СИГ-двигатель: все что вам нужно знать о двигателе на электромагнитной тяге. Электромагнитный двигатель
Электромагнитные двигатели: схема, принцип работы
Электромагнитные двигатели - это устройства, которые работают по принципу индукции. Некоторые люди называют их электромеханическими преобразователями. Побочным эффектом данных устройств считается обильное выделение тепла. Существуют модели постоянного и переменного типа.
Также устройства различают по типу ротора. В частности, есть короткозамкнутые и фазные модификации. Сфера применения электромагнитных двигателей очень широкая. Встретить их можно в бытовых приборах, а также промышленных агрегатах. Активно используются они и в самолетостроении.
Схема двигателя
Схема электромагнитного двигателя включает в себя статор, а также ротор. Коллекторы, как правило, применяются щеточного типа. Ротор состоит из вала, а также наконечника. Для охлаждения системы часто устанавливаются вентиляторы. Для свободного вращения вала имеются роликовые подшипники. Также существуют модификации с магнитопроводами, которые являются неотъемлемой частью статора. Над ротором располагается контактное кольцо. В мощных модификациях используется втягивающее реле. Непосредственно подача тока осуществляется через кабель.
Принцип работы двигателя
Как говорилось ранее, принцип действия построен на электромагнитной индукции. При подключении модели образуется магнитное поле. Затем на обмотке возрастает напряжение. Под силой действия магнитного поля в действие приводится ротор. Частота вращения устройства в первую очередь зависит от количества магнитных полюсов. Коллектор в данном случае играет роль стабилизатора. Подача тока в цепь происходит через статор. Также важно отметить, что для защиты двигателя используются кожухи и уплотнители.
Как сделать своими руками?
Сделать обычный электромагнитный двигатель своими руками довольно просто. В первую очередь следует заняться ротором. Для этого придется найти металлический стержень, который будет играть роль вала. Также потребуется два мощных магнита. На статоре должна находиться обмотка. Далее останется лишь установить щеточный коллектор. Электромагнитные двигатели-самоделки подсоединяются к сети через проводник.
Модификации для машин
Электромагнитные двигатели для автомобилей изготавливаются только коллекторного типа. Мощность их в среднем составляет 40 кВт. В свою очередь, параметр номинального тока равняется 30 А. Статоры в данном случае используются двухполюсные. У некоторых модификаций имеется клеммная коробка. Для охлаждения системы применяются вентиляторы.
Также в устройствах предусмотрены специальные отверстия для циркуляции воздуха. Роторы в двигателях устанавливаются с металлическими сердечниками. Для защиты вала используются уплотнители. Статор в данном случае находится в кожухе. Электромагнитные двигатели для машин с втягивающими реле встречаются редко. В среднем диаметр вала не превышает 3.5 см.
Устройства для самолетов
Работа двигателей данного типа построена на принципе электромагнитной индукции. Для этого статоры применяются трехполюсного типа. Также электромагнитные двигатели летательных аппаратов включают в себя бесщеточные коллекторы. Клеммные коробки в устройствах располагаются над контактными кольцами. Неотъемлемой частью статора является якорь. Вал вращается благодаря роликовым подшипникам. У некоторых модификаций применяются щеткодержатели. Также важно упомянуть о различных типах клеммных коробок. В данном случае многое зависит о мощности модификации. Электромагнитные двигатели для самолетов с целью охлаждения оборудуются вентиляторами.
Двигатели-генераторы
Электромагнитные двигатели-генераторы выпускаются со специальными бендиксами. Также схема устройства включает в себя втягивающие реле. Для запуска ротора применяются сердечники. Статоры в устройствах используются двухполюсного типа. Непосредственно вал у них крепится на роликовых подшипниках. У большинства двигателей имеется резиновая заглушка. Таким образом, ротор изнашивается медленно. Еще есть модификации с щеткодержателями.
Модели с короткозамкнутым ротором
Электромагнитный двигатель с короткозамкнутым ротором часто устанавливается в бытовых приборах. Мощность моделей в среднем равняется 4 кВт. Непосредственно статоры используются двухполюсного типа. Роторы крепятся в задней части двигателя. Вал у моделей применяется небольшого диаметра. На сегодняшний день чаще всего выпускаются асинхронные модификации.
Клеммные коробки в устройствах отсутствуют. Для подачи тока используются специальные полюсные наконечники. Также схема двигателя включает в себя магнитопроводы. Крепятся они возле статоров. Еще важно отметить, что выпускаются устройства с щеткодержателями и без них. Если рассматривать первый вариант, то в данном случае устанавливаются специальные зубчатые передачи. Таким образом, статор ограждается от магнитного поля. Устройства без щеткодержателя имеют уплотнитель. Бендиксы в двигателях устанавливаются за статором. Для их фиксации применяются шпонки. Недостатком данных устройств считается быстрый износ сердечника. Возникает он из-за повышенной температуры в двигателе.
Модификации с фазным ротором
Электромагнитный двигатель с фазным ротором устанавливается на станки и часто используется в тяжелой промышленности. Магнитопроводы в данном случае имеются с якорями. Отличительной чертой устройств принято считать большие валы. Непосредственно напряжение на обмотку подается через статор. Для вращения вала используется щеткодержатель. В некоторых из них установлены контактные кольца. Также важно отметить, что мощность моделей в среднем составляет 45 кВт. Непосредственно питание двигателей может осуществляться только от сети с переменным током.
Коллекторный электромагнитный двигатель: принцип работы
Коллекторные модификации активно применяются для электроприводов. Принцип действия у них довольно простой. После подачи напряжения в цепь задействуется ротор. Электромагнитное поле запускает процесс индукции. Возбуждение обмотки заставляет вал ротора вращаться. Тем самым приводится в действие диск устройства. Для уменьшения силы трения используются подшипники. Также важно отметить, что в моделях устанавливаются щеткодержатели. В задней части устройств часто имеется вентилятор. Для того чтобы вал не терся об уплотнитель, применяется защитное кольцо.
Бесколлекторные модификации
Модели с независимым возбуждением
Модификации данного типа отличаются клеммными магнитопроводами. В данном случае устройства работают в сети только с переменным током. Непосредственно напряжение в первую очередь подается на статор. Роторы у моделей изготавливаются с коллекторами. У некоторых модификаций мощность достигает 55 кВт.
По типу якорей устройства отличаются. Щеткодержатели часто устанавливаются на стопорном кольце. Также важно отметить, что коллекторы в устройствах используются с уплотнителями. Диски в данном случае располагаются за статорами. У многих двигателей бендиксы отсутствуют.
Схема двигателя с самовозбуждением
Электромагнитные двигатели данного типа способны похвастаться высокой мощностью. В данном случае обмотки имеются высоковольтного типа. Подача напряжения происходит через клеммные контакты. Непосредственно ротор крепится за щеткодержателем. Уровень рабочего тока в устройствах составляет 30 А. В некоторых модификациях применяются якоря с щеткодержателями.
Также есть устройства с однополюсными статорами. Непосредственно вал находится в центре двигателя. Если рассматривать устройства большой мощности, то у них применяются вентилятор для охлаждения системы. Также на кожухе располагаются небольшие отверстия.
Модели с параллельным возбуждением
Электромагнитные двигатели данного типа изготавливаются на базе щеточных коллекторов. Якоря в данном случае отсутствуют. Вал в устройствах крепится на роликовых подшипниках. Также для уменьшения силы трения используются специальные лапы. У некоторых конфигураций есть магнитопроводы. Подключаться модели могут только к сети с постоянным током.
Еще важно отметить, что на рынке в основном представлены трехтактные модификации. Щеткодержатели в устройствах выполнены в форме цилиндров. По мощности модели отличаются. В среднем параметр рабочего тока на холостом ходе не превышает 50 А. Для усиления электромагнитного поля применяются роторы с высоковольтной обмоткой. У некоторых конфигураций используются наконечники на магнитопроводах.
Устройства последовательного возбуждения
Принцип работы двигателей данного типа довольно простой. Непосредственно напряжение подается на статор. Далее ток проходит по обмотке ротора. На данном этапе происходит возбуждение первичной обмотки. Вследствие этого приводится в действие ротор. Однако следует учитывать, что работать двигатели способны только в сети с переменным током. Наконечники в данном случае применяются с магнитопроводом.
Некоторые устройства оснащены щеткодержателями. Мощность моделей колеблется от 20 до 60 кВт. Для фиксации вала используются стопорные кольца. Бендиксы в данном случае располагаются в нижней части конструкции. Клеммники отсутствуют. Также важно отметить, что вал устанавливается различного диаметра.
Двигатели смешанного возбуждения
Электромагнитные двигатели данного типа могут использоваться только для приводов. Ротор здесь чаще всего устанавливается с первичной обмоткой. В данном случае показатель мощности не превышает 40 кВт. Номинальная перегрузка системы составляет около 30 А. Статор в устройствах применяется трехполюсного типа. Подключать указанный двигатель можно только в сеть с переменным током. Клеммные коробки у них используются с контактами.
Некоторые модификации оснащены щеткодержателями. Также на рынке представлены устройства с вентиляторами. Уплотнители чаще всего располагаются над статорами. Действуют устройства по принципу электромагнитной индукции. Первичное возбуждение осуществляется на магнитопроводе статора. Также важно отметить, что в устройствах применятся высоковольтная обмотка. Для фиксации вала используются защитные кольца.
Устройства переменного тока
Схема модели данного типа включает статор двухполюсного типа. В среднем мощность устройства равняется 40 кВт. Ротор здесь применяется с первичной обмоткой. Также есть модификации, у которых имеются бендиксы. Устанавливаются они у статора и играю роль стабилизатора электромагнитного поля.
