после установки проверьте сопротивление обмоток генератора. Отключите автотрансформатор, закоротите или отключите блок вращающихся диодов и отключите все цепи управления.
Используйте мегомметр на 500В или подобное оборудование для тестирования сопротивления от клеммы на землю, после отключения провода между центральной точкой и землей. Сопротивление изоляции должно быть больше 5 МОм. Если сопротивление изоляции меньше 5 МОм, обмотка должна быть подготовлена с помощью метода описанного в «Руководстве генератора переменного тока».
4.13. Подавление шумов
При установке очень важно подавление шумов. Существует несколько методов контроля уровнем шума.
Внимание!
Используйте шумоподавляющее снаряжение во время работы или при передвижении возле работающей генераторной установки.
4.13.1. Выхлопной глушитель: как описано в разделе 4.8, выхлопной глушитель может уменьшить уровень шума. Различные глушители оказывают различное влияние, классифицируемое 4 уровнями шума: производственная среда, домашнее окружение, высокие требования и очень высокие требования.
4. 13.2. Кожух: как описано в пункте 4.2. функция кожуха – защита от дождя и уменьшения шума. Кожух может быть специально разработан для обеспечения определенного уровня шума.
4.13.3. Другие методы уменьшения шума: для генераторов, устанавливаемых в помещении, существует множество способов по уменьшению шума, такого как модули подавления шума, отдельная вентиляция, глушитель вентилятора и стены из шумопоглощающих материалов.
4.14. Транспортировка (Мобильный генератор)
4.14.1. Подготовка к транспортировке: проверьте все части, присоединенные к грузовику, и части генераторной установки на отсутствие износа, поломки или потери деталей. Сила тяги грузовика должна превышать массы генератора на 10%.
Соедините грузовик и мобильную генераторную установку и затем проверьте надежность соединения. Подключите индикаторные лампы, подключите габариты грузовика и закрепите цепью дышло генераторной установки. Если возможно, подключите кабель безопасности.
Если установлена передняя винтовая опора, затяните ее с помощью болта и закрепите переднее колесо на максимальной позиции, обеспечивая подъем или блокирование задних опор.
Проверьте, что давление в шинах нормальное, все тормоза работают хорошо и все отражатели чистые и работают.
Проверьте что все провода нагрузки и заземления отключены, окна, двери инструментальный ящик закрыты и заблокированы, проверьте, что все трубы отсоединены.
Если есть стояночный тормоз, откройте его и удалите колодки, фиксирующие колеса.
4.14.2. Буксировка: позаботьтесь, чтобы вес генераторной установки не был близок или превышал силу тяги грузовика, иначе снизиться маневренность и эффективность торможения грузовика.
Внимание!
! Соблюдайте все правила, стандарты и правила дорожного движения, включая правила для оборудования, перевозимого на минимальной или максимальной скорости.
! Сохраняйте тормозную систему в хорошем состоянии.
! Запрещено ездить стоя или сидя на генераторной установке или стоять или сидеть на дышле установки, или стоять или идти между грузовиком и генераторной установкой.
Подъемы должны быть не более 15 градусов (27%), объезжайте ямы, камни, блоки и мягкий грунт.
Убедитесь в наличии места при движении грузовика назад.
4.14.3. Место стоянки: остановите грузовик на чистом сухом месте, которое может выдержать массу установки и грузовика. Если грузовик остановился на подъеме, то грузовик необходимо поставить поперек подъема, угол подъема не должен превышать 15 градусов (27%), включите ручной тормоз, установите упоры под колеса, опустите передние и задние подъемники. Отсоедините цепь, отключите кабели и соединения, затем отгоните грузовик.
4.15. Хранение:
Длительное хранение оказывает сильное воздействие на двигатель и генератор переменного тока, поэтому для минимизации этого воздействия агрегат следует подготовить.
4. 15.1. Хранение дизельного двигателя: подготовка к хранению выполняется пошагово в соответствие с инструкциями на дизельный двигатель, такими как чистка двигателя, замена масла и дальнейшая подготовка к хранению.
4.15.2. Хранение генератора: при хранении через генератор проходит теплый воздух. Для минимизации скопления теплого воздуха в генераторе, поместите генератор в сухое место и сохраняйте сухими обмотки с нагревательным проводом.
Если генератор выводится из хранения, проверьте состояние изоляции с помощью измерений описанных в пункте 4.12. Если значение ниже, чем перед хранением, обмотки должны быть высушены в соответствии с «Руководством генератора переменного тока».
Если значение, измеренное мегомметром после сушки, меньше 1 МОм, изоляция нарушена и требуется ее восстановление.
4.15.3. Хранение аккумуляторов: необходимо полностью заряжать аккумуляторы каждые 12 недель (8 недель в тропическом климате).
Эксплуатация
5. 1. Основная информация
Генераторная установка укомплектована современным электронным управлением. В нее может устанавливаться одна из следующих моделей панели управления: Уточните модель, установленную на Вашей генераторной установке. Система управления позволяет выполнять ручное и автоматическое управление генераторной установкой. Дизель-генератор укомплектован схемой защиты, которая предупредит или отключит установку при возникновении внештатных ситуаций. Подробное описание каждой функции представлено в разделе 9.
Необходимо выполнить следующую подготовительную работы перед запуском установки: первый запуск и остановку установки, затем нормальный запуск и остановку генераторной установки.
5.2. Проверка перед запуском установки (применимо для всех систем управления)
Выполните следующие проверки:
Внимание!
! Перед проверкой установки отключите панель управления, так как автоматическая система управления может запустить установку без предупреждения.
- Выключите питание системы управление и аварийного выключателя.
! Не открывайте крышку радиатора, если охлаждающая жидкость еще не остыла. Не заправляйте много охлаждающей жидкости в горячую систему охлаждения, иначе можно повредить систему. - Проверьте уровень дизельного топлива и охлаждающей жидкости и заполните в случае необходимости.
Внимание!
! Не курите и не допускайте появления огня во время заправки топлива в топливный бак. - Проверьте уровень топлива и добавьте, если требуется.
- Проверьте крепление вентилятора двигателя и ремень зарядного генератора, натяните при необходимости.
- Проверьте все гибкие соединения на целостность, при необходимости затяните или замените.
- Проверьте окисления на аккумуляторе, при необходимости зачистите их.
- Проверьте уровень электролита в аккумуляторе и добавьте дистиллированной воды если необходимо. Добавьте электролита, если аккумулятор новый и никогда не заряжался.
- Проверьте отсутствие пыли и грязи на панели управления и генераторе, пыль и грязь могут проводить электрический ток и ухудшать охлаждение.
- Проверьте индикатор засорения воздушного фильтра и замените фильтр, если он засорился.
- Очистите место вокруг генератора и удалите небезопасные предметы во избежание опасности или плохого воздействия на работу.
- Осмотрите систему подачи топлива, систему охлаждения и уплотнения системы смазки на наличие утечек.
- Регулярно сливайте скапливающуюся воду с дренажного крана системы выхлопа.
- Проверьте, что выключатель напряжения выходной цепи генератора находится в положении OFF (Выкл).
- Проверьте уровень в системе смазки и долейте масло при необходимости.
Первый запуск/остановка – Панель управления автоматического запуска
Следующие шаги выполняются при первом запуске генераторной установки с системой управления автоматического переключения или при первом запуске после продолжительного периода времени.
Внимание!
Нажмите аварийную кнопку или установите переключатель в положение STOP, установка должна остановиться в любом случае.
Перезапустите установку, освободив аварийную кнопку и повернув ее по часовой стрелке. Установите вручную переключатель управления в положение STOP, сбросьте предупреждения о неисправности.
- Выполните проверку перед запуском в соответствии с пунктами раздела 5.2.
- Подключите аккумулятор к двигателю, сначала анод, затем катод.
- После смачивания системой смазки остановите акселерограф или отключите его, затем нажмите кнопку START на панели управления для запуска установки, пока давление масла отображается на приборе или основной панели управления.
Если нет индикации давления масла после трех автоматических вращений, остановите двигатель и найдите причину.
Внимание!
! Продолжительный пуск при неисправностях в системе смазки может привезти к скоплению несгоревшего топлива в выхлопной системе, что является потенциально взрывоопасным.
- Заполните систему подачи топлива ручным насосом и выпустите воздух из топливного фильтра. (См. руководство по дизельному двигателю.)
Запуск: установите переключатель управления в позицию ручного запуска и нажмите кнопку запуска. (В случае если генераторная установка охлаждена и укомплектована системой подогрева, в главной программе управления можно установить время подогрева.)
Двигатель должен автоматический запускаться за 3 раза. Если двигатель не запускается, система управления переход в состояние Failure to Start (Неудачный запуск) и на панели управления загорается индикатор неисправности. В данном случае проверьте возможные причины неисправности в соответствии с частью 9 «Руководства дизельного двигателя».
Внимание!
! Демонтируйте основную часть линии выхлопа и очистите от несгоревших паров. Как только пропадет пар (белый дым) и будут отсутствовать другие неисправности, установите линию выхлопа на место и запустите установку.
- Проверьте наличие необычных шумов и вибраций.
- Проверьте наличие утечек жидкостей и герметичность системы выхлопа.
- Проверьте наличие ненормальных показаний на панели управления, особенно высокой температуры, очень низкого давления масла. Давление масла должно вернуться к нормальному значению в течение 10 секунд после запуска.
- Проверьте напряжение и частоту на панели управления. Напряжение — номинальное напряжение устанавливаемое производителем, частота нагрузки для генератора на 50 Гц устанавливается в значение, равное примерно 52 Гц, частота для генератора 60 Гц устанавливается в значение, равное около 62 Гц. (Частота генераторной установки с электронным впрыском может устанавливаться на любое значение близкое к стандартной частоте.)
Существует три возможности регулирования напряжения: это потенциометр на передней панели управления, регулируйте напряжение с помощью потенциометра. Точная настройка может выполняться потенциометром автоматического регулятором напряжения, установленного на распределительной коробке генератора переменного тока. Напряжение также можно менять с помощью переключения схемы соединения обмоток генератора, концы обмоток расположены в распределительной коробке, подробную информацию смотрите в «Руководстве по генератору переменного тока».
Внимание!
Не замыкайте разомкнутые цепи при проверке фаз.
- При работе генератора, для проверки чередования фаз установите провода измерителя на клеммы разомкнутого выключателя цепи. Работа должна производиться квалифицированным персоналом.
- Остановка: нажмите аварийную кнопку или кнопку STOP на главной панели управления, генераторная установка остановится.
- При проверке удаленного управления запуском, освободите аварийную кнопку и удаленную кнопку остановки, затем поверните переключатель в положение AUTO. При подаче входного сигнала двигатель запустится, при отключении удаленного сигнала управления, двигатель остановится.
Внимание!
После получения команды остановки, система управления перед остановкой двигателя автоматически оставляет двигатель работающим на время охлаждения.
- Подключите кабель нагрузки, и генератор готов к нормальной работе.
5.4. Нормальный запуск/остановка – Панель управления автоматического запуска
Внимание!
- Установка останавливается в любом случае при нажатии на аварийную кнопку или кнопку STOP панели управления.
- Перед повторным запуском установки, освободите аварийную кнопку, повернув по часовой стрелке, переведите ручку управления в положение STOP, сбросьте индикацию неисправностей.
- Перед запуском установки выполните проверку в соответствии с инструкциями раздела 5.2.
Внимание!
- Установку нельзя запустить, если горит индикатор неисправности. Нажмите кнопку сброса на панели для восстановления системы управления. Перед попыткой запуска установки проверьте, что неисправность устранена.
- Ручной запуск: проверьте, что кнопка аварийной остановки и кнопка остановки на панели управления освобождены. Переведите управление в ручное положение, нажмите кнопку запуска, пока двигатель не запустится. Двигатель автоматический выполнит три попытки запуска. Если двигатель не запустится, система управления блокируется ошибкой Fail to Start (Неудачный запуск), загорится индикатор неисправности, проверьте причину неисправности согласно инструкциям раздела 9 «Руководства дизельного двигателя».
Внимание!
- Не сгоревшие пары топлива, накопившиеся в выхлопной системе, могут взорваться, демонтируйте одну трубу системы выхлопа и продуйте. После устранения паров и при отсутствии неисправностей в системе установите трубу системы выхлопа на место и запустите генераторную установку.
Запуск дизельного двигателя
- Проверьте отсутствие необычных шумов и вибраций.
- Проверьте отсутствие утечек жидкостей и герметичность системы выхлопа.
- Проверьте отсутствие ненормальных показаний на панели управления, особенно высокой температуры, очень низкого давления масла, давление масла должно вернуться к нормальному значению в течение 10 секунд после запуска.
- Установите переключатель выходной цепи в положение ON (ручка вверху)
Внимание!- Подключение нагрузки
Начальная нагрузка определяется температурой охлаждающей жидкости двигателя, если температура охлаждающей жидкости двигателя меньше 20єС, можно добавить начальную нагрузку равную 50% номинальной мощности, если температура охлаждающей жидкости двигателя больше 80єС, можно добавить начальную нагрузку равную 70-100% номинальной мощности. В зависимости от типа, некоторые генераторные установки большой мощности (100 кВА) могут работать с 100% начальной нагрузкой.
- Остановка: сначала отключите нагрузку выключателем выходной цепи генератора, затем двигатель без нагрузки должен работать в течение нескольких минут для охлаждения. Нажмите аварийную кнопку или кнопку STOP на панели управления для немедленной остановки генераторной установки.
В случае необходимости оперативной остановки, нажмите аварийную кнопку без отключения нагрузки.
5.5. Автоматический запуск/остановка – Панель автоматического запуска
Выполните следующие операции для удаленного управления запуском генераторной установки с помощью автоматической системы управления.
Внимание!
- Нажмите аварийную кнопку или установите переключатель в положение STOP, установка должна остановиться в любом случае.
- Перед повторным запуском установки, освободите аварийную кнопку, повернув по часовой стрелке, переведите ручку управление в положение STOP, сбросьте индикацию неисправности.
- Проверьте установку перед запуском в соответствии с инструкциями в разделе 5.2.
Внимание!
Установку нельзя запустить, если горит индикатор неисправности. Нажмите кнопку сброса на панели для восстановления работы системы управления. Перед попыткой запуска установки проверьте, что неисправность устранена. - Автоматический запуск: проверьте, что кнопка аварийной остановки и все кнопки остановки на удаленной панели управления отжаты. Переведите переключатель управления в положение AUTO.
- Установите выходной выключатель генераторной установки в положение ON.
Установка готова к автоматическому запуску, нажмите кнопку START на удаленной панели управления, при поступлении сигнала запуска генераторная установка запустится и остановится при отключении сигнала запуска.
Обслуживание и ремонт
6.1. Основная информация
Хорошее обслуживание является ключевым фактором для обеспечения длительного срока службы генераторной установки. Обслуживание и ремонт должен выполняться квалифицированным персоналом. При проведении технического обслуживания и ремонта необходимо вести журнал учета, чтобы в будущем при необходимости использовать записанную информацию.
Генераторная установка должна быть чистой, не должно быть скоплений жидкостей, таких как топливо или смазывающих масел внутри, снаружи, также как и на/под/вокруг любых абсорбентов. Установка должна чиститься промышленной водой с растворенным моющим средством, вместо легко воспламеняющихся жидкостей. Если защитное покрытие абсорбирующих материалов разорвалась, необходимо немедленно заменить для предотвращения скапливания на материале жидкости или масла.
6.2. Техническое обслуживание
Требования технического обслуживания различны для различной обстановки генераторной установки. Инструкции по обслуживания дизельного двигателя, смотрите в соответствующей части «Руководства по дизельному двигателю». Обслуживание допускается проводить чаще, чем рекомендовано в руководстве.
6.2.1. Ежедневное обслуживание и обслуживание после каждой работы: для не работающего генератора можно проводить обслуживание раз в неделю и проводить наружный осмотр каждый день или перед каждым запуском. Перед запуском установки необходимо выполнить инструкции из части 5.2. Инструкции по проверки дизельного двигателя смотрите в «Руководстве по дизельному двигателю», они дополняют инструкции, описанные в разделе 5.2.
