Газотурбинный двигатель. Фото. Строение. Характеристики. . Газотурбинный двигатель т 80 принцип работы


вид топлива и технические характеристики

Так уж сложилось, что почти все ОБТ (основные боевые танки) мира имеют дизельный двигатель. Есть только два исключения: Т-80У и «Абрамс». Какими соображениями руководствовались советские специалисты, создавая знаменитую «восьмидесятку», и каковы перспективы этой машины в настоящее время?

Как все начиналось?

т 80уВпервые отечественный Т-80У увидел свет в 1976 году, а в 1980 году свой «Абрамс» сделали американцы. До сей поры только Россия и США имеют на вооружении танки с газотурбинной силовой установкой. Украину в расчет не принимают, потому как там на вооружении стоят исключительно Т-80УД, дизельный вариант знаменитых «восьмидесяток».

А начиналось все в 1932 году, когда в СССР было организовано конструкторское бюро, принадлежавшее Кировскому заводу. Именно в его недрах зародилась идея о создании принципиально нового танка, оснащенного газотурбинной силовой установкой. Именно от этого решения зависело, какой вид топлива для танка Т-80У будет использоваться в дальнейшем: обычный дизель или керосин.

Знаменитый конструктор Ж. Я. Котин, работавший над компоновкой грозных ИСов, в свое время задумался о создании еще более мощных и лучше вооруженных машин. Отчего же он обратил свое внимание на газотурбинный двигатель? Дело в том, что он замыслил создать танк массой в пределах 55-60 тонн, для нормальной подвижности которой требовался мотор мощностью не менее 1000 л. с. В те годы о таких дизелях приходилось только мечтать. Оттого-то и появилась мысль о привнесении авиационных и кораблестроительных технологий (то есть ГДТ) в танкостроение.

Уже в 1955 году началась работа, были созданы два перспективных образца. Но тут выяснилось, что инженеры кировского завода, до того создававшие только двигатели для судов, не в полной мере поняли технологическое задание. Работа была свернута, а потом и вовсе прекращена, так как Н. С. Хрущев полностью «запорол» все разработки тяжелых танков. Так что в то время появиться танку Т-80У, двигатель которого по-своему уникален, было не суждено.

Впрочем, огульно обвинять Никиту Сергеевича в этом случае не стоит: параллельно ему были продемонстрированы и перспективные дизельные моторы, на фоне которых откровенно сырой ГТД смотрелся весьма малообещающе. Да что там говорить, если «прописаться» на серийных танках этот двигатель сумел лишь к 80-м годам прошлого столетия, да и сегодня к таким силовым установкам у многих военных отношение не самое радужное. Нужно отметить, что тому есть вполне объективные причины.

Продолжение работ

танк т 80уВсе изменилось после создания первого в мире ОБТ, коим стал Т-64. Вскоре конструкторы поняли, что на его базе можно сделать еще более совершенный танк… Но сложность заключалась в жестких требованиях, выдвинутых руководством страны: он должен быть максимально унифицирован с существующими машинами, не превышать их габаритов, но при этом иметь возможность использоваться в качестве средства для «рывка к Ла-Маншу».

И тут все снова вспомнили о ГДТ, так как родная силовая установка Т-64 уже тогда требованиям времени решительно не соответствовала. Именно тогда Устинов принял решение о создании Т-80У. Основное топливо и двигатель нового танка должны были способствовать его максимально высоким скоростным характеристикам.

Возникшие сложности

Огромная проблема заключалась в том, что новую силовую установку с очистителями воздуха требовалось как-то вместить в стандартное МТО Т-64А. Более того, комиссия требовала блочной системы: проще говоря, нужно было двигатель сделать так, чтобы при капитальном ремонте можно было извлечь его целиком и заменить новым. Не тратя, разумеется, много времени на это. И если с относительно компактным ГТД все было сравнительно просто, то система воздухоочистки доставила инженерам массу головной боли.

А ведь эта система крайне важна даже для дизельного танка, не говоря уж о его газотурбинном аналоге на Т-80У. Какое топливо бы ни использовалось, лопатки турбинной установки моментально облепятся шлаком и развалятся, если поступающий в камеру сгорания воздух не будет в должной мере очищен от загрязняющих его примесей.

Следует помнить, что все конструкторы двигателей стремятся к тому, чтобы воздух, попадающий в цилиндры или рабочую камеру турбины, был очищен от пыли на 100 %. И понять их нетрудно, так как пыль буквально пожирает внутренности мотора. По сути, она действует как мелкий наждак.

Опытные образцы

В 1963 году небезызвестным Морозовым был создан опытный экземпляр Т-64Т, на который был установлен газотурбинный движок, обладающий весьма скромной мощностью в 700 л. с. Уже в 1964 году конструкторы из Тагила, работавшие под руководством Л. Н. Карцева, создали куда более перспективный мотор, который мог выдать уже 800 «лошадей».

т 80у топливоНо конструкторы, как в Харькове, так и в Нижнем Тагиле, столкнулись с целым комплексом сложнейших технических проблем, из-за которых первые отечественные танки с ГТД смогли появиться только в 80-х годах. В конечном итоге действительно неплохой движок получил только Т-80У. Вид топлива, используемый для его боепитания, также выгодно отличал этот мотор от ранних прототипов, так как танк мог использовать все виды обычного дизельного горючего.

Мы не случайно расписывали пылевые аспекты выше, так как именно проблема качественной очистки воздуха стала наиболее сложной. У инженеров был большой опыт в разработке турбин для вертолетов… но движки геликоптеров работали в постоянном режиме, а вопрос пылевой загрязненности воздуха на высоте их работы вообще не стоял. В общем-то, работы были продолжены (как ни странно) только лишь с подачи Хрущева, бредившего ракетными танками.

Наиболее «жизнеспособным» был проект «Дракон». Для него был жизненно необходим двигатель повышенной мощности.

Опытные объекты

В общем-то, ничего удивительно в этом не было, так как для таких машин важна была повышенная подвижность, компактность и пониженный силуэт. В 1966 году конструкторы решили пойти другим путем и представили на суд публики опытный проект, сердцем которого стали сразу два ГТД-350, выдающие, как нетрудно понять, 700 л. с. Силовую установку создали в НПО им. В. Я. Климова, где к тому времени было достаточно опытных специалистов, занимавшихся разработкой турбин для летательных аппаратов и кораблей. Именно они по большому счету и создали Т-80У, двигатель которого для своего времени был действительно уникальной разработкой.

Но вскоре выяснилось, что даже один ГТД – штука сложная и довольно капризная, а уж их спарка и вовсе не имеет абсолютно никаких преимуществ перед обычной моноблочной схемой. А потому к 1968 году было издано официальное постановление правительства и Министерства обороны СССР о возобновлении работ над одиночным вариантом. К середине 70-х годов был готов танк, который впоследствии стал известен всему миру под обозначением Т-80У.

Основные характеристики

Компоновка (как и в случае с Т-64 и Т-72) классическая, с задним расположением МТО, экипаж – три человека. В отличие от предыдущих моделей, здесь мехводу дали сразу три триплекса, которые значительно улучшали обзор. Даже столь невероятная для отечественных танков роскошь, как подогрев рабочего места, здесь был предусмотрен.

т 80у с газотурбинным двигателемБлаго что тепла от раскаленной турбины было в достатке. Так что Т-80У с газотурбинным двигателем вполне оправданно является любимцем танкистов, так как условия работы экипажа в нем куда комфортнее, если сравнивать эту машину с Т-64/72.

Корпус изготавливается методом сварки, башня литая, угол наклона листов составляет 68 градусов. Как и в Т-64, здесь была использована комбинированная броня, составленная из броневой стали и керамики. Благодаря рациональным углам наклона и толщине танк Т-80У обеспечивает повышенные шансы выживания экипажа в самых сложных боевых условиях.

Имеется также развитая система защиты экипажа от оружия массового поражения, в том числе и ядерного. Компоновка боевого отсека практически полностью аналогична таковой на Т-64Б.

Характеристики машинного отсека

Конструкторам все же пришлось расположить ГТД в МТО продольно, что автоматически вылилось в некоторое увеличение габаритов машины по сравнению с Т-64. ГТД был выполнен в виде моноблока массой 1050 кг. Его особенностью было наличие особого редуктора, позволяющего снимать максимум возможного с мотора, а также сразу две коробки передач.

Для питания использовались сразу четыре бака в МТО, общий объем которых составляет 1140 л. Следует заметить, что Т-80У с газотурбинным двигателем, топливо для которого запасается в таких объемах, – довольно «прожорливый» танк, который потребляет в 1,5-2 раза больше горючего, чем Т-72. А потому и размеры баков соответствующие.

ГТД-1000Т создан с использованием трехвальной схемы, имеет одну турбину и два независимых компрессорных агрегата. Гордость инженеров – регулируемый сопловый агрегат, который позволяет плавно управлять оборотами турбины и значительно повышает ее эксплуатационный ресурс Т-80У. Какое топливо при этом рекомендуется использовать для продления долговечности силового агрегата? Сами разработчики говорят, что наиболее оптимален для этой цели качественный авиационный керосин.

Так как силовой связи между компрессорами и турбиной попросту нет, танк может уверенно двигаться по грунтам даже с очень плохой несущей способностью, причем двигатель при этом не заглохнет даже при резкой остановке машины. А чем «питается» Т-80У? Топливо для его мотора может быть разным…

Турбинная установка

основной вид топлива т 80уОсновным достоинством отечественного газотурбинного двигателя является его топливная всеядность. Может работать на авиационном топливе, любом типе солярки, низкооктановом бензине, предназначенном для автомобилей. Но! Т-80У, топливо для которого должно лишь обладать сносной текучестью, все же очень чувствителен к «нелицензионному» горючему. Заправка не рекомендованными видами топлива возможна только в условиях боевой обстановки, так как влечет за собой существенное снижение ресурса двигателя и лопаток турбины.

Запуск мотора осуществляется за счет раскрутки компрессоров, за что отвечают два автономных электромотора. Акустическая заметность танка Т-80У значительно ниже его дизельных собратьев как за счет характеристик самой турбины, так и за счет особым образом расположенной системы выхлопа. Кроме того, машина уникальна тем, что при торможении используются как гидравлические тормоза, так и сам движок, за счет чего тяжелый танк останавливается практически мгновенно.

Как это осуществляется? Дело в том, что при одиночном нажатии на педаль тормоза лопатки турбины начинают вращаться в противоположном направлении. Процесс этот дает огромную нагрузку на материал лопаток и всей турбины, а потому он контролируется электроникой. Из-за этого при необходимости резкого торможения следует сразу же утапливать педаль газа полностью. При этом в работу сразу включаются гидравлические тормоза.

Что касается других качеств танка, то он обладает сравнительно малыми топливными «аппетитами». Добиться этого конструкторам удалось далеко не сразу. Чтобы сократить объемы потребляемого горючего, инженерам пришлось создать автоматическую систему управления оборотами турбины (САУР). В нее входят температурные датчики и регуляторы, а также выключатели, физически связанные с системой подачи топлива.

Благодаря САУР износ лопаток удалось сократить минимум на 10 %, а при грамотной работе педалью тормоза и переключении передач механик-водитель может снизить расход топлива на 5-7 %. Кстати, а какой для этого танка основной вид топлива? Т-80У в идеальных условиях должен заправляться авиационным керосином, но подойдет и качественная солярка.

Системы очистки воздуха

 вид топлива для танка т 80уБыл использован циклонный очиститель воздуха, обеспечивающий 97 % удаление из всасываемого воздуха пыли и других инородных примесей. К слову сказать, у «Абрамса» (за счет нормальной двухступенчатой очистки) этот показатель близок к 100 %. Именно по этой причине топливо для танка Т-80У – тема больная, так как расходуется его значительно больше, если сравнивать танк с его американским конкурентом.

Оставшиеся 3 % пыли оседают на лопатках турбины в виде запекшегося шлака. Чтобы его удалить, конструкторы предусмотрели автоматическую программу вибрационной очистки. Следует заметить, что к воздухозаборникам можно подключать специальное оборудование для подводного вождения. Оно позволяет преодолевать реки глубиной до пяти метров.

Трансмиссия танка стандартная – механическая, планетарного типа. Включает две коробки, два редуктора, по два гидравлических привода. Имеется четыре скорости вперед и одна назад. Опорные катки обрезиненные. Гусеницы также имеют внутреннюю резиновую дорожку. Из-за этого танк Т-80У имеет весьма недешевую ходовую часть.

Натяжение осуществляется за счет механизмов червячного типа. Подвеска комбинированная, в ее состав входят как торсионы, так и гидравлические амортизаторы на трех катках.

Характеристики вооружения

Основное орудие – пушка модели 2А46М-1, калибр которой равен 125 мм. Точно такие же пушки ставились на танки Т-64/72, а также на небезызвестное самоходное противотанковое орудие "Спрут".

Вооружение (как на Т-64) было полностью стабилизировано в двух плоскостях. Опытные танкисты говорят, что дальность прямого выстрела по визуально наблюдаемой цели может достигать 2100 м. Боекомплект стандартный: осколочно-фугасные, подкалиберные и кумулятивные снаряды. А автомате заряжания одномоментно может находиться до 28 выстрелов, еще несколько могут быть расположены в боевом отделении.

Вспомогательным вооружением являлся 12,7-миллиметровый пулемет «Утес», но украинцы уже давно ставят любое схожее вооружение, ориентируясь на требования заказчика. Огромным недостатком пулеметной установки является тот факт, что стрелять из нее может только командир танка, причем для этого ему в любом случае приходится покидать заброневое пространство машины. Так как начальная баллистика пули 12,7 мм очень схожа с таковой у снаряда, важнейшим предназначением пулемета является также пристрелка орудия без затрат основных боеприпасов.

Боеукладка

Механизированная боеукладка была размещена конструкторами по всему периметру обитаемого объема танка. Так как немалую часть всего МТО танка Т-80 занимают баки с топливом, конструкторы ради сохранения объема были вынуждены разместить горизонтально только сами снаряды, тогда как метательные заряды стоят в барабане вертикально. Это очень заметное отличие «восьмидесяток» от танков Т-64/72, в которых снаряды с вышибными зарядами располагаются горизонтально, на уровне катков.

Принцип работы основного орудия и заряжающего устройства

При поступлении соответствующей команды барабан начинает вращаться, попутно подводя выбранный тип снаряда к плоскости заряжания. После этого механизм стопорится, снаряд и вышибной заряд досылаются в орудие при помощи закрепленного в одной точке досылателя. После выстрела гильза автоматически захватывается специальным механизмом и помещается в освободившуюся ячейку барабана.

«Карусель» заряжания обеспечивает темп стрельбы не ниже шести-восьми выстрелов в минуту. Если автомат заряжания выходит из строя, зарядить орудие можно вручную, но сами танкисты считают такое развитие событий нереалистичным (слишком сложно, муторно и долго). На танке используется прицел модели ТПД-2-49, независимо от орудия стабилизированный в вертикальной плоскости, позволяющий определять расстояние и наводится на цель при дальностях 1000-4000 м.

Некоторые модификации

В 1978 году танк Т-80У с газотурбинным двигателем был несколько модернизирован. Основным нововведением стало появление ракетного комплекса 9К112-1 "Кобра", стрельба из которого производилась ракетами 9М112. Ракета могла поразить бронированную цель на расстоянии до 4 километров, причем вероятность этого была от 0,8 до 1 в зависимости от характеристик местности и скорости движения цели.

Так как ракета полностью повторяет габариты стандартного 125-миллиметрового снаряда, она может располагаться в любом лотке заряжающего механизма. Этот боеприпас «заточен» исключительно против бронетехники, боеголовка только кумулятивная. Как и обычный выстрел, конструктивно ракета состоит из двух частей, совмещение которых происходит при стандартной работе механизма заряжания. Наводится она в полуавтоматическом режиме: наводчик первые секунды должен прочно удерживать рамку захвата на атакуемой цели.

т 80у основное топливоНаведение или оптическое, или по направленному радиосигналу. Чтобы максимизировать вероятность поражения цели, наводчик может выбрать один из трех полетных режимов ракеты, ориентируясь на боевую обстановку и окружающую местность. Как показала практика, это полезно при атаке бронетехники, защищенной активными системами противодействия.

fb.ru

танковые газотурбинные двигатели » Военное обозрение

В пятидесятых годах прошлого века широкое распространение получили газотурбинные двигатели (ГТД) различных классов. Турбореактивные моторы разгоняли авиацию до сверхзвуковых скоростей, а по воде и железным дорогам двигались локомотивы и корабли с первыми моделями газотурбинных двигателей. Предпринимались попытки оснастить такими моторами и грузовики, однако эти эксперименты оказались неудачными. Подобные силовые установки, при всех своих плюсах – экономичности на номинальном режиме работы, компактности и возможности применять различные типы топлива – не были лишены недостатков. Прежде всего, это слишком большой расход топлива при разгоне или торможении, что в итоге и определило нишу, в которой ГТД нашли свое применение. Одним из итогов различных экспериментов с такой силовой установкой стал советский танк Т-80. Но достижение всемирной известности было далеко не простым делом. От начала работ по созданию танкового ГТД до начала его серийного производства прошло почти два десятка лет.

Первые проекты

Идея сделать танк с газотурбинной силовой установкой появилась еще тогда, когда никто и не думал о проекте Т-80. Еще в 1948 году конструкторское бюро турбинного производства Ленинградского Кировского завода начало работу над проектом танкового ГТД мощностью в 700 лошадиных сил. К сожалению, проект был закрыт за бесперспективностью. Дело в том, что 700-сильный двигатель, по расчетам, потреблял чрезвычайно много топлива. Расход признали слишком большим для практического использования. Чуть позже неоднократно предпринимались попытки сконструировать другие двигатели подобного класса, но они тоже не дали никакого результата.

Во второй половине пятидесятых годов ленинградские конструкторы создали еще один двигатель, который дошел до стадии сборки прототипа. Получившийся ГТД-1 не оснащался теплообменником и выдавал мощность до тысячи лошадиных сил при расходе топлива в 350-355 г/л.с. ч. Вскоре на основе этого двигателя сделали две модификации: ГТД1-Гв6 со стационарным теплообменником и ГТД1-Гв7 с вращающимся. К сожалению, несмотря на некоторый прогресс, все три модели ГТД имели расход топлива выше расчетного. Улучшить этот параметр не представлялось возможным, поэтому проекты закрыли.

В целом, все ранние проекты ГТД для сухопутной, в том числе и гусеничной, техники не отличались особыми успехами. Все они не смогли добраться до серийного производства. В то же время, в ходе разработки и испытаний новых моторов удалось найти немало новых оригинальных технических решений, а также собрать нужную информацию. К этому времени сформировались две основные тенденции: попытки приспособить авиационный двигатель для использования на танке и сделать специальный ГТД.

В начале шестидесятых годов произошло несколько событий, которые позитивно сказались на всем направлении. Сначала Научно-исследовательский институт двигателей (НИИД) предложил несколько вариантов моторно-трансмиссионного отделения для танка Т-55. Предлагались два варианта газотурбинного двигателя, отличавшиеся друг от друга мощностью и потреблением топлива. В апреле 1961 года вышло соответствующее распоряжение руководства страны, согласно которому НИИД должен был продолжить работы по начатым проектам, а на Челябинском тракторном заводе создавалось специальное конструкторское бюро, занятое исключительно тематикой ГТД.

Челябинские двигатели

Новое бюро получило индекс ОКБ-6 и объединило усилия с Институтом двигателей. Результатом проектирования стал проект ГТД-700. При мощности до 700 л.с. этот двигатель потреблял 280 г/л.с.ч, что приближалось к требуемым значениям. Столь высокие для своего времени характеристики были обусловлены рядом оригинальных решений. Прежде всего необходимо отметить конструкцию теплообменника, каналы которого были оптимизированы в плане сечения и скорости течения газов. Кроме того, на работе двигателя благотворно сказался новый одноступенчатый воздухоочиститель циклонного типа, задерживавший до 97% пыли. В 1965 году начались испытания двух первых образцов ГТД-700. Работа двигателей на стенде показала все преимущества примененных решений, а также позволила вовремя определить и исправить имеющиеся проблемы. Вскоре собрали еще три двигателя ГТД-700, один из которых позже был установлен на опытный танк «Объект 775Т». В марте 1968 года прошел первый запуск газотурбинного двигателя на танке и через несколько дней начались ходовые испытания. До апреля следующего года экспериментальный танк прошел около 900 километров при наработке двигателя порядка 100 часов.

Несмотря на имеющиеся успехи, в 1969 году испытания двигателя ГТД-700 завершились. В это время прекратились работы над ракетным танком «Объект 775» и, как следствие, его газотурбинной модификацией. Однако развитие двигателя не остановилось. По результатам испытаний сотрудники НИИД провели несколько исследований и пришли к позитивным выводам. Как оказалось, конструкция ГТД-700 позволяла довести мощность до уровня порядка 1000 л.с., а расход топлива снизить до 210-220 г/л.с.ч. Перспективная модификация двигателя получила обозначение ГТД-700М. Ее расчетные характеристики выглядели многообещающе, что привело к дальнейшим разработкам. ВНИИТрансмаш (переименованный ВНИИ-100) и конструкторское бюро ЛКЗ предприняли попытку установить ГТД-700М на танки «Объект 432» и «Объект 287». Однако никаких практических результатов добиться не удалось. Моторно-трансмиссионное отделение первого танка оказалось недостаточно большим для размещения всех агрегатов силовой установки, а второй проект вскоре был закрыт за бесперспективностью. На этом история двигателя ГТД-700 закончилась.

ГТД-3 для «Объекта 432»

Одновременно с НИИД и челябинскими конструкторами над своими проектами ГТД работали в омском ОКБ-29 (сейчас Омское моторостроительное конструкторское бюро) и ленинградском ОКБ-117 (завод им. В.Я. Климова). Стоит отметить, основным направлением работы этих предприятий была адаптация авиационных двигателей к танковым «нуждам». Этим фактом обусловлен целый ряд особенностей получившихся двигателей. Одним из первых переработке подвергся вертолетный турбовальный двигатель ГТД-3, разработанный в Омске. После адаптации для использования на танке он получил новый индекс ГТД-3Т и немного потерял в мощности, с 750 до 700 л.с. Расход топлива в танковом варианте составлял 330-350 г/л.с.ч. Такое потребление горючего было слишком велико для практического использования двигателя, но ГТД-3Т все же был установлен на ходовой макет, базой для которого послужил танк Т-54. Позже подобный эксперимент провели с танком Т-55 (проект ВНИИ-100) и с «Объектом 166ТМ» (проект Уралвагонзавода). Примечательно, что после испытаний своего опытного образца тагильские конструкторы пришли к выводу о нецелесообразности продолжения работ по газотурбинной тематике и вернулись к созданию танков с дизельными двигателями.

В 1965 году ОКБ-29 и ВНИИ-100 получили задание доработать двигатель ГТД-3Т для использования на танке «Объект 432», который вскоре был принят на вооружение под обозначением Т-64. В ходе такой доработки двигатель получил новое обозначение ГТД-3ТЛ и ряд изменений в конструкции. Изменились конструкция компрессора и корпуса турбины, появилась система перепуска газов после компрессора, созданы два новых редуктора (один в составе моторного агрегата, другой располагался на корпусе танка), а также переделана выхлопная труба. Имея сравнительно небольшие габариты, двигатель ГТД-3ТЛ хорошо вписался в моторно-трансмиссионное отделение «Объекта 432», а в свободных объемах уместились дополнительные баки на 200 литров топлива. Стоит отметить, в МТО танка пришлось ставить не только новый двигатель, но и новую трансмиссию, приспособленную для работы с газотурбинным двигателем. Крутящий момент двигателя передавался на главный редуктор и распределялся на две бортовые планетарные коробки передач. В конструкции новой трансмиссии широко использовались детали исходной системы «Объекта 432». Ввиду специфических требований двигателя к подаче воздуха пришлось заново спроектировать оборудование для подводного вождения, имеющее в своем составе воздухопитающие и выхлопные трубы большего диаметра.

В ходе проектирования двигателя ГТД-3ТЛ, с целью проверки некоторых идей, на танке Т-55 установили мотор ГТД-3Т. Танк с газотурбинным двигателем сравнили с аналогичной бронемашиной, оборудованной стандартным дизелем В-55. В результате этих испытаний подтвердились все предварительные расчеты. Так, средняя скорость опытного танка оказалась немного выше скорости серийного, но за это преимущество пришлось платить в 2,5-2,7 раза более высоким расходом топлива. При этом к моменту сравнительных испытаний не были достигнуты требуемые характеристики. Вместо необходимых 700 л.с. ГТД-3ТЛ выдавал лишь 600-610 и сжигал порядка 340 г/л.с.ч вместо требовавшихся 300. Повышенный расход топлива привел к серьезному уменьшению запаса хода. Наконец, ресурс в 200 часов не дотягивал даже до половины от заданных 500. Выявленные недостатки были учтены и вскоре появился полноценный проект ГТД-3ТЛ. К концу 1965 года ОКБ-29 и ВНИИ-100 совместными усилиями завершили разработку нового двигателя. За основу для него был взят не танковый ГТД-3Т, а авиационный ГТД-3Ф. Новый двигатель развивал мощность до 800 л.с. и потреблял не более 300 г/л.с.ч. В 1965-66 годах изготовили два новых двигателя и проверили их на танке «Объект 003», представлявшем собой доработанный «Объект 432».

Одновременно с испытаниями танка «Объект 003» шла разработка «Объекта 004» и силовой установки для него. Предполагалось использовать двигатель ГТД-3ТП, имевший большую мощность в сравнении с ГТД-3ТЛ. Кроме того, мотор с индексом «ТП» должен был размещаться не поперек корпуса танка, а вдоль, что повлекло за собой перекомпоновку некоторых агрегатов. Основные пути развития остались прежними, но их нюансы подверглись определенным коррективам, связанным с выявленными проблемами газотурбинных двигателей. Пришлось серьезно доработать систему забора и фильтрации воздуха, а также отвода выхлопных газов. Еще один серьезный вопрос касался эффективного охлаждения двигателя. Создание новой трансмиссии, повышение характеристик и доведение моторесурса до требуемых 500 часов также остались актуальными. При проектировании двигателя и трансмиссии для танка «Объект 004» старались скомпоновать все агрегаты таким образом, чтобы они могли уместиться в МТО с минимальными его доработками.

Наибольшим изменениям подверглась крыша моторно-трансмиссионного отделения и кормовой лист бронекорпуса. Крышу сделали из сравнительно тонкого и легкого листа с окнами, на которых разместили жалюзи воздухозаборного устройства. В корме появились отверстия для выброса газов двигателя и воздуха из системы охлаждения. Для повышения живучести эти отверстия прикрыли бронированным колпаком. Двигатели и некоторые агрегаты трансмиссии укрепили на заново разработанной раме, которая монтировалась на бронекорпусе без доработок последнего. Сам двигатель установили продольно, с небольшим сдвигом от оси танка влево. Рядом с ним разместились топливный и масляный насосы, 24 прямоточных циклона системы воздухоочистки, компрессор, стартер-генератор и т.п.

Двигатель ГТД-3ТП мог выдавать мощность до 950 л.с. при расходе топлива в 260-270 г/л.с.ч. Характерной чертой этого двигателя стала его схема. В отличие от предыдущих моторов семейства ГТД-3 он был сделан по двухвальной системе. С двигателем была сопряжена четырехскоростная трансмиссия, разработанная с учетом характерных для газотурбинного двигателя нагрузок. Согласно расчетам, трансмиссия могла работать в течение всего срока службы двигателя – до 500 часов. Бортовые коробки передач имели тот же размер, что и на исходном «Объекте 432» и помещались на исходных местах. Приводы управления агрегатами двигателя и трансмиссии в большинстве своем располагались на старых местах.

Насколько известно, «Объект 004» так и остался на чертежах. В ходе его разработки удалось решить несколько важных вопросов, а также определить планы на будущее. Несмотря на уменьшение заметности танка с ГТД в инфракрасном спектре, улучшившееся качество очистки воздуха, создание специальной трансмиссии и т.п., расход топлива оставался на недопустимом уровне.

ГТД из Ленинграда

Еще одним проектом, начавшимся в 1961 году, были ленинградские исследования перспектив турбовального двигателя ГТД-350. Ленинградские Кировский завод и Завод им. Климова совместными усилиями начали изучать поставленный перед ними вопрос. В качестве стенда самых для первых исследований применялся серийный трактор К-700. На него установили двигатель ГТД-350, для работы с которым пришлось немного доработать трансмиссию. Вскоре начался еще один эксперимент. На этот раз «платформой» для газотурбинного двигателя стал бронетранспортер БТР-50П. Подробности этих испытаний не стали достоянием общественности, но известно, что по их результатам двигатель ГТД-350 признали пригодным для использования на сухопутной технике.

На его базе создали два варианта двигателя ГТД-350Т, с теплообменником и без. Без теплообменника газотурбинный двигатель двухвальной системы со свободной турбиной развивал мощность до 400 л.с. и имел расход топлива на уровне 350 г/л.с.ч. Вариант с теплообменником был ощутимо экономичнее – не более 300 г/л.с.ч., хотя и проигрывал в максимальной мощности порядка 5-10 л.с. На основе двух вариантов двигателя ГТД-350Т были сделаны силовые агрегаты для танка. При этом, ввиду сравнительно малой мощности, рассматривались варианты с применением как одного двигателя, так и двух. В результате сравнений наиболее перспективным был признан агрегат с двумя двигателями ГТД-350Т, располагавшимися вдоль корпуса танка. В 1963 году началась сборка опытного образца такой силовой установки. Его установили на шасси экспериментального ракетного танка «Объект 287». Получившуюся машину назвали «Объектом 288».

В 1966-67 годах этот танк прошел заводские испытания, где подтвердил и скорректировал расчетные характеристики. Однако главным результатом поездок по полигону стало понимание того, что перспективы спаренной системы двигателей сомнительны. Силовая установка с двумя двигателями и оригинальным редуктором получилась сложнее в производстве и эксплуатации, а также дороже, чем один ГТД эквивалентной мощности с обычной трансмиссией. Предпринимались некоторые попытки развить двухдвигательную схему, но в итоге конструкторы ЛКЗ и Завода им. Климова остановили работы в этом направлении.