Для вращения вала применяется ведущая шестерня. В данном случае лапы устанавливаются для уменьшения силы трения. Также используются полюсные наконечники. Для защиты механизма применяются кожухи. Магнитопроводы у моделей устанавливаются лишь с якорями. В среднем рабочий ток в системе поддерживается на уровне 45 А.
Синхронные устройства
Схема синхронного двигателя включает в себя двухполюсный статор, а также щеточный коллектор. В некоторых устройствах применяется магнитопровод. Если рассматривать бытовые модификации, то в них используются щеткодержатели. В среднем параметр мощности составляет 30 кВт. Устройства с вентиляторами встречаются редко. У некоторых моделей применяются зубчатые передачи.
Для охлаждения двигателя на кожухе имеются вентиляционные отверстия. В данном случае стопорное кольцо устанавливается у основания вала. Обмотка используется низковольтного типа. Принцип работы синхронной модификации построен на индукции электромагнитного поля. Для этого в статоре устанавливаются магниты разной мощности. При возбуждении обмотки вал начинается вращаться. Однако частотность у него невысокая. Мощных модели имеют коллекторы с реле.
Схема асинхронного двигателя
Асинхронные модели являются компактными и часто используются в бытовых приборах. Однако в тяжелой промышленности они также являются востребованными. В первую очередь следует отметить их защищенность. Роторы в устройствах применяются только однополюсного типа. Однако статоры устанавливаются с магнитопроводами. В данном случае обмотка применяется высоковольтного типа. Для стабилизации электромагнитного поля есть бендикс.
Крепится он в устройстве благодаря шпонке. Втягивающее реле в них располагается за якорем. Вал устройства вращается на специальных роликовых подшипниках. Также важно отметить, что есть модификации с бесщеточными коллекторами. Используются они в основном для приводов различной мощности. Сердечники в данном случае установлены удлиненные, и располагаются они за магнитопроводами.
fb.ru
Электромагнитный двигатель с КПД > 100%: миф или реальность?
Конечно, это справедливо. Любому двигателю нужен источник энергии. Двигателю внутреннего сгорания — бензин, электродвигателю — источник электроэнергии, например, аккумуляторы. Но бензин не вечен, его запас нужно постоянно пополнять, да и аккумуляторы требуют периодической подзарядки.
Однако если использовать источник энергии, который бы не нуждался в пополнении, то есть неисчерпаемый источник энергии, двигатель с КПД больше 100% вполне мог бы иметь право на существование.
На первый взгляд существование такого источника в природе невозможно. Однако это только на первый, неподготовленный, взгляд.
Возьмем, к примеру, гидроэлектростанцию. Вода, собранная в огромное водохранилище, падает с большой высоты плотины и вращает гидротурбину, которая, в свою очередь, вращает электрогенератор. Электрогенератор вырабатывает электроэнергию.
Вода падает под действием гравитации Земли. При этом совершается работа по выработке электроэнергии, хотя гравитация Земли, являясь источником энергии притяжения, не уменьшается. Затем вода под действием излучения Солнца и все той же гравитации снова возвращается в водохранилище. Солнце, конечно, не вечное, но на пару миллиардов лет его хватит. Ну а гравитация опять совершает работу, вытягивая влагу из атмосферы, и опять не уменьшаясь ни на йоту. По своей сути гидроэлектростанция является гидроэлектрогенератором с КПД больше 100%, только громоздким и дорогим в обслуживании. Тем не менее, работа гидроэлектростанций наглядно показывает то, что создание двигателя с КПД больше 100% вполне осуществимо, ведь не только гравитация может служить источником неисчерпаемой энергии.
Как известно, постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что-либо притягиваешь. Если постоянный магнит притянул к себе железный предмет, он тем самым совершил работу, но его сила при этом не уменьшилась. Это уникальное свойство постоянного магнита позволяет использовать его в качестве источника неисчерпаемой энергии.
Конечно, создание двигателя с КПД больше 100% на основе постоянного магнита очень смахивает на создание пресловутого «вечного двигателя», модели коего заполонили страницы интернета, но это не так. Магнитный двигатель не вечный, но даровой. Рано или поздно его детали износятся и потребуют замены. При этом сам источник энергии — постоянный магнит — практически вечен.
Правда, некоторые специалисты утверждают, что постоянный магнит постепенно теряет свою притягивающую силу в результате так называемого старения. Это утверждение неверно, но даже если бы это было так, он не изнашивается механически и вернуть его в прежнее, рабочее состояние можно всего одним магнитным импульсом. А производители современных постоянных магнитов гарантируют их неизменное состояние в течение как минимум 10 лет.
Двигатель, требующий перезарядки один раз в десять лет и при этом дающий чистую и безопасную энергию, вполне может претендовать на роль спасителя человеческой цивилизации от неизбежного энергетического Армагеддона.
Попытки создания магнитного двигателя с КПД больше 100% делались неоднократно. К сожалению, пока никому не удалось создать чего-либо серьезного. Хотя потребность в таком двигателе в наше время растет с небывалой скоростью. А если есть спрос, то предложения обязательно будут.
Одна из моделей такого двигателя и предлагается на суд специалистов в области электротехники и энтузиастов альтернативной энергетики.
В принципе, ничего сложного в модели магнитного двигателя нет. Однако создание такой модели весьма не просто. Требуются достаточно серьезное станочное оборудование и высокое качество производства.
На рисунке схематически
На схеме изображена конструкция магнитного двигателя с КПД больше 100%.
- Постоянные магниты неодим-железо-бор с максимально возможной индукцией магнитного поля.
- Немагнитный, диэлектрический ротор. Материал ротора — текстолит или стеклотекстолит.
- Статор. Или подшипниковые щиты. Материал — алюминий.
- Контактные кольца. Материал — медь.
- Электромагнитные катушки. Соленоиды, навитые тонким медным проводом.
- Контактные щетки. Материал электрографит.
- Диск управления подачи электрического импульса на электромагнитные катушки.
- Оптопары на просвет. Датчики управления подачи электрического импульса на электромагнитные катушки.
- Шпильки статора, регулирующие зазор между постоянными магнитами и электромагнитными катушками.
- Вал ротора. Материал — сталь.
- Замыкающие магнитопроводы. Кольца из мягкого железа, усиливающие силу постоянных магнитов.
Постоянные магниты расположены в подшипниковых щитах по диаметру с чередующейся полярностью. Электромагнитные катушки расположены в роторе аналогичным способом.
Принцип работы магнитного двигателя основан на взаимодействии постоянного и электромагнитного полей.
Если по катушке намотанной медным проводом (соленоидом) пропустить электрический ток, то в нем возникнет магнитное поле, которое станет взаимодействовать с магнитным полем постоянных магнитов. Другими словами, катушка втянется в зазор между постоянными магнитами.
Если ток выключить, катушка выйдет из зазора между постоянными магнитами без сопротивления.
По своей сути магнитный двигатель является синхронным электромагнитным двигателем, только многополюсным, без использования железа в электромагнитных катушках. Железо хоть и усиливает магнитную силу электромагнитной катушки, в этом двигателе использоваться не может, поскольку остаточная индукция неодимовых магнитов достигает 1,5 Тл, и на перемагничивание железных сердечников электромагнитных катушек, которые намагничиваются под действием постоянных магнитов, затрачивается огромное количество энергии.
А катушка без сердечника будет взаимодействовать с постоянным магнитом при любых (даже самых малых) значениях электрического тока. И будет абсолютно инертна к постоянным магнитам, если тока в катушке не будет.
Конечно, конструкция электромагнитного двигателя, в котором применяются катушки медного провода без железного сердечника, не нова. Есть масса вариантов и масса оригинальных конструкций, в которых используется принцип взаимодействия постоянного тока и электромагнитной катушки без сердечника. Но ни одна конструкция не имеет КПД больше 100%. Причина этого не в конструкции двигателя, а в неправильном понимании природы как постоянного магнита, так и электрического тока.
Дело в том, что до сих пор магнитное поле постоянного магнита считается сплошным и однородным. И электромагнитное поле соленоида также считается однородным и сплошным. К сожалению, это большое заблуждение. Так называемое магнитное поле постоянного магнита в принципе не может быть сплошным, поскольку сам магнит имеет составную структуру из множества спрессованных в одно тело доменов (элементарных магнитов).
По своей сути домены — это те же магниты, только очень маленькие. А если взять два обычных магнита, положить их на стол одноименными полюсами вниз и попытаться сблизить, то нетрудно заметить, что они отталкиваются друг от друга. Так же отталкиваются и их магнитные поля. Так как же магнитное поле постоянного магнита может быть сплошным? Однородным да, но не сплошным.
Магнитное поле постоянного магнита состоит из множества отдельных магнитных полей размером порядка 4 микрон. Их называют силовыми линиями магнитного поля, и еще из школьной программы по физике все знают, как их обнаружить с помощью железных опилок и листа бумаги. На самом деле железные опилки сами становятся доменами и продолжают постоянный магнит. Но поскольку они не закреплены механически, как в толще постоянного магнита, они расходятся веерообразно, что еще раз подтверждает утверждение о том, что магнитное поле постоянного магнита не является сплошным.
Но если магнитное поле постоянного магнита состоит из множества магнитных полей, то и электромагнитное поле соленоида тоже не может быть сплошным. Оно так же должно состоять из множества отдельных магнитных полей. Однако в катушке медного провода нет доменов, есть проводник и электрический ток. А электрический ток — это поток свободных электронов. Каким образом этот электронный поток может создавать магнитное поле?
Магнитный момент электронов обусловлен собственным вращением электронов — спином. Если электроны вращаются в одном направлении и в одной плоскости, их магнитные моменты суммируются. Поэтому они ведут себя подобно доменам в постоянном магните, выстраиваясь в электронные столбы и создавая отдельное электромагнитное поле. Количество таких электромагнитных полей зависит от напряжения электрического тока, приложенного к проводнику.