6.2.2. Для генераторных установок, которые никогда не запускаются, необходимо проводить проверку раз в две недели и запускать установку на 5 минут.
Внимание!
Не запускайте установку с низкой нагрузкой на продолжительный период времени.
6.2.3. Генераторные установки без нагрузки необходимо проверять раз в месяц, запускать установку на 5 минут и на 1-2 часа с минимальной нагрузкой 50%.
6.2.4. Проверяйте следующее каждые 6 месяцев или 250 часов:
- Проверяйте все оборудование защиты от неисправностей с имитацией неисправности.
- Очищайте все вентиляционные отверстия аккумуляторов.
- Затяните все соединения системы выхлопа.
- Затяните все соединения электроаппаратуры.
- Выполните специальное обслуживание дизельного двигателя как описано в «Инструкции дизельного двигателя».
- Запустите установку для проверки работы всех приборов панели управления.
6.2.5. Техническое обслуживание генератора: ежедневное обслуживание генератора не требуется, достаточно при необходимости проверять и чистить обмотки. Смотрите инструкции по обслуживанию генератора в разделе 8.2. «Руководства по генератору переменного тока».
6.2.6. Техническое обслуживание дизельного двигателя: выполняйте регулярное обслуживание в соответствии с требованиями «Руководства дизельного двигателя» и инструкциями руководства по поддержанию высокой производительности.
6.3. Демонтаж двигателя и генератора
Демонтаж двигателя и генератора выполняется в следующей последовательности:
- Отключите цепи питания, подачи топлива и дополнительного оборудования (рубашка водяного подогрева).
- Отключите цепи заряда аккумулятора, отключите соединения аккумулятора (сначала отключается катод), при необходимости снимите аккумуляторы.
- Если генератор имеет кожух, освободите крепление кожуха, снимите линию выхлопа, затем снимите крышку.
- Перед снятием панели управления с держателем отключите все соединительные провода, проверьте все ли провода можно подключить обратно.
- Если необходимо одновременно отсоединить двигатель и генератор, их можно поднять за рым-болты после откручивания всех фиксирующих к платформе болтов.
6.3.1. Демонтаж двигателя
- До начала демонтажа двигателя отключите от него гибкие провода.
- Если генератор имеет одну опору с платформой, передняя часть генератора при демонтаже двигателя должна быть закреплена держателями.
- Удалите болты крепления двигателя к платформе. Ослабление фиксирующих болтов генератора облегчит демонтаж двигателя.
- Снимите зашитый чехол генератора.
- Аккуратно закрепите вентилятор деревянными держателями, не повредите лопасти.
- Снимите соединяющий болт между двигателем и генератором.
- Зацепите двигатель краном или подъемным оборудованием.
- Удалите болты соединения с внешним кожухом.
- Поднимайте двигатель, пока он полностью не отойдет от генератора и платформы.
6.3.2. Демонтаж генератора переменного тока
- Если снимается только генератор, задняя часть двигателя должна быть жестко фиксирована.
- Удалите гибкие подключения.
- Удалите фиксирующие болты генератора.
- Снимите защитную крышку вентилятора генератора, поддерживая переднюю часть генератора, зафиксируйте центральный вал рычагом для уменьшения перемещений в воздушном зазоре и предотвращая повреждение подшипников и обмоток.
- Отсоедините генератор от двигателя согласно инструкциям раздела 6.1.3.
- Удерживая генератор краном или подъемным оборудованием, сдвиньте весь генератор назад на основную базу и затем поднимайте.
Описание и обслуживание дизельного двигателя
7.1. Описание дизельного двигателя
7.1.1. Основные принципы: источником энергии в генераторной установке является дизельный двигатель внутреннего сгорания промышленного типа, предназначенный для работы с постоянными оборотами и высокой эффективностью. Двигатель разработан специально для генератора и пригоден для привода генератора. Двигатель с 4-тактным или 2-тактным внутренним компрессионным воспламенением укомплектованный всеми необходимыми устройствами, обеспечивающими постоянную мощность привода. Подробную информацию о двигателе и соответствующем оборудовании можно получить в «Руководстве дизельного двигателя». В данном разделе дается только общее описание основных частей и подключения генераторной установки.
Нормальное обслуживание дизельного двигателя в соответствии с инструкциями «Руководства дизельного двигателя» обеспечит его постоянную и стабильную работу.
7.1.2. Система охлаждения: система охлаждения двигателя состоит из двух радиаторов, эффективного вентилятора, механического насоса и нагревателя. Вентилятор обдувает воздухом радиатор. Вентилятор охлаждает поверхность двигателя и генератора, а внутренняя часть двигателя охлаждается жидкостью, циркулирующей через радиатор. Нагреватель поддерживает температуру охлаждающей жидкости двигателя в оптимальном диапазоне рабочих температур.
Внимание! Для охлаждения генераторной установки очень важно обеспечить вентиляцию помещения. Хорошая работа генератора обеспечивается монтажом, выполненным согласно инструкциям раздела 4. 7.
7.1.3. Регулирование скорости двигателя: контроллер скорости двигателя — это механическое или электрическое устройство, регулирующее скорость двигателя при изменении нагрузки. Скорость двигателя напрямую связана с оборотами генератора, поэтому изменения скорости двигателя оказывают влияние на частоту выходного напряжения.
Контроллер скорости может регулировать скорость двигателя и количество подаваемого топлива. При увеличении нагрузки на генератор, контроллер скорости увеличивает, а при уменьшении уменьшает поток топлива.
7.4.1. Топливная система: для средних и маленьких генераторных установок топливная система подключена непосредственно к топливному баку, расположенному в платформе установки. Емкости полного расходного топливного бака достаточно для работы двигателя в течение 4-8 часов.
Расходный топливный бак может подключаться к большому баку для ручной или автоматической подачи топлива. Полное описание топливной системы можно посмотреть в разделе 4. 9. данной инструкции. У больших генераторных установок нет бака в платформе, поэтому для подачи топлива в двигатель необходимо неподалеку устанавливать отдельный бак.
7.1.5. Система выхлопа: одна из основных функций выхлопной системы — это уменьшение шума и отвод газа в место, где он не причинит ущерба. Для небольших генераторных установок, глушитель и выхлопная труба устанавливается непосредственно на двигатель. Для больших генераторных установок, выхлопная система поставляется отдельно, для установки пользователем.
7.1.6. Отсечной воздушный клапан: отсечной клапан предотвращает превышение скорости двигателем из-за попадания в систему воздухозабора газов и дыма. При превышении скорости двигателя клапан перекроет подачу воздуха для остановки двигателя. Не проверяйте клапан, когда двигатель находится под нагрузкой, выполните проверку после остановки двигателя. Если необходимо проверить клапан во время работы, выполните проверку на двигателе без нагрузки. После проверки нельзя сразу запускать двигатель.
Внимание!
! При перекрытии подачи воздуха в выхлопную систему из работающего двигателя выбрасывается много газов, поэтому необходима пауза перед новым запуском двигателя для рассеивания газов.
7.1.7. Вспомогательный запуск: не рекомендуется в помощь при запуске использовать эфир, так как это сокращает срок службы двигателя.
7.2. Обслуживание двигателя
“Руководство дизельного двигателя” дает полную информацию по обслуживанию двигателя, включая подробные инструкции по поиску неисправностей.
7.3. Обслуживание радиатора
7.3.1. Внимание: коррозия является основной причиной поломки радиатора. Вода и воздух увеличивают скорость коррозии. Следите за отсутствием утечек и полностью заправляйте систему охлаждения водой, не допуская попадания в систему воздуха.
Радиатор должен полностью заполняться водой иначе увеличивается скорость коррозии. Радиатор неработающей установки либо не должен содержать жидкости, либо быть заполнен жидкостью до отказа. Если возможно, используйте дистиллированную воду или обычную мягкую воду с добавление специальных присадок.
Внимание!
При работе установки охлаждающая жидкость в радиаторе обычно очень горячая и находится под давлением. Не чистите радиатор или разъединяйте трубы до тех пор, пока жидкость не остынет и не работайте с радиатором или открывайте защитную крышку вентилятора при работающем вентиляторе.
7.3.2. Внешняя очистка: в пыльной и грязной среде зазоры радиатора забиваются мелкими камнями и насекомыми, что уменьшает эффективность охлаждения. В данном случае чистка обычно производится небольшим напором воды с моющим средством, распылением пара или воды на переднюю часть радиатора. Распыление с обратной стороны радиатора переместит грязь еще глубже в радиатор. При чистке радиатора накрывайте двигатель и генератор.
Если грязь сильно въелась и описанные выше методы не помогают, снимите радиатор и опустите его на 20 минут в горячую щелочную воду, затем промойте горячей водой.
7.3.3. Внутренняя очистка: если добавляется большое количество жесткой воды или генератор временно работает без добавления противокоррозийных присадок из-за утечки через соединения, то система охлаждения будет забиваться накипью.
Выполните очистку от накипи, выполнив следующие действия:
- Слейте воду с системы охлаждения и отсоедините патрубки от двигателя.
- Подготовьте 4% раствор кислоты для удаления накипи, добавляя кислоту в воду (никогда не добавляйте воду в кислоту).
- Примешивайте в течение нескольких минут, затем нагрейте раствор до температуры 49єС, не выше.
- Злейте раствор в трубу через крышку фильтра или ответвление, не допуская пузырения. После завершения химической реакции, заполните радиатор подогретым раствором.
- Оставьте раствор в системе на несколько минут, затем слейте раствор назад в емкость через нижний вывод системы или сливное отверстие.
- Проверьте внутреннюю часть системы, если накипь еще присутствует, повторите процедуру, используя 8% раствор.
- После устранения накипи, для гашения кислоты выполните следующие действия: заполните емкость водой, нагрейте до кипения и добавьте соды в следующей пропорции: 500 г соды на 20 л воды, заполните радиатор этим раствором и слейте обратно в емкость.
- Несколько раз промойте радиатор данным методом, и в конце оставьте раствор в радиаторе на один час. Слейте раствор и промойте радиатор чистой горячей водой.
- Так как накипь закрывает утечки, то проверьте отсутствие утечек в радиаторе под давлением, превышающим в 2 раза номинальное рабочее давление.
- Перед запуском двигателя добавьте в охлаждающую жидкость противокоррозионные и противоконденсатные присадки.
Описание и обслуживание генератора
8.1. Описание генератора
В генераторной установке используются бесщеточный генератор с самовозбуждением, не имеющий требующих обслуживания контактных колец и щеток. Система управления имеет регулятор напряжения.
8. 2. Обслуживание генератора
Предполагается регулярное выполнение тестирование и чистки, хотя обслуживание выполняется редко.
При первом запуске выполните тестирование обмоток согласно «Руководству генератора переменного тока». Если генератор выполняет функции резервного, в зависимости от влажности места хранения, обычно проверяют изоляцию каждые 3-6 месяцев, а во влажных помещениях устанавливают нагреватели для осушения воздуха и сохранения обмоток сухими.
Регулярно проверяйте воздушный фильтр, устанавливаемый на генераторе в зависимости от окружающих условий. Если необходима чистка фильтра, снимите фильтрующий материал, замочите в воде и помойте его, для лучшей очистки материала можно добавить моющее средство. Перед установкой хорошо высушите материал.
Дополнительно выполняйте регулярную чистку внутренних и внешних частей генератора, периодичность очисток зависит от условий окружающей среды возле генераторной установки. Для чистки выполните следующие действия:
Отключите питание, ототрите всю грязь, масла, воду и другие жидкости, очистите вентиляционные решетки, так как грязь может привести к перегреву обмоток или при попадании в обмотки повредить изоляцию. Удаляйте пыль и грязь с помощью пылесоса, не используйте для чистки продувку или разбрызгивание под давлением.
Примечание. В «Руководстве генератора переменного тока» дана полная информация по обслуживанию генератора, включая подробные инструкции по поиску неисправностей.
Описание системы управления и поиск неисправностей
9.1. Описание и идентификация системы управления
9.1.1. Описание: на генераторной установке установлена современным электронная система управления. В зависимости от требований генераторная установка комплектуются различными типами системы управления, включая систему управления с автоматическим запуском – улучшенную систему управления с автоматическим запуском, также как и расширенную улучшенную систему управления с автоматическим запуском серии . В случае необходимости в специальной системе управления соответствующая информация будет прилагаться дополнительно.
Панель управления обеспечивает управление силовым выключателем, контроль за напряжением на выходе генератора, автоматическую остановку дизель-генератора, остановку в случае неисправностей, таких как большое давление масла или высокая температура охлаждающей жидкости. Любая системы управления устанавливается в соответствии с требованиями к генераторной установке.
Переключатель выходной цепи отключает нагрузку для защиты выхода в случае перегрузки или короткого замыкания.
9.1.2. Идентификация: номер модели система управления, указан в верхнем левом углу или в правом нижнем углу главного контроллера.
9.1.3. Панель управления: перед запуском генераторной установки оператор должен изучить устройство и элементы управления панели. При управлении установкой оператор должен часто следить за дисплеем устройства или главного контроллера для устранения неисправностей.
Панели управления разных моделей незначительно отличаются от изображенной на рисунке стандартной панели управления. Может добавляться несколько дополнительных устройств. Следующая инструкция подробно описывает каждый элемент панели управления (некоторые модели имеют только часть элементов):
- Вольтметр: показывает выходное напряжение генератора переменного тока.
- Ручка переключателя вольтметра: переключатель позволяет измерять межфазное и фазное напряжение и имеет положение OFF для установки нуля индикатора при запуске установки.
- Амперметр: показывает ток нагрузки. Для просмотра тока каждой фазы используется переключатель амперметра. Если во время работы генератора на амперметре нет показаний, возможно переключатель амперметра установлен в позицию OFF.
- Ручка переключателя амперметра: выбор тока каждой фазы или настройка нулевого положения в позиции OFF.
- Измеритель частоты: показывает частоту напряжения генератора. Стандартная выходная частота 50 Гц или 60 Гц (при полной нагрузке) когда двигатель работает с постоянной скоростью под управлением регулятора скорости. При неполной нагрузке частота может быть немного выше стандартной, что является сигналом к уменьшению скорости вращения регулятором. Обычно частота при отсутствии нагрузки равняется 52 Гц или 62 Гц и при полной нагрузке уменьшается до 50Гц или 60 Гц.
- Счетчик моточасов: показывает количество отработанных дизель-генератором часов.
- Индикатор температуры воды двигателя: отображение температуры охлаждающей жидкости от одного датчика температуры. Нормальная рабочая температура — около 85є С, но различные двигатели могут иметь разную рабочую температуру. Рабочую температуру двигателя можно уточнить в «Руководстве дизельного двигателя».
- Индикатор напряжения аккумулятора: показывает заряд аккумуляторов. Если генераторная установка не работает, нормальное напряжение аккумулятора 12-14В (аккумулятора на 12В) и 24-28В (аккумулятор на 24 В). Стрелка индикатора опускается на 70% при запуске дизель-генератора и возвращается на нормальное положение при работе установки. Если генератор заряжает аккумуляторы, значение напряжения будет больше, чем при остановленной генераторной установке.
- Индикатор давления масла двигателя: применяется для определения давления масла двигателя, начинает работать при запуске установки, нормальное давление масла 240 – 410 кПа. После прогрева генератора давление масла увеличивается.
- Индикатор неисправности: если индикатор горит красным цветом, это означает, что цепи защиты определили неисправность и система будет остановлена, желтый цвет указывает на предупреждение.
- Главный переключатель управления — 3-позиционный переключатель управляющий функциями генератора.
Положение START (Старт)
Активирует функцию ручного запуска для ручного управления генераторной установкой (Ручное управление)
Положение STOP (Стоп)
Останавливает установку и запрещает автоматический запуск. В этом положении также выполняется сброс неисправностей.
Положение AUTO (Автоматический запуск)
Система управления готова к автоматическому запуску. - Аварийная кнопка: красная кнопка с фиксацией для остановки дизель-генератора при аварии и блокирования автоматического запуска. Поверните кнопку по часовой стрелке для освобождения кнопки.
9.2. Функция системы управления при автоматической работе
Автоматическая система управления может обеспечить функции ручного/автоматического запуска и остановки при превышении температуры охлаждающей жидкости, низкого давления масла и пониженной или повышенной скорости вращения.
Система управления находиться на печатной плате, имеет предохранитель и может защищать, управлять процессом запуска, останавливать и устанавливать режим защиты от неисправностей.
9.2.1. Функции: в разделе 5. руководства есть подробные инструкции и диаграммы работы генераторной установки. В этом разделе дано подробное описание работы системы управления.
Панель управления
- Частотомер
- Вольтметр
- Переключатель вольтметра
- Вольтметр
- Дисплей
- Индикатор неисправности
- Переключатель тока
- Программируемая кнопка
- Аварийный стоп
- Переключатель ручной/автоматический
- Кнопка запуск
- Кнопка остановки
GU641B — модуль управления автоматического запуска, разработанный для автоматического запуска и остановки дизельных и газовых генераторных установок, не оснащенных электронным управлением двигателем. Модуль также обеспечивает превосходный контроль работы двигателя и имеет функции защиты.
Модуль контролирует: превышение скорости, понижении скорости, неисправность зарядного устройства, аварийный останов, пониженное давление масла, повышенную температуру двигателя, невозможность запуска, невозможность остановки и обрыв датчика скорости. Модуль отображает неисправность на ЖКИ дисплее и с помощью светодиодных индикаторов на передней панели.
Панель управления показывает следующую предупреждающую информацию. Предупреждения уменьшают скорость вращения двигателя, сбросьте предупреждающий сигнал и его отображение на индикаторе предупреждений.
Предупреждение | Причина |
LOW OIL | Давление масла после разгона меньше точки предупреждения (OALM) или давление масла меньше рабочего значения двигателя. |
HIGH TEMP | Температура охлаждающей жидкости выше уставки температуры предупреждения (TSET). |
UNDER REV | Скорость вращения двигателя ниже уставки пониженной скорости вращения (UREV). |
OVER REV | Скорость двигателя выше уставки повышенной скорости вращения (OREV) |
HIGH REV | Скорость двигателя выше скорости безопасной работы двигателя. |
LOST RPM | Нет сигнала с датчика скорости. |
TRIPSTOP | Получен внешний сигнал остановки работающей генераторной установки. |
Следующие сигналы предупреждения показывают не критические неисправности.
Предупреждение | Причина |
CHG WARN | Напряжение меньше минимального напряжения запуска (CHGV), из-за недостаточного заряда аккумулятора или обрыва приводного ремня. Предупреждение исчезнет, когда напряжение превысит напряжение запуска. |
AUTO LOCK | Предупреждение остановки отображается при автоматическом запуске двигателя или подаче сигнала автоматического запуска. Сигнал предупреждения также отображается в случае сброса предупреждения и сигнала автоматического запуска. Отмените автоматический запуск для устранения предупреждения. Нажмите кнопку запуска на панели для нормального запуска двигателя. |
TRIP LOCK | Поступление сигнала отмены автоматического запуска двигателя. Нажмите кнопку Stop для сброса входного сигнала отключения, предупреждающий сигнал исчезнет. |
Советы:
- Время работы двигателя без нагрузки не ограничено.
- Генератор не может автоматический остановится при работе в ручном режиме (MAN).
- Контроллер не может запустить генератор при подключении входов REM START/STOP (удаленное управление запуском и остановкой).
Стадии запуска (описание)
Режим: Ручной (Нажмите START или STOP для запуска или остановки генераторной установки).
Режим: Автоматический (установите сигнал на вход REM START/STOP (удаленное управление запуском и остановкой) для запуска и остановки генераторной установки).
Состояние | Условие перехода | Действие | Следующее состояние |
READY (Готов) | Необходим запуск | Выполните предварительный запуск на измерителе предварительного запуска | Предварительный запуск |
RPM>2 или зафиксировано давление масла или напряжение генератора >10В | Стоп (аварийная остановка) | ||
Выбран режим OFF или появилось предупреждение остановки | Не готов | ||
NOT READY (Не готов) | RPM<2 или не зафиксировано давление масла или напряжение генератора <10В, нет предупреждения остановки, выбран режим OFF | Готов | |
PRE-START(Предварительный запуск) | Время предварительного запуска закончилось | Запуск двигателя {0>Fuel valve is powered on<}0{>Подача питания на топливный клапан Начало отсчета времени пуска двигателя | Пуск двигателя |
CRANKING (Пуск двигателя) | RPM>обороты запуска | Отключается запуск двигателя Завершается предварительный пуск двигателя | Работа двигателя |
Активирован вход D+ или зафиксировано давление масла или напряжение генератора >25% стандартного напряжения | Отключается запуск двигателя Завершается предварительный запуск двигателя | Пуск двигателя | |
Максимальное время пуска двигателя закончилось, первый запуск. | Отключается запуск двигателя Отключение клапана подачи топлива Подача питания на клапана остановки Начало отсчета времени перерыва между пусками | Перерыв между пусками двигателя | |
Максимальное время пуска двигателя закончилось, последний запуск. | Отключается запуск двигателя Завершается предварительный запуск двигателя | Остановка (невозможно запустить двигатель) | |
CRANKING REST (Пауза между пусками) | Время паузы между пусками завершено. | Подключается питание для запуска двигателя Подача питания на клапана топлива Отключение клапана остановки Начало отсчета максимального времени пуска двигателя | Пуск двигателя |
Состояние | Условие перехода | Действие | Следующее состояние |
START-UP (Запуск) | Достигнуто 80% от нормальных оборотов двигателя | Подготовка к подаче минимальной нагрузки и начало отсчета времени стабильной работы | Работа |
RPM=0 или другие условия остановки | Отключение клапана подачи топлива Подача питания на клапана остановки | Остановка | |
После 60 секунд | Отключение клапана подачи топлива Подача питания на клапана остановки | Остановка (невозможно запустить двигатель) | |
RUNNING (Работа) | Команда остановки | Завершения подготовки к подключению нагрузки. Начало отсчета времени охлаждения | Охлаждение |
RPM=0 или другие условия остановки | Завершения подготовки к подключению нагрузки. Отключение клапана подачи топлива | Остановка | |
GCB закрыта | Нагрузка | ||
LOADING (Нагрузка) | GCB открыта | Работа | |
RPM=0 или другие условия остановки | Отключение клапана подачи топлива Подача питания на клапана остановки Завершения подготовки подключению нагрузки. | Остановка | |
COOLING (Охлаждение) | Завершение времени охлаждения. | Отключение клапана подачи топлива Подача питания на клапана остановки | Остановка |
RPM=0 или другие условия остановки | Отключение клапана подачи топлива Подача питания на клапана остановки | Остановка | |
Команда запуска | Начало подготовки к подключению нагрузки | Работа | |
SHUT-DOWN (Остановка) | RMP=0, давление масла не зафиксировано или напряжение генератора <10В | Подготовка | |
После 60 секунд | Стоп (неисправность остановки) |
Совет: Предельное значение для входа D+ — 80% напряжение питания.
Управление неисправностями:
Могут использоваться следующие неисправности:
- WARN (Предупреждение)
- SHUT-DOWN (Остановка)
Предупреждение (WRN)
При появлении предупреждения, прекращается только вывод неисправностей и предупреждений.
Возможные предупреждения
Смотрите таблицу возможных событий.
Остановка (SD)
При появлении неисправности остановки, система InteliLite открывает выключатель генератора CLOSE/OPEN, топливный электромагнитный клапан, запуск двигателя и предварительный запуск для остановки двигателя. Вывод предупреждений и выход общей остановки закрыты. Предупреждение действует или не производится сброс защиты.
Возможные неисправности остановки.
Смотрите таблицу возможных событий.
Список предупреждений
Контроль последовательности фаз
Контроллер InteliLite следит за порядком чередования фаз генератора и напряжения на клеммах или токопроводящих шинах. Работа установленного контроллера очень важна для предотвращения неправильного подключения фаз. Могут появляться следующие предупреждения:
Неправильная последовательность фаз
L1, L2, L3 фиксируются в контроллере для определения последовательности фаз. Если фазы подключены в другой последовательности (например, L1, L3, L2 или L2, L1, L3), то это будет определено с появлением предупреждения:
G ph opposed = неправильная последовательность фаз генератора
Отрицательная полярность фазы
Отрицательная полярность фазы определяет неправильное подключение между контроллером и генератором/токопроводящими шинами. Последовательность фаза правильная, но некоторые фазы подключены неправильно (перевернуты на 180є)
GEN L1 neg= отрицательная полярность фазы генератора L1
GEN L2 neg= отрицательная полярность фазы генератора L2
GEN L3 neg= отрицательная полярность фазы генератора L3
Неправильная последовательность фаз и отрицательная полярность
Комбинация двух предупреждений
- G ph + L1 neg = неправильная последовательность фаз генератора и отрицательная полярность фазы L1
- G ph + L2 neg = неправильная последовательность фаз генератора и отрицательная полярность фазы L2
- G ph + L3 neg = неправильная последовательность фаз генератора и отрицательная полярность фазы L3
Советы: функция определения последовательности фаз работает при напряжении превышающим 50 В на всех фазах и углах между фазами 120є ±20є. Определение длится одну секунду для сглаживания мгновенных изменений.
Контроль ошибки датчика
Ошибка датчика FLS определяется, когда измеренное значение с датчика превышено на 6,2%.
На экране контроллера измеренное значение заменяется символом ###.
Рабочие состояния генератора
Состояния генераторной установки
Init (Инициализация) | Контроллер InteliLite проводит автоматическое тестирование при подключении питания |
Not ready (Не готова) | Генераторная установка не готова к запуску |
Prestart (Предварительный старт) | Работает процедура предварительного старта, выход отключен |
Cranking (Пуск двигателя) | Пуск двигателя |
Pause (Пауза) | Пауза между попытками пуска двигателя |
Starting (Набор скорости) | Завершение запуска, но скорость еще меньше 80% от нормальной скорости |
Running (Работа) | Генераторная установка работает на номинальной скорости |
Loaded (Под нагрузкой) | Генераторная установка работает на номинальной скорости и переключатель GCB OPEN/CLOSE закрыт. |
Stop (Остановка) | Остановка |
Shut down (Прекращение работы) | Предупреждение о прекращении работы |
Ready (Готов) | Генераторная установка готова к работе |
Cooling (Охлаждение) | Охлаждение перед остановкой генераторной установки |
Таблица возможных предупреждений
Вид события | Метод защиты | Информация на выходе (смотрите список выходов) |
Wrn Oil press | WRN | Да |
Sd Oil press | SD | Да |
Wrn Water temp | WRN | Да |
Sd Water temp | SD | Да |
Binary input | Настраиваемый | Да |
Battery voltage<,> | WRN | Да |
Battery flat | SD | Да |
Start fail | SD | Да |
ParamFail | Отсутствует | Нет |
Vgen<,> | SD | Да |
Vgen unbl | SD | Да |
Fgen<,> | SD | Да |
Igen<,> | SD | Да |
Overload | SD | Да |
RPM over | SD | Да |
RPM under | SD | Да |
Total Stop | SD | Нет |
Pickup Fault | SD | Нет |
Stop fail | SD | Да |
Wrn Service Time | WRN | Нет |
ChrgAlternFail | WRN | Да |
1. 4 Дополнительные устройства системы управления и модернизации
Система управления может комплектоваться большим количеством дополнительных устройств для адаптации генераторов к специальным требованиям. Данный раздел описывает некоторые из устройств.
9.4.1. Импульсное зарядное устройство аккумуляторов: поддержание заряда аккумулятора, даже если генераторная установка не работает продолжительный период времени.
Номинальный ток заряда 8 А, устройство обычно устанавливается в панель управления. В некоторых случаях устанавливают зарядное устройство с током заряда 10 А. Для зарядного устройства необходима постоянная подача напряжение питания 220-240 B или 120 В.
Обычно зарядные устройства устанавливаются с отдельными выключателями для предотвращения отключения при возникновении неисправности в генераторной установке. Система управления автоматически отключает импульсное зарядное устройство во время запуска, и аккумуляторы заряжается от зарядного устройства двигателя.
Может устанавливаться один дополнительный выключатель и один дополнительный регулятор напряжения зарядного устройства для предотвращения эффекта автоматического уменьшения заряда, когда аккумуляторы близки к полному заряду, это ускоряет заряд аккумуляторов. Тем не менее, регулятор напряжения можно использовать только кратковременно, иначе аккумуляторы прогорают от избыточного заряда.
9.4.2. Нагреватель: в холодном и сыром окружении генератор должен оставаться теплым и сухим. Существует три типа нагревателей, устанавливаемых на генераторные установки.
Погружной нагреватель (нагреватель двигателя) может устанавливаться в систему охлаждения двигателя для облегчения запуска и быстрого подключения нагрузки. Нагреватель имеет одну постоянную нерегулируемую температуру 40єС, мощность нагревателя 1-3(кВт) зависит от размера генераторной установки. Для установок до 400 кВА необходим один нагреватель на 1 кВт. Для установок большего размера необходимо два нагревателя по 1 кВт или 1,5 кВт.
Противоконденсатный нагреватель (нагреватель генератора) для поддержания температуры может устанавливаться также в панель управления.
Все трем нагревателям необходимо постоянное подключение питание 200В/240В переменного тока.
Обычно ни для одного из них не снабжается выключателем управления, но при установке они всегда работают хорошо. При запуске системы нагреватели отключаются автоматически, вне зависимости от наличия переключателя.
9.4.3 Электрический топливный насос: топливный насос используется для перекачки топлива в расходный бак с большого внешнего бака. Топливный насос может быть насосом на 220/240В переменного тока или насосом на 12/24В постоянного тока. Насос обычно устанавливается на платформе с поплавковым выключателем, установленным в расходном топливном баке. Реле управления, выключатель, индикатор и выключатель переполнения устанавливается на панели управления.
Контроллер устанавливается на дверце контроллера с двумя кнопками с подсветкой. Красная кнопка сгруппирована с индикатором останова и кнопкой прекращения работы, зеленая кнопка сгруппирована с индикатором работы и кнопкой запуска.
Правильный метод работы: Красная кнопка в положении ON (отжата), нажмите ее вместе с зеленой кнопкой, запустите топливный насос вручную, насос будет работать, пока в ручном режиме нажата зеленая кнопка.
Для работы насоса в автоматическом режиме, переведите красную кнопку в положение ON. При низком уровне топлива установленный в расходном топливном баке поплавковый датчик запустит реле постоянного тока датчика. Насос запустится одновременно с подсветкой зеленой светом. Когда расходный бак заполнится до верхнего уровня, поплавковый датчик отключит реле (PR) и остановит насос, выключив подсветку зеленой кнопки.
Если рабочий ток насоса выше номинального значения, будет зафиксирована перегрузка и загорится красный индикатор.
Перед запуском насоса заполните его топливом. Не запускайте насос, когда большой бак пуст или топливный кран закрыт.
9.4.4 Регулирование скорости/напряжения: существует три вида контроллеров для настройки скорости и напряжения генератора.
Скорость двигателя регулируется настройкой устройства, управляющего электронной подачей топлива. Ускорение при вращении по часовой стрелке и замедление при вращении против часовой стрелки, после механической установка потенциометра зафиксирует требуемое значение скорости.
Один переключатель ускорения/замедления устанавливается на панели управления для управления скоростью двигателя с помощью механических/гидравлических подстроек. Контроллер скорости должен быть с приводом двигателя, и ускорять и замедлять скорость генератора с помощью переключателя с пружинным возвратом.
Потенциометр на панели управления может регулировать напряжение в диапазоне 5%.
9.4.5. Сигнал неисправности: существует три вида сигнала неисправности в дополнение к стандартному индикатору неисправности.
Один звуковой сигнализатор с кнопкой выключения сигнала, установленный в панель управления подает сигнал при появлении неисправности.
Один дополнительный звуковой сигнализатор, устанавливаемый на небольшом расстоянии от панели управления, с питанием от постоянного тока и кнопкой остановки сигнала на панели управления.
Релейные выходы переключаются автоматически. Они могут быть подключены к внешней системе аварийных сигналов. Выходы будут находиться в состоянии «Тревоги» пока система управления не будет сброшена.
9.4.6. Автоматическая система подогрева: система подогрева автоматически перед запуском двигателя подогревает воздух в системе забора воздуха, поэтому процесс запуска задерживается из-за подогрева воздуха.
9.4.7. Установка ATS: когда генератор используется в качестве резервного источника питания для автоматической подачи питания в случае неисправности электросети, необходим переключатель нагрузки. Переключатель может переключить нагрузку к работающему дизель-генератору при неисправности электросети и затем подключить нагрузку обратно к электросети при ее восстановлении.
Для этого необходима одна специальная панель переключения нагрузки ATS. Панель имеет выходы MAINS AVAILABLE (электросеть доступна), MAINS ON LOAD (электросеть под нагрузкой), GENERATOR AVALABLE (генератор доступен) и GENERATOR ON LOAD (генератор под нагрузкой).
После получения сигнала неисправности сети электропитания начинается отсчет времени паузы, предотвращающей ошибочный запуск дизель-генератора из-за скачка напряжения. Если по истечении паузы напряжение сети не восстановилось, электромагнитный выключатель размыкается и подается сигнал запуска системе управления генераторной установкой. Получив сигнал, генераторная установка начинает цикл автоматического запуска. Начинается отсчет паузы переключения нагрузки (AT) для обеспечения стабильной работы генератора и электромагнитный выключатель генератора размыкается. Затем, по истечении времени переключения нагрузки, электромагнитный выключатель замыкается и подключает нагрузку к генератору.
При восстановлении сети электропитания, реле контроля подает сигнал, начинается отсчет паузы переключения нагрузки, позволяя генератору работать некоторое время до переключения и стабилизации напряжения сети. После завершения времени паузы электромагнитный выключатель генератора размыкается. Перед размыканием электромагнитного выключателя генератора и замыканием электромагнитного выключателя сети электропитания необходима фиксированная задержка. Генератор должен работать некоторое время вхолостую для охлаждения двигателя. Система управления готова к обработке следующего сигнала о неисправности электросети.
9.5. Инструкции по неисправностям системы управления и устранению неисправностей
Неисправность | Признак | Восстановление |
Невозможно запустить двигатель (применимо к ручному управлению с панели) | Двигатель не работает при переключении ручки переключателя в положение START. |
|
Невозможно запустить двигатель (применимо к автоматической работе) | Подается сигнал START, но двигатель не запускается как при ручном запуске, так и удаленном автоматическом. |
|
Невозможно запустить двигатель (применимо к всем панелям управления) | Двигатель начинает вращение, но не запускается или останавливается после 20 секунд работы. |
|
Неисправность | Признак | Восстановление |
Низкий заряд аккумулятора (автоматическая работа) | Светится индикатор неисправности LOW BATTERY VOLTAGE |
|
Предупреждение о не автоматическом режиме. | Светится индикатор неисправности NON-AUTO MODE |
|
Предупреждение о повышенной температуре двигателя | Предупреждение о повышенной температуре воды. |
|
Предупреждение о пониженном давлении масла. | Предупреждение о пониженном давлении масла. |
|
Предупреждение о неисправности зарядного устройства (Автоматическая работа) | Светится индикатор неисправности BATTERY CHARGER FAILURE |
|
Предупреждение о низком уровне топлива (автоматический режим с дополнительный устройством сигнализации) | Светится индикатор неисправности LOW FUEL LEVEL. |
|
Неисправность | Признак | Восстановление |
Низкая температура охлаждающей жидкости (с дополнительным устройством сигнализации) | Светится индикатор неисправности LOWCOOLLANTTEMP |
|
Нет напряжения при работе генератора (для всех систем управления) | Вольтметр не показывает напряжения. |
|
Генератор не выдает мощность (для всех систем управления) | Генератор работает, но нет выходной мощности |
|
Генератор не останавливается вручную (для всех систем управления) | Генераторная установка продолжает работу поле остановки. | 1. Проверьте правильность положений переключателей управления. 2. Проверьте клапан контроля топлива (FCS) и при необходимости замените его. |
Генератор не останавливается в автоматическом режиме (автоматический режим) | Генератор продолжает работать, когда кода удаленный сигнал START снят. | Внимание! Для систем управления автоматической серии, генераторная установка не останавливается не медленно после отмены удаленного сигнала START, только по истечении времени охлаждения двигателя.
|
9.6. ATS ручное/автоматическое переключение нагрузки
При использовании генератора в качестве резервного источника электроэнергии необходима одна панель переключения нагрузки для автоматического переключения источника электроэнергии. Панель переключения нагрузки разработана для подачи сигнала запуска дизель генератору при неисправности сети электропитания и переключения нагрузки на генератор при стабильной работе генераторной установки, так же как и обратное переключение нагрузки к сети электропитания при ее восстановлении.
Существует три вида устройств переключения нагрузки:
- Сеть электропитания «=» Дизель-генератор
- Дизель-генератор «=» Дизель-генератор
- Дизель-генератор «=» Дизель-генератор «=» Сеть электропитания
Внимание!
Восстановление и соединение внутреннего переключателя должно выполняться обученным персоналом из-за высокого напряжения в панели.
9.7. Описание переключателя выходной цепи
Переключатель выходной цепи — воздушный выключатель с номинальной мощностью соответствующей выходной мощности генератора. Выключатель пропускает номинальный ток, когда находится в положении ON (ручка вверху), при перегрузке одной из фаз выключатель переключается в среднее положение, отключая электропитание. Время переключения зависит от степени превышения, после выключения генератор нельзя повторно запустить пока выключатель не будет переключен в положение OFF (ручка внизу).
Описание и обслуживание аккумулятора
10.1 Элементы аккумулятора
10.1.1 Общая информация: аккумуляторная батарея — это соединение нескольких одиночных аккумуляторных элементов, состоящих из металлических платин и электролита. Электрическая энергия в аккумуляторе производится с помощью химической реакции, и поскольку химическая реакция обратима, то аккумуляторы можно периодически заряжать и разряжать.
10.1.2 Электролит: проводящая жидкость называется электролитом, являющаяся видом раствора серной кислоты, и заставляющая металлические пластины вступать в химическую реакцию, и таким образом, работающую в качестве проводника.
10.1.3 Плотность: плотность — это единица измерения, связанная с количеством кислоты в объеме электролита. Плотность аккумулятора заполненного электролитом при температуре 25є равняется 1,270г/см3, при разбавлении кислоты уменьшается значение плотности.
Химическая реакция уменьшает плотность серной кислоты при разряде аккумулятора, поэтому измерение плотности может использоваться для определения заряда аккумулятора.
10.1.4 Ареометр: используется для прямого измерения плотности, устройство имеет округлую форму, электролит втягивается из аккумулятора в ареометр, и затем стеклянная прозрачная отметка показывает уровень на шкале, нанесенной на стенке ареометра. Не выполняйте измерения сразу после добавления воды в аккумулятор, только после смешивания воды с осажденной кислотой с помощью зарядки, такое измерение плотности надежней. Более того, после затяжного пуска двигателя от аккумулятора плотность электролита выше нормальной плотности. Во время быстрой зарядки аккумулятора, вода не успевает смешаться с электролитом.
10.1.5 Высокая/низкая температура: в тропическом климате (выше 32є), для продления срока службы заряженного аккумулятора рекомендуется использовать электролит с плотностью 1,240 г/см3. Для пониженной температуре окружающей среды, данный тип аккумуляторов не имеет достаточно мощности для запуска двигателя из-за низкой плотности кислоты. Для очень низких температур в некоторых случаях используются аккумуляторы с повышенной плотностью 1,290-1,300г/см3. Возможность холодного запуска увеличивается с увеличением плотности.
10.1.6 Регулирование температуры: шкала ареометра градуирована при температуре 25єС. Плотность электролита регулируется при увеличении или уменьшения температуры относительно исходной температуры Плотность увеличивается на 0,004 г/см3 с каждым увеличением температуры на 5,5єС и уменьшается на 0,. 004 г/см3 с уменьшением температуры на 5,5єС.
10.2 Обслуживание аккумуляторов
Внимание!
Работы по ремонту и обслуживанию аккумуляторов необходимо выполнять в кислотоупорной одежде и маске или защитных очках. При попадании электролита на кожу или одежду необходимо промыть соответствующее место большим количеством воды.
10.2.1 Заправка электролитом: аккумуляторы перевозятся сухими, затем приготавливается электролит соответствующей плотности и заливается в аккумулятор. Откройте крышки, залейте электролит в каждую секцию аккумулятора, закрыв пластины на высоту 8 мм. Оставьте аккумулятор на 15 минут. Проверьте и при необходимости откорректируйте уровень воды.
10.2.2. Первый заряд аккумулятора: аккумулятор должен заряжаться 4 часа, если электролит залит один час назад. Электролит аккумулятора должен правильно смешиваться в соответствии со следующими значениями тока, иначе при неправильном времени заряда можно повредить аккумулятор. Аккумуляторы модели E017 заряжаются током 9 А, для аккумуляторов модели E312 используется ток заряда 14 А, для модели E324 ток заряда 20А. Время заряда больше 4 часов в следующих случаях: если аккумулятор хранился более 3 месяцев или температура выше 30єС или выше 80%, то время заряда увеличивается до 8 часов; если аккумулятор хранился более одного года, то время заряда 12 часов.
Если недостаточно тока зарядного устройства, допустимо использование тока не ниже 1/3 от выше упомянутых значений с пропорциональным увеличением времени заряда. (8 часов при 7 А заменяет 4 часа при 14 А)
После завершения времени заряда проверьте уровень электролита, при необходимости добавьте кислоты для корректировки плотности, затем закройте пробки вентиляционных отверстий.
10.2.3. Добавление раствора: при нормальной работе и заряде аккумулятора часть электролита испаряется, поэтому время от времени в аккумулятор необходимо доливать воду. Сначала очистите от грязи аккумулятор, чтобы предотвратить попадание ее внутрь, и затем откройте пробки вентиляционных отверстий. Добавьте дистиллированной воды, подняв уровень на 8 мм от пластин, затем закройте пробки.
10.3 Заряд аккумулятора
Внимание!
! Убедитесь, что аккумулятор заряжается в условиях хорошей вентиляции, отсутствия огня и искр.
! Не заряжайте аккумулятор в местах без защиты от ветра снега и прямого попадания воды.
! Не забывайте отключать зарядное устройство перед отключением аккумулятора.
Для заряда аккумуляторов можно использовать стационарное зарядное устройство, в данном случае отключите аккумулятор от установки зарядите аккумулятор внешним зарядным устройством.
10.3.1. Соединение аккумулятора и зарядного устройства: зарядное устройство должно правильно подключатся е сети электропитания:
- Фаза – провод 67
- Средняя линия – провод N1
- Заземление – желто/зеленый провод
- Аккумулятор подключается следующим образом:
- Метод подключения аккумулятора:
- Анод (+) — красный провод
- Катод (-) — черный провод
Подключение зарядного устройства и аккумулятора выполняется следующим образом:
10. 3.2. Работа зарядного устройства: после подключения зарядного устройства к аккумулятору и сети электропитания, как описано выше, заряд аккумулятора осуществляется в следующем порядке:
При заряде откройте крышку фильтра или отверстия вентиляции, проверьте уровень электролита, и при необходимости откорректируйте уровень водой.
При работе зарядного устройства соблюдайте коэффициент заряда. Он определяется емкостью аккумулятора и зависит от состояния аккумулятора и текущего уровня заряда. После начала заряда ток заряда уменьшится и уменьшение продолжится при увеличении напряжения.
После отключения зарядного устройства необходимо определить состояние заряда, оставьте аккумулятор на некоторое время. Затем выполните измерение плотности электролита в каждой секции аккумулятора.
Аккумулятор не должен сильно заряжаться, иначе может произойти его поломка. Высокая температура также может повредить аккумулятор, будьте осторожны с температурой вокруг заряжаемого аккумулятора, особенно в тропическом окружении, температура не должна превышать 45єС.
10.4. Неисправности при зарядке аккумулятора/Таблица устранения неисправностей
Неисправность | Признак | Восстановление |
Нет тока заряда | Неправильное соединение или плохой зажим | Проверьте зажимы, почистите контакты |
Старый аккумулятор или низкий заряд аккумулятора | Смените аккумулятор или зарядите аккумулятор другим зарядным устройством | |
Нет напряжения электросети | Замените сетевой кабель зарядного устройства | |
Перегорел предохранитель | Замените предохранитель | |
Неисправность диода | Замените диод | |
Нет показания на индикаторе заряда | Неисправность индикатора заряда | Замените индикатор заряда |
Низкий ток заряда | Пониженное напряжение питания | Проверьте сетевое напряжение |
Неправильное подключение преобразователя | Проверьте, совпадает ли напряжение сети с напряжением преобразователя | |
Нет контакта с клеммой аккумулятора | Проверьте и закрепите клеммы аккумулятора | |
Зажим зарядного устройства греется | Плохой контакт с клеммой аккумулятора | Зачистите клеммы аккумулятора и снова подключитесь |
Повторное перегорание предохранитель | Неправильное напряжение предохранителя | Замените правильным предохранителем |
Короткое замыкание | Проверьте и повторно подключите | |
Ток заряда не уменьшается | Старый или не исправный аккумулятор | Зарядное устройство исправно, напряжение аккумулятора не увеличивается до нормального значения. |
Таблица обслуживания и ремонта генератора
Периодичность обслуживания дизель-генератора
Проверяемый элемент | ежедневно | 50 часов / ежемесячно | 250 часов / 3 месяца | 400 часов / 6 месяцев | 600 часов / ежегодно | 1200 часов / 3 года | По необходимости |
Проверка уровня топлива, масла и жидкости | ▲ | ||||||
Проверка топливного фильтра | ▲ | ||||||
Подшипник привода системы (PTO) | ▲ | ||||||
Проверка индикатора замены фильтра | ▲ | ||||||
Проверка PTO и осевых муфт | ▲ | ||||||
Проверка огнетушителя | ◇ | ||||||
Проверка аккумуляторной батареи | ▲ | ||||||
Замена масла и масляного фильтра | ★ | ||||||
Проверка натяжения клинового ремня | ▲ | ||||||
Проверка PTO и соединения муфт | ▲ | ||||||
Настройка зазора клапанов | ▲ | ||||||
Проверьте соединение PTO и рычагов сцепления | ▲ | ||||||
Чистка блока зажигания, выхлопной трубы | ▲ | ||||||
Проверка труб и соединений воздухозабора | ▲ | ||||||
Замена топливного фильтра | ★ | ||||||
Анализ состава охлаждающей жидкости | ◇ | ||||||
Проверка/ремонт системы воздухозабора | ▲ | ||||||
Проверка системы охлаждения | ▲ | ||||||
Настройка генератора | ◇ | ||||||
Проверка и настройка количества оборотов двигателя | ▲ | ||||||
Настройка зазора клапанов двигателя | ▲ | ||||||
Проверка топливной системы | ▲ | ||||||
Проверка давления турбины | ▲ | ||||||
Проверка коленчатого вала, демпферов | ◇ | ||||||
Чистка системы охлаждения, замена термостата | ◇ | ||||||
Проверка давления системы охлаждения | ◇ | ||||||
Проверка воздушного фильтра и замена по необходимости | ★ |
Примечания:
- Периодичность обслуживания дизель-генератора вычисляется в рабочих часах или в календарном исчислении, в зависимости от того, какой срок наступит раньше.
- Дизель-генератор также должен проверятся и ремонтироваться в зависимости от общего времени наработки. Период обслуживания и проводимые работы корректируются в зависимости от использования, характеристик установки и совместимости топлива и смазки.
- Для резервного дизель-генератора необходим быстрый запуск и стабильная работа, поэтому проводите его регулярное обслуживание и проверку со следующими значениями времени.
Пробный пуск установки Запуск на 5-10 минут с соответствующей нагрузкой каждую неделю Проверка: Запуск, давление масла, цвет выхлопа, вибрации и т.д. Запуск на 15-30 минут с соответствующей нагрузкой каждый месяц - Значения символов в таблице:
▲: проверка и ремонт, чистка, настройка
★: замена
◇: обратится к производителю или поставщику, если заказчик не может выполнить ремонт.
□: тяжелые работы, демонтаж новой установки или консервация установки на долгий период времени, и необходимая проверка после каждых 50 часов работы.
в начало
Двигатель внутреннего сгорания — Что такое Двигатель внутреннего сгорания?
AИ-95
0
AИ-98
0
50188
Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.
Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.
По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:
Типы двигателей внутреннего сгорания
По назначению:
-
транспортные, -
стационарные, -
специальные.
По роду применяемого топлива:
-
легкие жидкие (бензин, газ), -
тяжелые жидкие (дизельное топливо, судовые мазуты).
По способу образования горючей смеси:
По способу воспламенения:
-
с принудительным зажиганием, -
с воспламенением от сжатия, -
калоризаторные.
По расположению цилиндров:
-
рядные, -
вертикальные, -
оппозитные с одним и с двумя коленвалами, -
V-образные с верхним и нижним расположением коленвала, -
VR-образные и W-образные, -
однорядные и двухрядные звездообразные, -
Н-образные, -
двухрядные с параллельными коленвалами, -
«двойной веер», -
ромбовидные, -
трехлучевые и др.
Поршневой двигатель — это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.
Бензиновый двигатель — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой.
Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.
Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания.
В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива.
В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания.
Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.
Газовый двигатель — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях
Роторно-поршневой двигатель — двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века.
Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя.
Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения.
За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.
Последние новости
Новости СМИ2
Произвольные записи из технической библиотеки
Используя данный сайт, вы даете согласие на использование файлов cookie, помогающих нам сделать его удобнее для вас. Подробнее.
полный обзор, принцип работы. Двигатель на магнитах
Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.
Двигатель Москвина
Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.
Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.
Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.
Бестопливный двигатель на магнитах
Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.
Принцип работы магнитного электрогенератора
Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.
Разновидности магнитных двигателей
На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.
Самая простая модель — двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.
Более сложной конструкцией является магнитный двигатель Серла.
Асинхронный магнитный двигатель
Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.
Двигатель Лазарева
Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.
Двигатель Шкондина
Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.
Двигатель Перендева
Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.
Создание магнитного двигателя в домашних условиях
Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.
Преимущества магнитных двигателей
К основным достоинствам подобных конструкций относят следующее:
- Экономия топлива.
- Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
- Можно использовать в любом месте.
- Высокая выходная мощность.
- Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.
Недостатки двигателей
Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:
- При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
- Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
- Готовый двигатель подключить в некоторых случаях довольно сложно.
- Высокая стоимость бестопливных китайских двигателей.
Двигатель Алексеенко
Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на энергии магнитных полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50–100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.
Создатели бестопливных генераторов
Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.
Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90оС сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.
Мнение учёных: создание бестопливного генератора невозможно
Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.
Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.
На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.
Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.
Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.
10 альтернатив бензиновому двигателю
В то время как новые технологии бурения и запасы нефти снижают давление цен на бензин и пиковых объемов производства, спрос на автомобили, работающие на альтернативном топливе, продолжает расти. Экологические проблемы и правительственные постановления сделали поиск заменителей обычного бензинового двигателя внутреннего сгорания приоритетом как для производителей, так и для потребителей. Федеральное правительство требует к 2025 году среднего показателя в 54,5 мили на галлон, что является сложной задачей для традиционных технологий. Калифорния требует увеличения количества автомобилей с нулевым уровнем выбросов или подключаемых гибридных автомобилей.
Но в каком направлении идти? В зависимости от таких соображений, как модели использования, эффективность и стоимость, существует по крайней мере дюжина заменителей бензина в качестве моторного топлива, включая электричество, природный газ, растительное масло и даже солнечный свет. Как отмечает Джон О’Делл из Edmunds.com, даже самые многообещающие источники энергии, такие как природный газ, имеют один и тот же недостаток: отсутствие инфраструктуры для заправки или подзарядки.
Имея это в виду, вот взгляд на альтернативы, доступные сегодня, а также некоторые предварительные прогнозы относительно их перспектив на будущее.
1. Газоэлектрические гибриды
Первые гибридные модели Honda Insight и Toyota Prius (вверху) появились в США в 1999 году, и сегодня в продаже имеется около 40 газоэлектрических моделей. Использование электричества для частичного питания транспортных средств обеспечивает значительную экономию топлива и сокращение выбросов. Газоэлектрические гибриды используют аккумулятор для обеспечения питания на низких скоростях или для управления остановкой / запуском. Аккумулятор заряжается за счет рекуперативного торможения и двигателя внутреннего сгорания, и его не нужно подключать к розетке. В то время как популярный Prius от Toyota (TM) остается самым продаваемым гибридом — в 2013 году будет продано более 200 000 автомобилей — их число сейчас включают суперкары производства Ferrari и Porsche. Гибрид Porsche Panamera S имеет 3,0-литровый двигатель V6 и по-прежнему потребляет 22 мили на галлон по городу и 30 миль на галлон по шоссе.
2. Подключаемые гибриды
Подключаемые гибриды или PHEVS аналогичны газоэлектрическим гибридам, но имеют более крупные батареи, которые могут перемещать автомобиль на ограниченные расстояния только на электричестве, что приводит к нулевым выбросам. Затем батареи можно заряжать, подключив их к источнику электроэнергии. Стоимость аккумуляторов большего размера влечет за собой значительную надбавку к цене — дополнительные 7000 долларов за версию Prius с подключаемым модулем до недавнего снижения цен — и в настоящее время в США доступны только четыре модели PHEV. Продажи самой известной модели , General Motors (GM) Chevrolet Volt с расширенным ассортиментом (выше) работает менее 2000 в месяц.
3. Электрооборудование
Электромобили (ЭМ) работают без бензина; они используют батарею для хранения электроэнергии, питающей двигатель. Принятие чистых электромобилей медленно растет с тех пор, как они были представлены на массовом рынке три года назад, с повышенным спросом как в нижней части рынка после снижения цен на Nissan Leaf за 30 000 долларов (выше), так и в верхней части с Удивительный успех Tesla Model S за 80 000 долларов. Беспокойство по поводу запаса хода продолжает сдерживать рост интереса покупателей, равно как и ограниченное количество зарядных станций за пределами крупных городов. В 2013 году в продаже было 11 различных моделей электромобилей от основных производителей, в том числе Smart ForTwo Electric от Mercedes, который заявляет о запасе хода в 68 миль на одном заряде и продается за 20 740 долларов без учета льгот и скидок.
4. Этанол и гибкое топливо
Благодаря постановлению правительства о возобновляемых видах топлива от 2007 г., требующему добавления в бензин определенного количества жидкостей, изготовленных из возобновляемых источников, этанол, произведенный из кукурузы, нашел свое применение в топливе страны. Около 84 моделей легковых и грузовых автомобилей имеют обозначение «гибкое топливо», что означает, что они могут работать на смесях, содержащих до 85% этанола. В последнее время возникла негативная реакция на использование этанола, поскольку растет осознание того, что этанол содержит меньше энергии, чем бензин, что приводит к меньшему количеству миль на галлон и требует много энергии для производства, что может привести к увеличению выбросов углекислого газа. Оппоненты также утверждают, что этанол неэтичен, потому что он отвлекает 40% выращиваемой кукурузы от продуктов питания и увеличивает ее стоимость.
5. Биодизельное топливо
Изготовленное из растительного масла, животных жиров или переработанного ресторанного жира, биодизельное топливо повышает октановое число обычного дизельного топлива и сгорает более чисто, в дополнение к тому, что оно нетоксично и биоразлагаемо. Биодизель можно использовать в чистом виде, но чаще всего его можно найти в смеси с 80% обычного дизельного топлива. Постановления правительства требовали, чтобы в 2013 году было произведено 1,3 миллиарда галлонов биодизеля. Биодизель можно использовать в большинстве автомобилей с обычными дизельными двигателями без модификации, в том числе в пикапе Ford (F) F-250 Super Duty.
6. Пропан
Простота обслуживания и снижение выбросов стимулировали использование пропана в парках легковых автомобилей (полицейские машины и школьные автобусы), а также в большегрузных грузовиках с такими знакомыми шильдиками, как Kenworth и Peterbilt. В настоящее время на дорогах находится более 270 000 автомобилей, работающих на пропане. Также известный как сжиженный нефтяной газ (LPG), пропан производится как побочный продукт переработки природного газа и переработки сырой нефти. Несмотря на высокое октановое число и чистоту горения, пропан стоит примерно на треть дешевле бензина. Но он должен храниться в резервуаре под давлением, а инфраструктура заправки пропаном ограничена.
7. Сжиженный и сжатый природный газ
Транспортные средства, работающие на природном газе, работающие на сжиженном или сжатом газе, имеют такой же пробег, как и бензин, но горят чище. По оценкам Министерства энергетики, в настоящее время в эксплуатации находится около 112 000 автомобилей, работающих на природном газе. Большинство из них являются грузовиками средней и большой грузоподъемности, но Honda (HMC) предлагает Civic на природном газе (вверху) с 1998 года. Он медленнее бензинового, имеет ограниченный запас хода и сеть заправок и стоит на тысячи долларов дороже. В его пользу более дешевые цены на топливо отечественного производства и меньшие выбросы.
8. Топливные элементы
Подобно вымышленному Эльдорадо, мерцающему вдалеке, доступные топливные элементы на водороде были недостижимой целью для целого поколения исследователей. Водород привлекателен тем, что его можно производить внутри страны и он сгорает чисто, а автомобили на топливных элементах в два-три раза эффективнее бензиновых. Что сдерживало их, так это стоимость строительства самих ячеек и сети заправочных станций для распределения водорода. В результате производители тестируют небольшие парки FCV, но ни один автомобиль на топливных элементах не вышел на потребительский рынок. Две известные модели в ограниченных тестах: Honda FCX Clarity и Mercedes-Benz F-cell 2012 года (выше), который получает 52 мили на кг водорода (примерно эквивалентно галлону бензина).
9. Солнечная энергия
В октябре автомобиль, работающий на солнечной энергии, проехал почти 2000 миль по австралийской глубинке со средней скоростью 56 миль в час. Звучит идеально — солнечная энергия бесплатна и чиста — но есть несколько предостережений: автомобиль голландской разработки (вверху) просто перевозил водителя, ехал только в светлое время суток и использовал небольшую батарею для движения. Это будущее? Возможно нет. Фотогальванические элементы, которые улавливают солнечный свет и преобразуют его в электричество, дороги в производстве, а автомобиль сделан из дорогих легких материалов, таких как титановые композиты. Тем не менее, автомобили на солнечных батареях могут найти ограниченное применение в качестве пригородных автомобилей, где у них была возможность заряжаться в течение дня, а некоторые из них сегодня используются в качестве тележек для гольфа.
10. Steam
В период с 1899 по 1905 год Stanley Steamer (выше) продавался лучше всех автомобилей с бензиновым двигателем в США. Паровые двигатели разрабатывались с начала 18 века; бензин был младенцем по сравнению с ним. Но двигатели внутреннего сгорания быстро наверстали упущенное после того, как у них появился автозапуск, и пароходы были обречены на то, чтобы таскать с собой тяжелые котлы. Автомобили с паровым двигателем по-прежнему привлекают внимание, потому что они могут сжигать такое топливо, как мусор, древесину и сырую нефть — General Motors представила два экспериментальных автомобиля в 1919 году. 69, но они относительно неэффективны и очень тяжелы. В 2009 году современный паровой автомобиль побил рекорд скорости, установленный Stanley Steamer в 1906 году, когда он превысил 130 миль в час, но он весил более трех тонн и содержал более двух миль паровых труб.
Типы автомобилей, работающих на альтернативном топливе
Ни для кого не секрет, что за последний год цены на бензин выросли. Фактически, мы наблюдаем взлет цен на бензин почти на 50% с сентября 2020 года по всей стране.
Причины такого роста цен на газ различны: от несоответствия затрат на переработку и розничную продажу до перебоев в распределении нефти и колебаний налогов и государственных сборов.
Независимо от причины, эти увеличения заставляют водителей по-другому думать об автомобилях, которые они водят, и о топливе, которое они используют. В результате спрос на автомобили, работающие на альтернативном топливе, продолжает расти: все более экологически чувствительные автомобилисты хотят получить альтернативу автомобилям, работающим на газе, с чистым воздухом, а покупатели, заботящиеся о затратах, стремятся сэкономить деньги на заправке.
Эта тенденция развивалась сверху вниз. Государственные и федеральные правила были ужесточены, требуя от автопроизводителей производить автомобили, которые соответствуют более строгим стандартам выбросов и правилам с более высоким расходом топлива. Производство автомобилей на альтернативном топливе помогает преодолеть эти ограничения, а исследования связанных технологий стимулируют инновации и приводят к более широкому внедрению.
Кроме того, федеральные налоговые льготы подталкивают людей к поиску автомобилей, работающих на альтернативном топливе. На федеральном уровне физические лица могут получить налоговую льготу в размере до 7500 долларов США, если они приобрели новый полностью электрический или подключаемый гибридный автомобиль с 2010 года. кредиты, гранты и скидки.
Но не все типы транспортных средств, работающих на альтернативном топливе, одинаковы, и у некоторых есть проблемы, которые могут ограничить их привлекательность для водителей. «Где и как легко я могу заправиться?» и «Поставляется ли он в том цвете, который я хочу, с нужными мне функциями?» Типы вопросов, которые потребители могут задать, прежде чем инвестировать в автомобиль, работающий на альтернативном топливе. Узнайте больше о плюсах и минусах автомобилей на альтернативном топливе.
Типы альтернативных видов топлива и транспортных средств
Индивидуальным потребителям предлагаются различные варианты транспортных средств, работающих на альтернативном топливе, от двухместных спортивных автомобилей и семейных седанов до пикапов и внедорожников.
Гибридные электромобили
Наиболее распространенными транспортными средствами на альтернативном топливе являются газоэлектрические гибриды (ГЭМ). Комбинируя газовую и электрическую силовую установку, гибриды были широко доступны в США уже более 20 лет, а Toyota Prius стала первым серийным гибридным автомобилем в 1997 году.
Популярность этих гибридных электромобилей продолжает расти, и в настоящее время в продаже имеется около 50 моделей. Аккумулятор в газоэлектрических гибридах заряжается от двигателя и посредством торможения, что затем позволяет аккумулятору питать автомобиль на низких скоростях и во время остановок и пусков.
Подключаемые гибридные электромобили
Подобно газоэлектрическим гибридам, подзаряжаемые гибриды (PHEV) имеют аккумуляторы большей емкости, которые могут управлять автомобилем только на электричестве на ограниченных расстояниях с нулевым уровнем выбросов. Владельцы могут заправлять свой автомобиль обычным бензином на заправке, а затем подключаться к источнику электроэнергии для подзарядки аккумулятора.
Электрические транспортные средства
Электрические транспортные средства, или электромобили, работают исключительно от аккумуляторной батареи, полностью обходясь без газового двигателя. У электромобилей есть определенный диапазон миль, которые они могут проехать, прежде чем их нужно будет «заправить топливом», подключив их к источнику электроэнергии, что может быть источником «беспокойства» для водителей. Популярность электромобилей, доступных с 2010 года, возросла по мере того, как аккумуляторные технологии увеличили их запас хода, а количество зарядных станций увеличилось как в городах, так и вдоль автомагистралей.
Транспортные средства, работающие на природном газе
Рост использования природного газа в качестве источника энергии также способствовал увеличению количества транспортных средств, работающих на природном газе. Подобно автомобилям, работающим на газе, автомобили, работающие на природном газе, используют сжатый или сжиженный природный газ и имеют более чистые выбросы.
Электромобили на топливных элементах
В течение многих лет автомобильные компании исследовали и разрабатывали автомобили на топливных элементах (FCEV), работающие на водороде, которые обладают преимуществом нулевых выбросов и потенциальной трехкратной эффективностью газа. автомобили с двигателем. Транспортные средства имеют бортовые топливные элементы, работающие на сжатом водороде. Топливные элементы преобразуют водород и кислород в электричество и, в свою очередь, приводят в действие электродвигатель. Благодаря топливным элементам Honda Clarity Fuel Cell, внедорожникам Hyundai Nexo Fuel Cell и Toyota Mirai, которые уже находятся на дорогах, использование технологии топливных элементов в настоящее время кажется жизнеспособной альтернативой бензиновым и электрическим автомобилям — на самом деле, в настоящее время существует 9транспортные средства на дороге сегодня, которые используют эту технологию топливных элементов. Факторы, которые в настоящее время препятствуют более широкому внедрению автомобилей на топливных элементах, включают стоимость автомобилей, а также ограниченную сеть водородных заправочных станций.
Тем не менее, Hyundai Motor недавно объявила о сотрудничестве по развертыванию своих новейших электрических тяжелых грузовиков на водородных топливных элементах в Калифорнии, в которых используется топливный элемент XCIEN. Это первый в мире серийный грузовик, использующий в качестве топлива водород.
В настоящее время большая часть водорода производится с использованием природного газа, но новые технологии, такие как разработанные HyperSolar, могут исключить использование всех ископаемых видов топлива и сделать FCEV самыми чистыми и экологичными автомобилями на дороге.
Автомобили с гибким топливом
Между тем, автомобили с гибким топливом (FFV) работают на смеси газа и этанола. Этанол, производимый в основном из кукурузы, выиграл от правительственных постановлений, требующих производить больше топлива из возобновляемых источников. В настоящее время автомобили с гибким топливом имеют более 3900 заправочных станций в США и Канаде.
Застрахуйте свой автомобиль, работающий на альтернативном топливе
Как и в случае с любым другим транспортным средством, важно знать, что вы застрахованы независимо от того, что вам преподносит жизнь. Автомобили на альтернативном топливе предлагают ряд преимуществ, от налоговых льгот до воздействия на окружающую среду и не только. Вот почему важно, чтобы у вас была страховка, которая поможет вам двигаться вперед.
Nationwide предлагает комплексные планы автострахования, которые подарят вам душевное спокойствие, когда вы находитесь в пути. Узнайте больше о нашем автостраховании.
1 https://www.eia.gov/petroleum/gasdiesel/
2 https://fueleconomy.gov/feg/taxevb.shtml
3 https://www.energy.gov/ статьи/история-электромобиль
4 https://afdc.energy.gov/vehicles/search
5 https://www. hyundainews.com/en-us/releases/3362
Отказ от ответственности:
Включенная информация предназначена только для информационных целей. Это не юридическая, налоговая, финансовая или любая другая консультация, а также не замена такой консультации. Информация может не относиться к вашей конкретной ситуации. Мы постарались обеспечить точность информации, но она могла быть устаревшей или даже частично неточной. Читатель несет ответственность за соблюдение любых применимых местных, государственных или федеральных правил. Национальная компания взаимного страхования, ее аффилированные лица и их сотрудники не дают никаких гарантий относительно информации или результатов, и они не несут никакой ответственности в связи с предоставленной информацией. Nationwide, Nationwide на вашей стороне, а Nationwide N и Eagle являются знаками обслуживания Nationwide Mutual Insurance Company. © 2021 Всероссийский.
Как работают электромобили? | Объяснение электрических двигателей
Как работает двигатель электромобиля?
Электромобили работают, подключаясь к точке зарядки и получая электричество из сети. Они хранят электричество в перезаряжаемых батареях, которые питают электродвигатель, вращающий колеса. Электромобили разгоняются быстрее, чем автомобили с двигателями на традиционном топливе, поэтому управлять ими легче.
Как работает зарядка?
Вы можете зарядить электромобиль, подключив его к общественной зарядной станции или к домашнему зарядному устройству. По всей Великобритании есть множество зарядных станций, чтобы оставаться полностью заряженными, пока вы находитесь вне дома. Но чтобы получить лучшее предложение для домашней зарядки, важно выбрать правильный тариф на электроэнергию для электромобиля, чтобы вы могли тратить меньше денег на зарядку и больше экономить на счетах.
Электромобили и их модельный ряд
Расстояние, которое вы можете проехать на полном заряде, зависит от автомобиля. Каждая модель имеет различный диапазон, размер батареи и эффективность. Идеальным электромобилем для вас будет тот, который вы сможете использовать для своих обычных поездок без необходимости останавливаться и подзаряжаться на полпути. Ознакомьтесь с нашими вариантами лизинга электромобилей.
Какие существуют типы электромобилей?
Существует несколько различных типов электромобилей (EV). Некоторые работают исключительно на электричестве, их называют чистыми электромобилями. А некоторые также могут работать на бензине или дизельном топливе, они называются гибридными электромобилями.
- Подключаемый к электросети — Это означает, что автомобиль работает исключительно на электричестве и получает всю свою мощность, когда он подключен к сети для зарядки. Для работы этого типа не требуется бензин или дизель, поэтому он не производит никаких выбросов, как традиционные автомобили.
- Подключаемый гибрид — Эти автомобили в основном работают на электричестве, но также имеют двигатель на традиционном топливе, поэтому вы также можете использовать бензин или дизель, если они разрядятся. При работе на топливе эти автомобили будут производить выбросы, а при работе на электричестве — нет. Подключаемые гибриды могут быть подключены к источнику электроэнергии для подзарядки аккумулятора.
- Гибридно-электрический — Они работают в основном на топливе, таком как бензин или дизельное топливо, но также имеют электрическую батарею, которая подзаряжается посредством рекуперативного торможения. Они позволяют переключаться между использованием топливного двигателя и режимом «EV» одним нажатием кнопки. Эти автомобили не могут быть подключены к источнику электроэнергии и полагаются на бензин или дизельное топливо.
Что такое внутренние части электромобиля?
В электромобилях на 90% меньше движущихся частей, чем в автомобилях с ДВС. Вот разбивка деталей, которые обеспечивают движение электромобиля:
- Электродвигатель/Мото r — обеспечивает мощность для вращения колес. Это может быть тип постоянного / переменного тока, однако двигатели переменного тока более распространены.
- Инвертор — Преобразует электрический ток в форме постоянного тока (DC) в переменный ток (AC)
- Трансмиссия — электромобили имеют односкоростную коробку передач, которая передает мощность от двигателя на колеса.
- Аккумуляторы — хранение электроэнергии, необходимой для работы электромобиля. Чем выше кВт батареи, тем выше диапазон.
- Зарядка — Вставьте вилку в розетку или точку зарядки электромобиля, чтобы зарядить аккумулятор.
Аккумуляторы для электромобилей – объяснение емкости и кВтч
Киловатты (кВт) – это единица мощности (сколько энергии требуется устройству для работы). Киловатт-час (кВтч) — это единица энергии (показывает, сколько энергии было использовано), например. лампочка на 100 Вт потребляет 0,1 кВт каждый час. В среднем дом потребляет 3100 кВтч энергии в год. Электромобиль потребляет в среднем 2000 кВтч энергии в год.
Зарядка электромобиля
Как зарядить электромобиль?
Вы можете зарядить электромобиль, подключив его к розетке или к зарядному устройству. По всей Великобритании есть множество зарядных станций, чтобы оставаться полностью заряженными, пока вы находитесь вне дома. Существует три типа зарядных устройств:
Трехконтактная вилка — стандартная трехконтактная вилка, которую можно подключить к любой розетке на 13 ампер.
С розеткой — точка зарядки, к которой можно подключить кабель типа 1 или типа 2.
Привязанный – точка зарядки с кабелем, подсоединенным к разъему типа 1 или 2.
Сколько времени нужно, чтобы зарядить электромобиль?
Также есть три скорости зарядки электромобиля:
- Медленная — обычно до 3 кВт. Часто используется для зарядки на ночь или на рабочем месте. Время зарядки: 8-10 часов.
- Быстрый — обычно мощностью 7 кВт или 22 кВт. Как правило, устанавливаются на автостоянках, в супермаркетах, развлекательных центрах и домах с парковкой во дворе. Время зарядки: 3-4 часа.
- Rapid — обычно от 43 кВт. Совместим только с электромобилями, которые имеют возможность быстрой зарядки. Время зарядки: 30-60 минут.
Зарядка в разное время года
Погода влияет на то, сколько энергии потребляет ваш электромобиль. У вас больше радиус действия летом и меньше зимой.
Зарядка на ходу
Не забудьте загрузить приложение Zap-Map, чтобы найти ближайшую зарядную станцию, когда вы в дороге.
Как далеко вы можете проехать на одной полной зарядке?
Запас хода электромобиля зависит от емкости аккумулятора (кВтч). Чем больше мощность батареи электромобиля, тем больше мощность и тем дальше вы путешествуете. Вот примеры того, как далеко может пройти зарядка некоторых электромобилей:
- Volkswagen e-Golf — пробег: 125 миль — эквивалентно путешествию из Бристоля в национальный парк Сноудония.
- Hyundai Kona Electric — пробег: 250 миль — эквивалент поездки из Лондона в Озерный край.
- Jaguar I-Pace — дальность полета: 220 миль — эквивалентно поездке из Эдинбурга в Бирмингем
Куда уходит энергия: бензиновые автомобили
транспортное средство используется для его перемещения по дороге, в зависимости от ездового цикла. Остальная энергия теряется из-за неэффективности двигателя и трансмиссии или используется для питания аксессуаров. Таким образом, потенциал повышения эффективности использования топлива с помощью передовых технологий огромен.
- Комбинированный
- Город
- Шоссе
Потребность в энергии на этой диаграмме оценивается для движения по городу с частыми остановками с использованием процедуры испытаний EPA FTP-75.
В автомобилях с бензиновым двигателем большая часть энергии топлива теряется в двигателе, в основном в виде тепла. Меньшее количество энергии теряется из-за трения в двигателе, нагнетания воздуха в двигатель и из него и неэффективного сгорания.
Передовые технологии, такие как регулирование фаз газораспределения и подъема (VVT&L), турбонаддув, непосредственный впрыск топлива и отключение цилиндров, могут использоваться для снижения этих потерь.
Дизельные двигатели имеют более низкие потери и обычно на треть эффективнее своих бензиновых аналогов. Последние достижения в области дизельных технологий и видов топлива делают дизели более привлекательными.
подробнее…
Энергия теряется в трансмиссии и других частях трансмиссии. Такие технологии, как автоматизированные механические коробки передач (АМТ), коробки передач с двойным сцеплением, блокировки и бесступенчатые трансмиссии (вариаторы), могут уменьшить эти потери.
Электрические аксессуары, такие как обогреватели сидений и рулевого колеса, фары, стеклоочистители, навигационные и развлекательные системы, требуют энергии и меньшей экономии топлива.
Потери от аксессуаров, таких как электрические дверные замки и сигнальные лампы, ничтожны, а потери от обогревателей сидений и рулевого колеса и вентиляторов климат-контроля более значительны.
Водяной насос, топливный насос, масляный насос, система зажигания и система управления двигателем используют энергию, вырабатываемую двигателем.
Потери при торможении
Каждый раз, когда вы используете тормоза в обычном транспортном средстве, энергия, первоначально используемая для преодоления инерции и движения транспортного средства, теряется в виде тепла из-за трения в тормозах.
Меньше энергии используется для движения более легкой машины. Таким образом, при торможении более легкого автомобиля тратится меньше энергии. Вес можно уменьшить за счет использования легких материалов и облегченных технологий.
Гибриды, подключаемые гибриды и электромобили используют рекуперативное торможение для восстановления части энергии торможения, которая в противном случае была бы потеряна.
подробнее…
Сопротивление ветру (аэродинамическое сопротивление)
Транспортное средство тратит энергию на то, чтобы убрать воздух с пути, когда движется по дороге — меньше энергии на низких скоростях и больше на увеличении скорости.
Это сопротивление напрямую связано с формой и передней частью автомобиля. Более гладкие формы транспортных средств уже значительно снизили лобовое сопротивление, но возможно дальнейшее снижение на 20–30%.
подробнее…
Сопротивление качению
Сопротивление качению — это сила сопротивления, вызванная деформацией шины при ее качении по плоской поверхности.
Новые конструкции шин и материалы могут снизить сопротивление качению. Для автомобилей снижение сопротивления качению на 5–7% увеличивает эффективность использования топлива на 1%, но эти улучшения должны быть сбалансированы с учетом сцепления, долговечности и шума.
подробнее…
Транспортное средство тратит значительное время на холостой ход при движении по городу (движение с частыми остановками), используя энергию для запуска двигателя и питания водяного насоса, гидроусилителя руля и других аксессуаров.
Интегрированные системы стартер-генератор (ISG), подобные тем, которые используются в гибридах, исключают работу на холостом ходу, выключая двигатель, когда автомобиль останавливается, и перезапуская его при нажатии на педаль акселератора.
Потребность в энергии на этой диаграмме оценивается для процедуры теста EPA Highway Fuel Economy Test (движение по шоссе со средней скоростью около 48 миль в час и без промежуточных остановок).
В автомобилях с бензиновым двигателем большая часть энергии топлива теряется в двигателе, в основном в виде тепла. Меньшее количество энергии теряется из-за трения в двигателе, нагнетания воздуха в двигатель и из него и неэффективного сгорания.
Передовые технологии, такие как регулирование фаз газораспределения и подъема (VVT&L), турбонаддув, непосредственный впрыск топлива и отключение цилиндров, могут использоваться для снижения этих потерь.
Дизельные двигатели по своей природе имеют меньшие потери и, как правило, на одну треть эффективнее своих бензиновых аналогов. Последние достижения в области дизельных технологий и видов топлива делают дизели более привлекательными.
подробнее…
Энергия теряется в трансмиссии и других частях трансмиссии. Такие технологии, как автоматизированные механические коробки передач (АМТ), коробки передач с двойным сцеплением, блокировки и бесступенчатые трансмиссии (вариаторы), могут уменьшить эти потери.
Электрические аксессуары, такие как обогреватели сидений и рулевого колеса, фары, стеклоочистители, навигационные и развлекательные системы, требуют энергии и меньшей экономии топлива.
Потери от аксессуаров, таких как дверные замки с электроприводом и сигнальные огни, ничтожны, а потери от обогревателей сидений и рулевого колеса и вентиляторов климат-контроля более значительны.
Водяной насос, топливный насос, масляный насос, система зажигания и система управления двигателем используют энергию, вырабатываемую двигателем.
Потери при торможении
Каждый раз, когда вы используете тормоза в обычном транспортном средстве, энергия, первоначально используемая для преодоления инерции и движения транспортного средства, теряется в виде тепла из-за трения в тормозах.
Для движения более легкого автомобиля требуется меньше энергии. Таким образом, при торможении более легкого автомобиля тратится меньше энергии. Вес можно уменьшить за счет использования легких материалов и облегченных технологий.
Гибриды, подключаемые гибриды и электромобили используют рекуперативное торможение для восстановления части энергии торможения, которая в противном случае была бы потеряна.
подробнее…
Сопротивление ветру (аэродинамическое сопротивление)
Транспортное средство тратит энергию на то, чтобы убрать воздух с пути, когда движется по дороге — меньше энергии на низких скоростях и больше на увеличении скорости.
Это сопротивление напрямую связано с формой и передней частью автомобиля. Более гладкие формы транспортных средств уже значительно снизили лобовое сопротивление, но возможно дальнейшее снижение на 20–30%.
подробнее…
Сопротивление качению
Сопротивление качению — это сила сопротивления, вызванная деформацией шины при качении по плоской поверхности.
Новые конструкции шин и материалы могут снизить сопротивление качению. Для автомобилей снижение сопротивления качению на 5–7% увеличивает эффективность использования топлива на 1%, но эти улучшения должны быть сбалансированы с учетом сцепления, долговечности и шума.
подробнее…
Движение по шоссе практически не требует работы на холостом ходу. Ездовой цикл EPA по шоссе (HWFET) не включает холостой ход.
Потребность в энергии на этой диаграмме оценивается для 55 % движения по городу и 45 % движения по шоссе. См. оценки для движения по городу и шоссе для получения дополнительной информации.
В автомобилях с бензиновым двигателем большая часть энергии топлива теряется в двигателе, в основном в виде тепла. Меньшее количество энергии теряется из-за трения в двигателе, нагнетания воздуха в двигатель и из него и неэффективного сгорания.
Передовые технологии, такие как регулирование фаз газораспределения и подъема (VVT&L), турбонаддув, непосредственный впрыск топлива и отключение цилиндров, могут использоваться для снижения этих потерь.
Дизельные двигатели имеют более низкие потери и обычно на треть эффективнее своих бензиновых аналогов. Последние достижения в области дизельных технологий и видов топлива делают дизели более привлекательными.
подробнее…
Энергия теряется в трансмиссии и других частях трансмиссии. Такие технологии, как автоматизированные механические коробки передач (АМТ), коробки передач с двойным сцеплением, блокировки и бесступенчатые трансмиссии (вариаторы), могут уменьшить эти потери.
Электрические аксессуары, такие как обогреватели сидений и рулевого колеса, фары, стеклоочистители, навигационные и развлекательные системы, требуют энергии и меньшей экономии топлива.
Потери от аксессуаров, таких как электрические дверные замки и сигнальные лампы, ничтожны, а потери от обогревателей сидений и рулевого колеса и вентиляторов климат-контроля более значительны.
Водяной насос, топливный насос, масляный насос, система зажигания и система управления двигателем используют энергию, вырабатываемую двигателем.
Потери при торможении
Каждый раз, когда вы используете тормоза в обычном транспортном средстве, энергия, первоначально используемая для преодоления инерции и движения транспортного средства, теряется в виде тепла из-за трения в тормозах.
Меньше энергии используется для движения более легкой машины. Таким образом, при торможении более легкого автомобиля тратится меньше энергии. Вес можно уменьшить за счет использования легких материалов и облегченных технологий.
Гибриды, подключаемые гибриды и электромобили используют рекуперативное торможение для восстановления части энергии торможения, которая в противном случае была бы потеряна.
подробнее…
Сопротивление ветру (аэродинамическое сопротивление)
Транспортное средство тратит энергию на то, чтобы убрать воздух с пути, когда движется по дороге — меньше энергии на низких скоростях и больше на увеличении скорости.
Это сопротивление напрямую связано с формой и передней частью автомобиля. Более гладкие формы транспортных средств уже значительно снизили лобовое сопротивление, но возможно дальнейшее снижение на 20–30%.
подробнее…
Сопротивление качению
Сопротивление качению — это сила сопротивления, вызванная деформацией шины при ее качении по плоской поверхности.
Новые конструкции шин и материалы могут снизить сопротивление качению. Для автомобилей снижение сопротивления качению на 5–7% увеличивает эффективность использования топлива на 1%, но эти улучшения должны быть сбалансированы с учетом сцепления, долговечности и шума.
подробнее…
Транспортное средство тратит значительное время на холостой ход при движении по городу (движение с частыми остановками), используя энергию для запуска двигателя и питания водяного насоса, гидроусилителя руля и других аксессуаров. Однако вождение по шоссе почти не включает холостой ход.
Интегрированные системы стартер-генератор (ISG), подобные тем, которые используются в гибридах, исключают работу на холостом ходу, выключая двигатель, когда автомобиль останавливается, и перезапуская его при нажатии на педаль акселератора.
Примечание. Потребление энергии и потери варьируются от автомобиля к автомобилю. Эти оценки приведены для иллюстрации общих различий в потоке энергии в различных типах транспортных средств во время разных ездовых циклов.
Оценка потребности в энергии основана на анализе более 100 автомобилей, проведенном Национальной лабораторией Ок-Ридж с использованием файлов данных списка тестовых автомобилей Агентства по охране окружающей среды.
Томас, Дж. 2014. Эффективность трансмиссии ездового цикла и тенденции, полученные на основе результатов динамометрии транспортных средств Агентства по охране окружающей среды. САЕ Интерн. Дж. Пассенг. Автомобили — Мех. Сист. 7(4):2014, doi:10.4271/2014-01-2562.
Баглионе, М., М. Дьюти и Г. Панноне. 2007. Методология анализа энергии автомобильной системы и инструмент для определения энергоснабжения и потребности в подсистеме транспортного средства. Технический документ SAE 2007-01-0398, 2007 Всемирный конгресс SAE, Детройт, Мичиган, апрель.
Bandivadekar, A., K. Bodek, L. Cheah, C. Evans, T. Groode, J. Heywood, E. Kasseris, M. Kromer и M. Weiss. 2008. В дороге в 2035 году: сокращение потребления нефти транспортом и выбросов парниковых газов. Лаборатория энергетики и окружающей среды Массачусетского технологического института, отчет № LFEE 2008-05 RP, Кембридж, Массачусетс.
Баглионе, м. 2007. Разработка методологий системного анализа и инструментов для моделирования и оптимизации эффективности систем транспортных средств. Кандидат наук. Диссертация. Университет Мичигана.
Карлсон, Р., Дж. Уишарт и К. Штутенберг, К. 2016. Оценка вспомогательных нагрузок транспортного средства на дороге и с помощью динамометра. САЕ Интерн. J. Топливная смазка. 9(1):2016, doi:10.4271/2016-01-0901.
Родс К., Д. Кок, П. Сохони, Э. Перри и др. 2017. Оценка влияния вспомогательных электрических нагрузок на экономию топлива гибридного электромобиля. Технический документ SAE 2017-01-1155, doi: 10.4271/2017-01-1155.
Этот веб-сайт администрируется Окриджской национальной лабораторией Министерства энергетики США и Агентства по охране окружающей среды США.
Этот веб-сайт находится в ведении Окриджской национальной лаборатории Министерства энергетики США и Агентства по охране окружающей среды США.
Могу ли я ездить на подключаемом гибриде без запуска бензинового двигателя?
Toyota RAV4 Prime. Джейсон Чир/The Globe and Mail
Мы с мужем рассматриваем возможность приобрести подключаемый гибрид Toyota RAV4 Prime. Можно ли ездить на нем только от аккумулятора, без газа? Мы хотели бы использовать его как чисто электрический автомобиль для всех наших обычных поездок по городу и использовать бензин только тогда, когда мы едем в Оттаву, чтобы увидеть наших родителей. Мы слышали, что некоторые гибриды используют газ в режиме EV. Нам также интересно, достаточно ли запаса хода для нашей повседневной езды. – Джоанн, Торонто, 9 лет.0447
Если вы не знакомы с линейкой чисто электрических автомобилей, подключаемый гибрид может показаться лучшим из обоих миров.
Вы можете ездить на них как на электромобиле (EV) до тех пор, пока не разрядится аккумулятор, а затем он переключается на газ.
Но на многих подключаемых гибридах (PHEV) бывают случаи, когда бензиновый двигатель включается, когда вы находитесь в режиме EV — даже при полностью заряженной батарее.
Если бы зарядные станции были более заметными, это могло бы уменьшить мою тревогу по поводу дальности поездки на электромобилях
Действительно ли зарядка электромобиля на 100% повредит аккумулятор?
Например, на RAV4 Prime 2021 года, заявленный запас хода которого составляет 68 км, бензиновый двигатель будет запускаться на скорости более 135 км/ч и при температуре наружного воздуха ниже минус десяти градусов по Цельсию, сообщает Toyota.
Итак, в течение как минимум трех сезонов на большей части территории Канады вы можете ездить на RAV4 Prime вообще без бензина.
«Можно ездить в чистом режиме EV, когда аккумулятор правильно заряжен, и бензиновый двигатель не сработает», — сказал по электронной почте представитель Toyota Canada Ромарик Лартильё. «На самом деле, некоторые владельцы Prius Prime и RAV4 Prime проехали на них несколько тысяч километров, не израсходовав ни капли топлива».
Запас хода может варьироваться
На RAV4 Prime запас хода на чистом электротяге зависит от температуры наружного воздуха, скорости движения и ускорения. Джейсон Чир/The Globe and Mail
На RAV4 Prime: Вы можете выбрать гибридный режим, в котором используется как газ, так и электричество, или режим EV, в котором используется только батарея.
Запас хода на чистом электромобиле зависит от температуры наружного воздуха, скорости вождения и ускорения. Вы можете получить запас хода более 68 км — или намного меньше.
«Некоторые люди проехали на RAV4 Prime 80 или 85 км — это зависит от того, как вы водите», — сказал Ив Расетт, консультант, специализирующийся на обучении техников электромобилям и гибридам. «Если вы слишком сильно нажмете на акселератор, вы потеряете запас хода — это верно и для бензинового автомобиля, но большинство людей не беспокоятся об этом».
Чтобы выяснить это лично, я несколько дней ездил на RAV4 Prime. За более чем 100 км пробега бензиновый двигатель включился один раз примерно на две секунды — когда я неправильно прочитал этикетку и зажал кнопку, позволяющую использовать двигатель для подзарядки аккумулятора.
Я зарядил один раз за ночь, когда дальность снизилась до 13 км. В целом я проехал в среднем 74 км, а бензобак остался полным.
Только электрический?
На RAV4 Prime вы можете выбрать гибридный режим, в котором используется как газ, так и электричество, или режим электромобиля, в котором используется только батарея. Джейсон Чир/The Globe and Mail
В чем разница между обычным гибридом и PHEV а электромобиль? Обычные гибриды имеют меньшую батарею, заряжаемую газовым двигателем.
Электродвигатель помогает увеличить расход топлива, поэтому вы часто используете как аккумулятор, так и бензин.
У некоторых есть режим EV, но вы не можете долго ездить только на электричестве. В зависимости от автомобиля вы можете проехать всего несколько сотен метров.
У PHEV есть батарея, которую вы заряжаете, подключая ее. У них больше запас хода на электротяге, чем у гибридов, но меньше, чем у электромобилей.
Из 38 моделей PHEV, проданных в Канаде, указанный запас хода на электротяге варьируется от 98 км в Karma Revero 2021 года и 24 км в Porsche Cayenne Turbo S E-hybrid 2021 года.
На некоторых PHEV автомобиль может чаще переключаться с EV на гибридный режим. Это означает, что вы все еще используете газ и выделяете углекислый газ, даже если это всего на несколько секунд.
Например, снятый с производства в этом году седан Honda Clarity проезжает на электротяге 76 км. Но бензиновый двигатель Clarity сработает, если вы нажмете педаль газа более чем на 75 процентов, заявила Honda Canada.
Subaru Crosstrek PHEV имеет запас хода 24 км только на аккумуляторе, но бензиновый двигатель может запуститься, если вы нажмете на педаль газа или включите обогреватель или кондиционер.
Даже если вы легко нажимаете на педаль газа, двигатель Crosstrek все равно заработает — он разработан так, чтобы медленно израсходовать бензин в баке, чтобы в системе не осталось несвежего бензина, заявили в Subaru Canada.
Чем заменить электромобиль?
Итак, стоит ли вам подумать о PHEV, если вы хотите большую часть времени ездить на электричестве, но все еще беспокоитесь о запасе хода?
В наши дни дальность пробега электромобиля составляет 400 км. Но если вы хотите проехать дальше, не останавливаясь для подзарядки, или ищете внедорожник побольше, PHEV может иметь смысл.
Кроме того, поскольку у них есть электродвигатель для дополнительной мощности, большинство PHEV имеют большую мощность, чем их бензиновые аналоги.
Но на самом деле в большей части Канады вам, скорее всего, зимой придется использовать хотя бы немного бензина.
«PHEV действительно созданы для использования бензинового двигателя в зимнее время», — сказал Расетт. «Но для людей, которые не готовы полностью перейти на электричество, я думаю, что это хороший шаг».
Есть вопросы по вождению? Отправьте его на globeandmail.com и в теме письма укажите «Проблемы вождения». На электронные письма без правильной темы могут не ответить. Канада большая страна, поэтому сообщите нам, где вы находитесь, чтобы мы могли найти ответ для вашего города и провинции.
Двигатели внутреннего сгорания на водороде и водородные топливные элементы
Отдел новостей Cummins:
Наши инновации, технологии и услуги
Джим Небергалл, генеральный директор подразделения водородных двигателей
Во всем мире ужесточаются правила, ограничивающие выбросы парниковых газов (ПГ) автотранспортными средствами. При этом все больший интерес вызывают как водородные двигатели, так и водородные топливные элементы.
Учитывая, что грузовики средней и большой грузоподъемности являются основным источником выбросов CO 2 , транспортный сектор движется к нулевой точке назначения с использованием обеих технологий.
По мере того, как все больше производителей грузовых автомобилей пополняют ряды автомобильных компаний, разрабатывающих CO 2 — без CO или CO 2 — нейтральная альтернатива бензиновым и дизельным автомобилям, давайте посмотрим на сходства и различия между водородными двигателями и топливными элементами.
Водородные двигатели и топливные элементы: сходства и различия в том, как они работают?
Как водородные двигатели внутреннего сгорания, так и водородные топливные элементы могут приводить в движение автомобили, использующие водород, топливо с нулевым содержанием углерода.
Водородные двигатели сжигают водород в двигателе внутреннего сгорания точно так же, как бензин используется в двигателе. Водородные двигатели внутреннего сгорания (водородный ДВС) почти идентичны традиционным двигателям с искровым зажиганием. Вы можете прочитать больше о том, как работают водородные двигатели, если интересно.
Водородные автомобили на топливных элементах (FCEV) генерируют электричество из водорода в устройстве, известном как топливный элемент, и используют это электричество в электродвигателе, подобно электромобилю.
Водородные двигатели и топливные элементы: дополнительные варианты использования
Водородные двигатели и водородные топливные элементы предлагают дополнительные варианты использования.
Двигатели внутреннего сгорания, как правило, наиболее эффективны при высокой нагрузке, то есть, когда они работают интенсивнее. FCEV, напротив, наиболее эффективны при более низких нагрузках. Вы можете прочитать больше примеров использования водородных двигателей в мобильности и транспорте. Они варьируются от тяжелых грузовиков до строительства.
Таким образом, для тяжелых грузовиков, которые, как правило, тратят большую часть своего времени на перевозку самых больших грузов, которые они могут тянуть, двигатели внутреннего сгорания обычно являются идеальным и эффективным выбором. С другой стороны, транспортные средства, которые часто работают без груза, например, эвакуаторы или автобетоносмесители, могут быть более эффективными с топливными элементами. Электромобили на топливных элементах также могут получать энергию за счет рекуперативного торможения в очень неустойчивых рабочих циклах, что повышает их общую эффективность.
Водородные двигатели также могут работать как автономные силовые агрегаты и справляться с переходными процессами без необходимости использования аккумуляторной батареи. Топливные элементы в сочетании с аккумуляторными батареями также могут добиться того же.
Водородные двигатели и топливные элементы: сходство выбросов
Водородные двигатели и водородные топливные элементы также имеют схожие характеристики выбросов.
FCEV вообще не производят никаких выбросов, кроме водяного пара. Это очень привлекательная функция для транспортных средств, работающих в закрытых помещениях или помещениях с ограниченной вентиляцией.
Водородные двигатели почти не выделяют следовые количества CO 2 (из окружающего воздуха и смазочного масла), но могут образовывать оксиды азота или NOx. В результате они не идеальны для использования внутри помещений и требуют дополнительной обработки выхлопных газов для снижения выбросов NOx.
Водородные двигатели и топливные элементы: вопросы использования водородного топлива
Да, и водородные двигатели, и топливные элементы используют водородное топливо; но в этой истории есть еще кое-что.
Водородные двигатели часто могут работать на водороде более низкого качества. Это становится удобным для конкретных случаев использования. Например, у вас может быть участок, на котором можно производить водород с использованием парового риформинга метана и улавливания и хранения углерода (CCS). Затем этот водород можно использовать в водородных двигателях без необходимости очистки.
Устойчивость водородного двигателя к примесям также удобна для транспортной отрасли, где переход на высококачественный экологически чистый водород потребует времени.
Водородные двигатели и топливные элементы: разные уровни зрелости
Наконец, водородные двигатели и технологии водородных топливных элементов имеют разные уровни зрелости.
Двигатели внутреннего сгорания широко используются на протяжении десятилетий и поддерживаются обширной сервисной сетью. Надежные двигатели, которые могут работать в пыльной среде или подвергаться сильным вибрациям, доступны во всех размерах и конфигурациях.
С точки зрения производителей транспортных средств и операторов автопарка, переход на трансмиссии с водородными двигателями включает в себя знакомые детали и технологии. Конечные пользователи, не склонные к риску, найдут утешение в испытанном и надежном характере двигателей внутреннего сгорания.
Так что на самом деле FCEV и водородные ДВС не конкурируют друг с другом. Наоборот, развитие одного поддерживает развитие другого, поскольку оба являются движущей силой развития общей инфраструктуры производства, транспортировки и распределения водорода. Оба также включают одни и те же резервуары для хранения транспортных средств. Это дополняющие друг друга технологии, которые являются частью сокращения выбросов транспортных средств и транспортных средств в направлении нулевой точки назначения уже сейчас.
Никогда не пропустите последние новости и будьте впереди. Зарегистрируйтесь ниже, чтобы получать последние новости о технологиях, продуктах, отраслевых новостях и многом другом.
Теги
Водород
Бизнес-сегмент двигателей
Устойчивое развитие
Тяжелые грузовики
Никогда не пропустите последние новости
Будьте в курсе последних новостей о новых технологиях, продуктах, отраслевых тенденциях и новостях.
Адрес электронной почты
Компания
Присылайте мне последние новости (отметьте все подходящие варианты):
Грузоперевозки
Автобус
Пикап
Строительство
Сельское хозяйство
Джим Небергалл (Jim Nebergall) — генеральный менеджер направления водородных двигателей в Cummins Inc. и возглавляет глобальные усилия компании по коммерциализации двигателей внутреннего сгорания, работающих на водороде. Водородные двигатели внутреннего сгорания — важная технология на ускоренном пути компании к обезуглероживанию.
Джим пришел в Cummins в 2002 г. и занимал многочисленные руководящие должности в компании. В последнее время Джим был директором по стратегии и управлению продуктами в североамериканском бизнесе по производству двигателей для шоссейных дорог. Джим увлечен инновациями и посвятил свою карьеру в Cummins развитию технологий, улучшающих окружающую среду. Он расширил границы инноваций, ориентированных на клиента, чтобы позиционировать Cummins как ведущего поставщика силовых агрегатов, управляя портфелем, начиная от передовых дизельных и газовых двигателей до гибридных силовых агрегатов.
Джим окончил Университет Пердью со степенью бакалавра в области электротехники и вычислительной техники. В 2007 году он получил степень магистра делового администрирования в Университете Индианы.
Отдел новостей Cummins:
Наши инновации, технологии и услуги
от Cummins Inc., мирового лидера в области энергетических технологий
Девяносто процентов американского бизнеса составляют малые и средние предприятия. Они являются настоящими двигателями нашей экономики, в которых работают миллионы рабочих. Поскольку многие из них ищут новые способы расширения своих услуг, получения дохода и развития своего бизнеса, домашние резервные и портативные генераторы Cummins могут стать новым источником дохода.
Серебряная подкладка в темных облаках
По данным Associated Press, количество отключений электроэнергии из-за неблагоприятных погодных условий удвоилось за последние два десятилетия, что создает нагрузку на стареющую энергосистему нашей страны. Это привело к увеличению частоты и продолжительности отключений электроэнергии. Эти частые отключения создают потребность в надежном резервном питании для домашних хозяйств и других предприятий. А для предприимчивых предприятий малого и среднего бизнеса удовлетворение этой потребности с помощью генераторов Cummins представляет собой огромную возможность.
Какие предприятия могли бы получить наибольшую выгоду от того, чтобы стать авторизованными дилерами Cummins? Вот наша пятерка лучших:
1. Генеральные подрядчики — Когда случаются стихийные бедствия, такие как ледяные бури, ураганы, сильные ветры, лесные пожары или землетрясения, потеря электроэнергии — не единственная проблема, с которой сталкиваются клиенты. Часто бывает физическое повреждение имущества, которое необходимо отремонтировать. Когда они помогают клиентам в восстановлении, генеральные подрядчики имеют возможность оценить потребности дома или предприятия в энергии и предложить добавить домашний резервный генератор Cummins QuietConnect™. Если заказчик соглашается, генподрядчик получает не только прибыль от продажи генератора, но и работы по его установке.
2. Электрики — Хороший электрик — надежный источник информации. Мало того, что они являются экспертами в области потока электронов, они часто знают конкретные электрические схемы своих клиентов. После длительного отключения электроэнергии многих часто спрашивают: «Что вы можете сделать, чтобы у меня не отключилось электричество в следующий раз, когда электричество отключится?» Электрики, продающие и устанавливающие домашние резервные генераторы Cummins QuietConnect, могут сказать: «Да, есть». Установка домашних резервных генераторов может быть еще одной ценной услугой, которую предоставляют электрики.
3. Подрядчики по отоплению и охлаждению — Во время отключения электроэнергии одной из наиболее важных систем, отключенных для владельцев домов и предприятий, является их система центрального отопления и охлаждения. Нахождение без тепла или прохладного воздуха в течение длительного периода времени не только неудобно, но и может быть опасным, если температура на улице экстремально высока. Таким образом, естественно, что после восстановления энергоснабжения поиск способа сохранить систему HVAC включенной во время следующего отключения электроэнергии становится первостепенной задачей. Поскольку подрядчики по отоплению и охлаждению являются экспертами в установке больших систем в домах и на предприятиях, добавление резервных генераторов Cummins QuietConnect в дома и на предприятия является естественным способом добавить еще один центр прибыли в их бизнес.
4. Интернет-магазины — До сих пор мы обсуждали резервные генераторы. Для предприятий, которые не специализируются на постоянной установке генераторов, портативные генераторы Cummins могут приносить прибыль. Хотя портативные генераторы можно использовать во время отключения электроэнергии, они лучше подходят для небольших задач благодаря своей портативности. Это делает их идеальными для кемпинга, парковки, строительства и многого другого. Благодаря прочной и надежной репутации Cummins наши портативные генераторы идеально подходят для розничных продавцов, ориентированных на эти сегменты рынка.
5. Монтажники солнечных панелей — Большинство домашних солнечных панелей подключаются непосредственно к электросети. Таким образом, когда электричество отключается, солнечные батареи перестают обеспечивать электроэнергию. В качестве резервного источника электроэнергии установщики солнечных панелей могут либо установить резервную солнечную батарею, которая заряжается от солнечных панелей, либо домашний резервный генератор. Как правило, резервные солнечные батареи могут питать дом только в течение нескольких часов, поэтому, если район подвержен перебоям в работе из-за погодных условий, лучшим выбором будет домашний резервный генератор, такой как Cummins QuietConnect.
Время пришло
Сейчас, когда все больше людей ищут источники резервного питания, самое время расширить предложения вашей компании, став авторизованным дилером Cummins. Чтобы узнать больше, посетите веб-сайт cummins.com/partners/dealers.
Теги
Генераторы
Производство электроэнергии
Домашний и малый бизнес Дилеры
Отдел новостей Cummins:
Наши инновации, технологии и услуги
от Cummins Inc., мирового лидера в области энергетических технологий
Тепловые волны, которые вызывают чрезмерный спрос на электроэнергию… засухи, которые делают гидроэнергетику менее доступной… электрические сети вблизи активных лесных пожаров отключаются в целях безопасности… стареющие, перегруженные электрические сети… сильные ветры, обрывающие линии электропередач… все это причины, по которым некоторые части страны могут столкнуться с плановыми отключениями электроэнергии в этом году.
Если вы живете в районе, подверженном веерным отключениям электроэнергии, вот несколько советов, которые помогут вам подготовить к ним свою семью:
- Подпишитесь на уведомления от вашей местной электроэнергетической компании. — Если эта услуга доступна от вашей местной коммунальной службы, она может дать вам предупреждение о начале подготовки до отключения электроэнергии.
- Загрузите наш контрольный список Power Outage Ultimate — он содержит подробную информацию о том, что делать до, во время и после отключения электроэнергии. Он даже показывает вам, что делать для детей, домашних животных и членов семьи с медицинскими потребностями. Вы можете скачать это здесь.
- Складируйте нескоропортящиеся продукты и воду — Убедитесь, что у вас также есть ручной консервный нож. Планируйте, чтобы еды хватило на всех, чтобы ваша семья могла пить воду и питаться во время отключения электричества.
- Изготовление или покупка льда и холодильников — Если у вас достаточно предупреждений, сделайте или купите лед, чтобы вы могли упаковать скоропортящиеся продукты в холодильники и сохранить их. (Холодильник будет поддерживать внутреннюю температуру около четырех часов, морозильник — около 48 часов.)
- Купить фонарики и запасные батарейки — Блэкауты могут быть ну черные. Фонарики можно использовать для безопасности, если вам нужно передвигаться ночью, но используйте их экономно. Убедитесь, что у вас достаточно для каждого члена семьи.
- Держите мобильные телефоны заряженными и бензобаки полными — Ваши телефоны и транспортные средства — ваши спасательные пути во внешний мир. Если у вас есть электромобиль, убедитесь, что он полностью заряжен.
- Потренируйтесь открывать гаражные ворота вручную — Если вам нужно куда-то ехать, сначала нужно уметь вытаскивать машину из гаража.
- План для лекарств, требующих охлаждения — Возможно, вам придется хранить их в холодильнике, как и ваши охлажденные продукты, до тех пор, пока электричество не вернется.
- Инвестируйте в резервный генератор для всего дома — Для полного спокойствия рассмотрите один из домашних резервных генераторов Cummins QuietConnect™. В случае отключения электроэнергии ваш генератор автоматически включится и обеспечит питание вашего дома.
- Установка детекторов угарного газа с резервными батареями — Разместите их в центральных местах на каждом этаже, чтобы при попадании угарного газа в дом вы были немедленно предупреждены.
Веерные отключения электроэнергии становятся все более и более распространенным явлением. К счастью, есть способы планировать заранее и не допустить, чтобы они полностью разрушили вашу жизнь. Чтобы узнать о различных способах, которыми Cummins может помочь вашей семье сохранить электричество во время плановых отключений электроэнергии, посетите нас по адресу cummins.com/na/generators/home-standby/whole-house-and-portable или найдите местного дилера cummins. .com/na/generators/home-standby/find-a-dealer.
Теги
Домашние генераторы
Дом и малый бизнес
Отдел новостей Cummins:
Наши инновации, технологии и услуги
от Cummins Inc., мирового лидера в области энергетических технологий
По мере ужесточения норм выбросов компания Cummins Turbo Technologies (CTT) стремится помочь клиентам сократить выбросы и повысить экономию топлива с помощью новых инновационных технологий обработки воздуха.
Благодаря 70-летнему опыту инноваций и надежности компании CTT и Holset представили широкий спектр ведущих в отрасли технологий обработки воздуха. В 2021 году CTT выпустила турбокомпрессор с изменяемой геометрией (VGT) 7-го поколения серии 400, чтобы помочь производителям двигателей соответствовать будущим стандартам выбросов и обеспечить лучшую в своем классе экономию топлива. В Cummins инновации никогда не прекращаются, поскольку мы продолжаем совершенствовать наши текущие технологии, одновременно разрабатывая новые. Помня об этой философии, CTT сейчас готовится представить HE400VGT 8-го поколения. Он специально разработан для обеспечения максимальной производительности, надежности и долговечности для рынка тяжелых грузовиков объемом 10–15 л.
Компания CTT значительно улучшила характеристики турбонагнетателя благодаря своему последнему поколению продуктов. Турбокомпрессор 8-го поколения будет иметь улучшенную на 5% эффективность по сравнению с предыдущим турбокомпрессором 7-го поколения.
В дополнение к улучшенной эффективности турбокомпрессора, которая помогает клиентам уменьшить размеры двигателя, HE400VGT будет иметь лучшую переходную характеристику, повышенную устойчивость к утечке масла со стороны компрессора и двойное снабжение ключевыми компонентами для гибкости цепочки поставок.
Ключевые особенности Holset HE400VGT включают новую систему подшипников и почти нулевые зазоры для повышения производительности и переходных характеристик. Эти усовершенствования достигаются за счет более узких зазоров на ступени компрессора, меньшего радиального смещения на ступени турбины, улучшенной обработки поверхности и новых аэродинамических конструкций.
Этот турбокомпрессор, выпуск которого запланирован на 2024 год, включает в себя интеллектуальный электрический привод нового поколения и датчик скорости с новейшим набором микросхем для повышения производительности и долговечности. Стратегия двойного сорсинга помогает смягчить любой непредвиденный дефицит электроники, от которого в последнее время страдает отрасль.
Помимо повышения производительности, турбокомпрессор последнего поколения обеспечит лучшую в своем классе производительность для большегрузных дорожных грузовиков в сочетании с улучшенной топливной экономичностью в ключевых точках движения автомобиля.
«Компания CTT внедрила потрясающие новые технологии в наш последний двигатель HE400VGT, чтобы помочь покупателям двигателей соответствовать строгим требованиям по выбросам и снизить общую стоимость владения», — сказал Мэтью Франклин, директор по управлению продуктами и маркетингу. По мере того, как клиенты разрабатывают свои стратегии в отношении будущих норм выбросов, CTT продолжает опираться на успех предыдущих запусков турбокомпрессоров, чтобы поставлять инновационные продукты, которые отвечают требованиям разработки двигателей наших клиентов без ущерба для производительности.
Хотите узнать больше о продуктах и технических инновациях CTT? Подпишитесь на нашу ежеквартальную рассылку сегодня.
Метки
Компоненты
Cummins Turbo Technologies
Устойчивое развитие
Отдел новостей Cummins:
Наши инновации, технологии и услуги
от Cummins Inc., мирового лидера в области энергетических технологий
Мастерский ход инженеров Cummins в Австралии и США привел к значительному сокращению затрат и экологическим преимуществам для горнодобывающих компаний, решивших восстановить свои двигатели QSK60 в рамках специальной программы модернизации.
Инженеры сосредоточились на возможностях восстановления QSK60 раннего поколения и на том, как его можно было бы модернизировать до новейшей дизельной технологии во время капитального ремонта без серьезных изменений в базовой конструкции 60-литрового двигателя V16 — подвиг, который ускользал от других производителей двигателей.
Ключевой технологической модернизацией является впрыск топлива, при этом ранняя система насос-форсунки (HPI) заменена модульной системой Common Rail высокого давления (MCRS), которая теперь используется во всех высокомощных двигателях Cummins последнего поколения.
300-й модернизированный двигатель мощностью 2700 л. с. недавно сошел с конвейера в центре восстановления Cummins Master Rebuild Center в Брисбене, подчеркнув еще один успешный шаг в эволюции QSK60 и почему это передовой дизельный двигатель высокой мощности в мире. в мобильном майнинговом оборудовании.
«Снижение расхода топлива и увеличение срока службы до капитального ремонта являются ключом к снижению совокупной стоимости владения, и они были первоначальными целями разработки программы модернизации для QSK60», — говорит Грег Филд, менеджер по развитию горнодобывающего бизнеса Cummins. Азиатско-Тихоокеанский регион.
«Инновации лежат в основе долгой истории Cummins, и они, безусловно, сыграли свою роль в вариантах восстановления QSK60, которые мы можем предложить нашим заказчикам из горнодобывающей отрасли».
Итог впечатляет: выбросы твердых частиц в дизельном топливе сокращаются на 63 % благодаря технологии сгорания в цилиндрах без дополнительной обработки. Также есть плюс для технического обслуживания с меньшим содержанием сажи в масле.