Содержание
Пульсирующий воздушно-реактивный двигатель (пуврд)
Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как беспилотные разведчики, летающие мишени и т.п., а также в качестве сбрасываемых дополнительных двигателей. Пульсирующий воздушно-реактивный двигатель содержит, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу. Впускные трубы выполнены сегментно-кольцевого сечения. Задняя торцевая стенка камеры сгорания выполнена с козырьком над входом в резонаторную трубу, которая расположена с эксцентриситетом относительно оси камеры сгорания. Изобретение направлено на повышение термодинамического КПД путем увеличения амплитуды пульсаций давления. 4 ил.
Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как беспилотные разведчики, летающие мишени и т. п., а также в качестве сбрасываемых дополнительных двигателей.
Известен пульсирующий воздушно-реактивный двигатель (далее ПуВРД) немецкой крылатой ракеты времен Второй мировой войны Фау-1 (см. Г.Б.Синярев, М.В.Добровольский. Жидкостные ракетные двигатели. — Оборонгиз, 1957, с.19, 20). Он представляет собой открытый с обоих торцов канал круглого поперечного сечения, включающий последовательно расположенные входной диффузор, клапанную решетку, камеру сгорания и выходное устройство, состоящее из конфузора и выхлопной трубы, а также систему топливоподачи и систему зажигания с электрозапалом, установленным в камере сгорания. В общем случае входное и выходное устройства ПуВРД могут иметь форму, отличную от прототипа, поэтому в дальнейшем будем называть их принятыми терминами воздухозаборник и сопло.
Клапанная решетка представляет собой конструкцию из несущих элементов -поперечных стержней, подвижных элементов — плоских упругих пластин постоянной толщины, прикрепленных к боковым граням стержней попарно параллельно друг другу на расстоянии, равном толщине стержня, и опорных проставок, размещенных посредине между парами пластин параллельно им. В каждой паре между пластинами имеется глухой зазор, обращенный назад. Пластины и проставки образуют продольные каналы для прохода воздуха.
Набегающий на ПуВРД поток проходит через воздухозаборник и клапанную решетку в камеру сгорания. Туда же подается легкоиспаряющееся топливо, после чего топливовоздушная смесь воспламеняется искрой электрозапала. Быстро расширяющиеся во все стороны продукты сгорания, попадая в глухой зазор между пластинами, тормозятся, в результате чего давление там возрастает.Это вызывает изгиб пластин в стороны до контакта с опорными проставками или боковыми стенками. Воздушные каналы клапанной решетки оказываются перекрытыми. Продукты сгорания истекают через сопло в атмосферу, а их давление на закрытую клапанную решетку создает импульс тяги ПуВРД.
После падения давления пластины клапанной решетки под действием своей упругости, а также разрежения, создаваемого в камере инерцией истекающих газов, возвращаются в исходное положение. В камеру поступает очередная порция воздуха и цикл повторяется.
Клапанная решетка служит основным, но не единственным элементом узла, создающего тягу ПуВРД и включающего также боковые стенки, детали крепления и др. Кроме того, функцию создания тяги в таком ПуВРД могут выполнять и другие устройства. Поэтому в дальнейшем будем пользоваться общим термином «тяговый узел» (как часть ПуВРД) и конкретным — клапанная решетка тягового узла.
Достоинствами ПуВРД с механическими клапанными решетками являются простота и дешевизна, небольшой вес, надежность. Их недостаток — плохие тяговые характеристики, а именно низкая удельная и лобовая тяги, высокий удельный расход топлива, импульсный характер тяги, но главное — низкий ресурс клапанов.
Также известны конструкции ПуВРД, использующие аэродинамические клапаны, «Нестационарное распространение пламени», под ред. Дж.Г.Маркштейна, М., МИР, 1968, с.401-407. Кроме того, ПуВРД, в которых осуществлена замена механических клапанов на аэродинамические, описаны в патентах США №2796735, 1957; №2796734, 1957; №2746529, 1956; №2822037, 1958; 2812635, 1957; 3093962, 1963.
К недостаткам таких ПуВРД следует отнести низкую амплитуду пульсаций давления и, соответственно, низкий термодинамический КПД (коэффициент полезного действия).
Повысить удельную и лобовую тяги и снизить удельный расход топлива можно путем увеличения амплитуды пульсаций давления, которое достигается путем увеличения скорости сгорания топливовоздушной смеси в камере сгорания ПуВРД. Увеличение же амплитуды пульсаций приводит к росту термодинамического КПД и соответственно, к снижению удельного расхода топлива.
Техническим результатом изобретения является повышение термодинамического КПД путем увеличения амплитуды пульсаций давления путем создания более благоприятных условий возникновения детонации.
Поставленная техническая задача решается за счет интенсификации процесса массопереноса в камере сгорания и в зоне расположения змеевика нагретого газа в начальной части резонаторной трубы, достигаемого путем организации интенсивного течения топливовоздушной смеси по всему периметру пристеночной зоны камеры сгорания и резонаторной трубы. А это приводит к росту скорости квазидетонационного горения вплоть до детонации. При этом под «квазидетонационным» горением подразумевается горение с повышенными скоростями продвижения фронта пламени, составляющими в случае ПуВРД 100 м/сек и более. А при детонации — 1000 м/сек и более. Организация такого режима горения происходит за счет интенсивного массопереноса в камере сгорания и на витках змеевика нагретого газа, выполняющего роль турбулизатора. Скорость фронта пламени пропорциональна скорости массопереноса.
Указанный технический результат при осуществлении изобретения достигается тем, что в известном ПуВРД, содержащем, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу, впускная труба ПуВРД выполнена сегментно-кольцевого сечения, а задняя торцевая стенка камеры сгорания выполнена с козырьком над входом в резонаторную трубу, которая расположена с эксцентриситетом относительно оси камеры сгорания.
Сравнение научно-технической и патентной документации на дату приоритета в основной и смежной рубриках МКИ показывает, что совокупность существенных признаков заявленного решения ранее не была известна, следовательно, оно соответствует условию патентоспособности «новизна».
Анализ известных технических решений в данной области техники показал, что предложенное устройство имеет признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности признаков дает возможность получить новый технический результат, следовательно, предложенное техническое решение имеет изобретательский уровень по сравнению с существующим уровнем техники.
Предложенное техническое решение промышленно применимо, т.к. может быть изготовлено промышленным способом, работоспособно, осуществимо и воспроизводимо, следовательно, соответствует условию патентоспособности «промышленная применимость».
Другие особенности и преимущества заявляемого изобретения станут понятны из следующего детального описания, приведенного исключительно в форме неограничивающего примера и со ссылкой на прилагаемые чертежи, иллюстрирующие предпочтительный вариант реализации, на которых показаны:
Фиг.1 — схема предлагаемого ПуВРД;
Фиг.2 — сечение схемы по фиг. 1 плоскостью А-А;
Фиг.3 — сечение схемы по фиг.1 плоскостью Б-Б;
Фиг.4 — сечение схемы по фиг.1 плоскостью С-С;
Позициями на чертеже показаны:
1 — сопло подачи газа,
2 — первая впускная труба — смеситель,
3 — впускная труба,
4 — камера сгорания,
5 — козырек,
6 — задняя торцевая стенка камеры сгорания,
7 — резонаторная труба,
8 — запальная свеча,
9 — змеевик нагрева газа,
10 — дроссель,
11 — топливный бак (с жидким пропаном),
12 — газовая магистраль,
13 — зона удара воздушно-газовой смеси о заднюю торцевую стенку камеры сгорания 6,
стрелка 14 — кольцевое течение воздушно-газовой смеси.
ПуВРД, представленный на чертеже, содержит сопло 1 подачи газа с соосно закрепленными первой впускной трубой — смесителем 2 и впускной трубой 3 ПуВРД. К торцу впускной трубы 3 ПуВРД закреплена камера сгорания 4 с задней торцевой стенкой 6 и козырьком 5. К задней торцевой стенке 6 камеры сгорания 4 закреплена резонаторная труба 7 с запальной свечей 8. Змеевик нагрева газа 9 через дроссель 10 соединяется с топливным баком 11, в котором находится жидкий пропан, и через газовую магистраль 12 — с соплом подачи газа 1.
При частичном открытии дросселя 10 и подаче искры на запальную свечу 8 происходит воспламенение газа и горение внутри камеры сгорания 4. Через некоторое время змеевик нагрева газа 9 и стенки камеры сгорания 4 разогреваются и дальнейшее открытие дросселя 10 приводит к осуществлению рабочего цикла ПуВРД. Он осуществляется следующим образом. Подаваемый газ через сопло подачи газа 1 эжектирует воздух в первую впускную трубу — смеситель 2 и впускную трубу ПуВРД 3. Далее струйное течение воздушно-газовой смеси ударяется в заднюю торцевую стенку 6 камеры сгорания 4. Зона удара показана на фиг.4 позицией 13. При ударе о заднюю торцевую стенку 6 происходит растекание струи по задней торцевой стенке 6. Увеличение массовой доли воздушно-газовой смеси, поступающей в нижнюю часть камеры сгорания 4, достигается за счет ограничения прямого перетекания воздушно-газовой смеси в резонаторную трубу 7 козырьком 5. Сформированное таким образом течение показано на фиг.4 позицией 14. Оно равномерно, по всей длине окружности резонаторной трубы 7 входит в нее и натекая на витки змеевика нагрева газа 9, турбулизуется, как на «Спирали Щелкина». При этом происходит ускорение процесса горения внутри камеры сгорания 4 вплоть до детонации, что способствует увеличению термодинамического КПД ПуВРД.
Описанный процесс соответствует одному рабочему циклу ПуВРД. Цикличность же работы традиционно реализуется настройкой на резонанс, за счет изменения длины первой впускной трубы — смесителя 2, длины резонаторной трубы 7 и геометрии камеры сгорания 4 с впускной трубой ПуВРД 3.
Разумеется, изобретение не ограничивается описанным примером его осуществления, показанным на прилагаемых чертежах. Остаются возможными изменения различных элементов либо замена их технически эквивалентными, не выходящие за пределы объема настоящего изобретения
Пульсирующий воздушно-реактивный двигатель (ПуВРД), содержащий, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу, отличающийся тем, что впускные трубы выполнены сегментно-кольцевого сечения, а задняя торцевая стенка камеры сгорания выполнена с козырьком над входом в резонаторную трубу, которая расположена с эксцентриситетом относительно оси камеры сгорания.
Что такое Воздушно-реактивный двигатель | значение термина
Физика — конспекты, новости, репетиторы » Техническая энциклопедия
Опубликовано
Воздушно-реактивный двигатель это
(ВРД) — реактивный двигатель, в котором атмосферный воздух применяется как основное рабочее тело в термодинамическом цикле, а также при создании реактивной тяги двигателя. При использовании химического авиационного топлива кислород, содержащийся в воздухе, является основным окислителем при горении топлива в ВРД.
Если источником энергии в ВРД служит, например, ядерная энергия, то теплота к рабочему телу (воздуху) передается с помощью промежуточных теплоносителей или другие способом (см. Авиационная ядерная силовая установка). Термодинамический цикл ВРД в общем случае включает процессы сжатия воздуха, забираемого из атмосферы, подвода теплоты (одно- или многократного) и расширения нагретого газа до атмосферного давления. ВРД по способу сжатия воздуха делятся на компрессорные и бескомпрессорные. У компрессорных ВРД сжатие воздуха осуществляется в воздухозаборнике, а далее механическим компрессором, вращаемым газовой турбиной. Такие ВРД принадлежат к классу газотурбинных двигателей (ГТД). Принципиально возможен привод компрессора от поршневого двигателя внутреннего сгорания (мотокомпрессорный ВРД). К бескомпрессорным ВРД относятся прямоточный воздушно-реактивный двигатель (ПВРД) и пульсирующий воздушно-реактивный двигатель. В ПВРД сжатие воздуха осуществляется только за счёт кинетической энергии набегающего потока воздуха. Разновидностью прямоточного ВРД является гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) со сверхзвуковой скоростью течения воздуха внутри двигателя.
К ГТД прямой реакции относятся одно- и двухконтурный турбореактивные двигатели (ТРД и ТРДД). При использовании форсажных камер сгорания (турбореактивный двигатель с форсажной камерой и турбореактивный двухконтурный двигатель с форсажной камерой) диапазон применения этих двигателей по скорости полёта расширяется. К ВРД по рабочему процессу и конструкции близки авиационного ГТД непрямой реакции: турбовинтовые двигатели (ТВД) и их разновидности — турбовинтовентиляторные двигатели и турбовальные двигатели. Эти двигатели предназначены только для дозвуковых скоростей полёта.
Особый класс образуют комбинированные двигатели, сочетающее элементы ГТД, ракетного двигателя и ПВРД.
Идеи создания ВРД различных схем высказывались во второй половине XIX — начале XX вв. В 30 е гг. начали создаваться экспериментальные образцы ТРД, ПВРД, мотокомпрессорных ВРД. Первые боевые самолёты с турбореактивными двигателями появились в Великобритании и Германии в 1944. Начиная с 50 х гг. ВРД становится основным типом двигателей самолётов. На некоторых беспилотных летательных аппаратах нашли применение прямоточный воздушно-реактивный двигатель и ракетно-прямоточные двигатели.
Источник: Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.
Принцип работы турбореактивного двигателя
Воздушно реактивный двигатель
Волновой воздушно-реактивный двигатель
Воздушно реактивные двигатели для боевых самолётов
НЕВЕРОЯТНЫЙ Тест Реактивных Двигателей
Физика прямоточного двигателя
BMW с реактивным ТУРБОВАЛЬНЫМ двигателем
Реактивный Двигатель Своими Руками DIY Pulse Jet Engine
Пульсирующий воздушно-реактивный двигатель
Гиперзвуковой летательный аппарат с вертикальным взлетом и посадкой
Топлива для воздушно-реактивных двигателей (ВРД). Краткий ликбез.
Jam jar engine.Простейший пульсирующий воздушно-реактивный «двигатель» ПуВРД.
Пульсирующий воздушно-реактивный двигатель (ПуВРД)/The simplest jet engine (Pulsejet)
Реактивный карт Александра Юлгу и Лаборатория беспилотных технологий Таира Балбаева. ПуВРД.
😱ЭТО ЖЕСТЬ!!!😳136 КГ ТЯГИ 2022😱.You have never seen such a thing !!! 2022
Самые простые способы запустить Пульсирующий Воздушно Реактивный Двигатель ПуВРД
Измеряем тягу пульсирующего двигателя // PULSE JET TRIKKE
Собрал ПуВРД двигатель Pulse jet
Микро реактивный двигатель
Микро реактивный двигатель
Поделиться или сохранить к себе:
Планы на все — Планы импульсных реактивных двигателей
Это планы импульсных двигателей всех видов конфигураций, в основном подходящих для моделей, но некоторые из них больше, например, устройство, которое приводило в действие бомбы V-1 Buzz с 1200-фунтовыми грузами из Германия против Англии во Второй мировой войне.
Изображение | Описание | Файл Спец. | Скачать |
Aerojet: Импульсный реактивный самолет российской разработки с метрическими размерами. | 1 стр. 52 КБ | ||
Alpha Jet: Разработанный в Германии импульсный реактивный двигатель с метрическими размерами. | 1 стр. 376 кБ | ||
Atom Jet: Простая в сборке датская импульсная струя с метрическими размерами. | 2 страницы 287 КБ | ||
B12 Pulse Jet: Импульсный жиклер большего размера в метрических размерах. | 1 стр. 245 кБ | ||
Brauner Pulse Jet: Импульсный жиклер Brauner с метрическими размерами с 1983 года. | 1 стр. 245 кБ | ||
Импульсная струя Brenot: Хорошо задокументированная конструкция импульсной струи с сопровождающими инструкциями, написанными на французском языке. Метрические размеры. | 4 страницы 800 КБ | ||
Китайский бесклапанный импульсный сопло: Эта очень простая конструкция не имеет движущихся частей, разработана в Китае с метрическими размерами. Он выдает 12 фунтов тяги. | 2 страницы 287 КБ | ||
Модель Craft Pulse Jet: Эта конструкция объединяет импульсный двигатель в простую реактивную модель самолета. Имперские (дюймы) размеры. | 2 страницы 604 КБ | ||
DeLaird Valveless Pulse Jet: Базовая китайская бесклапанная конструкция, нарисованная Джимом ДеЛэрдом в 1993 году в имперских размерах вместо исходных метрических. | 4 страницы 133 кБ | ||
Пульсирующая форсунка Didgeridoo: Стандартная импульсная струя с лепестковым клапаном, разработанная в соответствии с метрическими размерами и инструкциями на английском языке. | 7 стр. 1,4 МБ | ||
Бесклапанная импульсная форсунка со сфокусированной волной: Эта усовершенствованная конструкция очень проста в изготовлении. Он маленький, около 2 1/4 фунтов тяги. | 2 страницы 455 КБ | ||
German V-1 Buzz Bomb Pulse Jet: Вот чертежи печально известного немецкого двигателя V-1 Buzz Bomb, который Гитлер отправил через Ла-Манш с 1000-фунтовой взрывчаткой, чтобы терроризировать Англию во время Второй мировой войны. Я видел один из таких двигателей, и они огромны — около 12 футов в длину. | 23 пг 907 КБ | ||
LH Бесклапанная импульсная форсунка: Представляет собой сложенную бесклапанную импульсную форсунку LH с метрическими размерами. Это настоящие демоны при использовании пропана, их очень просто сделать и запустить. | 1 стр. 47 КБ | ||
Luhman Pulse Jet: Это немецкий дизайн, опубликованный в старом журнале. | 7 стр. 1,9 МБ | ||
Импульсный реактивный двигатель Мопена: Простая модель двигателя с пластинчатым клапаном, разработанная Мопеном. | 1 стр. 317 кБ | ||
Бесклапанный импульсный двигатель Огорелика: Отличный 35-страничный трактат о том, как создавать бесклапанные импульсные двигатели для модели или полномасштабного использования. | 35 стр. 618 КБ | ||
Импульсный 1 Импульсный сопло: Еще одна вариация довольно стандартной модели пульсирующего реактивного двигателя с лепестковым клапаном. | 1 стр. 313 кБ | ||
Pulso 3 Pulse Jet: То же, что и выше, но импульсный реактивный двигатель большего размера. | 1 стр. 508 КБ | ||
Импульсный реактивный двигатель Tempest: Еще один стандартный импульсный реактивный двигатель клапанного типа. | 1 стр. 354 КБ | ||
Бесклапанный импульсный реактивный двигатель Thermojet: Еще один простой бесклапанный импульсный реактивный двигатель. | 1 стр. 354 кБ | ||
Tiger Pulse Jet: Модель Tiger с тягой 1-1/2 фунта из Японии, но размеры указаны в дюймах. | 2 страницы 372 КБ | ||
Модель Ram Jet: Небольшой прямоточный двигатель, предназначенный для использования в моделях самолетов. | 2 страницы 679 КБ |
Прошлое и будущее Pulse Jet – Disciples of Flight
9
АКЦИИ
Что, если бы у реактивного двигателя не было движущихся частей? Любители истории авиации с любовью вспомнят концепт двигателя импульсного реактивного двигателя (или импульсного реактивного двигателя) как ответ на этот вопрос. Поскольку исторические корни уходят в прошлое еще до полета с двигателем, характеристика импульсной струи осталась неизменной. Известные как часть летающей бомбы Фау-1, которая терроризировала Лондон в последние годы Второй мировой войны, импульсные реактивные двигатели практически не использовались в пилотируемых самолетах.
Пульсация для увеличения тяги
В двух словах импульсные форсунки работают так же, как двигатель внутреннего сгорания, который мы находим в автомобилях: дискретные взрывы, вызванные искрением сжиженного топлива, смешанного с кислородом, выталкивают горячий газ наружу, создавая тягу. После того, как взрыв вытеснит горячий газ наружу, кислород должен быть возвращен в камеру сгорания, прежде чем процесс может начаться снова.
Вместо использования направленного вперед вентилятора для всасывания свежего кислорода импульсные форсунки полагаются на градиенты давления и пассивный поток воздуха. Взрыв и возникающий в результате выброс горячего газа из задней части двигателя оставляет после себя область низкого давления по сравнению с внешней средой внутри камеры сгорания. Таким образом, свежий воздух снаружи будет устремляться в камеру сгорания через впускное отверстие, подготавливая двигатель к еще одному взрыву. Выходящий горячий газ, оставшийся в камере сгорания после предыдущего взрыва, воспламеняет следующую порцию воздуха и газа. Каждое событие взрыва считается одним «импульсом». Чтобы пульсирующая струя обеспечивала достаточную тягу для отрыва, пульсация должна быть постоянной.
Импульсные форсунки привлекательны тем, что теоретически они могут быть сделаны без каких-либо движущихся частей, хотя на практике большинство из них имеют клапан, обеспечивающий выход всего горячего газа из выхлопной трубы, а не где-либо еще. Простота конструкции, в конечном счете, будет очень важным фактором при выборе импульсных форсунок в качестве способа создания тяги.
Изготовление «жужжащей бомбы»
Импульсные реактивные двигатели исследовались группой европейских инженеров с начала 1900-х годов. Ни один импульсный реактивный самолет не выходил из стадии прототипа до тех пор, пока немец Пауль Шмидт не получил правительственный грант на разработку летающей бомбы Фау-1 в 1919 году.30 с. Предполагалось, что летающая бомба станет дешевым способом бомбить удаленные цели, не подвергая опасности экипажи бомбардировщиков. Требования были просты: доставить большую бомбу в дальний район. Для того времени выполнить эти требования было чрезвычайно сложно.
Ранние прототипы 1930-х годов работали плохо, и в конце концов Шмидт потерял контроль над проектом, хотя и продолжал участвовать. В конце концов, после начала войны проект получил дополнительное финансирование, и к началу 1940-х годов в рамках проекта V-1 был создан очень простой импульсный реактивный двигатель одноразового использования. Хотя импульсные реактивные двигатели просты по своей природе, двигатель, созданный по программе Фау-1, был прекрасным примером экономичности и эффективности военного времени.
Фото: любезно предоставлено Бундесархивом, Bild 146-1973-029A-24A / Lysiak / CC-BY-SA 3.0
Как хорошо знали немецкие инженеры, для импульсных форсунок необходимо, чтобы содержимое их камеры сгорания воспламенялось только один раз за чтобы гарантировать достаточное количество тепла для воспламенения последующих топливно-воздушных смесей. В результате импульсный жиклер для использования в Фау-1 использовал одноразовую свечу зажигания в целях экономии ресурсов.
В конечном итоге Фау-1 превратился в беспилотную систему доставки бомб, приводимую в движение импульсным реактивным двигателем. Он эффективно использовался для бомбардировок Лондона в последние годы войны, и многие опасались его гудящего шума. Однако интерес Германии к импульсным реактивным двигателям на этом не закончился.
Импульсные реактивные двигатели для реактивных ранцев
«Летный ранец Химмельштурмера» был еще одной экспериментальной программой военного времени, целью которой было использование импульсных реактивных двигателей в качестве средств передвижения пехоты. Да, нацисты экспериментировали с реактивными ранцами для своих солдат. Химмельштурмер состоял из рюкзака с канистрой с топливом, канистры с кислородом и импульсной струи. Кислород был необходим, чтобы дополнить воздух, всасываемый перепадом давления, вызванным каждым импульсом.
Предназначенный для перевозки войск через реки и пропасти, Химмельштурмер имел очень короткое время полета из-за нехватки топлива. Таким образом, движение вперед с любой заметной скоростью было чрезвычайно опасным, поскольку операторам нужно было расходовать топливо, чтобы замедлиться перед посадкой. Химмельштурмер был испытан на заключительном этапе войны, но никогда не использовался в бою.
После войны
После войны армия США экспериментировала с импульсными реактивными системами, но в конечном итоге отказалась внедрять какие-либо испытанные прототипы. Прототип одноместного разведывательного вертолета XH-26 «Jet Jeep» стал кульминацией американских экспериментов. XH-26 был легким вертолетом с крошечными пульсирующими форсунками на концах несущего винта. Таким образом, импульсные струи будут вращать лопасти несущего винта и обеспечивать подъемную силу. К сожалению, дополнительный вес импульсных двигателей сделал невозможным авторотацию, и поэтому армия отказалась от реализации проекта.
Конец импульсных двигателей?
С тех пор, как послевоенный интерес к импульсным реактивным двигателям угас, импульсные реактивные двигатели мало применялись и мало исследовались в авиации. За пределами авиации импульсные форсунки нашли применение в промышленных системах обогрева. На данный момент, вероятно, импульсные реактивные самолеты по-прежнему будут отсутствовать в авиации, хотя есть несколько проектов, которые могут ожидать их возвращения в будущем.
В частности, Boeing владеет рядом патентов на базовый импульсный реактивный самолет 9.0004, а также несколько более новых патентов, сочетающих технологию импульсной струи с миниатюризацией для использования в дронах. Компания Boeing также рассматривала возможность использования импульсных реактивных двигателей в контексте предоставления самолетам недорогих возможностей вертикального взлета и посадки.