К сожалению, пока не установлена количественная связь между напряжением и числом магнитных полей. Нельзя сказать, что напряжение в 1 Вольт создает одно поле. Над решением этой задачи еще предстоит поломать голову ученым. Но то, что связь есть, установлено определенно. Определенно установлено и то, что одно магнитное поле постоянного магнита может соединиться только с одним магнитным полем соленоида. Причем наиболее эффективна эта связь будет тогда, когда толщина этих полей совпадет.
Толщина магнитных полей постоянного магнита составляет порядка 4 микрон, поэтому площадь магнитного полюса не должна быть большой, иначе придется пускать на обмотку соленоида слишком большое напряжение.
Возьмем, например, магнит, у которого площадь полюса равна 1 квадратному сантиметру. Разделим его на 4 микрометра. 1/0,0004=2500.
То есть для эффективной работы катушки с магнитом, у которого площадь магнитного полюса 1 квадратный сантиметр, необходимо подать на эту катушку электрический ток с напряжением 2500 Вольт. При этом сила тока должна быть очень маленькой — примерно 0,01 Ампера. Точные значения силы тока еще не установлены, но известно одно: чем меньше сила тока, тем выше КПД. Очевидно, причиной этому является то обстоятельство, что электрическая энергия переносится электронами. Однако один электрон не может перенести большое количество энергии. Чем больше энергии переносит электрон, тем больше потерь от столкновения электронов с атомами в кристаллической решетке проводника электротока.
Если же в работе участвует множество слабо возбужденных электронов, то энергия между ними распределяется поровну и электроны гораздо свободнее проскальзывают между атомами кристаллической решетки проводника. Вот почему по одному и тому же проводнику ток малой силы и высокого напряжения можно передать с гораздо меньшими потерями на сопротивление, чем ток малого напряжения и большой силы.
Таким образом, для эффективного взаимодействия электромагнитной катушки без сердечника с постоянным магнитом необходимо навить катушку тонким проводом (порядка 0,1 мм) с большим количеством витков (около 6 000) и подать на эту катушку электроток большого напряжения. Только при таких условиях двигатель получит возможность иметь КПД больше 100%. Причем чем меньше сила тока в электромагнитных катушках, тем выше КПД. Более того, электрический ток на катушку можно подавать короткими импульсами — в тот момент, когда катушка приблизилась к постоянному магниту на минимальное расстояние. Это еще больше повысит эффективность работы двигателя. Но самую большую эффективность двигатель приобретет в том случае, когда электромагнитные катушки закольцевать с конденсаторами, создав некоторое подобие колебательного контура, широко применяемого в радиоэлектронике для создания электромагнитных волн. Ведь по закону о сохранении энергии электроток не может исчезнуть бесследно. В колебательном контуре он всего лишь перемещается из электромагнитной катушки в конденсатор и обратно, создавая при этом электромагнитные волны. При этом потери электроэнергии минимальные и обусловлены только сопротивлением материала. А на создание электромагнитных волн энергия практически не тратится. По крайней мере, так утверждает учебник по физике. И если использовать это явление на взаимодействие с постоянными магнитами, получим механическую энергию, практически не потратив на это электрическую.
В общем, можно констатировать, что секрет двигателя с КПД больше 100% не в конструкции двигателя, а в принципе взаимодействия постоянного магнита и электромагнитной катушки с электрическим током.
Возьмем, к примеру, автомобильный двигатель внутреннего сгорания. Есть автомобили, двигатели которых имеют простейшую конструкцию и потребляют 20 литров топлива на 100 километров пути, при этом обладая мощностью каких-то 70 лошадиных сил. А есть автомобили, двигатели которых увешаны электроникой, потребляющие всего 10 литров топлива на 100 километров пути, но имеющие мощность до 200 лошадиных сил. Хотя принцип действия у всех автомобилей одинаков. Разница лишь в том, как используется этот принцип действия. Можно просто залить порцию топлива в цилиндр двигателя и как попало поджечь его, а можно подготовить высококачественную топливную смесь, вовремя впрыснуть е в цилиндр и вовремя поджечь.
В электромагнитном двигателе цилиндром служит электромагнитная катушка, а топливом — электрический ток. Но для двигателей внутреннего сгорания придуманы различные виды топлива. От дизельного до высокооктанового. И для каждого типа двигателя предназначен свой тип топлива. Двигатель, рассчитанный на работу с высокооктановым бензином, не может работать на дизельном топливе. И даже работая на низкооктановом бензине, он не сможет дать тех технических возможностей, которые от него требуют.
У электрического тока тоже два параметра — cила тока и напряжение. Электрический ток высокого напряжения можно сравнить с высокооктановым бензином. Пуская на катушку электрический ток высокого напряжения, необходимо следить, чтобы смесь не была слишком обогащенной. То есть сила тока должна быть достаточной, но не превышала необходимой, иначе излишняя энергия просто вылетит в трубу и значительно уменьшит КПД двигателя.
Конечно, сравнивать электромагнитный двигатель с двигателем внутреннего сгорания не совсем уместно. Повысить мощность двигателя внутреннего сгорания можно, увеличив давление в камере сгорания. С электромагнитным двигателем такой фокус не удастся. Можно увеличить длину импульса в электромагнитной катушке. Мощность, конечно, увеличится, но и КПД упадет.
Увеличивать мощность электромагнитного двигателя следует лишь путем увеличения количества полюсов. Это словно собачья упряжка: одно животное, конечно, реальной силы не имеет, но два десятка — это уже что-то весьма серьезное. Поэтому в двигателе применяется многополюсная система, все катушки в которой подключены параллельно. В мощных двигателях количество полюсов может исчисляться сотнями.
В небольшой модели двигателя гораздо эффективнее применять систему, в которой электромагнитные катушки расположены в роторе. В данном случае катушка работает одновременно с двумя магнитами. Это в два раза увеличивает эффективность работы катушки даже при том, что импульс на катушки предается через щеточный узел.
В больших двигателях с многороторной системой гораздо эффективнее применять систему с постоянными магнитами на роторе. Конструкция упрощается, а катушки, которые работают только на одну сторону, находятся только на крайних статорах. Катушки же внутренних статоров работают сразу на две стороны.
В природе самым сильным животным является слон, но он много ест и вес, который он способен поднять, значительно меньше его собственного веса. Поэтому КПД его работы очень низок.
Маленький муравей ест очень мало, а вес, который он может поднять, превышает его собственный вес в 20 раз. Чтобы получить упряжку с большим КПД, нужно запрягать в нее не слона, а кучу муравьев!
Владимир Чернышов
spbenergo.com
Магнитные двигатели. Виды и устройство. Применение и работа
Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.
Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.
Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.
По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.
Принцип работы
Многие инновационные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.
1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита2 — Катящийся ротор (Шарик от подшипника)3 — Немагнитное основание (Статор)4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)5 — Плоские постоянные магниты (Защелки)6 — Немагнитный корпус
Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.
Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.
На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.
Магнитный двигатель Тесла
Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.
По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.
Двигатель Минато
Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.
Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.
Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.
Двигатель Лазарева
Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.
При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.
Двигатель Джонсона
Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.
1 — Магниты якоря2 — Форма якоря3 — Полюса магнитов статора4 — Кольцевая канавка5 — Статор6 — Резьбовое отверстие7 — Вал8 — Кольцевая втулка9 — Основание
Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.
Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.
Магнитный двигатель Перендева
Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.
При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.
Синхронные магнитные двигатели
Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.
1 — Стержневая обмотка2 — Секции сердечника ротора3 — Опора подшипника4 — Магниты5 — Стальная пластина6 — Ступица ротора7 — Сердечник статора
Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.
Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.
Похожие темы:
electrosam.ru
все что вам нужно знать о двигателе на электромагнитной тяге
Это достаточно громкие и амбициозные заявления и в свое время, комментируя подобные вещи, великий астрофизик и космолог, пионер в области экзобиологии Карл Саган (Carl Sagan) сказал, что «экстраординарные заявления требуют экстраординарных доказательств». Руководствуясь этим мы и попытаемся объяснить, что же на самом деле представляет собой этот нашумевший EmDrive, и действительно ли он является ключевой технологией, которая позволит людям покорить далекие звезды.
Итак, все что вам нужно знать о «невозможном» двигателе мы попытались изложить в одной непродолжительной статье, поехали.
ЧТО ТАКОЕ СИГ-ДВИГАТЕЛЬ?
EmDrive – это двигатель-загадка. Впервые разработка была представлена аэрокосмическим инженером Роджером Шоером (Roger Shawyer) в 2001 году, а суть технологии может быть описана, как «безтопливный ракетный двигатель», в том смысле, что для него не требуется горючего, в традиционном представлении. Отсутствие на борту больших объемов топлива сделает космические корабли более легкими, их будет проще приводить в движение и, теоретически, их производство станет намного дешевле. Кроме того, гипотетический двигатель позволит достигать неимоверно высоких скоростей: астронавты смогут добираться до внешних границ Солнечной системы всего лишь за считанные месяцы.
Все дело в том, что сама по себе концепция движения без реактивного выброса массы «не стыкуется» с ньютоновским Законом сохранения импульса, который утверждает, что внутри замкнутой системы линейный и угловой моменты остаются постоянными величинами, вне зависимости от изменений, происходящих внутри этой системы. Проще говоря, если к телу не приложить внешнюю силу, то сдвинуть его с места невозможно.
Загадочный электромагнитный двигатель, который создает тягу безо всяких реактивных процессов, также нарушает и Третий (не менее фундаментальный) закон Ньютона: «На каждое действие всегда есть равное и противоположное противодействие». Так как же тогда «действие» (реактивное движение космического аппарата) происходит без «противодействия» (сжигания топлива и реактивного выброса масс) и как вообще такое возможно? Если система работает, это значит в ней задействованы силы или явления неизвестной природы или же наше понимание законов физики абсолютно ошибочно.
ПРИНЦИП РАБОТЫ СИГ-ДВИГАТЕЛЯ
Оставив на некоторое время физическую «невозможность» технологии, давайте определимся, что она собой представляет. Итак, EmDrive относится к категории гипотетических машин, использующих в своей работе модель «РЧ тягового полостного резонатора» (RF resonant cavity thruster). Такие устройства работают за счет магнетрона, испускающего микроволны в закрытую металлическую камеру в форме усеченного конуса, которые затем отражаются от ее задней стенки, передавая реактивную тягу аппарату. Опять же, выражаясь обычным языком, тело просто «отталкивается» от самого себя (как всё-таки глупы были люди, не верившие Барону Мюнхгаузену, когда он рассказывал о том, как вытащил себя за волосы из болота).
Такой принцип движения в корне отличается от того, что используют современные космические корабли, сжигающие огромное количество топлива для производства энергии, подымающей в небо массивные аппараты. Одной из метафор, раскрывающих суть «невозможности» такой технологии, может также стать предположение, что сидящий в салоне незаведенного автомобиля водитель способен сдвинуть его с места - всего лишь надавив, как следует, на рулевое колесо.
Несмотря на то, что было проведено несколько успешных тестов экспериментальных прототипов – с очень небольшим, порядка нескольких десятков мкН, выделением энергии (вес мелкой монеты) – итоги ни одного из исследований не были опубликованы в каком-либо рецензируемом журнале. Это значит, что к любым положительным результатом нужно относится с долей здорового скептицизма, который допускает, что зафиксированная тяга могла быть неучтенной силой или ошибкой аппаратуры.
Пока технология не получила соответствующего научного подтверждения, логично было бы предположить, что EmDrive, на самом деле, не работает. Однако есть множество людей, которые опытным путем доказали, что «невозможный» электромагнитный двигатель все-таки работает:
В 2001 году Шойер получил от британского правительства грант в размере £45 000 на тесты для EmDrive. Он заявил, что в ходе испытаний была получена тяга силой 0,016 Н и для этого потребовалось 850 Вт энергии, однако не одна экспертная оценка не подтвердила результат. Причем цифры были настолько малы, что легко могли сойти за погрешность измерительной техники.
В 2008 году группа китайских ученых Северо-западного политехнического университета во главе с Ян Хуаном (Yang Juan), по их заявлению, подтвердила дееспособность технологии создания тяги за счет электромагнитного резонанса и позднее разработала свою собственную рабочую модель двигателя. С 2012 по 2014 год было проведено несколько удачных тестов, в которых удалось получить тягу силой 750 миллиньютон при затраченных на это 2500 ватт энергии.
В 2014 году исследователи NASA протестировали свою модель EmDrive, причем испытания проходили также и в условиях вакуума. И снова ученые отрапортовали об успешном эксперименте (они зафиксировали тягу в 100 мкН) результаты которого, опять, не были подтверждены независимыми экспертами. В тоже время, другая группа ученых космического агентства весьма скептично отозвалась о работе коллег – однако, ни опровергнуть, ни подтвердить возможность технологии так и не смогла, призвав к проведению более глубоких исследований.
В 2015 году эта же группа NASA протестировала другую версию двигателя Cannae Drive (бывший Q-drive), созданную инженером-химиком Гвидо Фетта (Guido Fetta) и заявила о положительном результате. Практически в одно время с ними, немецкие ученые из Дрезденского технологического университета также опубликовали результаты, в которых предсказуемо подтвердили наличие «невозможной» тяги.
И уже в конце 2015, еще один эксперимент от НАСА, проведенный группой Eagleworks (космический центр имени Джонсона) окончательно подтвердил состоятельность технологии. Тестирование проводилось с учетом предыдущих ошибок и, тем не менее, результаты оказались положительными – двигатель EmDrive производит тягу. В то же время, исследователи допускают, что обнаружились новые неучтенные факторы, одним из которых может быть тепловое расширение, ощутимо влияющее на устройство в условиях вакуума. Будет ли передана работа на рассмотрение экспертам или нет, ученые из Исследовательского центра Гленна, Кливленд, штат Огайо, Лаборатории реактивного движения НАСА и Лаборатории прикладной физики университета Джонса Хопкинса уверены, что продолжать эксперименты стоит.
ЧЕМ НАМ «СВЕТИТ» СИГ-ДВИГАТЕЛЬ
Вообще научное сообщество очень осторожно воспринимает все, что связано с EmDrive и с электромагнитными резонансно полостными двигателями в целом. Но с другой стороны, такое количество исследований вызывает несколько вопросов. Почему к технологии такой повышенный интерес и почему столько людей хотят ее протестировать? Что на самом деле может предложить двигатель с таким привлекательным концептом?
От разного рода атмосферных спутников и до более безопасных и эффективных автомобилей – такую широкую сферу применения пророчат новому устройству. Но главным, по-настоящему революционным последствием его внедрения являются невообразимые горизонты, которые открываются для космических путешествий.
Потенциально, корабль, оснащенный двигателем EmDrive, способен добраться до Луны всего за несколько часов, до Марса – за 2-3 месяца и до Плутона – примерно за 2 года (для сравнения: на то, чтобы долететь до Плутона зонд New Horizons потратил более 9 лет). Это достаточно громкие заявления, однако, если выяснится, что технология имеет под собой реальное основание, эти цифры не будут настолько фантастическими. И это с учетом, того что нет нужды перевозить тонны горючего, производство космических аппаратов станет более простым, а сами они будут намного легче и значительно дешевле.
Для НАСА и подобных организаций, включая множество частных космических корпораций вроде SpaceX или Virgin Galactic легковесный и доступный корабль, способный быстро добираться до самых отдаленных уголков Солнечной системы, является вещью, о которой пока можно только мечтать. Тем не менее, для реализации технологии, науке еще придется потрудиться.
В то же время, Шойер твердо убежден, что для того, чтобы объяснить, как работает EmDrive, не требуется никаких псевдонаучных или квантовых теорий. Наоборот, он уверен, что технология не выступает за рамки действующей модели ньютоновской механики. В подтверждение своих слов он написал несколько статей, одна из которых сейчас находится на рецензировании. Ожидается, что документ будет опубликован в этом году. Вместе с тем, его прошлые работы подверглись критике за некорректные и непоследовательные научные изыскания.
Несмотря на его настойчивые утверждения о том, что двигатель работает в пределах существующих законов физики, Шойер умудряется делать и несколько фантастичные предположения относительно EmDrive. Например, он заявил, что новый двигатель работает за счет варп-поля и именно поэтому последние результаты NASA были успешными. Такие выводы привлекли массу внимания онлайн сообщества. Однако, опять-же, на сегодняшний день нет прозрачных и открытых подтверждающих данных, и для того чтобы технологию восприняла официальная наука нужно провести еще не одно глубокое исследование.
Колин Джонсон (Colin Johnston), сотрудник Планетария Арма, написал объемную статью, в которой раскритиковал EmDrive и неубедительные результаты множества проведенных экспериментов. Кроме того, Кори С. Пауэлл (Corey S. Powell) из Discovery, вынес свой обвинительный вердикт для двигателей EmDrive и Cannae Drive, точно также, как и для исследований NASA. Профессор математики и физики Джон С. Баэз вообще назвал концепцию этой технологии «вздором» и его заключения отражают настроения многих ученых.
Двигатель EmDrive был воспринят многими с воодушевлением, среди них – вебсайт NASASpaceFlight.com, где была размещена информация о последних экспериментах Eagleworks, и популярный журнал New Scientist, который написал положительный и оптимистический отзыв об электромагнитном двигателе, в котором, тем не менее, не забыл упомянуть о необходимости предоставления дополнительных фактов, обязательных для таких спорных вопросов. Кроме того, энтузиасты со всего мира принялись строить свои модели двигателей с тягой «неизвестного происхождения», одну из интересных рабочих версий, созданную в «гаражных» условиях, предложил румынский инженер Юлиан Берка (Iulian Berca).
Прежде чем делать однозначные выводы, важно помнить о том, что физика в принципе исключает появление какой-либо тяги в EmDrive и ему подобных устройствах. Тем не менее, действительно доказанные рабочие варианты двигателей на электромагнитных волнах могут отрыть до сих пор невиданные возможности как для космического, так и наземного транспорта и перевернуть современную науку с ног на голову. А пока большинство ученых склонны относить EmDrive к категории научной фантастики.
Источник: digitaltrends.com
Полезные ссылки:
Официальный сайт британской компании Satellite Propulsion Research Ltd (SPR Ltd), основаной в 2001 году Роджером Шойером.
EmDrive-Вики – сайт, где можно найти много информации, вплоть до инструкций по изготовлению двигателя своими руками.
Сайт компании Cannae LLC, разрабатывающей космический двигатель Cannae Drive.
Видео интервью с Роджером Шоуером, май 2015 года
"ЭкоТехника"
Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!
cosmos.mirtesen.ru
Описание модели электромагнитного двигателя с КПД > 100%
Энергоинформ / Точка зрения / Описание модели электромагнитного двигателя с КПД > 100%
Описание модели электромагнитного двигателя с КПД > 100%
Давно уже не секрет, что двигатели с КПД больше 100% считаются невозможными. Их существование противоречит основному закону физики — Закону о сохранении энергии.
Этот закон гласит: Энергия не может появиться ниоткуда и исчезнуть в никуда. Она лишь может преобразовываться из одного вида энергии в другую. Например, из электрической в световую с помощью электрической лампы, или из механической в электрическую с помощью электрогенератора тока и так далее.
Конечно, это справедливо. Любому двигателю нужен источник энергии. Двигателю внутреннего сгорания — бензин, электродвигателю — источник электроэнергии. Например, аккумуляторы. Но бензин не вечен, его нужно постоянно пополнять, да и аккумуляторы требуют периодической подзарядки.
Но, если использовать источник энергии, который бы не нуждался в пополнении, то есть неисчерпаемый источник энергии, двигатель с КПД больше 100% вполне мог бы иметь право на существование.
На первый взгляд существование такого источника в природе невозможно. Однако это только на первый, неподготовленный, взгляд.
Возьмём, к примеру, гидроэлектростанцию. Вода, собранная в огромное водохранилище, падает с большой высоты плотины и вращает гидротурбину, которая в свою очередь вращает электрогенератор. Электрогенератор вырабатывает электроэнергию.
Вода падает под действием гравитации Земли. При этом совершается работа по выработке электроэнергии, хотя гравитация Земли, являясь источником энергии притяжения, не уменьшается. Затем вода под действием излучения Солнца и всё той же гравитации снова возвращается в водохранилище. Солнце, конечно, не вечное, но на пару миллиардов лет его хватит. Ну а гравитация опять совершает работу, вытягивая влагу из атмосферы, и опять не уменьшаясь ни на йоту. По своей сути гидроэлектростанция является гидроэлектрогенератором с КПД больше 100%. Только громоздким и дорогим в обслуживании. Тем не менее работа гидроэлектростанций наглядно показывает то, что создание двигателя с КПД больше 100%, вполне осуществимо.
Ведь не только гравитация может служить источником неисчерпаемой энергии.
«Постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что-либо притягиваешь».
Постоянный магнит притянул к себе железный предмет. Тем самым совершил работу. Но его сила при этом совершенно не уменьшилась. Это уникальное свойство постоянного магнита позволяет использовать его в качестве источника неисчерпаемой энергии.
Конечно, создание двигателя на основе постоянного магнита и с КПД больше 100% очень смахивает на создание пресловутого «Вечного двигателя», модели коего заполонили страницы интернета, но это не так. Магнитный двигатель не Вечный, но Даровой. Рано или поздно его детали износятся и потребуют замены, а источник энергии, постоянный магнит, практически вечен.
Правда некоторые «специалисты» утверждают, что постоянный магнит постепенно теряет свою притягивающую силу в результате так называемого старения. Это утверждение неверно, но даже если это и так, он не изнашивается механически и вернуть его в прежнее, рабочее состояние можно всего одним магнитным импульсом. А производители современных постоянных магнитов гарантируют его неизменное состояние в течение не менее 10 лет.
Двигатель, требующий перезарядки один раз в десять лет, и при этом дающий чистую и безопасную энергию, вполне может претендовать на роль спасителя человеческой цивилизации от неизбежного энергетического Армагеддона.
Попытки создания магнитного двигателя с КПД больше 100% делались неоднократно. К сожалению, пока никому не удалось создать чего-либо серьёзного. Хотя потребность в таком двигателе в наше время растёт с небывалой скоростью. А если есть спрос, то предложения обязательно будут.
Одна из моделей такого двигателя и предлагается на суд специалистов в области электротехники и энтузиастов альтернативной энергетики.
В принципе, ничего сложного в модели магнитного двигателя нет. Однако создание модели весьма не просто. Требуются достаточно серьёзное станочное оборудование и высокое качество производства. Модель невозможно сделать одним напильником и на «коленке». Хотя «тульские левши» ещё не перевелись на Руси.
На рисунке схематически изображена конструкция магнитного двигателя с КПД больше 100%.
- Постоянные магниты неодим-железо-бор с максимально возможной индукцией магнитного поля.
- Немагнитный диэлектрический ротор. Материал ротора — текстолит или стеклотекстолит.
- Статор. Или подшипниковые щиты. Материал — алюминий.
- Контактные кольца. Материал — медь.
- Электромагнитные катушки. Соленоиды, навитые тонким медным проводом.
- Контактные щётки. Материал — электрографит.
- Диск управления подачи электрического импульса на электромагнитные катушки.
- Оптопары на просвет. Датчики управления подачи электрического импульса на электромагнитные катушки.
- Шпильки статора, регулирующие зазор между постоянными магнитами и электромагнитными катушками.
- Вал ротора. Материал сталь.
- Замыкающие магнитопроводы. Кольца из мягкого железа, усиливающие силу постоянных магнитов.
Постоянные магниты расположены в подшипниковых щитах по диаметру с чередующейся полярностью.
Электромагнитные катушки расположены в роторе аналогичным способом.
Принцип работы магнитного двигателя основан на взаимодействии постоянного и электромагнитного полей.
Если по катушке, намотанной медным проводом (соленоидом), пропустить электрический ток, то в нём возникнет магнитное поле, которое станет взаимодействовать с магнитным полем постоянных магнитов. Другими словами, катушка втянется в зазор между постоянными магнитами.
Если ток выключить, катушка выйдет из зазора между постоянными магнитами без сопротивления.
По своей сути магнитный двигатель является синхронным электромагнитным двигателем. Только многополюсным и без использования железа в электромагнитных катушках. Железо, хоть и усиливает магнитную силу электромагнитной катушки, в этом двигателе использоваться не может, поскольку остаточная индукция неодимовых магнитов достигает 1,5Тл и на перемагничивание железных сердечников электромагнитных катушек, которые намагничиваются под действием постоянных магнитов, затрачивается огромное количество энергии.
А катушка без сердечника будет взаимодействовать с постоянным магнитом при любых (даже самых малых) значениях электрического тока. И будет абсолютно инертна к постоянным магнитам, если тока в катушке не будет.
Конечно, конструкция электромагнитного двигателя, в котором применяются катушки медного провода без железного сердечника, не нова. Есть масса вариантов и масса оригинальных конструкций, в которых используется принцип взаимодействия постоянного тока и электромагнитной катушки без сердечника. Но ни одна конструкция не имеет КПД больше 100%. Причина этого не в конструкции двигателя, а в неправильном понимании природы, как постоянного магнита, так и электрического тока.
Дело в том, что до сих пор магнитное поле постоянного магнита считается сплошным и однородным. И электромагнитное поле соленоида также считается однородным и сплошным. К сожалению, это большое заблуждение. Так называемое магнитное поле постоянного магнита в принципе не может быть сплошным, поскольку сам магнит имеет составную структуру из множества спрессованных в одно тело, доменов (элементарных магнитов).
По своей сути, домены — это те же магниты, только очень маленькие. Их размер порядка 4 микрон. А если взять два обычных магнита, положить их на стол одноимёнными полюсами вниз и попытаться сблизить, то нетрудно заметить, что они отталкиваются друг от друга. Также отталкиваются и их магнитные поля. Так как же магнитное поле постоянного магнита может быть сплошным? Однородным — да, но не сплошным.
Магнитное поле постоянного магнита состоит из множества отдельных магнитных полей размером порядка 4 микрон. Их называют силовыми линиями магнитного поля и ещё из школьной программы по физике все знают, как их обнаружить с помощью железных опилок и листа бумаги. На самом деле железные опилки сами становятся доменами и продолжают постоянный магнит. Но, поскольку они не закреплены механически, как в толще постоянного магнита, они расходятся веерообразно, что ещё раз подтверждает утверждение о том, что магнитное поле постоянного магнита не является сплошным.
Но если магнитное поле постоянного магнита состоит из множества магнитных полей, то и электромагнитное поле соленоида тоже не может быть сплошным. Оно также должно состоять из множества отдельных магнитных полей. Однако в катушке медного провода нет доменов. Есть проводник и электрический ток. А электрический ток это поток свободных электронов. Каким образом этот электронный поток может создавать магнитное поле?
Магнитный момент электронов обусловлен собственным вращением электронов. Спином. Если электроны вращаются в одном направлении и в одной плоскости их магнитные моменты суммируются. Поэтому они ведут себя подобно доменам в постоянном магните, выстраиваясь в электронные столбы и создавая отдельное электромагнитное поле. Количество таких электромагнитных полей зависит от напряжения электрического тока приложенного к проводнику.
К сожалению, пока не установлена количественная связь между напряжением и числом магнитных полей. Нельзя сказать, что напряжение в 1 Вольт создаёт одно поле. Над решением этой задачи ещё предстоит поломать голову учёным. Но то, что связь есть, установлено определённо. Определённо установлено и то, что одно магнитное поле постоянного магнита может соединиться только с одним магнитным полем соленоида. Причём наиболее эффективна эта связь будет тогда, когда толщина этих полей совпадёт.
Толщина магнитных полей постоянного магнита порядка 4 микрон. Поэтому площадь магнитного полюса не должна быть большой. Иначе придётся пускать на обмотку соленоида слишком большое напряжение.
Возьмём, например, магнит, у которого площадь полюса равна 1 квадратному сантиметру. Разделим его на 4 микрометра. 1/0,0004=2500.
То есть для эффективной работы катушки с магнитом, у которого площадь магнитного полюса 1 квадратный сантиметр, необходимо подать на эту катушку электрический ток с напряжением 2500 Вольт. При этом сила тока должна быть очень маленькой. Примерно 0,01 Ампера. Точные значения силы тока ещё не установлены, но известно одно, чем меньше сила тока, тем выше КПД. Очевидно, причиной этому является то обстоятельство, что электрическая энергия переносится электронами. Однако один электрон не может перенести большое количество энергии. Чем больше энергии переносит электрон, тем больше потерь от столкновения электронов с атомами в кристаллической решётке проводника электротока. Это как движение снежного кома по склону горы поросшей деревьями. Чем больше снежный ком, тем чаще он сталкивается с деревьями, оставляя часть снега на стволах. Так и электрон, сталкиваясь с атомами, отдаёт им часть своей энергии.
Если же в работе участвует множество слабо возбуждённых электронов, то энергия между ними распределяется поровну и электроны гораздо свободнее проскальзывают между атомами кристаллической решётки проводника. Вот почему по одному и тому же проводнику ток малой силы и высокого напряжения можно передать с гораздо меньшими потерями на сопротивление, чем ток малого напряжения и большой силы.
Таким образом, для эффективного взаимодействия электромагнитной катушки без сердечника с постоянным магнитом, необходимо навить катушку тонким проводом, порядка 0,1 мм и с большим количеством витков, порядка 6 000. И подать на эту катушку электроток большого напряжения. Только при таких условиях двигатель получит возможность иметь КПД больше 100%. Причем, чем меньше сила тока в электромагнитных катушках, тем выше КПД. Более того, электрический ток на катушку можно подавать короткими импульсами. В тот момент, когда катушка приблизилась к постоянному магниту на минимальное расстояние. Это ещё больше повысит эффективность работы двигателя. Но самую большую эффективность двигатель приобретёт в том случае, когда электромагнитные катушки закольцевать с конденсаторами, создав некоторое подобие колебательного контура, широко применяемого в радиоэлектронике для создания электромагнитных волн. Ведь по закону о сохранении энергии электроток не может исчезнуть бесследно. В колебательном контуре он всего лишь перемещается из электромагнитной катушки в конденсатор и обратно, создавая при этом электромагнитные волны. При этом потери электроэнергии минимальные и обусловлены только сопротивлением материала. А на создание электромагнитных волн энергия практически не тратится. По крайней мере, так утверждает учебник по физике. И если использовать это явление на взаимодействие с постоянными магнитами, получим механическую энергию, практически не потратив на это электрическую.
В общем можно констатировать, что секрет двигателя с КПД больше 100% не в конструкции двигателя, а в принципе взаимодействия постоянного магнита и электромагнитной катушки с электрическим током.
Возьмём, к примеру, автомобильный двигатель внутреннего сгорания. Есть автомобили двигатели, которых имеют простейшую конструкцию и потребляют 20 литров топлива на 100 километров пути. При этом обладая мощностью каких-то 70 лошадиных сил. А есть автомобили, двигатели которых увешаны электроникой, потребляющие всего 10 литров топлива на 100 километров пути, но имеющие мощность до 200 лошадиных сил. Хотя принцип действия у обоих автомобилей одинаков. Разница лишь в том, как используется этот принцип действия. Можно просто залить порцию топлива в цилиндр двигателя и как попало поджечь его, а можно подготовить высококачественную топливную смесь, вовремя впрыснуть её в цилиндр и вовремя поджечь.
В электромагнитном двигателе цилиндром служит электромагнитная катушка. А топливом электрический ток. Но для двигателей внутреннего сгорания придуманы различные виды топлива. От дизельного до высокооктанового. И для каждого типа двигателя предназначен свой тип топлива. Двигатель, рассчитанный на работу с высокооктановым бензином, не может работать на дизельном топливе. И даже работая на низкооктановом бензине, он не сможет дать тех технических возможностей, которые от него требуют.
У электрического тока тоже два параметра. Сила тока и напряжение. Электрический ток высокого напряжения можно сравнить с высокооктановым бензином. Пуская на катушку электрический ток высокого напряжения, необходимо следить, чтобы смесь не была слишком обогащённой. То есть сила тока должна быть достаточной, но не превышала необходимой. Иначе излишняя энергия просто вылетит в трубу и значительно уменьшит КПД двигателя.
Конечно, сравнивать электромагнитный двигатель с двигателем внутреннего сгорания не совсем уместно. Повысить мощность двигателя внутреннего сгорания можно, увеличив давление в камере сгорания. С электромагнитным двигателем такой фокус не удастся. Можно увеличить длину импульса в электромагнитной катушке. Мощность, конечно, увеличится, но и КПД упадёт.
Увеличивать мощность электромагнитного двигателя следует лишь путём увеличения количества полюсов. Это словно собачья упряжка. Одно животное, конечно, из себя реальной силы не представляет, но два десятка — это уже что-то весьма серьёзное. Поэтому, в двигателе применяется многополюсная система, все катушки в которой подключены параллельно. В мощных двигателях количество полюсов может исчисляться сотнями.
В небольшой модели двигателя, гораздо эффективнее применять систему в которой электромагнитные катушки расположены в роторе. В данном случае катушка работает одновременно с двумя магнитами. Это в два раза увеличивает эффективность работы катушки даже при том, что импульс на катушки передаётся через щёточный узел.
В больших двигателях с многороторной ситемой гораздо эффективнее применять систему с постоянными магнитами на роторе. Кострукция упрощается, а катушки которые работают только на одну сторону, находятся только на крайних статорах. Катушки же внутренних статоров работают сразу на две стороны.
В природе самым сильным животным является слон. Но он много ест, и вес, который он способен поднять, значительно меньше его собственного веса. Поэтому КПД его работы очень низок.
Маленький муравей ест очень мало. А вес, который он может поднять, превышает его собственный вес в 20 раз. Чтобы получить упряжку с большим КПД нужно запрягать в неё не слона, а кучу муравьёв.
Автор: Владимир Чернышов / [email protected]
www.energoinform.org
Электромагнитный двигатель
Изобретение относится к области электротехники и энергетики, в частности к электромагнитным двигателям. Электромагнитный двигатель содержит ротор, выполненный в виде вала, установленного с возможностью вращения, по крайней мере, двух дисков, установленных на валу, с расположенными по их периферии постоянными магнитами, статор, содержащий электромагниты, установленные с возможностью взаимодействия с постоянными магнитами, причем постоянные магниты выполнены в форме цилиндров, плоскости торцов которых расположены в радиальной плоскости каждого из дисков, при этом постоянные магниты первого и второго дисков обращены друг к другу разноименными полюсами, а статор содержит электромагниты в виде соленоидов без магнитопроводов, установленные между дисками ротора, два пусковых электромагнита, имеющие несвязанные магнитопроводы и установленные напротив постоянного магнита, любого из дисков ротора, выключатель бесконтактный индукционный, установленный на статоре напротив любого из постоянных магнитов дисков ротора с возможностью взаимодействия с каждым из постоянных магнитов, размещенных на одном из вращающихся дисков ротора, в момент прохождения постоянным магнитом зоны чувствительности сенсорной части выключателя бесконтактного индукционного. Технический результат - повышение мощности двигателя. 8 ил.
Изобретение относится к области энергетики, в частности к электромагнитным двигателям.
Известен магнитодинамический двигатель с бесконтактной коммутацией, содержащий источник постоянного тока, статор с равномерно расположенными по его окружности соленоидами, ротор с постоянными магнитами, распределительный коллектор, оптический датчик, закрепленный на статоре, светоотражающие полосы на роторе, взаимодействующие с оптическим датчиком, при этом соленоиды соединены с источником постоянного тока параллельно, постоянные магниты соединены между собой одноименными полюсами, а распределительный коллектор выполнен в виде электронных ключей, включенных в цепь питания соленоидов и управляемых через микропроцессор сигналами с оптического датчика (1) (полезная модель RU №89301, кл. H02K 29/03, опубл. 2009 г.).
Недостатками известного устройства является то, что для запуска двигателя требуется мощный источник тока, соединенные между собой одноименными полюсами постоянные магниты ротора в процессе работы двигателя под нагрузкой теряют свои магнитные свойства, что может привести к остановке двигателя, сборка такого двигателя большой мощности вызовет затруднения в связи с тем, что необходимо соединять одноименными полюсами сильные магниты, которые будут при этом отталкиваться.
Наиболее близким по технической сущности и достигаемому эффекту к заявляемому электромагнитному двигателю является электромагнитный двигатель, содержащий ротор, выполненный в виде вала, установленного с возможностью вращения двух дисков, установленных на валу с расположенными на них по периферии дисков постоянными магнитами и балансирами, статор, содержащий электромагниты, установленные с внешней стороны дисков с возможностью взаимодействия с постоянными магнитами, соединенные между собой магнитопроводом микровыключатель и маховик, при этом постоянные магниты выполнены в виде прямоугольников и расположены на поверхности дисков таким образом, что одноименные их полюсы направлены вдоль наружной поверхности дисков, а противоположные - к центру дисков, причем постоянные магниты расположены на поверхности дисков таким образом, что продольные их оси расположены под углом к радиусам дисков (патент US №5594289, кл. H02K 16/00, опубл. 1997 г.).
Недостатком известного электромагнитного двигателя является низкая мощность двигателя из-за того, что магниты ротора размещены под углом к осям катушек электромагнитов статора, образующаяся при этом область взаимодействия постоянных магнитов ротора и электромагнитов статора характеризуется тем, что в ней плотность силовых линий постоянных магнитов меньше, чем на их полюсных торцах, следовательно, будет меньше отталкивающая сила, возникающая при взаимодействии постоянных магнитов ротора и возбужденных электромагнитов статора; кроме того, для любого из взаимодействующих постоянных магнитов ротора вектор сил отталкивания направлен не по касательной к окружности диска, а по хорде, что снижает крутящий момент двигателя.
Задачей настоящего изобретения является повышение мощности двигателя.
Сущность настоящего изобретения заключается в том, что в известном электромагнитном двигателе, содержащем ротор, выполненный в виде вала, установленного с возможностью вращения, и, по крайней мере, двух дисков, установленных на валу, с расположенными по их периферии постоянными магнитами и статор, содержащий электромагниты, установленные с возможностью взаимодействия с постоянными магнитами, согласно изобретению постоянные магниты выполнены в форме цилиндров, плоскости торцов которых расположены в радиальной плоскости каждого из дисков, при этом постоянные магниты первого и второго дисков обращены друг к другу разноименными полюсами, а статор содержит электромагниты в виде соленоидов без магнитопроводов, установленные между дисками ротора, два пусковых электромагнита, имеющие несвязанные магнитопроводы и установленные напротив постоянного магнита, любого из дисков ротора, выключатель бесконтактный индукционный, установленный на статоре напротив любого из постоянных магнитов дисков ротора с возможностью взаимодействия с каждым из постоянных магнитов, размещенных на одном из вращающихся дисков ротора, в момент прохождения постоянным магнитом зоны чувствительности сенсорной части выключателя бесконтактного индукционного.
На фиг.1 изображен заявляемый электромагнитный двигатель в разрезе А-А.
На фиг.2 представлен диск ротора в разрезе Б-Б.
На фиг.3 представлен статор в разрезе В-В.
На фиг.4 представлены пусковые электромагниты в разрезе Г-Г,
На фиг.5 представлена схема управления заявляемым электромагнитным двигателем.
На фиг.6 представлен фрагмент схемы электродвигателя с обозначением полюсов на магнитах и соленоидах.
На фиг.7 представлена схема сил отталкивания на первом диске ротора.
На фиг.8 представлена схема сил отталкивания на втором диске ротора.
Заявляемый электромагнитный двигатель содержит ротор, состоящий из вала 1, установленного с возможностью вращения на опорных подшипниках 2, 3, размещенных в вертикальных опорных плитах 4, 5 соответственно, опорные плиты, стянутые шпильками 6, первый диск 7 с закрепленными на нем постоянными магнитами 8, второй диск 9 с закрепленными на нем постоянными магнитами 10, причем постоянные магниты 8 и 10 выполнены цилиндрическими и расположены по периферии дисков 7 и 9 ротора соответственно по окружности постоянного радиуса практически, равного радиусу дисков 7 и 9 ротора, при этом плоскости торцов постоянных магнитов 8 и 10, на которых находятся полюсы, расположены в радиальной плоскости каждого из дисков 7 и 9, постоянные магниты 8 первого диска 7 обращены в область между дисками 7 и 9 полюсами одной полярности, а постоянные магниты 10 второго диска 9 обращены в вышеуказанную область полюсами противоположной полярности, диски 7 и 9 ротора изготовлены из немагнитного материала, например стеклотекстолита, и с помощью втулок 11, 12 жестко соединены с валом 1. Между дисками 7 и 9 ротора размещен статор 13, содержащий соленоиды 14 без магнитопроводов, установленные напротив постоянных магнитов 8 и 10, соответственно дисков 7 и 9 ротора, причем каждый из соленоидов 14 одним торцом обращен к полюсам постоянных магнитов 8 первого диска 7 ротора, а другим - противоположным - к полюсам постоянных магнитов 10 второго диска 9 ротора, тем самым для создания вращательного движения будут задействованы оба полюса каждого соленоида 14, что обеспечит существенное повышение мощности двигателя, кроме того, взаимодействие между постоянными магнитами 8 и 10 дисков 7 и 9 ротора и соленоидами 14 статора 13 будет происходить практически в области максимальной плотности силовых линий магнитного поля каждого из взаимодействующих постоянных магнитов 8 и 10, а для создания крутящего момента используется максимально возможное значение радиуса периферии дисков 7 и 9 ротора, являющееся плечом для вектора сил отталкивания, действие которого направлено практически по касательной к окружности периферии дисков 7 и 9.
Напротив одного из постоянных магнитов 10 второго диска 9 ротора установлены и закреплены два пусковых электромагнита 15, 16, магнитопроводы которых не связаны между собой. Магнитопроводы изготовлены из материала, обеспечивающего взаимодействие их с постоянными магнитами. Между торцами постоянных магнитов 10 второго диска 9 ротора и торцами электромагнитов 15, 16 предусмотрен зазор, не препятствующий вращению ротора. Пусковые электромагниты 15 и 16 обращены к постоянным магнитам 10 второго диска 9 ротора одноименными полюсами, обеспечивая тем самым возникновение сил отталкивания между ними, при подаче электрического питания на любой из электромагнитов 15 или 16. У периферии второго диска 9 ротора, в непосредственной близости к линии окружности диска, на которой размещены постоянные магниты 10, неподвижно установлен выключатель бесконтактный индукционный 17, включение которого происходит в результате взаимодействия с каждым из постоянных магнитов 10, размещенных на вращающемся вместе с валом диске 9 ротора, в момент прохождения постоянным магнитом 10 зоны чуствительности сенсорной части выключателя 17. В нерабочем состоянии двигателя любой из постоянных магнитов 10 второго диска 9 ротора, свободно вращающегося вместе с валом 1, имеет возможность устанавливаться между пусковыми электромагнитами 15, 16 вследствие взаимодействия постоянного магнита 10 второго диска 9 ротора с магнитопроводами пусковых электромагнитов 15, 16.
Заявляемый электромагнитный двигатель работает следующим образом.
При включении тумблера 18 напряжение подается от независимого источника электрического питания 19 (аккумулятора) на схему управления двигателем, состоящую из схемы управления 20 пусковыми электромагнитами 15, 16, выключателя бесконтактного индукционного 17 и схемы управления 21 соленоидами 14 статора двигателя 13, состоящей из пяти каналов, в соответствии с числом соленоидов 14. Выбрав направление вращения двигателя и нажав соответствующую кнопку 22 или 23, подают напряжение электрического питания на электромагнит 15 или 16. В результате взаимодействия, например, пускового электромагнита 16 с постоянным магнитом 10 второго диска 9 ротор получит начальное вращение в выбранном направлении. В течение времени поворота ротора постоянные магниты 8, 10 соответственно дисков 7, 9 ротора, совершая вращательное движение вокруг оси вала 1, устанавливаются напротив соленоидов 14 статора 13 таким образом, что магнитные нейтрали постоянных магнитов 10 и оси соленоидов 14 оказываются смещенными относительно друг друга. В этот момент один из постоянных магнитов 10 второго диска 9 ротора, поворачиваясь вокруг оси вала 1, попадает в зону чувствительности выключателя 17, взаимодействие магнитного поля постоянного магнита 10 второго диска 9 ротора с чувствительным элементом выключателя 17 приводит к тому, что на выходе последнего формируется сигнал, обеспечивающий включение схемы управления 21 соленоидами 14 статора 13, коммутирующей источник питания одновременно со всеми соленоидами 14 статора 13, что приводит к одновременному возникновению магнитного поля на каждом из соленоидов 14 статора 13. Возникшие магнитные поля соленоидов 14 будут взаимодействовать с магнитными полями постоянных магнитов 8 и 10. Вследствие взаимодействия магнитных полей постоянных магнитов 8 и 10 соответственно дисков 7 и 9 ротора с магнитными полями соленоидов 14 статора 13 ротор приобретает основное вращательное движение. Соленоиды 14 статора 13 будут получать электрическое питание до тех пор, пока постоянный магнит 10 второго диска 9, находящийся во взаимодействии с выключателем 17, вращаясь вместе с диском 9, не выйдет из зоны чувствительности выключателя 17. После чего уровень сигнала на выходе выключателя 17 становится равным нулю, схема управления 21 соленоидами 14 статора 13 выключается, соленоиды 14 обесточиваются, что приводит к исчезновению их магнитных полей и прекращению взаимодействия с постоянными магнитами 8 и 10 дисков 7 и 9 ротора. С этого момента ротор совершает вращательное движение по инерции. Вместе с ним поворачиваются вокруг оси вала постоянные магниты 8 и 10. Так как постоянные магниты 8 и 10 распределены на периферии дисков 7 и 9 равномерно и следуют один за другим, то при вращении ротора следующий очередной постоянный магнит 10 второго диска 9 ротора войдет в зону чувствительности выключателя 17. Одновременно с этим, относительно соленоидов 14, следующие очередные постоянные магниты 8 и 10 дисков 7 и 9 ротора, после поворота вокруг оси вала двигателя, устанавливаются напротив соленоидов 14 статора 13 таким образом, что магнитные нейтрали постоянных магнитов 8 и 10 и оси соленоидов 14 оказываются смещенными относительно друг друга, на выходе выключателя 17 опять появляется сигнал, обеспечивающий включение схемы управления 21 соленоидами 14 статора 13. Взаимодействие магнитных полей соленоидов 14 с магнитными полями постоянных магнитов 8 и 10 дисков 7 и 9 ротора соответственно опять приводит к возникновению сил отталкивания между полюсами соленоидов 14 статора 13 и полюсами постоянных магнитов 8 и 10 дисков 7 и 9 ротора соответственно, что обеспечивает вращательное движение последнего.
Ротор двигателя приобретает устойчивое вращение, а процесс преобразования потенциальной энергии постоянных магнитов 8 и 10 в механическую энергию становится непрерывным.
Для перевода двигателя из рабочего режима в режим остановки необходимо выключить тумблер 18, при этом прекращается подача электрического питания на схему управления 20 пусковыми электромагнитами 15, 16, выключатель 17 и схему управления 21 соленоидами 14 статора 13, взаимодействие между постоянными магнитами 8 и 10 дисков 7 и 9 ротора соответственно и соленоидами 14 статора 13 прекращается, на ротор перестают действовать силы и двигатель останавливается. В момент полной остановки двигателя один из постоянных магнитов 10 второго диска 9 ротора, вследствие взаимодействия с магнитопроводами пусковых электромагнитов 15, 16, устанавливается между пусковыми электромагнитами 15 и 16, обеспечивая готовность двигателя для следующего запуска.
Источники информации
1. Полезная модель RU №89301, кл. H02K 29/03, опубл. 2009 г.
2. Патент US №5594289, кл. H02K 16/00, опубл. 1997 г. - прототип.
Электромагнитный двигатель, содержащий ротор, выполненный в виде вала, установленного с возможностью вращения и, по крайней мере, двух дисков, установленных на валу, с расположенными по их периферии постоянными магнитами и статор, содержащий электромагниты, установленные с возможностью взаимодействия с постоянными магнитами, отличающийся тем, что постоянные магниты выполнены в форме цилиндров, плоскости торцов которых расположены в радиальной плоскости каждого из дисков, при этом постоянные магниты первого и второго дисков обращены друг к другу разноименными полюсами, а статор содержит электромагниты в виде соленоидов без магнитопроводов, установленные между дисками ротора, два пусковых электромагнита, имеющие не связанные магнитопроводы, и установленные напротив постоянного магнита, любого из дисков ротора, выключатель бесконтактный индукционный, установленный на статоре напротив любого из постоянных магнитов дисков ротора с возможностью взаимодействия с каждым из постоянных магнитов, размещенных на одном из вращающихся дисков ротора, в момент прохождения постоянным магнитом зоны чувствительности сенсорной части выключателя бесконтактного индукционного.
www.findpatent.ru
Электромагнитный двигатель
НИКОЛА ТЕСЛА, ПРОЖИВАЮЩИЙ В НЬЮ-ЙОРКЕ, ШТАТ НЬЮ-ЙОРК, ПЕРЕУСТУПАЮЩИЙ ПРАВА НА ДАННОЕ ИЗОБРЕТЕНИЕ ФИРМЕ «ТЕСЛА ЭЛЕКТРИК КОМПАНИ», НЬЮ-ЙОРК
ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ
ОПИСАНИЕ, ЯВЛЯЮЩЕЕСЯ ЧАСТЬЮ ПАТЕНТА № 405858 ОТ 25 ИЮНЯ 1889 Г. ЗАЯВКА ОТ 8 ЯНВАРЯ 1889 Г., НОМЕР ЗАЯВКИ 295745 (МОДЕЛЬ НЕ ПРИЛАГАЕТСЯ)
Всем заинтересованным лицам:
Я, Никола Тесла, подданный Австрийской империи, родившийся в Смилянах Лики (провинция Австро-Венгрии), в настоящее время проживающий в Нью-Йорке, штат Нью-Йорк, изобрел некоторые новые и полезные усовершенствования в электромагнитных двигателях, описание которых со ссылками на прилагающиеся чертежи приводится ниже.
Чтобы более ясно определить отношения между двигателем, являющимся предметом моего настоящего описания, и другими двигателями класса, к которому он принадлежит, я кратко перечислю типы двигателей переменного тока, изобретенные мной и более детально описанные в прошлых патентах и заявках. Можно выделить два основных типа или вида: во-первых, двигатели, содержащие две или более рабочие цепи, через которые пропускаются переменные токи, отличающиеся фазой, по величине достаточной для постоянного движения или перемещения полюсов или точек наибольшего магнитного действия, что позволяет поддерживать вращение подвижного элемента двигателя; во-вторых, двигатели с полюсами или элементами с различной магнитной восприимчивостью, которые под воздействием одного тока или двух токов, совпадающих по фазе, покажут различие в своих магнитных периодах или фазах. В первом типе двигателей вращающий момент обусловлен магнитной силой, созданной в различных элементах двигателя токами от одного или нескольких независимых источников имеющихся сдвиг фаз. Во втором типе вращающий момент вызван силовым воздействием тока на различные части двигателя, отличающиеся магнитной восприимчивостью — другими словами, части, одинаково реагирующие на действие тока, но не синхронно, а через различные промежутки времени.
В настоящем моем изобретении, однако, вращающий момент не является исключительно результатом временной разности периодов или фаз магнитных полюсов, или притягивающих элементов, а производится угловым смещением элементов, которые, хотя и подвижны по отношению друг к другу, намагничиваются одними и теми же токами синхронно или почти синхронно. Такой принцип работы я практически реализовал в двигателе, в котором требуемое угловое смещение между точками наибольшего магнитного притяжения двух элементов двигателя — якоря и обмотки возбуждения — достигается направлением набора магнитных сердечников этих элементов, и лучший способ достижения этого результата из известных мне в настоящее время я показал на прилагаемых рисунках.
Рисунок 1 — вид двигателя сбоку с сегментом его якорного сердечника. Рисунок 2 — вид двигателя с торца или ребра. Рисунок 3 — центральный разрез двигателя, причем якорь показан преимущественно в профиль.
Пусть АА — две пластины, набранные из тонких сегментов или пластин из мягкого железа, более или менее изолированных друг от друга и скрепленных болтами а или любыми другими подходящими средствами, и привинченных к основанию В. Внутренние поверхности этих пластин содержат выемки или пазы, в которых закреплена обмотка или обмотки £) под углом к направлению набора. Внутри обмоток И находится диск Е, предпочтительно из спиралевидной железной проволоки или ленты, или серии концентрических кругов, насаженный на вал F, с подшипниками в пластинах АА. Когда на подобное устройство действует переменный ток, оно приходит во вращение и становится двигателем, работу которого я объясню следующим образом: ток или импульс тока, проходящий по обмотке £), стремится намагнитить сердечники АЛ и Е, каждый из которых находится в зоне влияния магнитного поля обмоток. Установленные таким образом полюса будут, разумеется, находиться на одной линии под прямыми углами к обмоткам £), но на пластинах А они отклоняются из-за направления набора и оказываются на оконечностях названных пластин или близ них. Однако на диске, где эти условия отсутствуют, полюса или точки наибольшего притяжения находятся на линии под прямыми углами к плоскости обмоток; следовательно, это угловое смещение полюсов или магнитных линий вызовет вращающий момент, который приведет диск в движение, причем линии магнитной индукции якоря и обмотки будут стремиться к параллельности. Это вращение продолжается и поддерживается реверсированием тока в обмотках £Ш, что попеременно меняет полярность сердечников АА. Эта тенденция, или эффект вращения, значительно увеличится, если обмотать диск проводниками С, замкнутыми на себя и имеющими радиальное направление, причем интенсивность магнитного поля полюсов диска значительно увеличится за счет возбуждающего эффекта токов, индуцированных в обмотках в переменными токами в обмотках £). Схема обмотки и принцип действия были полностью изложены в моем патенте № 382279 от 1 мая 1888 года.
Сердечники диска и обмотки возбуждения могут иметь различную магнитную восприимчивость — хотя и не обязательно, то есть оба они могут быть из одного типа железа, чтобы намагничиваться обмотками £) примерно синхронно; или же один из них может быть из мягкого железа, а другой — из твердого, чтобы периоды их намагничивания не совпадали по времени. Вращение будет происходить в любом случае; но, если диск не имеет замкнутых обмоток, желательно, чтобы указанное различие магнитной восприимчивости использовалось для усиления его вращения.
Сердечники рабочей обмотки и якоря, разумеется, можно изготавливать различными способами; единственное требование заключается в том, чтобы они были набраны в таком направлении, чтобы обеспечивать необходимое угловое смещение точек наибольшего притяжения. Далее: поскольку диск можно рассматривать как состоящий из бесчисленного количества радиальных элементов, очевидно, что верное для диска при соответствующих условиях, подходит и для многих других типов якоря, и мое изобретение в этом отношении ни в коем случае не ограничивается специфическим типом представленного якоря.
Я полагаю, что первым вызвал вращение якоря — по меньшей мере такое, что оно может быть использовано для общих или практических целей, — посредством переменного тока, проходящего через единственную обмотку или несколько обмоток, действующих как одна, и оказывающего непосредственное намагничивающее воздействие на сердечники и якоря, и обмотки, что и является формулой изобретения в самом широком смысле.
Я считаю также, что при помощи переменного тока первым непосредственно намагнитил сердечники двух элементов двигателя, а направлением набора одного или обоих элементов произвел угловое смещение полюсов магнитных линий соответствующих сердечников.
Итак, формула изобретения такова:
- Электромагнитный двигатель, состоящий из индуктора, вращающегося якоря и единственной обмотки, приспособленной для соединения с источником переменного тока и намагничивания как якоря, так и индуктора с угловым смещением магнитных полюсов.
- В электромагнитном двигателе сочетание обмотки, приспособленной для соединения с источником переменных токов, индуктора и вращающегося якоря, сердечники которого установлены по отношению к обмотке так, что возбуждаются ею, и подразделены или набраны так, чтобы происходило угловое смещение их полюсов или магнитных силовых линий.
- В электромагнитном двигателе сочетание обмотки, приспособленной для соединения с источником переменного тока, индукторов с направлением набора под углом к плоскости названной обмотки, и якоря в форме круга или диска, смонтированного для вращения между индукторами, причем и рабочая обмотка, и якорь находятся под намагничивающим воздействием обмотки.
- В электромагнитном двигателе сочетание обмотки, приспособленной для соединения с источником переменного тока, индукторов с направлением набора под углом к плоскости обмотки, и якоря в форме круга или диска со спиральным или концентрическим набором пластин, смонтированного между индукторами, причем и якорь, и возбуждающая обмотка находятся под намагничивающим воздействием обмотки.
- В электромагнитном двигателе сочетание обмотки, приспособленной для соединения с источником переменного тока, индуктора и вращающегося якоря с замкнутыми на себя обмотками, причем и возбуждающая обмотка, и якорь находятся под намагничивающим воздействием названной обмотки и набраны так, чтобы вызывать угловое смещение полюсов обоих сердечников.
Никола Тесла.
Свидетели: Э.Т. Эванс, Дж. Н. Монро.
Н. ТЕСЛА ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ № 405858 25 ИЮНЯ 1889 Г.
radiofanatic.ru