Стоит отметить, проекты ГТД-350Т и «Объект 288» были закрыты только в 1968 году. До этого времени, по настоянию заказчика в лице Минобороны, состоялись сравнительные испытания сразу нескольких танков. В них участвовали дизельные Т-64 и «Объект 287», а также газотурбинные «Объект 288» и «Объект 003». Испытания были суровыми и проходили на разных местностях и в разных погодных условиях. В результате выяснилось, что при имеющихся преимуществах в части габаритов или максимальной мощности существующие газотурбинные двигатели менее пригодны для практического применения, чем освоенные в производстве дизели.

Незадолго до прекращения работ по тематике спаренных двигателей конструкторы ЛКЗ и Завода им. Климова сделали два эскизных проекта, подразумевавших установку на танк «Объект 432» спаренной установки с перспективными двигателями ГТД-Т мощностью по 450 л.с. Рассматривались различные варианты размещения двигателей, но в итоге оба проекта не получили продолжения. Спаренные силовые установки оказались неудобными для практического применения и более не использовались.

Двигатель для Т-64А

Принятый на вооружение в шестидесятых годах танк Т-64А при всех своих преимуществах не был лишен недостатков. Высокая степень новизны и несколько оригинальных идей стали причиной технических и эксплуатационных проблем. Немало нареканий вызвал двигатель 5ТДФ. В частности, и из-за них было решено всерьез заняться перспективным ГТД для этого танка. В 1967 году появилось соответствующее постановление руководства страны. К этому времени уже имелся определенный опыт в сфере оснащения танка «Объект 432» газотурбинной силовой установкой, поэтому конструкторам не пришлось начинать с нуля. Весной 1968-го года на ленинградском Заводе им. Климова развернулись проектные работы по двигателю ГТД-1000Т.

Главным вопросом, стоявшим перед конструкторами, было снижение расхода топлива. Остальные нюансы проекта уже были отработаны и не нуждались в столь большом внимании. Улучшать экономичность предложили несколькими путями: повысить температуру газов, улучшить охлаждение элементов конструкции, модернизировать теплообменник, а также повысить КПД всех механизмов. Кроме того, при создании ГТД-1000Т применили оригинальный подход: координацией действий нескольких предприятий, занятых в проекте, должна была заниматься сводная группа из 20 их сотрудников, представлявших каждую организацию.

Благодаря такому подходу достаточно быстро удалось определиться с конкретным обликом перспективного двигателя. Таким образом, в планы входило создание трехвального ГТД с двухкаскадным турбокомпрессором, кольцевой камерой сгорания и охлаждаемым сопловым аппаратом. Силовая турбина – одноступенчатая с регулируемым сопловым аппаратом перед ней. В конструкцию двигателя ГТД-1000Т сразу ввели встроенный понижающий редуктор, который мог преобразовывать вращение силовой турбины со скоростью порядка 25-26 тыс. оборотов в минуту в 3-3,2 тыс. Выходной вал редуктора разместили таким образом, что он мог передавать крутящий момент на бортовые коробки передач «Объекта 432» без лишних деталей трансмиссии.

По предложению сотрудников ВНИИТрансмаш, для очистки поступающего воздуха применили блок прямоточных циклонов. Выведение выделенной из воздуха пыли было обязанностью дополнительных центробежных вентиляторов, которые, кроме того, обдували масляные радиаторы. Использование такой простой и эффективной системы очистки воздуха привело к отказу от теплообменника. В случае его использования для достижения требуемых характеристик требовалось очищать воздух почти на все 100%, что было, как минимум, очень сложно. Двигатель ГТД-1000Т без теплообменника мог работать даже если в воздухе оставалось до 3% пыли.

Отдельно стоит отметить компоновку двигателя. На корпусе собственно газотурбинного агрегата установили циклоны, радиаторы, насосы, маслобак, компрессор, генератор и прочие части силовой установки. Получившийся моноблок имел габариты, пригодные для установки в моторно-трансмиссионное отделение танка Т-64А. Кроме того, в сравнении с оригинальной силовой установкой, двигатель ГТД-1000Т оставлял внутри бронированного корпуса объем, достаточный для размещения баков на 200 литров топлива.

Весной 1969 года началась сборка опытных экземпляров Т-64А с газотурбинной силовой установкой. Интересно, что в создании прототипов участвовали сразу несколько предприятий: Ленинградский Кировский и Ижорский заводы, Завод им. Климова, а также Харьковский завод транспортного машиностроения. Чуть позже руководство оборонной промышленности решило построить опытную партию из 20 танков Т-64А с газотурбинной силовой установкой и распределить их по различным испытаниям. 7-8 танков предназначались для заводских, 2-3 для полигонных, а оставшиеся машины должны были пройти войсковые испытания в разных условиях.

За несколько месяцев испытаний в условиях полигонов и испытательных баз было собрано нужное количество информации. Двигатели ГТД-1000Т показали все свои преимущества, а также доказали пригодность для использования на практике. Однако выяснилась другая проблема. При мощности в 1000 л.с. двигатель не слишком удачно взаимодействовал с имеющейся ходовой частью. Ее ресурс заметно снижался. Более того, к моменту окончания испытаний почти все двадцать опытных танков нуждались в ремонте ходовой или трансмиссии.

На финишной прямой

Самым очевидным решением проблемы выглядела доработка ходовой части танка Т-64А для использования вместе с ГТД-1000Т. Однако такой процесс мог занять слишком много времени и с инициативой выступили конструкторы ЛКЗ. По их мнению, нужно было не модернизировать имеющуюся технику, а создавать новую, изначально рассчитанную под большие нагрузки. Так появился проект «Объект 219».

Как известно, за несколько лет разработки этот проект успел претерпеть массу изменений. Корректировались почти все элементы конструкции. Точно так же доработкам подвергся и двигатель ГТД-1000Т и сопряженные с ним системы. Пожалуй, самым главным вопросом в это время было повышение степени очистки воздуха. В результате массы исследований выбрали воздухоочиститель с 28 циклонами, оснащенными вентиляторами с особой формой лопасти. Для уменьшения износа некоторые детали циклонов покрыли полиуретаном. Изменение воздухоочистительной системы сократило поступление пыли в двигатель примерно на один процент.

Еще во время испытаний в Средней Азии проявилась другая проблема газотурбинного двигателя. В тамошних грунтах и песках было повышенное содержание кремнезема. Такая пыль, попав в двигатель, спекалась на его агрегатах в виде стекловидной корки. Она мешала нормальному течению газов в тракте двигателя, а также увеличивала его износ. Эту проблему пытались решить при помощи специальных химических покрытий, впрыска в двигатель особого раствора, создания вокруг деталей воздушной прослойки и даже применения неких материалов, постепенно разрушавшихся и уносивших с собой пригоревшую пыль. Однако ни один из предложенных методов не помог. В 1973 году эту проблему решили. Группа специалистов Завода им. Климова предложила установить на наиболее подверженную загрязнению часть двигателя – сопловой аппарат – специальный пневмовибратор. При необходимости или через определенный промежуток времени в этот агрегат подавался воздух от компрессора и сопловой аппарат начинал вибрировать с частотой в 400 Гц. Налипшие частички пыли буквально стряхивались и выдувались выхлопными газами. Чуть позже вибратор заменили восемью пневмоударниками более простой конструкции.

В результате всех доработок наконец удалось довести ресурс двигателя ГТД-1000Т до требуемых 500 часов. Расход топлива танков «Объект 219» был примерно в 1,5-1,8 раза больше, чем у бронемашин с дизельными двигателями. Соответствующим образом сократился и запас хода. Тем не менее, по совокупности технических и боевых характеристик танк «Объект 219сп2» признали пригодным для принятия на вооружение. В 1976 году вышло постановление Совмина, в котором танк получил обозначение Т-80. В дальнейшем эта бронемашина претерпела ряд изменений, на ее базе было создано несколько модификаций, в том числе и с новыми двигателями. Но это уже совсем другая история.

По материалам сайтов:журнал "«Техника и вооружение: вчера, сегодня, завтра…»"http://armor.kiev.ua/http://army-guide.com/http://t80leningrad.narod.ru/

topwar.ru

Газотурбинный танк Т-80У: тест-драйв «Популярной механики»

На пути к гибриду

Одна из главных претензий, предъявляемых танку Т-80, — прожорливость его газотурбинного двигателя. С этим трудно поспорить — ГТД действительно потребляет больше топлива, чем дизель. «Основной вид горючего для этого танка — дизельное топливо, — говорит Сергей Суворов, — но Т-80 может ездить и на керосине, и на смесях бензина. Как-то во время службы на Урале я столкнулся с ситуацией, когда мои танки ездили практически на воде. Баки нам заправили какой-то белой, похожей на молоко жидкостью, в которой воды было, наверно, не меньше 50%. Я тогда задавал себе вопрос — сколько бы на этой адской смеси проехал Abrams? А Т-80 ездили как ни в чем не бывало. При этом температура воздуха в тот день была ниже -10°С. Но проверку батальон сдал. Правда, потом от влаги начались проблемы в работе топливной системы двигателя».

Как считает Сергей Суворов, относительно низкая экономичность Т-80 связана не только и не столько с применением ГТД, сколько с конструкцией именно танковых газотурбинных двигателей. В отличие от дизеля, мотор Т-80 имеет более низкую приемистость. Чтобы набрать максимальные обороты, а следовательно, и мощность, дизелю надо полсекунды, а ГТД-1000/1250 — секунды три-четыре. Если на пути танка яма, механик-водитель должен бросить педаль газа, то есть сократить подачу топлива. Двигатель резко сбрасывает обороты, и танк фактически останавливается. Потом механик снова нажимает педаль подачи топлива, но требуется еще несколько секунд, пока турбина раскрутится снова. Чтобы не стоять в ямах, танкистов обучали раскручивать турбину до максимальных оборотов, а затем в яме замедляться с помощью системы торможения. Танк при этом не глохнет — так как нет жесткой связи между турбиной двигателя и трансмиссией, между ними связь только газодинамическая, однако топливо продолжает литься рекой. «В танковом газотурбинном двигателе была изначально применена не совсем правильная идеология подачи топлива, — объясняет Сергей Суворов. — Например, в ряде авиационных газотурбинных двигателей после запуска автоматически поддерживается заданное значение постоянных оборотов, а регулирование мощности на валу осуществляется за счет изменения подачи топлива, без изменения частоты вращения турбины. Если бы в танковом двигателе существовала такая же система, тогда и расход топлива был бы почти таким же, как на дизеле». Впрочем, конструкторская мысль не стоит на месте. Уже разработан перспективный газотурбинный танковый двигатель ГТД-1500, который по экономичности не уступает дизелям.

Пока страшно не станет

Я стою на танковом полигоне в подмосковной Кубинке перед своей мечтой — танком Т-80У. Для неспециалиста он совсем неотличим от других массовых советских танков типа Т-72, но с ними его роднит только тип боеприпасов.

Т-80 устроен совсем иначе, чем обычные дизельные танки, но управляется гораздо проще, инструктирует меня командир танка сержант Степанов. В нем всего две педали, и он никогда не глохнет. Правая педаль газа отвечает за подачу топлива, а левая — за работу регулируемого соплового аппарата, РСА. Правой педалью газа ты раскручиваешь основную турбину, а левой меняешь положение лопаток силовой турбины. Сержант Степанов рекомендует мне держать правую педаль на максимуме, а работать только левой. Отпустил — несешься вперед, нужно подтормозить — слегка нажал, лопатки поменяли угол, скорость замедлилась. Нажал сильнее — они приняли отрицательный угол, и Т-80 тормозит турбиной. Нажал еще сильнее — и только тогда в дело вступают гидравлические тормоза. «Выжал РСА, включил передачу и движешься, — я внимаю каждому слову Степанова, — мощный двигатель Т-80 никогда не заглохнет, если не кончится горючее. Не связанную валом с компрессором силовую турбину раскручивает поток горячего газа из газогенератора. Даже если турбина застопорится, ничто не помешает газогенератору продолжать работу. Если на подъеме мощности не хватает, танк просто останавливается, но турбина не глохнет. Переключаешься на пониженную и вперед. А на Т-72 идет нагрузка на дизель. Так как у него прямое сцепление с двигателем, при подъеме в гору надо нажать сцепление, включить передачу, и в этот момент можно скатиться назад».

www.popmech.ru

Газотурбинный двигатель самолета. Фото. Строение. Характеристики.

 

Авиационные газотурбинные двигатели.

 

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

 

Принцип работы газотурбинного двигателя.

 

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

 

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  •  выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

 

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

 

Двигатель, изображенный на схеме выше, является турбореактивным. Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс». 

 

Газотурбинные двигатели имеют классификацию также по другим признакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  •  по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

 

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя — одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

 

 

Газотурбинный двигатель. Видео.

 

Полезные статьи по теме.

 

Ещё узлы и агрегаты

 

avia.pro

Турбовальный двигатель. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Привет!

Турбовальный двигатель.

Центробежная ступень компрессора ТВаД.

Сегодня продолжаем серию рассказов о типах авиационных двигателей.

Как известно, основной узел любого газотурбинного двигателя ( ГТД) – это турбокомпрессор. В нем компрессор работает в связке с турбиной, которая его вращает. Функции турбины этим могут и ограничиться. Тогда вся оставшаяся полезная энергия газового потока, проходящего через двигатель, срабатывается в выходном устройстве (реактивном сопле). Как говорил мой преподаватель «спускается на ветер» :-). Тем самым создается реактивная тяга и ГТД становится обычным турбореактивным двигателем (ТРД).

Но можно сделать и по-другому. Турбину ведь можно заставить кроме компрессора вращать и другие нужные агрегаты, используя ту самую оставшуюся полезную энергию. Это может быть, например, самолетный воздушный винт. В этом случае ГТД становится уже турбовинтовым двигателем, в котором 10-15% энергии все же расходуется «на воздух» :-), то есть создает реактивную тягу.

Турбовальный двигатель.

Принцип работы турбовального двигателя.

Но если вся полезная энергия в двигателе срабатывается на валу и через него передается для привода агрегатов, то мы уже имеем так называемый турбовальный двигатель (ТваД).

Такой двигатель чаще всего имеет свободную турбину. То есть вся турбина как бы поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Сопла на таком двигателе нет. То есть выходное устройство для отработанных газов конечно имеется, но соплом оно не является и тяги не создает. Просто труба… Зачастую еще и искривленная :-).

Турбовальный двигатель.

Компоновка двигателя Arriel 1E2.

Турбовальный двигатель.

Турбовальный двигатель ARRIEL 1E2.

Турбовальный двигатель.

Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.

Выходной вал ТваД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Турбовальный двигатель.

Компоновка двигателя Arrius 2B2.

Турбовальный двигатель.

Турбовальный двигатель ARRIUS 2B2.

Турбовальный двигатель.

Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2.

Надо сказать, что редуктор – непременная принадлежность турбовального двигателя. Ведь скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Турбовальный двигатель.

Компоновка двигателя Makila 1A1.

Турбовальный двигатель.

Турбовальный двигатель MAKILA 1A1

Турбовальный двигатель.

Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1

Компрессор у ТваД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, то есть в нем есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД. Примером разнообразия конструкций ТваД могут служить двигатели известной французской двигателестроительной фирмы TURBOMEKA. Здесь я представляю ряд иллюстраций на эту тему (их сегодня вообще много как-то получилось :-)… Ну много — не мало… :-)).

Турбовальный двигатель.

Компоновка двигателя Arrius 2K1

Турбовальный двигатель.

Турбовальный двигатель ARRIUS 2K1.

Турбовальный двигатель.

Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.

Основное свое применение турбовальный двигатель находит сегодня конечно же в авиации, по большей части на вертолетах. Его часто и называют вертолетный ГТД. Полезная нагрузка в этом случае – несущий винт вертолета. Известным примером ( кроме французов :-))могут служить широко распространенные до сих пор отличные классические вертолеты МИ-8 и МИ-24 с двигателями ТВ2-117 и ТВ3-117.

Турбовальный двигатель.

Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.

Турбовальный двигатель.

Турбовальный двигатель ТВ2-117.

Турбовальный двигатель.

Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.

Турбовальный двигатель.

Турбовальный двигатель ТВ3-117 для вертолета МИ-24.

Кроме того ТваД может применяться в качестве вспомогательной силовой установки (ВСУ, о ней подробнее в следующей статье :-)), а также в виде специальных устройств для запуска двигателей. Такие устройства представляют собой миниатюрный турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. Называется такое устройство турбостартер. В качестве примера могу привести турбостартер ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолеты СУ-24, в частности на мой родной СУ-24МР :-)…

Турбовальный двигатель.

Двигатель АЛ-21Ф-3 с турбостартером ТС-21.

Турбовальный двигатель.

Турбостартер ТС-21, снятый с двигателя.

Турбовальный двигатель.

Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.

Однако, говоря о турбовальных двигателях, нельзя не сказать о совсем неавиационном направлении их использования. Дело в том, что ведь изначально газотурбинный двигатель не был монополией авиации. Главный его рабочий орган, газовая турбина, создавался задолго до появления самолетов. И предназначался ГТД для целей более прозаических, нежели полеты в воздушной стихии :-). Эта самая воздушная стихия его все же завоевала. Однако неавиационное приземленное предназначение существует и серьезности своей не потеряло, скорее наоборот.

На земле, так же как и в воздухе ГТД (турбовальный двигатель) применяется на транспорте.

Первое – это перекачка природного газа по крупным магистралям через газоперекачивающие станции. ГТД используются здесь в качестве мощных насосов.

Второе – это водный транспорт. Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходы. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создается при помощи ГТД.

Турбовальный двигатель.

Газотурбоход "Циклон-М" с 2-мя газотурбинными двигателями ДО37.

Пасажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в очень неудобное для себя время в 1986 году. Успешно пройдя все испытания, оно «благополучно» перестало существовать для России. Перестройка… Более таких судов не строили. Зато у военных в этом плане дела обстоят несколько лучше. Чего стоит один только десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.

Турбовальный двигатель.

Десантный корабль на воздушной подушке "Зубр" с газотурбинными двигателями.

Третье – это железнодорожный транспорт. Локомотивы на которых стоят турбовальные газотурбинные двигатели, называют газотурбовозы. На них используется так называемая электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, вращает электродвигатели, приводящие локомотив в движение. В 60-е годы прошлого века в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревновавния с электровозами и в начале 70-х проект был свернут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец газотурбовоза с ГТД, работающем на сжиженном природном газе (опять криогенное топливо :-)). Газотурбовоз успешно прошел испытания, планируется его дальнейшая эксплуатация.

И наконец четвертое, самое, наверное, экзотическое… Танки. Грозные боевые машины. На сегодняшний момент достаточно широко известны два типа ныне использующихся боевых танков с газотурбинными двигателями. Это американский М1 Abrams и российский Т-80.

Турбовальный двигатель.

Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.

Во всех вышеописанных случаях применения ГТД (суть турбовальный двигатель), он обычно заменяет дизельный двигатель. Это происходит потому, что (как я уже описывал здесь) при одинаковых размерах турбовальный двигатель значительно превосходит дизельный по мощности, имеет гораздо меньший вес и шумность.

Турбовальный двигатель.

Танк Т-80 с газотурбинным двигателем ГТД-1000Т.

Однако у него есть и крупный недостаток.Он обладает сравнительно низким коэффициентом полезного действия, что обуславливает большой расход топлива. Это естественно снижает запас хода любого транспортного средства (и танка в том числе :-)). Кроме того он чувствителен к грязи и посторонним предметам, всасываемым вместе с воздухом. Они могут повредить лопатки компрессора. Поэтому приходится создавать достаточно объемные системы очистки при использовании такого двигателя.

Эти недостатки достаточно серьезны. Именно поэтому турбовальный двигатель получил гораздо большее распространение в авиации, чем в наземном транспорте. Там этот трудяга-движок, ничего не пуская «на ветер» :-), заставляет подниматься в воздух вертолеты. И они в родной для них стихии из несуразных, на первый взгляд, машин превращаются в изумительные по красоте и возможностям творения рук человеческих… Все-таки авиация – это здорово :-)…

P.S. Вы только посмотрите, что они вытворяют!

Все фотографии и схемы кликабельны.

No related posts.

avia-simply.ru

Т-80. Особенности газотурбинного двигателя - is2006

Компоновка боевого отделения Т-80 в целом аналогична компоновке, принятой на Т-64Б.

Мотоблок в кормовой части корпуса танка расположен продольно, что потребовало некоторого увеличения длины машины по сравнению с Т-64. Двигатель выполнен в едином блоке общей массой 1050 кг с встроенным понижающим коническо-цилиндрическим редуктором и кинематически связан с двумя бортовыми планетарными коробками передач. В моторно-трансмиссионном отделении установлено четыре топливных бака емкостью по 385 л (суммарный запас топлива в забронированном объеме составил 1140 л).

ГТД-1000Т выполнен по трехвальной схеме, с двумя независимыми турбокомпрессорами и свободной турбиной. Регулируемый сопловой аппарат (РСА) турбины ограничивает частоту ее вращения и предотвращает "разнос" при переключении передач. Отсутствие механической связи между силовой турбиной и турбокомпрессорами повысило проходимость танка по грунтам с низкой несущей способностью, в тяжелых условиях движения, а также устранило возможность заглохания двигателя при внезапной остановке машины с включенной передачей.

Важным достоинством газотурбинной силовой установки явилась ее многотопливность. Обеспечена работа двигателя на реактивных авиационных топливах ТС-1 и ТС-2, дизельных топливах и автомобильных низкооктановых бензинах. Процесс пуска ГТД автоматизирован, раскрутка роторов компрессоров осуществляется при помощи двух электромоторов.

За счет выхлопа назад, а также собственной малошумности турбины по сравнению с дизелем, удалось несколько снизить акустическую заметность танка.

К особенностям Т-80 следует отнести впервые реализованную комбинированную систему торможения с одновременным использованием ГТД и механических гидравлических тормозов. Регулируемый сопловой аппарат турбины позволяет менять направление потока газов, заставляя лопатки вращаться в противоположном направлении (разумеется, это сильно нагружает силовую турбину, что потребовало принятия специальных мер по ее защите). Процесс торможения танка происходит следующим образом: при нажатии водителем тормозной педали начинается торможение посредством турбины. При дальнейшем утапливании педали в работу включается и механические тормозные устройства.

На ГТД танка Т-80 применена система автоматического управления режимом работы двигателя (САУР), включающая датчики температуры, размещенные перед- и за силовой турбиной, регулятор температуры (РТ), а также концевые выключатели, установленные под педалями тормоза и РСА, связанные с РТ и системой подачи топлива. Применение САУР позволило повысить ресурс лопаток турбины более чем в 10 раз, а при частом использовании тормоза и педали РСА для переключения передач (что происходит во время движения танка по пересеченной местности) расход топлива снижается на 5-7%.

Для защиты турбины от пыли применен инерциальный (т. н. "циклонный") метод очистки воздуха, обеспечивающий 97-процентную очистку. Однако при этом на лопатках турбины все же оседают неотфильтрованные частицы пыли. Для их удаления при движении танка в особо тяжелых условиях предусмотрена процедура виброоочистки лопаток. Кроме того, перед началом работы двигателя и после его остановки производится продувка.

Трансмиссия Т-80 - механическая планетарная. Она состоит из двух агрегатов, каждый из которых включает бортовую коробку передач, бортовой редуктор и гидросервоприводы системы управления движением. Три планетарных ряда и пять фрикционных устройств управления в каждой бортовой коробке обеспечивают четыре передачи вперед и одну назад..........Существенным нововведением стало применение на танке вспомогательного энергоагрегата ГТА-18А мощностью 30 л. с., позволяющего экономить топливо во время стоянки танка, при ведении оборонительного боя, а также в засаде. Экономится и ресурс основного двигателя. Вспомогательный энергоагрегат, расположенный в корме машины, в бункере на левой надгусеничной полке, "встроен" в общую систему работы ГТД и не требует каких-либо дополнительных устройств для своего функционирования.

http://armor.kiev.ua/Tanks/Modern/T80/T80.php

Нашел фото двигателя на http://lib.rus.ec/b/326936/read

Два независимых вала с центробежными компрессорами и их турбинами

Проточная часть ГТД-1000, продольный разрез

Камера сгорания, турбины компрессоров и РСА ГТД-1000

Из этих фото я вижу два соостных вала (один в другом) а третий наверное тоже соостный с ними, но просто жестко с ними не соединен. Все это сделано для компактности, примерно такая схема используется в самолетных ГТД, но там нет просто свободной турбины в конце - она не нужна.

Кстатит где тут РСА ГТД-1000 я не знаю, но если он действительно тут, он либо сильно маленький, либо моя версия http://is2006.livejournal.com/478457.html, что он поршневой не верна.

is2006.livejournal.com

Турбовальный двигатель | Техника и человек

 

Для тех, кто интересуется моторами в целом и их авиационными моделями в частности, турбовальный двигатель в первую очередь ассоциируется с вертолетами, недаром их называют «вертолетными ГТД». Именно здесь ТВаД нашли наибольшее применение и уже не один десяток лет с успехом используются. Но вертолеты – не предел их возможностей, многие другие отрасли машино- и судостроения взяли на вооружение этот тип двигателей, но обо всем по порядку.

Итак, турбовальный двигатель принадлежит славному семейству газотурбинных двигателей (ГТД) наравне с турбореактивными (ТРД) и турбовинтовыми (ТВД). ГТД представляет собой тепловую машину, в упрощенной схеме состоящую из компрессора и турбины, работающей за счет сжигания топлива в камере сгорания. Наиболее простой его разновидностью является турбореактивный двигатель, в котором энергия от сжигания топлива идет только на вращение компрессора через турбину, а излишек энергии выходит через сопло в виде газов под высоким давлением, образуя реактивную тягу. Но эта энергия может не только «вылетать в трубу», но и выполнять полезную работу, вращая воздушный винт (турбовинтовой двигатель) или вал (турбовальный двигатель). Это и является принципиальной разницей между всеми вышеотмеченными видами моторов семейства ГТД – способ использования свободной энергии.

Устройство и принцип работы двигателя

Строение турбовального двигателя в общих чертах напоминает строение ТРД. Основными составляющими являются комрессор, турбина, камера сгорания и вал. В отличие от других газотурбинных двигателей ТВаД совсем не имеет реактивной тяги – вся свободная энергия расходуется на вращение вала, поэтому и сопла, как такового, у него нет, а есть только каналы (своеобразные выхлопные трубы), по которым отводятся отработанные газы. Еще одна особенность ТВаД – наличие не одной, а двух турбин, не связанных между собой механически. Одна турбина приводит в движение компрессор, а вторая – рабочий вал. Между собой они связаны газодинамически. Некоторые модели турбовинтовых двигателей также имеют схожую конструкцию, но не обязательно. В случае с ТВаД турбин всегда две.

Две основные схемы устройства ТВаД с описание расположенных механизмов. Картинки кликабельны.

TVaD turbomeka3

Принцип работы турбовального двигателя тоже не сильно отличается от ТРД или ТВД. Компрессор, приводимый в движение турбиной, нагнетает воздух в камеру сгорания, где он перемешивается с впрыснутым через форсунки топливом. Топливный заряд воспламеняется и сгорает, в результате чего образуются газы с большим запасом энергии. Расширяясь, они вращают турбины, приводя в движение компрессор и вал, а отработанные газы выводятся наружу.

Компрессор турбовального двигателя имеет несколько ступеней и может быть центробежным, осевым или комбинированным. Комбинированные компрессоры сочетают в себе и центробежные, и осевые ступени.

Обязательным конструктивным элементом ТВаД, как, впрочем, и турбовинтового двигателя, является редуктор, установленный между турбиной и валом. Сама турбина вращается с угловой скоростью, достигающей 20 000 об/мин. Понятно, что винт, закрепленный на валу и создающий тягу, не сможет работать при такой скорости и выполнять свои функции, ведь тогда ему придется вращаться со сверхзвуковой скоростью. Редуктор, установленный перед валом, понижает обороты и увеличивает крутящий момент, так что скорость вращения лопастей винта вертолета значительно меньше скорости вращения турбины.

Если турбовинтовые двигатели, которые используются на самолетах, должны иметь компактные размеры, а вал турбины и вал винта у них устанавливаются параллельно в одном корпусе, то к габаритам турбовальных двигателей таких жестких требований нет. Рабочий вал у них может находиться впереди турбины или за ней, в одном корпусе с ней или отдельно. Это объясняется тем, что мотор спрятан в конструкции кабины, где его можно расположить в любом удобном положении. Различают цельные моторы и модульные, состоящие из отдельных модулей, связанных между собой механически. Часто в одном модуле расположены компрессор и турбины, а в другом – рабочий вал, связанный с валом турбины редуктором.

helikopter

Легкий американский вертолет AH-6j Little Bird

 

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт — мощность на валу.
  • 37% — КПД, механический привод.
  • 36% — КПД, электрический (простой цикл).
  • 80% — КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов — полный жизненный цикл
  • выбросы NOx — не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.

turbprom1

В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем Десантное судно «Зубр»

Преимущества и недостатки

Основным преимуществом турбовального двигателя является то, что по сравнения с поршневыми двигателями он более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера. Вся суть турбовального двигателя и заключается, чтоб максимально использовать энергию сгорающего топлива, по сравнению с поршневыми двигателями это реализуется лучшим образом. Тем самым в одном килограмме двигателя можно реализовать конструкцию, более мощную своих цилиндрических сородичей, которая с каждого килограмма топлива будет забирать тепловую энергию и преобразовывать ее в механическую.

Есть у турбовального двигателя и недостатки. Первый из них – сравнительно большой расход топлива и, соответственно, низкий КПД, несмотря на высокие показатели мощности. Именно этот недостаток объясняет его ограниченное применение на наземном транспорте, где его можно заменить более эффективными силовыми установками. Второй недостаток – чувствительность к загрязнениям. Компрессор, втягивая воздух в камеру сгорания, заодно всасывает и пыль, и посторонние предметы, что сказывается на качестве работы двигателя и на его исправность в целом. На высоких оборотах даже незначительные твердые частички могут повредить лопасти турбины. Поэтому ТВаД нуждается в надежной системе тщательной очистки воздуха, а расходы на нее далеко не всегда оправданы – в большинстве случаев намного проще и дешевле использовать традиционный дизель. Это еще одна причина, по которой эти двигатели в основном используются в воздухе: там и грязи меньше, и птицы летают ниже высоты полета, так что нормальной работе компрессора и турбины ничего не мешает. Зато масса ТВаД намного меньше любого поршневого двигателя, а это в авиации немаловажно.

Турбовальные двигатели – это действительно в первую очередь «сердца» вертолетов, а уж потом все остальное. Именно эти стальные «стрекозы» дают возможность оценить основные преимущества ТВаД, ну а недостатки в этом случае совсем незначительны.

zewerok.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики