История создания семейства на базе авиадвигателя ПД-14. Двигатель пд 14


«ПД-14 – двигатель прогресса» в блоге «Авиация»

30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ. Это событие исключительной важности. По достоинству оценить его значение помогут 10 любопытных фактов о турбореактивных двигателях вообще и о ПД-14 в частности.

1.Достижение человечества

Турбореактивный двигатель (ТРД) — одно из главных технических достижений человечества, которое можно поставить в один ряд с изобретением колеса, паруса, паровой машины, двигателя внутреннего сгорания, ракетного двигателя и атомного реактора. Именно благодаря ТРД наша планета вдруг стала маленькой и уютной. Любой человек может за считанные часы комфортно и безопасно добраться до самого отдаленного ее уголка.

По статистике лишь один полет из 8 млн заканчивается аварией с гибелью людей. Даже если вы будете каждый день садиться на случайный рейс, вам понадобится 21 000 лет, чтобы погибнуть в авиакатастрофе. Согласно статистике, ходить пешком во много раз опаснее, чем летать. И все это во многом благодаря потрясающей надежности современных авиадвигателей.

2.Чудо техники

А ведь ТРД — крайне сложное устройство. В наиболее трудных условиях работает его турбина. Ее важнейший элемент — лопатка, с помощью которой кинетическая энергия газового потока преобразуется в механическую энергию вращения. Одна лопатка, а их в каждой ступени авиационной турбины насчитывается около 70, развивает мощность, равную мощности двигателя автомобиля «Формулы-1», а при частоте вращения порядка 12 тыс. оборотов в минуту на нее действует центробежная сила, равная 18 тоннам, что равняется нагрузке на подвеску двухэтажного лондонского автобуса.

Но и это еще не все. Температура газа, с которым соприкасается лопатка, почти равна половине температуры на поверхности Солнца. Эта величина на 200 °C превышает температуру плавления металла, из которого изготавливается лопатка. Представьте себе такую задачу: требуется не дать растаять кубику льда в печи, нагретой до 200 °C. Конструкторы умудряются решить проблему охлаждения лопатки с помощью внутренних воздушных каналов и специальных покрытий. Неудивительно, что одна лопатка стоит в восемь раз дороже серебра. Для создания только этой небольшой детали, которая помещается в ладони, необходимо разработать более десятка сложнейших технологий. И каждая из этих технологий оберегается как важнейшая государственная тайна.

3.Технологии ТРД важнее атомных секретов

Кроме отечественных компаний, только фирмы США (Pratt & Whitney, General Electric, Honeywell), Англии (Rolls-Royce) и Франции (Snecma) владеют технологиями полного цикла создания современных ТРД. То есть государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием или запускающих в космос спутники. Многолетние усилия Китая, к примеру, до сих пор так и не привели к успеху в этой области. Китайцы быстро скопировали и оснастили собственными системами российский истребитель Су-27, выпуская его под индексом J-11. Однако скопировать его двигатель АЛ-31Ф им так и не удалось, поэтому Китай до сих пор вынужден закупать этот уже давно не самый современный ТРД в России.

4.ПД-14 — первый отечественный авиадвигатель 5-го поколения

Прогресс в авиадвигателестроении характеризуется несколькими параметрами, но одним из главных считается температура газа перед турбиной. Переход к каждому новому поколению ТРД, а всего их насчитывают пять, характеризовался ростом этой температуры на 100-200 градусов. Так, температура газа у ТРД 1-го поколения, появившихся в конце 1940-х годов, не превышала 1150 °К, у 2-го поколения (1950-е гг.) этот показатель вырос до 1250 °К, в 3-м поколении (1960-е гг.) этот параметр поднялся до 1450 °К, у двигателей 4-го поколения (1970-1980 гг.) температура газа дошла до 1650 °К. Лопатки турбин двигателей 5-го поколения, первые образцы которых появились на Западе в середине 90-х, работают при температуре 1900 °К. В настоящее время в мире только 15% двигателей, находящихся в эксплуатации, относятся к 5-му поколению.

Одна лопатка авиационной турбины развивает мощность, равную мощности двигателя автомобиля «Формулы-1»

Увеличение температуры газа, а также новые конструктивные схемы, в первую очередь двухконтурность, позволили за 70 лет развития ТРД добиться впечатляющего прогресса. К примеру, отношение тяги двигателя к его массе увеличилось за это время в 5 раз и для современных моделей дошло до 10. Степень сжатия воздуха в компрессоре увеличилась в 10 раз: с 5 до 50, при этом число ступеней компрессора уменьшилось вдвое — в среднем с 20 до 10. Удельный расход топлива современных ТРД сократился вдвое по сравнению с двигателями 1-го поколения. Каждые 15 лет происходит удвоение объема пассажирских перевозок в мире при почти неизменных совокупных затратах топлива мировым парком самолетов.

В настоящее время в России производится единственный гражданский авиадвигатель 4-го поколения — ПС-90. Если сравнивать с ним ПД-14, то у двух двигателей схожие массы (2950 кг у базовой версии ПС-90А и 2870 кг у ПД-14), габариты (диаметр вентилятора у обоих 1,9 м), степень сжатия (35,5 и 41) и взлетная тяга (16 и 14 тс).

При этом компрессор высокого давления ПД-14 состоит из 8 ступеней, а ПС-90 — из 13 при меньшей суммарной степени сжатия. Степень двухконтурности у ПД-14 вдвое выше (4,5 у ПС-90 и 8,5 у ПД-14) при том же диаметре вентилятора. В итоге удельный расход топлива в крейсерском полете у ПД-14 упадет, по предварительным оценкам, на 15% по сравнению с существующими двигателями: до 0,53-0,54 кг/(кгс·ч) против 0,595 кг/(кгс·ч) у ПС-90.

5.ПД-14 - первый авиадвигатель, созданный в России после распада СССР

Советский Союз был великой авиационной державой. В 1980-е годы в СССР работали восемь мощнейших авиадвигательных ОКБ. Зачастую фирмы конкурировали друг с другом, поскольку существовала практика давать одно и то же задание двум ОКБ. Увы, времена изменились. После развала 1990-х годов пришлось собирать все отраслевые силы, чтобы осуществить проект создания современного двигателя. Собственно, формирование в 2008 году ОДК (Объединенной двигателестроительной корпорации), со многими предприятиями которой активно сотрудничает банк ВТБ, и имело целью создание организации, способной не только сохранить компетенции страны в газотурбостроении, но и конкурировать с ведущими фирмами мира.

Головным исполнителем работ по проекту ПД-14 является ОКБ «Авиадвигатель» (Пермь), которое, кстати, разрабатывало и ПС-90. Серийное производство организуется на Пермском моторном заводе, но детали и комплектующие будут изготавливаться по всей стране. В кооперации участвуют Уфимское моторостроительное производственное объединение (УМПО), НПО «Сатурн» (Рыбинск), НПЦГ «Салют» (Москва), «Металлист-Самара» и многие другие.

6.ПД-14 - двигатель для магистрального самолета XXI века

Одним из самых удачных проектов в области гражданской авиации СССР был среднемагистральный самолет Ту-154. Выпущенный в количестве 1026 шт., он долгие годы составлял основу парка «Аэрофлота». Увы, время идет, и этот трудяга уже не отвечает современным требованиям ни по экономичности, ни по экологии (шум и вредные выбросы). Главная слабость Ту-154 — двигатели 3-го поколения Д-30КУ с высоким удельным расходом топлива (0,69 кг/(кгс·ч).

Государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием

Пришедший на смену Ту-154 среднемагистральный Ту-204 с двигателями 4-го поколения ПС-90 в условиях распада страны и свободного рынка не смог выдержать конкуренцию с зарубежными производителями даже в борьбе за отечественных авиаперевозчиков. Между тем сегмент среднемагистральных узкофюзеляжных самолетов, в котором господствуют Boeing-737 и Airbus 320 (только в 2015 году их было поставлено авиакомпаниям мира 986 шт.), — самый массовый, и присутствие на нем — необходимое условие сохранения отечественного гражданского самолетостроения. Таким образом, в начале 2000-х годов была выявлена острая необходимость создания конкурентоспособного ТРД нового поколения для среднемагистрального самолета на 130-170 мест. Таким самолетом должен стать МС-21 (Магистральный самолет XXI века), разрабатываемый Объединенной авиастроительной корпорацией. Задача невероятно сложная, поскольку конкуренцию с Boeing и Airbus не выдержал не только Ту-204, но и ни один другой самолет в мире. Именно под МС-21 и разрабатывается ПД-14. Удача в этом проекте будет сродни экономическому чуду, но подобные начинания — единственный способ для российской экономики слезть с нефтяной иглы.

7.ПД-14 — базовый проект для семейства двигателей

Буквы «ПД» расшифровываются как перспективный двигатель, а число 14 — тяга в тонна-силах. ПД-14 — это базовый двигатель для семейства ТРД тягой от 8 до 18 тс. Бизнес-идея проекта состоит в том, что все эти двигатели создаются на основе унифицированного газогенератора высокой степени совершенства. Газогенератор — это сердце ТРД, которое состоит из компрессора высокого давления, камеры сгорания и турбины. Именно технологии изготовления этих узлов, прежде всего так называемой горячей части, являются критическими.

Семейство двигателей на базе ПД-14 позволит оснастить современными силовыми установками практически все российские самолеты: от ПД-7 для ближнемагистрального «Сухой Суперджет 100» до ПД-18, который можно установить на флагман российского самолетостроения — дальнемагистральный Ил-96. На базе газогенератора ПД-14 планируется разработать вертолетный двигатель ПД-10 В для замены украинского Д-136 на самом большом в мире вертолете Ми-26. Этот же двигатель можно использовать и на российско-китайском тяжелом вертолете, разработка которого уже началась. На базе газогенератора ПД-14 могут быть созданы и так необходимые России газоперекачивающие установки и газотурбинные электростанции мощностью от 8 до 16 МВт.

8.ПД-14 - это 16 критических технологий

Для ПД-14, при ведущей роли Центрального института авиационного моторостроения (ЦИАМ), головного НИИ отрасли и ОКБ «Авиадвигатель», было разработано 16 критических технологий: монокристаллические лопатки турбины высокого давления с перспективной системой охлаждения, работоспособные при температуре газа до 2000 °К, пустотелая широкохордная лопатка вентилятора из титанового сплава, благодаря которой удалось повысить КПД вентиляторной ступени на 5% в сравнении с ПС-90, малоэмиссионная камера сгорания из интерметаллидного сплава, звукопоглощающие конструкции из композиционных материалов, керамические покрытия на деталях горячей части, полые лопатки турбины низкого давления и др.

ПД-14 и в дальнейшем будет совершенствоваться. На МАКС-2015 уже можно было увидеть созданный в ЦИАМ прототип широкохордной лопатки вентилятора из углепластика, масса которой составляет 65% от массы пустотелой титановой лопатки, применяемой сейчас. На стенде ЦИАМ можно было видеть и прототип редуктора, которым предполагается оснастить модификацию ПД-18Р. Редуктор позволит снизить обороты вентилятора, благодаря чему, не привязанный к оборотам турбины, он будет работать в более эффективном режиме. Предполагается поднять на 50 °К и температуру газа перед турбиной. Это позволит увеличить тягу ПД-18Р до 20 тс, а удельный расход топлива сократить еще на 5%.

9.ПД-14 - это 20 новых материалов

При создании ПД-14 разработчики с самого начала сделали ставку на отечественные материалы. Было ясно, что российским компаниям ни при каких условиях не предоставят доступ к новым материалам зарубежного производства. Здесь ведущую роль сыграл Всероссийский институт авиационных материалов (ВИАМ), при участии которого для ПД-14 разработано порядка 20 новых материалов.

Но создать материал — полдела. Иногда российские металлы превосходят по качеству зарубежные, но для их использования в гражданском авиадвигателе необходима сертификация по международным нормам. Иначе двигатель, как бы он ни был хорош, не допустят к полетам за пределами России. Правила тут очень строги, поскольку речь идет о безопасности людей. То же самое относится и к процессу изготовления двигателя: предприятиям отрасли требуется сертификация по нормам Европейского агентства авиационной безопасности (ЕASA). Все это заставит повысить культуру производства, а под новые технологии необходимо провести перевооружение отрасли. Сама разработка ПД-14 проходила по новой, цифровой технологии, благодаря чему уже 7-й экземпляр двигателя был собран в Перми по технологии серийного производства, в то время как раньше опытная партия изготовлялась в количестве до 35 экземпляров.

Разработка современного двигателя занимает в 1,5-2 раза больше времени, чем разработка самолета

ПД-14 должен вытащить на новый уровень всю отрасль. Да что говорить, даже летающая лаборатория Ил-76ЛЛ после нескольких лет простоя нуждалась в дооснащении оборудованием. Нашлась работа и для уникальных стендов ЦИАМ, позволяющих на земле имитировать условия полета. В целом же проект ПД-14 сохранит для России более 10 000 высококвалифицированных рабочих мест.

10.ПД-14 — первый отечественный двигатель, который напрямую конкурирует с западным аналогом

Разработка современного двигателя занимает в 1,5-2 раза больше времени, чем разработка самолета. С ситуацией, когда двигатель не успевает к началу испытаний самолета, для которого он предназначен, авиастроители сталкиваются, увы, регулярно. Вот и выкатка первого экземпляра МС-21 состоится в начале 2016 года, а испытание ПД-14 только начались. Правда, в проекте с самого начала предусматривалась альтернатива: заказчики МС-21 могут выбирать между ПД-14 и PW1400G компании Pratt & Whitney. Именно с американским двигателем МС-21 и уйдет в первый полет, и именно с ним ПД-14 предстоит конкурировать за место под крылом.

По сравнению с конкурентом, ПД-14 несколько уступает в экономичности, но зато он легче, имеет заметно меньший диаметр (1,9 м против 2,1), а значит, и меньшее сопротивление. И еще одна особенность: российские специалисты сознательно пошли на некоторое упрощение конструкции. Базовый ПД-14 не использует редуктор в приводе вентилятора, а также не применяет регулируемое сопло внешнего контура, у него ниже температура газа перед турбиной, что упрощает достижение показателей надежности и ресурса. Поэтому двигатель ПД-14 дешевле и, по предварительным оценкам, потребует меньших затрат на техническое обслуживание и ремонт. Кстати, в условиях падения цен на нефть именно более низкие эксплуатационные расходы, а не экономичность становятся схемообразующим фактором и главным конкурентным преимуществом авиадвигателя. В целом прямые эксплуатационные расходы МС-21 с ПД-14 могут быть на 2,5% ниже, чем у версии с американским двигателем.

На сегодняшний день заказано 175 МС-21, из них 35 — с двигателем ПД-14.

Текст: Леонид Ситник

Фото: ПАО «ОАК», ОАО «Авиадвигатель», РИА Новости

sdelanounas.ru

Двигатель ПД 14- Характеристики... Motoran

Создание авиамоторов собственного производства позволит отечественной авиапромышленности выйти на новый качественный уровень. Современный авиационный газотурбинный двигатель ПД 14 является лучшей разработкой, в сравнении с предыдущими аналогами, выпущенными в последние годы. В конструкцию силового агрегата турбовентиляторного типа входит вентилятор большого диаметра. Это необходимо для подачи в двигатель воздуха в больших количествах. Воздушная струя создает условия для создания необходимого тягового усилия.

Устройство и принцип действия двигателя ПД 14

Внутреннее строение авиамоторов напоминает по конструкции ракетные модели. При этом вместо последних ступеней здесь установлен привод вентилятора. Авиационный двигатель ПД 14, как и все существующие механизмы, обладает определенными преимуществами и недостатками.

авиационный

Основные достоинства ПД 14:

  1. Повышенная экономичность (расход топлива уменьшен на 12-16%).
  2. Возможность широкого применения в самолетах, работающих на маршрутах различной дальности.
  3. Совместимость с различными моделями самолетов, выпущенных ранее.
  4. Оснащение системой шумопоглощения, обладающей высокой эффективностью.

К имеющимся недостаткам относятся следующие факторы:

  1. Большой вес.
  2. Габариты.

Это создает большое сопротивление набегающим воздушным потокам при полетах.

В сравнении с классическими авиадвигателями отечественного производства, выпущенными ранее, ПД-14 обладает многочисленными конструктивными отличиями и улучшенными техническими характеристиками.

Чаще всего его сравнивают с мотором ПС-90А, который установлен на самолетах ИЛ-76, ТУ-14.  В сравнении с предыдущей моделью, новый силовой агрегат более технологичен, имеет больше возможностей, увеличены основные рабочие показатели:

  • степень двухконтурности – вдвое;
  • температура газа у входа в турбину – на 100°К;
  • степень сжатия топлива – на 20-50%.

Двигатель ПД 14 технические характеристики

Название модели ПД-14
Тип мотора турбовентилятор
Диаметр вентилятора двигателя 1900 мм
Общий вес 2870 кг
Тяга на взлете 12,5 т.с.
Схема работы 1+3+8-2+6
Степень двухконтурности 8,6
Давление в компрессоре 38

Представленные характеристики двигателя ПД 14 позволяют понять, насколько данная модель опережает своих предшественников по техническим параметрам и эксплуатационным возможностям. Это позволило существенно увеличить длительность эксплуатационного срока силового агрегата. На примере военно-транспортного самолета ИЛ 76 с установленным ПД-14, видно, насколько улучшены характеристики данного воздушного судна:

  1. Увеличена дальность полета до 4,8 тыс. км с нагрузкой, равной 6 000 кг; до 10,9 тыс. км – без нагрузки, соответственно.
  2. Снижено потребление топлива на 13% из расчета на 1 км пути.
  3. Увеличение максимальной скорости до 800 км/час.

ИЛ 76

Новости о перспективных разработках двигателя ПД 14

С целью снижения общего веса, при проектировании применена новая технология, предусматривающая создание турбинных лопастей в виде пустотелых конструкций. Для их изготовления используются специальные титановые сплавы повышенной прочности. Применение данных технологий привело к уменьшению массы лопастей на 30%, а всего авиамотора – на 10% соответственно.

Коллектив Пермского моторного завода приступил к производству рабочих лопаток для турбин с использованием монокристаллов. Благодаря данному подходу, рабочая температура газов возрастает до 2000°К. В планы разработчиков новых авиационных моторов входит использование большого количества композитных полимеров. Это позволит не только снизить вес двигателя, но и улучшить его прочностные характеристики при работе в условиях значительных перегрузок.

На основе новых авиационных реактивных двигателей создаются современные модели самолетов. Самая известная разработка – магистральный лайнер МС-21.

Благодаря созданию двигателя ПД 14, будет выпущена линейка новейших самолетов, которые будут выполнять рейсы различной степени дальности: от пролетов на внутренних линиях до дальних рейсов. В зависимости от назначения использования, конструкция 14-го двигателя позволяет устанавливать его как на пассажирских, так и на транспортных моделях.

Сила тяги мотора равна 14 тонн. Это дает возможность оснащать двигателем модели ПД 14 такие модели самолетов, как:

  • МС-21-200;
  • МС-21-300;
  • МС21-400;
  • ИЛ-214;
  • ИЛ-76.

По последним данным, на базе двигателя ПД 14 создается более мощный ПД-18, агрегат данной модификации развивает силу тяги, равную 18 тонн. Новый усиленный мотор предположительно предназначен для самолетов ИЛ-96, ТУ-214. На данный момент они комплектуются устаревшей моделью ПС-90А.

В перспективе будет создан авиационный мотор облегченной версии, рассчитанный на тягу в 10 тонн для установки в самолетах типа «Суперджет» вместо французских двигателей.

Для знаменитых транспортных вертушек МИ-26 создается мотор особой конструкции, выполненный в вертолетном варианте.

Судя по отзывам осведомленных специалистов, вопреки некоторым ожиданиям, выпуск ТУ 334 с двигателем ПД 14 не предусмотрен.

Подготовка к серийному производству двигателей ПД 14

Данные самолетные моторы относятся к двигателям пятого поколения. Главный серийный производитель – объединенная двигательная корпорация «ОДК – Пермские моторы». Здесь подходит к завершению подготовка производства новой продукции. Благодаря постоянному взаимодействия с проверенными надежными поставщиками, механические цеха моторного завода наладили производство более трехсот наименований рабочих элементов для двигателей ПД 14.

Заказчиком современных самолетных авиамоторов является научная корпорация под названием «Иркут».

Каждый двигатель ПД-14 имеет порядковый номер, после сборки он подвергается индивидуальным проверкам конкретных параметров. Для этого создаются специальные стенды с условиями, имитирующими полетный цикл.

Например, после успешного стендового тестирования двигатель №7 устанавливался на летающую лабораторию «ИЛ-76ЛЛ» для последующих летных испытаний. По окончании первого этапа двигатель был демонтирован с самолета. Затем его отправили на завод-изготовитель, где он был разобран на отдельные узлы, с целью проведения дальнейших исследований. После повторной сборки мотор №7 снова проверялся на стендах для последующей установки на Ил-76ЛЛ и проведения новых воздушных испытаний.

Для двигателя ПД-14, выпущенного под №8, предусмотрена другая программа инженерных испытаний. Здесь тестирование проходило на специальном стенде открытого типа «Сатурн». Двигатель устойчиво работал при боковом обдуве. Параллельно проводились испытания реверса и акустических параметров силового агрегата.

Ил-76ЛЛ

Также заводом-изготовителем предусмотрена программа техобслуживания выпускаемой продукции после реализации.

Помимо сборки, на базе завода-изготовителя осуществляется переборка ПД-14, а также модернизация производственных мощностей с целью подготовки их к выпуску авиамоторов в больших количествах. Производственные цеха переоснащаются специализированным оборудованием. Большие надежды возлагаются на приобретение обрабатывающих центров универсального типа, при помощи которых возможно изготовление корпусных узлов и деталей сверхсложной конфигурации.

Программой сборки супермощных авиационных двигателей ПД-14 предусмотрено создание производственной поточной линии, способной обеспечить выпуск до 50 комплектов сборочных узлов в течение одного года.

Испытательные стенды для проверки работоспособности современных авиамоторов предполагается полностью модернизировать.

В соответствии с разработанной программой, планируется создать на основе двигателя ПД-14 целое семейство новых моделей авиационных моторов, обладающих тягой в диапазоне 12,5 – 18 тонн. Эти мощные двигатели будут устанавливаться на самолетах как пассажирского, так и транспортного назначений. В перспективе предполагается выпуск суперлайнера МС 21 с авиадвигателем ПД 14, который находится в плановой разработке корпорации Иркут.

motoran.ru

Авиадвигатель ПД-14 | Журнал Популярная Механика

О технологиях подготовки и проведения испытаний перспективного российского двигателя «Популярной механике» рассказал Анатолий Дмитриевич Кулаков, заместитель генерального директора ЛИИ им. М.М. Громова по испытаниям силовых установок. Как удалось узнать из нашего разговора, прежде чем двигатель смог отправиться в свой первый полет, специалистам института пришлось решать множество сложнейших инженерных задач. Первой из них стал выбор летающей лаборатории (ЛЛ). В распоряжении ЛИИ есть несколько ЛЛ, созданных на базе самолета Ил-76, но не на каждой можно проводить испытания именно ПД-14. Многое зависит от массы силовой установки (выдержит ли вес крыло?) и тяги, создаваемой ПД-14. Выбор пал на Ил-76 ЛЛ с усиленным крылом, на котором можно разместить силовую установку весом до 9 т и тягой двигателя до 25 000 кгс. Однако этот самолет последний раз привлекался к испытаниям в 1996 году. Тогда к нему подвешивали уникальный винто-вентиляторный двигатель Д-27, предназначавшийся к использованию на украинско-российском самолете Ан-70. После почти двух десятилетий простоя необходимо было восстановить летную годность Ил-76 ЛЛ, для чего составили специальную программу при активном участии ОАО «АКБ им. С.В. Ильюшина». На самолете-ветеране заменили значительную часть оборудования, в том числе пилотажного и навигационного, и получили все необходимые заключения о том, что ЛЛ может отправляться в полет. Что дальше? Подвесить двигатель и начинать испытания? Нет! Все не так просто.

На фото можно увидеть перспективный российский двигатель без гондолы.

Двигатель ПД-14 уникален еще и тем, что впервые в практике отечественного двигателестроения производитель разработал не только сам двигатель, но и гондолу к нему (обычно мотогондолу изготавливает под конкретный двигатель фирма, создающая самолет). Таким образом, у двигателя уже есть крепление, рассчитанное на пилон МС-21, и к крылу Ил-76ЛЛ оно не подходит. Специалистам ЛИИ пришлось конструировать специальную силовую проставку — переходник между креплениями пилона МС-21 и крыла Ил-76ЛЛ.

На этом фото запечатлен процесс подвешивания гондолы с двигателем к пилону летающей лаборатории. Для соединения креплений разных типов применен специальный силовой переходник.

Куда девать энергию?

Самая же главная инженерная проблема в том, что новый двигатель не может испытываться под управлением штатных систем ЛЛ. В лаборатории необходимо воссоздать все системы управления экспериментальной силовой установкой, схожие с теми, что будут использованы на МС-21, а также достоверно воспроизвести все нагрузки, под которыми будет работать двигатель. С этой целью перед испытаниями необходимо было сконструировать и встроить в летающую лабораторию все соответствующее оборудование.

Двигатель не только создает реактивную тягу, он — энергетическое сердце самолета. С помощью вала и редуктора вал турбины высокого давления связан с КПСА (коробкой приводов самолетных агрегатов). В КПСА передаваемый туда крутящий момент «разбирается» электрогенератором и гидравлическими насосами. Сейчас от двигателей требуется как можно больше электрической мощности, особенно ввиду тенденции к замене ряда гидравлических приводов электрическими. На Ил-76ЛЛ установлена система отбора электрической мощности. Отбираемая от генератора мощность реализуется в специальных тепловых электрозагружателях (ТЭН), которые установлены в обтекателях, обдуваемых в полете наружным воздухом.

На заднем плане виден главный пульт управления опытным двигателем: сидя за этим пультом, ведущий инженер ЛИИ управляет режимами ПД-14 в ходе испытательного полета. Ближе к нам — рабочие места других специалистов, отслеживающих параметры работы двигателя.

Кроме крутящего момента от двигателя отбирается сжатый воздух, который поступает в системы самолета МС-21. Отбор воздуха для разных целей производится в нескольких точках газогенератора. Например, после третьей ступени компрессора отводится воздух для нужд кондиционирования пассажирского салона МС-21. На летающей лаборатории нет системы отбора воздуха с параметрами системы кондиционирования, аналогичной той, что будет в МС-21, так как отбор сжатого воздуха — это отбор мощности от двигателя, а значит, во время испытаний эта нагрузка также должна быть реализована. ЛЛ также насыщена контрольно-измерительным оборудованием. При эксплуатации серийного двигателя бортовой параметрический самописец регистрирует 30−40 параметров работы установки. В ходе испытаний с экспериментального двигателя, оборудованного множеством датчиков, снимается 1066 параметров. Данные поступают на центральный сервер, на пульт ведущего инженера в грузовой кабине Ил-76ЛЛ, на дисплей в кабине пилотов, по радиоканалу в наземный контрольный пункт и непосредственно специалистам в Пермь, в ОАО «Авиадвигатель».

Рабочее место одного из инженеров, участвующих в испытаниях, и шкаф с вычислительной техникой, анализирующей данные с помощью специально разработанного ПО.

Соло на одном моторе

Когда наступает время поднять ЛЛ в воздух, в кресла летного экипажа садятся опытнейшие летчики-испытатели ЛИИ им. М.М. Громова. В грузовой кабине места у пультов занимают инженеры-испытатели. В распоряжении пилотов все обычные системы управления самолетом Ил-76ЛЛ и его двигателями. И только экспериментальным двигателем управляет ведущий инженер-испытатель из ЛИИ. Рядом с ним за центральным пультом еще один представитель ЛИИ и инженер от предприятия-разработчика ПД-14. «Взлетаем мы на трех двигателях по специальной методике, чтобы из-за несимметричной тяги самолет не слетел с полосы, — рассказывает Александр Крутов, заслуженный летчик-испытатель, Герой России, начальник Школы летчиков-испытателей ЛИИ. — На данной стадии испытаний на взлете опытный двигатель работает только на малом газе. Сначала прогреваем три штатных двигателя. Потом второй двигатель, симметричный опытному, убираем на малый газ и потихоньку начинаем разбег. Выводим на взлетный режим 1-й и 4-й штатные двигатели. Затем в процессе разбега плавно выводим 3-й штатный двигатель на взлетный режим. Отрываемся на трех, набираем высоту. Так удается на взлете избежать опасных разворачивающих моментов».

www.popmech.ru

Семейство авиадвигателей ПД-14 | Дом

30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ. Это событие исключительной важности. По достоинству оценить его значение помогут 10 любопытных фактов о турбореактивных двигателях вообще и о ПД-14 в частности.

Достижение человечества

Турбореактивный двигатель (ТРД) – одно из главных технических достижений человечества, которое можно поставить в один ряд с изобретением колеса, паруса, паровой машины, двигателя внутреннего сгорания, ракетного двигателя и атомного реактора. Именно благодаря ТРД наша планета вдруг стала маленькой и уютной. Любой человек может за считанные часы комфортно и безопасно добраться до самого отдаленного ее уголка.

По статистике лишь один полёт из 8 млн заканчивается аварией с гибелью людей. Даже если вы будете каждый день садиться на случайный рейс, вам понадобится 21 000 лет, чтобы погибнуть в авиакатастрофе. Согласно статистике, ходить пешком во много раз опаснее, чем летать. И всё это во многом благодаря потрясающей надёжности современных авиадвигателей.

Чудо техники

А ведь ТРД – крайне сложное устройство. В наиболее трудных условиях работает его турбина. Её важнейший элемент – лопатка, с помощью которой кинетическая энергия газового потока преобразуется в механическую энергию вращения. Одна лопатка, а их в каждой ступени авиационной турбины насчитывается около 70, развивает мощность, равную мощности двигателя автомобиля «Формулы-1», а при частоте вращения порядка 12 тыс. оборотов в минуту на неё действует центробежная сила, равная 18 тоннам, что равняется нагрузке на подвеску двухэтажного лондонского автобуса.

Схема двигателя ПД-14 © ОАО «Авиадвигатель». Но и это еще не всё. Температура газа, с которым соприкасается лопатка, почти равна половине температуры на поверхности Солнца. Эта величина на 200 °С превышает температуру плавления интерметаллида (алюминида титана), из которого изготавливается лопатка. Представьте себе такую задачу: требуется не дать растаять кубику льда в печи, нагретой до 200 °С. Конструкторы умудряются решить проблему охлаждения лопатки с помощью внутренних воздушных каналов и специальных покрытий.

Причём, при сохранении всех прочностных характеристик, лопатки из интерметаллида титана намного легче, чем аналогичные, выполненные по используемой ранее технологии литья из никелевых сплавов.

Неудивительно, что одна лопатка стоит в восемь раз дороже серебра. Для создания только этой небольшой детали, которая помещается в ладони, необходимо разработать более десятка сложнейших технологий. И каждая из этих технологий оберегается как важнейшая государственная тайна.

Технологии ТРД важнее атомных секретов

Кроме отечественных компаний, только фирмы США (Pratt & Whitney, General Electric, Honeywell), Англии (Rolls-Royce) и Франции (Snecma) владеют технологиями полного цикла создания современных ТРД. То есть государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием или запускающих в космос спутники. Многолетние усилия Китая, к примеру, до сих пор так и не привели к успеху в этой области. Китайцы быстро скопировали и оснастили собственными системами российский истребитель Су-27, выпуская его под индексом J-11. Однако скопировать его двигатель АЛ-31Ф им так и не удалось, поэтому Китай до сих пор вынужден закупать этот уже давно не самый современный ТРД в России.

ПД-14 – первый отечественный авиадвигатель 5-го поколения

Прогресс в авиадвигателестроении характеризуется несколькими параметрами, но одним из главных считается температура газа перед турбиной. Переход к каждому новому поколению ТРД, а всего их насчитывают пять, характеризовался ростом этой температуры на 100–200 градусов. Так, температура газа у ТРД 1-го поколения, появившихся в конце 1940-х годов, не превышала 1150 °К, у 2-го поколения (1950-е гг.) этот показатель вырос до 1250 °К, в 3-м поколении (1960-е гг.) этот параметр поднялся до 1450 °К, у двигателей 4-го поколения (1970–1980 гг.) температура газа дошла до 1650 °К. Лопатки турбин двигателей 5-го поколения, первые образцы которых появились на Западе в середине 90-х, работают при температуре 1900 °К. В настоящее время в мире только 15% двигателей, находящихся в эксплуатации, относятся к 5-му поколению.

Одна лопатка авиационной турбины развивает мощность, равную мощности двигателя автомобиля «Формулы-1»

Увеличение температуры газа, а также новые конструктивные схемы, в первую очередь двухконтурность, позволили за 70 лет развития ТРД добиться впечатляющего прогресса. К примеру, отношение тяги двигателя к его массе увеличилось за это время в 5 раз и для современных моделей дошло до 10. Степень сжатия воздуха в компрессоре увеличилась в 10 раз: с 5 до 50, при этом число ступеней компрессора уменьшилось вдвое – в среднем с 20 до 10. Удельный расход топлива современных ТРД сократился вдвое по сравнению с двигателями 1-го поколения. Каждые 15 лет происходит удвоение объёма пассажирских перевозок в мире при почти неизменных совокупных затратах топлива мировым парком самолётов.

МС-21ПД-14 разрабатывался для российского среднемагистрального самолета МС-21 © ПАО «ОАК»

В настоящее время в России производится единственный гражданский авиадвигатель 4-го поколения – ПС-90. Если сравнивать с ним ПД-14, то у двух двигателей схожие массы (2950 кг у базовой версии ПС-90А и 2870 кг у ПД-14), габариты (диаметр вентилятора у обоих 1,9 м), степень сжатия (35,5 и 41) и взлётная тяга (16 и 14 тс).

При этом компрессор высокого давления ПД-14 состоит из 8 ступеней, а ПС-90 – из 13 при меньшей суммарной степени сжатия. Степень двухконтурности у ПД-14 вдвое выше (4,5 у ПС-90 и 8,5 у ПД-14) при том же диаметре вентилятора. В итоге удельный расход топлива в крейсерском полёте у ПД-14 упадёт, по предварительным оценкам, на 15% по сравнению с существующими двигателями: до 0,53–0,54 кг/(кгс·ч) против 0,595 кг/(кгс·ч) у ПС-90.

ПД-14 – первый авиадвигатель, созданный в России после распада СССР 

Когда Владимир Путин поздравлял российских специалистов с началом испытаний ПД-14, он сказал, что последний раз подобное событие в нашей стране произошло 29 лет назад. Скорее всего, имелось в виду 26 декабря 1986 года, когда состоялся первый полёт Ил-76ЛЛ по программе испытаний ПС-90А.

Советский Союз был великой авиационной державой. В 1980-е годы в СССР работали восемь мощнейших авиадвигательных ОКБ. Зачастую фирмы конкурировали друг с другом, поскольку существовала практика давать одно и то же задание двум ОКБ. Увы, времена изменились. После развала 1990-х годов пришлось собирать все отраслевые силы, чтобы осуществить проект создания современного двигателя. Собственно, формирование в 2008 году ОДК (Объединенной двигателестроительной корпорации), со многими предприятиями которой активно сотрудничает банк ВТБ, и имело целью создание организации, способной не только сохранить компетенции страны в газотурбостроении, но и конкурировать с ведущими фирмами мира.

Головным исполнителем работ по проекту ПД-14 является ОКБ «Авиадвигатель» (Пермь), которое, кстати, разрабатывало и ПС-90. Серийное производство организуется на Пермском моторном заводе, но детали и комплектующие будут изготавливаться по всей стране. В кооперации участвуют Уфимское моторостроительное производственное объединение (УМПО), НПО «Сатурн» (Рыбинск), НПЦГ «Салют» (Москва), «Металлист-Самара» и многие другие.

ПД-14 – двигатель для магистрального самолёта XXI века

Одним из самых удачных проектов в области гражданской авиации СССР был среднемагистральный самолёт Ту-154. Выпущенный в количестве 1026 шт., он долгие годы составлял основу парка «Аэрофлота». Увы, время идет, и этот трудяга уже не отвечает современным требованиям ни по экономичности, ни по экологии (шум и вредные выбросы). Главная слабость Ту-154 – двигатели 3-го поколения Д-30КУ с высоким удельным расходом топлива (0,69 кг/кгс·ч).

Государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием

Пришедший на смену Ту-154 среднемагистральный Ту-204 с двигателями 4-го поколения ПС-90 в условиях распада страны и свободного рынка не смог выдержать конкуренцию с зарубежными производителями даже в борьбе за отечественных авиаперевозчиков. Между тем сегмент среднемагистральных узкофюзеляжных самолётов, в котором господствуют Boeing-737 и Airbus 320 (только в 2015 году их было поставлено авиакомпаниям мира 986 шт.), – самый массовый, и присутствие на нём – необходимое условие сохранения отечественного гражданского самолётостроения. Таким образом, в начале 2000-х годов была выявлена острая необходимость создания конкурентоспособного ТРД нового поколения для среднемагистрального самолёта на 130–170 мест. Таким самолётом должен стать МС-21, подробней:>>(Магистральный самолет XXI века), разрабатываемый Объединенной авиастроительной корпорацией. Задача невероятно сложная, поскольку конкуренцию с Boeing и Airbus не выдержал не только Ту-204, но и ни один другой самолёт в мире. Именно под МС-21 и разрабатывается ПД-14. Удача в этом проекте будет сродни экономическому чуду, но подобные начинания – единственный способ для российской экономики слезть с нефтяной иглы.

ПД-14 – базовый проект для семейства двигателей

Буквы «ПД» расшифровываются как перспективный двигатель, а число 14 – тяга в тонна-силах. ПД-14 – это базовый двигатель для семейства ТРД тягой от 8 до 18 тс. Бизнес-идея проекта состоит в том, что все эти двигатели создаются на основе унифицированного газогенератора высокой степени совершенства. Газогенератор – это сердце ТРД, которое состоит из компрессора высокого давления, камеры сгорания и турбины. Именно технологии изготовления этих узлов, прежде всего так называемой горячей части, являются критическими.

Семейство двигателей на базе ПД-14 позволит оснастить современными силовыми установками практически все российские самолёты: от ПД-7 для ближнемагистрального «Сухой Суперджет 100» до ПД-18, который можно установить на флагман российского самолётостроения – дальнемагистральный Ил-96. На базе газогенератора ПД-14 планируется разработать вертолётный двигатель ПД-10В для замены украинского Д-136 на самом большом в мире вертолёте Ми-26. Этот же двигатель можно использовать и на российско-китайском тяжёлом вертолёте, разработка которого уже началась. На базе газогенератора ПД-14 могут быть созданы и так необходимые России газоперекачивающие установки и газотурбинные электростанции мощностью от 8 до 16 МВт.

ПД-14 – это 16 критических технологий 

Для ПД-14, при ведущей роли Центрального института авиационного моторостроения (ЦИАМ), головного НИИ отрасли и ОКБ «Авиадвигатель», было разработано 16 критических технологий: монокристаллические лопатки турбины высокого давления с перспективной системой охлаждения, работоспособные при температуре газа до 2000°К, пустотелая широкохордная лопатка вентилятора из титанового сплава, благодаря которой удалось повысить КПД вентиляторной ступени на 5% в сравнении с ПС-90, малоэмиссионная камера сгорания из интерметаллидного сплава, звукопоглощающие конструкции из композиционных материалов, керамические покрытия на деталях горячей части, полые лопатки турбины низкого давления и др.

ПД-14 и в дальнейшем будет совершенствоваться. На МАКС-2015 уже можно было увидеть созданный в ЦИАМ прототип широкохордной лопатки вентилятора из углепластика, масса которой составляет 65% от массы пустотелой титановой лопатки, применяемой сейчас. На стенде ЦИАМ можно было видеть и прототип редуктора, которым предполагается оснастить модификацию ПД-18Р. Редуктор позволит снизить обороты вентилятора, благодаря чему, не привязанный к оборотам турбины, он будет работать в более эффективном режиме. Предполагается поднять на 50°К и температуру газа перед турбиной. Это позволит увеличить тягу ПД-18Р до 20 тс, а удельный расход топлива сократить еще на 5%.

ПД-14 – это 20 новых материалов

При создании ПД-14 разработчики с самого начала сделали ставку на отечественные материалы. Было ясно, что российским компаниям ни при каких условиях не предоставят доступ к новым материалам зарубежного производства. Здесь ведущую роль сыграл Всероссийский институт авиационных материалов (ВИАМ), при участии которого для ПД-14 разработано порядка 20 новых материалов.

В 2015 году специалисты ВИАМ впервые в стране изготовили завихритель фронтового устройства камеры сгорания ПД-14 с применением отечественной металлопорошковой композиции.

Но создать материал – полдела. Иногда российские металлы превосходят по качеству зарубежные, но для их использования в гражданском авиадвигателе необходима сертификация по международным нормам. Иначе двигатель, как бы он ни был хорош, не допустят к полётам за пределами России. Правила тут очень строги, поскольку речь идёт о безопасности людей. То же самое относится и к процессу изготовления двигателя: предприятиям отрасли требуется сертификация по нормам Европейского агентства авиационной безопасности (ЕASA). Всё это заставит повысить культуру производства, а под новые технологии необходимо провести перевооружение отрасли. Сама разработка ПД-14 проходила по новой, цифровой технологии, благодаря чему уже 7-й экземпляр двигателя был собран в Перми по технологии серийного производства, в то время как раньше опытная партия изготовлялась в количестве до 35 экземпляров.

Разработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолёта

ПД-14 должен вытащить на новый уровень всю отрасль. Да что говорить, даже летающая лаборатория Ил-76ЛЛ после нескольких лет простоя нуждалась в дооснащении оборудованием. Нашлась работа и для уникальных стендов ЦИАМ, позволяющих на земле имитировать условия полёта. В целом же проект ПД-14 сохранит для России более 10 000 высококвалифицированных рабочих мест.

ПД-14 – первый отечественный двигатель, который напрямую конкурирует с западным аналогом

Разработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолёта. С ситуацией, когда двигатель не успевает к началу испытаний самолёта, для которого он предназначен, авиастроители сталкиваются, увы, регулярно. Вот и выкатка первого экземпляра МС-21 состоится в 2016 году, а испытание ПД-14 только начались. Правда, в проекте с самого начала предусматривалась альтернатива: заказчики МС-21 могут выбирать между ПД-14 и PW1400G компании Pratt & Whitney. Именно с американским двигателем МС-21 и уйдёт в первый полёт, и именно с ним ПД-14 предстоит конкурировать за место под крылом.

Посетители у авиационного двигателя ПД-14 на Международном авиационно-космическом салоне МАКС - 2013 в Жуковском. Широкохордные пустотелые титановые лопатки вентилятора – одна из критических технологий ПД-14 © Рамиль Ситдиков, РИА НовостиПо сравнению с конкурентом, ПД-14 несколько уступает в экономичности, но зато он легче, имеет заметно меньший диаметр (1,9 м против 2,1), а значит, и меньшее сопротивление. И ещё одна особенность: российские специалисты сознательно пошли на некоторое упрощение конструкции. Базовый ПД-14 не использует редуктор в приводе вентилятора, а также не применяет регулируемое сопло внешнего контура, у него ниже температура газа перед турбиной, что упрощает достижение показателей надёжности и ресурса. Поэтому двигатель ПД-14 дешевле и, по предварительным оценкам, потребует меньших затрат на техническое обслуживание и ремонт. Кстати, в условиях падения цен на нефть именно более низкие эксплуатационные расходы, а не экономичность становятся схемообразующим фактором и главным конкурентным преимуществом авиадвигателя. В целом прямые эксплуатационные расходы МС-21 с ПД-14 могут быть на 2,5% ниже, чем у версии с американским двигателем.

Семейство перспективных ТРДД для семейства магистральных самолётов состоит из двигателей ПД-14, ПД-14А, ПД-14М и ПД-10:

  • ПД-14 — базовый ТРДД для самолета МС-21-300;
  • ПД-14А — дросселированный вариант ТРДД для самолета МС-21-200;
  • ПД-14М — форсированный вариант ТРДД для самолета МС-21-400;
  • ПД-10 — вариант с уменьшенной тягой до 10…11 тс для самолета SSJ‑NG.
Основные параметры двигателей (все параметры даны без учёта потерь в воздухозаборнике и без отборов воздуха и мощности на самолётные нужды) ПД-14А ПД-14 ПД-14М ПД-10
Тяга на взлетном режиме (Н = 0; М = 0), тс 12,5 14,0 15,6 10,9
Удельный расход топлива на крейсерском режиме, кг/кгс·ч -(10-15) % от уровня современных двигателей аналогичного класса тяги и назначения
Диаметр вентилятора, мм 1900 1900 1900 1677
Сухая масса двигателя, кг 2870 2870 2970 2350
Схема двигателя 1+3+8-2+6 1+3+8-2+6 1+4+8-2+6 1+1+8-2+5

ilsvik.ru

Чем хорош двигатель ПД-14

Чем хорош двигатель ПД-14ПД-14 (Перспективный Двигатель тягой 14 тонн) — это условное название семейства перспективных гражданских турбовентиляторных двигателей с тягой на взлёте от 9 до 18 тонн, разрабатываемого предприятиями Объединенной Двигательной Корпорации (разработчик — ОАО «Авиадвигатель», головной изготовитель — ОАО «ПМЗ», оба г. Пермь). 

Семейство двигателей ПД предназначено прежде всего для установки на самолёты МС-21-200/300/400, однако более мощные модификации на базе газогенератора этого двигателя, но с редукторным вентилятором (так называемые ПД-18Р) могут быть применены на Ту-214, Ил-96-300 и Ил-96-400Т, а вариант двигателя меньшей мощности (ПД-10) — на самолетах Сухой Суперджет вместо моторов SaM-146. Также исследуется возможность создания промышленных газотурбинных установок на базе этого двигателя, и даже турбовального двигателя для тяжелых вертолетов Ми-26. Ну в конце статьи вы можете посмотреть картинку — сколько разных модификаций мотора планируется и под какие самолеты.

Двигатель ПД-14 должен состоять из 8 ступеней компрессора и 2 ступеней турбины (5+ поколение), вентилятор выполнен с широкохордными пустотелыми лопатками, в компрессоре применены блиски. В целом двигатель является развитием другого пермского проекта ПС-12, над которым начали работу еще в конце 90-х годов.

Одним из ключевых достижений, позволивших поднять параметры двигателя, явилось освоение «Пермским моторным заводом» технологии нанесения теплозащитного покрытия на основе окиси циркония и иттрия толщиной 1 мм. 

30 октября 2015 года начались испытания двигателя ПД-14 на крыле летающей лаборатории Ил-76ЛЛ:

Обратите внимание на размеры ПД-14 в сравнении со старым пермским мотором Д-30КП (штатный для Ил-76).

Кстати, на модернизированные транспортники типа Ил-76 предполагается штатно ставить модернизированную версию ПД-14М с увеличенной до 15,6 тонны тягой. Аналогичный параметр для базовой версии силовой установки Ил-76 (Д-30КП) составляет 12-13 тонн.

Замена двигателя Д-30КП новым ПС-90 (тягой 14 тонн) на самолете Ил-76МД-90А уже позволила повысить его эффективность на 12 процентов. Последующая ремоторизация Ил-76МД на ПД-14М даст еще 12 процентов прироста эффективности. 

Ил-476 (для удобства сертификации проведенный как Ил-76МД-90А) способен развивать скорость до 850 километров в час и перевозить до 60 тонн грузов. Максимальная взлетная масса самолета составляет 210 тонн. С мотором ПД-14М эти параметры удастся еще несколько улучшить.

Но главное, конечно — это мотор для ожидаемой звезды российского авиапрома, среднемагистральника МС-21 — который должен заменить на линиях популярные боинги-737 и эйрбасы-320. Изначально предполагалось, что на эту машину будет ставиться импортный мотор Pratt & Whitney новейшего семейства PW1000G (конкретно вариант PW1400G) — однако Путин знал надежность американских «партнеров», поэтому параллельно рассматривались отечественные моторы, в качестве которых выступали ПД-14 и украинский (предполагалось выпускать его на российских заводах) АИ-436Т12.

Разумеется, украинский мотор — это обычный для руины древний, практически окаменелый кусок дерьма, выдаваемый за свежеслепленную конфету Рошен. Основой АИ-436 стал газогенератор древнего двигателя Д-36, эксплуатирующегося с 1979 г. на самолетах Як-42, Ан-72 и Ан-74. Навесив на газогенератор Д-36 новую турбину и вентилятор, получили мотор Д-436Т, который использовали на амфибии Бе-200 и дерьмосамолете Ан-148. Но тяга этого дрыгла — всего 7.5 тонн, чего для МС-21 явно мало. Тогда этот газогенератор форсировали по температуре, и навернули на него еще более безумную трехвальную (привет Роллс-Ройсам) систему турбин и огромный вентилятор с редуктором — и получили АИ-436Т12 тягой в 12 тонн.

Понятно, что форсаж разработанного для самолета Як-42 мотора, изначально рассчитанного на тягу не более 6.5 тонн даже в чрезвычайном режиме, практически вдвое — не мог добавить ему ресурса. А ведь этот ресурс и во времена СССР был не ахти какой — что объяснимо, трехвальные двигатели технически очень сложны.

К счастью для российских двигателистов — произошел евромайдан, и украинский гумномотор утонул в зловонии «революции гидности», а импортный Pratt & Whitney сожрали введенные Западом санкции. Поэтому выбор ПД-14 совершился сам собой, пермские моторостроители получили государственное финансирование и внимание Путина — и постройка моторов поскакала быстрее, чем хохлы скачут на майдане. Всё-таки как много хохлы принесли России хорошего своим майданом — и Крым, и газ задорого, и вот новый отечественный мотор. Между прочим, это первый мотор, полностью разработанный ПРИ ПУТИНЕ, в новой России.

Вот ПД-14 привинчивают на крыло летающей лаборатории (седьмой собранный двигатель, первый серийный), вид сзади:

Кликайте для увеличения. ПД-14 — это который «с зубами». Хорошо заметна разница со старым пермским мотором Д-30КП. «Зубы» — это так называемые «шевроны», они уменьшают шумность мотора за счет разбиения потока. 

Кстати, вы наверняка заметили, какой ободранный вид имеет летающая лаборатория пермского завода. Этот Ил-76 бортовой номер 76529 не только облезлый стоял в углу аэродрома, он еще и разукомплектованный весь был, ведь крайний полет он совершил в лохматом 1997 году. Так что его полностью укомплектовали, поменяли все шланги, стекла, сделали ремонт стоек шасси и т.д. — машина почти что ремонт прошла. Теперь будет самым старым летающим 76-ым в России. Скоро его покрасят, и будет вообще красавец. Вот что госбабло и путинские пендали животворящие делают.

У России есть еще две таких летающих лаборатории — бортовой номер 76454 (на нем испытывают сатурновские моторы, например SaM-146) и бортовой номер 76492 (ЛИИ Громова, в основном испытывает иностранные моторы и всякую экзотику вроде НК-93), они посвежее.

Двигатель ПД-14 довольно необычен для современного двигателестроения — он имеет относительно простую конструкцию, безредукторный привод вентилятора и сравнительно низкую степень двухконтурности (8,6 и менее). Лишь в версии ПД-18Р мотор получает вентилятор с редуктором и большую степень двухконтурности — в результате экономичность должна вырасти еще на 3-5%. Вариант двигателя ПД-14М предполагается применить также на перспективном военно-транспортном самолете Ил-214 (это такой «удешевленный Ил-76» с двумя моторами).

Столь широкое использование унифицированной конструкции мотора для множества разных самолетов — единственный в условиях России разумный способ обеспечить необходимую тиражность (объем серийного производства) для окупаемости разработки нового мотора. Сами понимаете — сколь бы хорош не был российский двигатель, покупать его изготовители Эйрбасов и Боингов не будут, единственная ниша его существования — это отечественные самолеты, да еще, если очень повезет, бразильский Embraer и китайский ARJ.

Впрочем, если мотор будет хорошим — отечественные перевозчики могут потребовать ремоторизации старых Эйрбасов и Боингов на эти двигатели.

Иллюстрация: Сергей Савельев

tehnowar.ru

Начало испытаний авиадвигателя ПД-14 стало событием 2015 года. 10 фактов о двигателях

30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ. Это событие исключительной важности. По достоинству оценить его значение помогут 10 любопытных фактов о турбореактивных двигателях вообще и о ПД-14 в частности.

Достижение человечестваТурбореактивный двигатель (ТРД) – одно из главных технических достижений человечества, которое можно поставить в один ряд с изобретением колеса, паруса, паровой машины, двигателя внутреннего сгорания, ракетного двигателя и атомного реактора. Именно благодаря ТРД наша планета вдруг стала маленькой и уютной. Любой человек может за считанные часы комфортно и безопасно добраться до самого отдаленного ее уголка.

По статистике лишь один полёт из 8 млн заканчивается аварией с гибелью людей. Даже если вы будете каждый день садиться на случайный рейс, вам понадобится 21 000 лет, чтобы погибнуть в авиакатастрофе. Согласно статистике, ходить пешком во много раз опаснее, чем летать. И всё это во многом благодаря потрясающей надёжности современных авиадвигателей.

Чудо техникиА ведь ТРД – крайне сложное устройство. В наиболее трудных условиях работает его турбина. Её важнейший элемент – лопатка, с помощью которой кинетическая энергия газового потока преобразуется в механическую энергию вращения. Одна лопатка, а их в каждой ступени авиационной турбины насчитывается около 70, развивает мощность, равную мощности двигателя автомобиля «Формулы-1», а при частоте вращения порядка 12 тыс. оборотов в минуту на неё действует центробежная сила, равная 18 тоннам, что равняется нагрузке на подвеску двухэтажного лондонского автобуса.

Схема двигателя ПД-14 © ОАО «Авиадвигатель»Схема двигателя ПД-14 © ОАО «Авиадвигатель»

Но и это еще не всё. Температура газа, с которым соприкасается лопатка, почти равна половине температуры на поверхности Солнца. Эта величина на 200 °С превышает температуру плавления интерметаллида (алюминида титана), из которого изготавливается лопатка. Представьте себе такую задачу: требуется не дать растаять кубику льда в печи, нагретой до 200 °С. Конструкторы умудряются решить проблему охлаждения лопатки с помощью внутренних воздушных каналов и специальных покрытий.

Причём, при сохранении всех прочностных характеристик, лопатки из интерметаллида титана намного легче, чем аналогичные, выполненные по используемой ранее технологии литья из никелевых сплавов.

Неудивительно, что одна лопатка стоит в восемь раз дороже серебра. Для создания только этой небольшой детали, которая помещается в ладони, необходимо разработать более десятка сложнейших технологий. И каждая из этих технологий оберегается как важнейшая государственная тайна.

Технологии ТРД важнее атомных секретовКроме отечественных компаний, только фирмы США (Pratt & Whitney, General Electric, Honeywell), Англии (Rolls-Royce) и Франции (Snecma) владеют технологиями полного цикла создания современных ТРД. То есть государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием или запускающих в космос спутники. Многолетние усилия Китая, к примеру, до сих пор так и не привели к успеху в этой области. Китайцы быстро скопировали и оснастили собственными системами российский истребитель Су-27, выпуская его под индексом J-11. Однако скопировать его двигатель АЛ-31Ф им так и не удалось, поэтому Китай до сих пор вынужден закупать этот уже давно не самый современный ТРД в России.

ПД-14 – первый отечественный авиадвигатель 5-го поколенияПрогресс в авиадвигателестроении характеризуется несколькими параметрами, но одним из главных считается температура газа перед турбиной. Переход к каждому новому поколению ТРД, а всего их насчитывают пять, характеризовался ростом этой температуры на 100–200 градусов. Так, температура газа у ТРД 1-го поколения, появившихся в конце 1940-х годов, не превышала 1150 °К, у 2-го поколения (1950-е гг.) этот показатель вырос до 1250 °К, в 3-м поколении (1960-е гг.) этот параметр поднялся до 1450 °К, у двигателей 4-го поколения (1970–1980 гг.) температура газа дошла до 1650 °К. Лопатки турбин двигателей 5-го поколения, первые образцы которых появились на Западе в середине 90-х, работают при температуре 1900 °К. В настоящее время в мире только 15% двигателей, находящихся в эксплуатации, относятся к 5-му поколению.

Одна лопатка авиационной турбины развивает мощность, равную мощности двигателя автомобиля «Формулы-1»

Увеличение температуры газа, а также новые конструктивные схемы, в первую очередь двухконтурность, позволили за 70 лет развития ТРД добиться впечатляющего прогресса. К примеру, отношение тяги двигателя к его массе увеличилось за это время в 5 раз и для современных моделей дошло до 10. Степень сжатия воздуха в компрессоре увеличилась в 10 раз: с 5 до 50, при этом число ступеней компрессора уменьшилось вдвое – в среднем с 20 до 10. Удельный расход топлива современных ТРД сократился вдвое по сравнению с двигателями 1-го поколения. Каждые 15 лет происходит удвоение объёма пассажирских перевозок в мире при почти неизменных совокупных затратах топлива мировым парком самолётов.

МС-21ПД-14 разрабатывался для российского среднемагистрального самолета МС-21 © ПАО «ОАК»

В настоящее время в России производится единственный гражданский авиадвигатель 4-го поколения – ПС-90. Если сравнивать с ним ПД-14, то у двух двигателей схожие массы (2950 кг у базовой версии ПС-90А и 2870 кг у ПД-14), габариты (диаметр вентилятора у обоих 1,9 м), степень сжатия (35,5 и 41) и взлётная тяга (16 и 14 тс).

При этом компрессор высокого давления ПД-14 состоит из 8 ступеней, а ПС-90 – из 13 при меньшей суммарной степени сжатия. Степень двухконтурности у ПД-14 вдвое выше (4,5 у ПС-90 и 8,5 у ПД-14) при том же диаметре вентилятора. В итоге удельный расход топлива в крейсерском полёте у ПД-14 упадёт, по предварительным оценкам, на 15% по сравнению с существующими двигателями: до 0,53–0,54 кг/(кгс·ч) против 0,595 кг/(кгс·ч) у ПС-90.

ПД-14 – первый авиадвигатель, созданный в России после распада СССР Когда Владимир Путин поздравлял российских специалистов с началом испытаний ПД-14, он сказал, что последний раз подобное событие в нашей стране произошло 29 лет назад. Скорее всего, имелось в виду 26 декабря 1986 года, когда состоялся первый полёт Ил-76ЛЛ по программе испытаний ПС-90А.

Советский Союз был великой авиационной державой. В 1980-е годы в СССР работали восемь мощнейших авиадвигательных ОКБ. Зачастую фирмы конкурировали друг с другом, поскольку существовала практика давать одно и то же задание двум ОКБ. Увы, времена изменились. После развала 1990-х годов пришлось собирать все отраслевые силы, чтобы осуществить проект создания современного двигателя. Собственно, формирование в 2008 году ОДК (Объединенной двигателестроительной корпорации), со многими предприятиями которой активно сотрудничает банк ВТБ, и имело целью создание организации, способной не только сохранить компетенции страны в газотурбостроении, но и конкурировать с ведущими фирмами мира.

Головным исполнителем работ по проекту ПД-14 является ОКБ «Авиадвигатель» (Пермь), которое, кстати, разрабатывало и ПС-90. Серийное производство организуется на Пермском моторном заводе, но детали и комплектующие будут изготавливаться по всей стране. В кооперации участвуют Уфимское моторостроительное производственное объединение (УМПО), НПО «Сатурн» (Рыбинск), НПЦГ «Салют» (Москва), «Металлист-Самара» и многие другие.

ПД-14 – двигатель для магистрального самолёта XXI векаОдним из самых удачных проектов в области гражданской авиации СССР был среднемагистральный самолёт Ту-154. Выпущенный в количестве 1026 шт., он долгие годы составлял основу парка «Аэрофлота». Увы, время идет, и этот трудяга уже не отвечает современным требованиям ни по экономичности, ни по экологии (шум и вредные выбросы). Главная слабость Ту-154 – двигатели 3-го поколения Д-30КУ с высоким удельным расходом топлива (0,69 кг/кгс·ч).

Государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием

Пришедший на смену Ту-154 среднемагистральный Ту-204 с двигателями 4-го поколения ПС-90 в условиях распада страны и свободного рынка не смог выдержать конкуренцию с зарубежными производителями даже в борьбе за отечественных авиаперевозчиков. Между тем сегмент среднемагистральных узкофюзеляжных самолётов, в котором господствуют Boeing-737 и Airbus 320 (только в 2015 году их было поставлено авиакомпаниям мира 986 шт.), – самый массовый, и присутствие на нём – необходимое условие сохранения отечественного гражданского самолётостроения. Таким образом, в начале 2000-х годов была выявлена острая необходимость создания конкурентоспособного ТРД нового поколения для среднемагистрального самолёта на 130–170 мест. Таким самолётом должен стать МС-21 (Магистральный самолет XXI века), разрабатываемый Объединенной авиастроительной корпорацией. Задача невероятно сложная, поскольку конкуренцию с Boeing и Airbus не выдержал не только Ту-204, но и ни один другой самолёт в мире. Именно под МС-21 и разрабатывается ПД-14. Удача в этом проекте будет сродни экономическому чуду, но подобные начинания – единственный способ для российской экономики слезть с нефтяной иглы.

ПД-14 – базовый проект для семейства двигателейБуквы «ПД» расшифровываются как перспективный двигатель, а число 14 – тяга в тонна-силах. ПД-14 – это базовый двигатель для семейства ТРД тягой от 8 до 18 тс. Бизнес-идея проекта состоит в том, что все эти двигатели создаются на основе унифицированного газогенератора высокой степени совершенства. Газогенератор – это сердце ТРД, которое состоит из компрессора высокого давления, камеры сгорания и турбины. Именно технологии изготовления этих узлов, прежде всего так называемой горячей части, являются критическими.

Семейство двигателей на базе ПД-14 позволит оснастить современными силовыми установками практически все российские самолёты: от ПД-7 для ближнемагистрального «Сухой Суперджет 100» до ПД-18, который можно установить на флагман российского самолётостроения – дальнемагистральный Ил-96. На базе газогенератора ПД-14 планируется разработать вертолётный двигатель ПД-10В для замены украинского Д-136 на самом большом в мире вертолёте Ми-26. Этот же двигатель можно использовать и на российско-китайском тяжёлом вертолёте, разработка которого уже началась. На базе газогенератора ПД-14 могут быть созданы и так необходимые России газоперекачивающие установки и газотурбинные электростанции мощностью от 8 до 16 МВт.

30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ © ОАО «Авиадвигатель»30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ© Валентин Мазанов, RussianPlanet.net

ПД-14 – это 16 критических технологий Для ПД-14, при ведущей роли Центрального института авиационного моторостроения (ЦИАМ), головного НИИ отрасли и ОКБ «Авиадвигатель», было разработано 16 критических технологий: монокристаллические лопатки турбины высокого давления с перспективной системой охлаждения, работоспособные при температуре газа до 2000°К, пустотелая широкохордная лопатка вентилятора из титанового сплава, благодаря которой удалось повысить КПД вентиляторной ступени на 5% в сравнении с ПС-90, малоэмиссионная камера сгорания из интерметаллидного сплава, звукопоглощающие конструкции из композиционных материалов, керамические покрытия на деталях горячей части, полые лопатки турбины низкого давления и др.

ПД-14 и в дальнейшем будет совершенствоваться. На МАКС-2015 уже можно было увидеть созданный в ЦИАМ прототип широкохордной лопатки вентилятора из углепластика, масса которой составляет 65% от массы пустотелой титановой лопатки, применяемой сейчас. На стенде ЦИАМ можно было видеть и прототип редуктора, которым предполагается оснастить модификацию ПД-18Р. Редуктор позволит снизить обороты вентилятора, благодаря чему, не привязанный к оборотам турбины, он будет работать в более эффективном режиме. Предполагается поднять на 50°К и температуру газа перед турбиной. Это позволит увеличить тягу ПД-18Р до 20 тс, а удельный расход топлива сократить еще на 5%.

ПД-14 – это 20 новых материаловПри создании ПД-14 разработчики с самого начала сделали ставку на отечественные материалы. Было ясно, что российским компаниям ни при каких условиях не предоставят доступ к новым материалам зарубежного производства. Здесь ведущую роль сыграл Всероссийский институт авиационных материалов (ВИАМ), при участии которого для ПД-14 разработано порядка 20 новых материалов.

В 2015 году специалисты ВИАМ впервые в стране изготовили завихритель фронтового устройства камеры сгорания ПД-14 с применением отечественной металлопорошковой композиции.

Но создать материал – полдела. Иногда российские металлы превосходят по качеству зарубежные, но для их использования в гражданском авиадвигателе необходима сертификация по международным нормам. Иначе двигатель, как бы он ни был хорош, не допустят к полётам за пределами России. Правила тут очень строги, поскольку речь идёт о безопасности людей. То же самое относится и к процессу изготовления двигателя: предприятиям отрасли требуется сертификация по нормам Европейского агентства авиационной безопасности (ЕASA). Всё это заставит повысить культуру производства, а под новые технологии необходимо провести перевооружение отрасли. Сама разработка ПД-14 проходила по новой, цифровой технологии, благодаря чему уже 7-й экземпляр двигателя был собран в Перми по технологии серийного производства, в то время как раньше опытная партия изготовлялась в количестве до 35 экземпляров.

Разработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолёта

ПД-14 должен вытащить на новый уровень всю отрасль. Да что говорить, даже летающая лаборатория Ил-76ЛЛ после нескольких лет простоя нуждалась в дооснащении оборудованием. Нашлась работа и для уникальных стендов ЦИАМ, позволяющих на земле имитировать условия полёта. В целом же проект ПД-14 сохранит для России более 10 000 высококвалифицированных рабочих мест.

ПД-14 – первый отечественный двигатель, который напрямую конкурирует с западным аналогомРазработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолёта. С ситуацией, когда двигатель не успевает к началу испытаний самолёта, для которого он предназначен, авиастроители сталкиваются, увы, регулярно. Вот и выкатка первого экземпляра МС-21 состоится в 2016 году, а испытание ПД-14 только начались. Правда, в проекте с самого начала предусматривалась альтернатива: заказчики МС-21 могут выбирать между ПД-14 и PW1400G компании Pratt & Whitney. Именно с американским двигателем МС-21 и уйдёт в первый полёт, и именно с ним ПД-14 предстоит конкурировать за место под крылом.

Посетители у авиационного двигателя ПД-14 на Международном авиационно-космическом салоне МАКС - 2013 в Жуковском. Широкохордные пустотелые титановые лопатки вентилятора – одна из критических технологий ПД-14 © Рамиль Ситдиков, РИА НовостиПосетители у авиационного двигателя ПД-14 на Международном авиационно-космическом салоне МАКС - 2013 в Жуковском. Широкохордные пустотелые титановые лопатки вентилятора – одна из критических технологий ПД-14© Рамиль Ситдиков, РИА Новости

По сравнению с конкурентом, ПД-14 несколько уступает в экономичности, но зато он легче, имеет заметно меньший диаметр (1,9 м против 2,1), а значит, и меньшее сопротивление. И ещё одна особенность: российские специалисты сознательно пошли на некоторое упрощение конструкции. Базовый ПД-14 не использует редуктор в приводе вентилятора, а также не применяет регулируемое сопло внешнего контура, у него ниже температура газа перед турбиной, что упрощает достижение показателей надёжности и ресурса. Поэтому двигатель ПД-14 дешевле и, по предварительным оценкам, потребует меньших затрат на техническое обслуживание и ремонт. Кстати, в условиях падения цен на нефть именно более низкие эксплуатационные расходы, а не экономичность становятся схемообразующим фактором и главным конкурентным преимуществом авиадвигателя. В целом прямые эксплуатационные расходы МС-21 с ПД-14 могут быть на 2,5% ниже, чем у версии с американским двигателем.

Семейство перспективных ТРДД для семейства магистральных самолётов состоит из двигателей ПД-14, ПД-14А, ПД-14М и ПД-10:

  • ПД-14 - базовый ТРДД для самолета МС-21-300;
  • ПД-14А - дросселированный вариант ТРДД для самолета МС-21-200;
  • ПД-14М - форсированный вариант ТРДД для самолета МС-21-400;
  • ПД-10 - вариант с уменьшенной тягой до 10...11 тс для самолета SSJ‑NG.
Основные параметры двигателей(все параметры даны без учёта потерь в воздухозаборнике и без отборов воздуха и мощности на самолётные нужды) ПД-14А ПД-14 ПД-14М ПД-10
Тяга на взлетном режиме (Н = 0; М = 0), тс 12,5 14,0 15,6 10,9
Удельный расход топлива на крейсерском режиме, кг/кгс·ч -(10-15) % от уровня современных двигателей аналогичного класса тяги и назначения
Диаметр вентилятора, мм 1900 1900 1900 1677
Сухая масса двигателя, кг 2870 2870 2970 2350
Схема двигателя 1+3+8-2+6 1+3+8-2+6 1+4+8-2+6 1+1+8-2+5

На 1 июля 2016 года заказано 175 МС-21, из них 35 – с двигателем ПД-14.

Источники:

  • ВТБ - Высокие технологии (http://vtbrussia.ru/tech/pd-14-dvigatel-progressa/)
  • Союз авиапроизводителей России (http://www.aviationunion.ru/news_second.php?new=4182)
  • Сайт завода АО "Авиадвигатель" (http://www.avid.ru/pd14/)
  • Фото: ПАО «ОАК», АО «Авиадвигатель», РИА Новости
Загрузка...

aviation21.ru

Двигатель ПД-14 и семейство перспективных двигателей

Модификации двигателей, разрабатываемые в настоящее время

  • Семейство перспективных ТРДД для БСМС состоит из двигателей ПД-14, ПД-14А, ПД-14М, ПД-10;

  • ПД-14 - базовый ТРДД для самолета МС-21-300;

  • ПД-14А - дросселированный вариант ТРДД для самолета МС-21-200;

  • ПД-14М - форсированный вариант ТРДД для самолета МС-21-400;

  • ПД-10 - вариант с уменьшенной тягой до 10...11 тс для самолета SSJ‑NG.

Основные параметры двигателей (все параметры даны без учета потерь в воздухозаборнике и без отборов воздуха и мощности на самолетные нужды)

ПД-14А

ПД-14

ПД-14М

ПД-10

Тяга на взлетном режиме (Н = 0; М = 0), тс

12,5

14,0

15,6

10,9

Удельный расход топлива на крейсерском режиме, кг/кгс·ч

-(10-15) % от уровня современных двигателей аналогичного класса тяги и назначения

Диаметр вентилятора, мм

1900

1900

1900

1677

Сухая масса двигателя, кг

2870

2870

2970

2350

Схема двигателя

1+3+8-2+6

1+3+8-2+6

1+4+8-2+6

1+1+8-2+5

Так же на основании технологий, разработанных в рамках Проекта ПД-14, планируется создание промышленных ГТУ для производства ГПА и ГТЭС в классах мощности 8, 16 МВт.

Конкурентные преимущества по показателям экономической эффективности эксплуатации обеспечиваются следующими основными параметрическими и конструктивными особенностями по сравнению с аналогами-конкурентами:

  • Меньшие температуры на выходе из камеры сгорания являются важнейшим фактором уменьшения стоимости, снижения рисков в достижении заявленных показателей долговечности и надёжности двигателей самолетов с коротким полетным циклом.

  • Меньший диаметр вентилятора ПД-14 позволяет иметь объективное снижение массы двигателя и лобового сопротивления мотогондолы.

  • Оптимальные размеры внутреннего контура (газогенератора) облегчают решение проблемы относительно больших отборов воздуха из компрессора на различные нужды и снижают установочные потери тяги.

  • Достаточно высокая расчетная степень сжатия вентилятора (вследствие применения несколько меньшей степени двухконтурности) исключает необходимость применения регулируемого сопла наружного контура с неизбежным увеличением массы и сопротивления двигательной установки и снижает установочные потери тяги.

  • Проверенная в эксплуатации классическая безредукторная схема двигателя ПД-14 позволяет достичь требуемых показателей массы, ресурса, надежности и стоимости обслуживания.

Оптимальное сочетание умеренно высоких параметров цикла и проверенной схемы двигателя с прямым приводом вентилятора позволяет обеспечить снижение цены двигателя, затрат на обслуживание и ремонт, массы и лобового сопротивления двигательной установки и обеспечить преимущество двигателя ПД-14 по показателям экономической эффективности эксплуатации и стоимости жизненного цикла.

www.avid.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики